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Equal status in Ultimatum Games 
promotes rational sharing
Xiao Han1,2, Shinan Cao3, Jian-Zhang Bao2, Wen-Xu Wang2, Boyu Zhang4, Zi-You Gao1 &  
Angel Sánchez   5,6,7,8

Experiments on the Ultimatum Game (UG) repeatedly show that people’s behaviour is far from 
rational. In UG experiments, a subject proposes how to divide a pot and the other can accept or reject 
the proposal, in which case both lose everything. While rational people would offer and accept the 
minimum possible amount, in experiments low offers are often rejected and offers are typically larger 
than the minimum, and even fair. Several theoretical works have proposed that these results may 
arise evolutionarily when subjects act in both roles and there is a fixed interaction structure in the 
population specifying who plays with whom. We report the first experiments on structured UG with 
subjects playing simultaneously both roles. We observe that acceptance levels of responders approach 
rationality and proposers accommodate their offers to their environment. More precisely, subjects keep 
low acceptance levels all the time, but as proposers they follow a best-response-like approach to choose 
their offers. We thus find that status equality promotes rational sharing while the influence of structure 
leads to fairer offers compared to well-mixed populations. Our results are far from what is observed in 
single-role UG experiments and largely different from available predictions based on evolutionary game 
theory.

The Ultimatum Game (UG) was proposed more than three decades ago1,2 as a simple and clear way to meas-
ure social preferences3. In UG experiments, experimenters work with two subjects and give one of them (the 
“proposer”) an amount of money. The proposer makes an offer as to how to split the money to the other player 
(the “responder”). The responder can only accept the proposal as is or reject it outright, and in case of rejection 
none of the players receives any money. Clearly, rational people, where the term “rational” is used in the sense 
of self-interest, will both offer and accept the minimum possible amount, as responders have no incentives to 
reject any positive amount of money. However, all available experiments provide strong evidence that low offers 
are often rejected, with low meaning lower than 20–30% of the pot. Correspondingly, it appears that proposers 
anticipate this behaviour and offer amounts larger than the minimum, with fair splits being frequent. It is worth 
stressing that in the last three decades literally thousands of experiments have been carried out4–9 giving the same 
qualitative results.

A common variant of the standard ultimatum game is that the responder precommits a minimum acceptable 
offer (MAO) that he/she will accept (and any lower offer will be rejected) rather than simply decides whether to 
accept a specific offer. This MAO variant is more informative about responders’ preferences. Experiments found 
that the minimum acceptable offers for most subjects are around 30%6,10–12. This is consistent with the observa-
tions of the standard UG that offers lower than 30% are often rejected8,9. In particular, the MAO UG has some 
relation with the coordination game in the sense that when the proposer’s offer equals to the responder’s accept-
ance level, then both of them has no incentive to change their strategies13.
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These clear, reproducible experimental results have puzzled economists, but also evolutionarily biologists for 
a long time. Indeed, the fact that human subjects reject positive amounts of money out of anger about what is 
considered to be unfair is hard to reconcile with the self-interested decisions one would expect from evolution-
arily selected species. In this respect, it is interesting to note that this behaviour has been also observed among 
non-human primates14. Therefore, a number of explanations from different disciplines and perspectives have 
been proposed in order to understand the reasons for this behaviour. Prominent among these are theoretical 
approaches based on evolutionary game theory10,15–25. Most of these studies considered a variant of standard UG, 
where subjects play both roles and their strategies are given by two parameters p and q. When acting as proposer, 
the player offers the amount p. When acting as responder, the player rejects any offer smaller than q. Thus, in 
this variant, subjects play both roles in a MAO UG. Similarly to the standard UG, a rational responder should 
accept any (non-zero) offer, and therefore, a rational proposer will offer the minimum. It is worth noting that if 
everyone follows the same strategy in a dual-role UG, then all the subjects will obtain the same payoff, which is 
a fair outcome. In this paper, we define fairness as fair share in order to keep consistent with previous theoretical 
and empirical studies.

While these evolutionary game-theoretical models touch upon different aspects of the problem, two factors 
have been identified in the literature as possibly relevant for the arising of quasi-fair offers and the rejection of 
unfair offers: First, subjects taking part in the UG in both roles, meaning that they have to be both proposers and 
responders. Second, subjects interacting with fixed partners during the repeated play (i.e., there is a fixed inter-
action structure)16,19,21–25. In other words, evolutionary game theory on a well-mixed population where every-
body plays with everybody else predicts convergence to self-interested behaviour, and only when interactions are 
restricted to a few, fixed members of the population non-zero offers and acceptance levels arise.

In this paper, we experimentally test the above two factors. Our dual-role repeated UG experiments cover 
three key issues hitherto unaddressed in the literature. First, it allows for direct comparison to the theoretical 
predictions. The starting point of most theoretical research based on evolutionary game theory is the dual-role 
UG: agents act in both roles, and their choices for the acceptance level, q, and the offer, p, evolve with different 
prescriptions based on their and other subjects’ payoffs and/or actions10,15–25. We note that some of these studies 
assumed that players are equally likely to be in either of the two roles and, in this case, the expected payoff of a 
player is half of that earned when acting in both roles15–17. However, in the midst of the abundant experimental 
literature on the UG, only a few studies consider a setup given by a dual-role UG. These studies typically resort 
to the strategy method: subjects pick the two values and then they are randomly matched in a specific role in 
which the game is realized4,26–30. Second, to our knowledge, all the available experiments on the dual-role UG 
are one-shot and have not provided a clear picture of the behaviour in dual-role UGs: Carter and Irons26 and 
Weg and Smith27 found that proposer demands were greater if subjects play both roles. Conversely, Güth and 
Tietz4 found that proposers who play both roles make smaller demands than those who do not. Third, aside from 
an experiment on a bipartite structure of proposers and responders, the effects of population structures on UG 
experiments are unclear31. Although several theoretical studies indicated that a fixed interaction structure can 
enhance fairness16,19,21–25, this point has not been tested by laboratory experiments. In addition, a structure set-
ting allows us to get insight into how subjects decide their actions given the information about their neighbours’ 
behaviours in the previous round. Finally, a word is in order about the connection of this work with real contexts. 
While we do neither claim nor believe that there are actual, specific systems or situations that can be modeled by 
our experimental setup (or by the corresponding theoretical models for that matter), we do think that the mech-
anisms we are exploring will indeed be relevant to many such situations in order to provide possible explanations 
of the observed behaviours.

Results
We conducted a series of repeated dual-role UG experiments to test the effects of playing both roles and popu-
lation structures on UG. The experiments include 9 treatment groups T1-T9 with structured populations and 2 
control groups C1-C2 with well-mixed populations (see Methods, Supplementary Notes 1.1–1.3, Supplementary 
Table 1 and Supplementary Figures 1–3 for more details). In the 9 treatment groups, every subject plays with four 
fixed partners. In the 2 control groups, a subject also plays with four subjects, but he/she randomly encounters 
his/her neighbours in each round. At each round, a subject submits his/her choices for p and q simultaneously 
(0 ≤ p, q ≤ 100), and plays the standard UG with each of his/her neighbours with the two different roles. Subjects’ 
choices are applied to all their neighbours in a round, i.e., a subject makes the same offer and acceptance level 
to all of his/her neighbours. Thus, our experimental setting is same as many previous theoretical models19,21–25.

We begin by analyzing subjects’ offer p and acceptance level q. The time evolution, spatio-temporal patterns 
and distributions of p and q are shown in Fig. 1 and Supplementary Figures 4, 5, respectively, and histograms of 
p and q at rounds 1, 35 and 70 are shown in Supplementary Figure 6. These figures show that the mean values of 
p decrease over rounds. To be specific, in both the treatment and control groups, the mean value of p is about 50 
at the beginning and it decreases faster in the control groups than the treatment groups (see power law regres-
sions in Supplementary Figure 7). In contrast, the mean value of q keeps constant at about 10 over all the 70 
rounds in the treatment groups, and decreases from 10 to 5 in the control groups. The mean values of p and q in 
the treatment groups are significantly higher than those of the control groups (see Table 1). These results imply 
that fixed interaction structures have some effects on promoting fairness as compared to well-mixed popula-
tions, although p and q in these dual-role experiments are significantly lower than the values found in single-role 
experiments and in most theoretical models (see a comparison in Supplementary Table 2). Furthermore, the 
standard deviations of q over all rounds and over the last 35 rounds are similar in both treatment groups (F-test, 
P-value = 0.5929) and control groups (F-test, P-value = 0.3576), which implies that the diversity of q does not
change significantly along rounds. The standard deviation of p over all rounds and over the last 35 rounds in the
treatment groups have no significant difference (F-test, P-value = 0.2023), however, in the control groups the
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standard deviation of p over last 35 rounds is significantly lower than that over all rounds (F-test, P-value < 0.001) 
(see Table 1). This is consistent with the single-role UG study31 that a fixed interaction structure promotes the 
diversity of offers p but not of acceptance levels q.

Figure 1.  Time evolution of mean values and standard deviations of offers p and acceptance levels q. (a,b) Mean 
values and standard deviations of offers p from round 1 to round 70. Fair splits emerge at the beginning of all 
groups. The mean values of offer p decrease rapidly as the game progresses. The mean values in the treatment 
groups are larger than the control groups. The result indicates that fixed interaction structures can enhance the 
fairness compared with well-mixed populations. (c,d) Mean values and standard deviations of acceptance levels 
q from round 1 to round 70. Mean values of acceptance levels q are quite low from beginning to end. The mean 
values of q are stable in the treatment groups while the mean values of q slight decrease in the control groups. 
The results demonstrate that most of responders are quasi-rational.

1-70 rounds/1-35 rounds/36-70 rounds

Treatment Control

Mean(p) 22.78/26.37/19.18 17.78/22.52/13.03

Mean(q) 10.46/10.99/9.92 5.70/6/50/4.49

SD(p) 9.23/11.92/8.45 5.40/8.65/3.26

SD(q) 8.19/10.05/8.50 5.82/7.35/5.32

Table 1.  The mean values and standard deviations of offers and acceptance levels. We calculate mean values and 
standard deviations of p and q for all 70 rounds, and separately for rounds 1 to 35 and rounds 36 to 70. Mean(p) 
and SD(p) represent the mean value and the standard deviation of offers of all proposers, respectively, in which 
a proposer’s offer p is taken as the average of his/her offers p over 1-70 rounds/1-35 rounds/36-70 rounds. 
Similarly, Mean(q) and SD(q) represent the mean value and the standard deviation of acceptance levels q of all 
responders, respectively, in which a responder’s acceptance level is taken as the average of his/her acceptance 
levels q over 1-70 rounds/1-35 rounds/36-70 rounds.
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Furthermore, we find there are positive relationships between mean payoffs and rounds in both treatment 
groups and control groups, and the average values of payoffs over all rounds are 90.47 and 92.14 in the treatment 
groups and control groups, respectively. Moreover, there are negative relationship between standard deviations 
of payoffs and rounds in the treatment groups and control groups (see Supplementary Figure 8). The results of 
payoffs indicate that coordinating behaviours shown in our experiments can enhance cooperative bonus and 
reduce payoff differences which lines up with some earlier observations32,33. In fact, one could see our setup as a 
related one to the consensus experiments in33, where players are incentivized to choose the same colour as their 
neighbours. However, the fact that there are very many available options to the participants in our setup make it 
difficult to carry the analogy beyond a general resemblance.

Going from the aggregate to the individual level, let us now look at the behavioural patterns of proposers 
and responders. In our dual-role UG experiments, the proportion of rational behaviours of responders (i.e., do 
not reject q = 0 or only reject zero offer q = 1) is quite high compared with those of single-role experiments. In 
both the treatment groups and control groups, about half of the responders are rational in the first round (see 
Supplementary Figures 9–11). Furthermore, we observe that the proportion of rational responders decays over 
time in the treatment groups, while in the control groups the proportion remains constant (see Supplementary 
Figure 11). All in all, the proportion and evolution of rational responders is not very different in the treatment 
and control groups, and therefore the interaction structure does not seem to have large influence on this aspect.

On the other hand, proposers, who in principle should offer the minimum possible amount, seem to behave 
in a rational, best-response manner, offering the amount that maximizes their payoff given the acceptance levels 
of their neighbours in the previous round (see Supplementary Note 1.4 for the definition of best-response behav-
iour). In all groups, the proportions of rational behaviours among proposers are quite low at the beginning, but 
these proportions increase significantly over rounds and reach about 50 percent at the end (see Supplementary 
Figures 10,11). Thus, behaviours of proposers show a clear learning trend. As subjects gain experience from 
repeated observations, they make more precise estimates of the best response offer.

Distributions of individual strategies in the dual-role UG are shown in Supplementary Figure 5. In both the 
treatment groups and control groups, strategies around (20, 0) and (10, 0) are most popular. Furthermore, in the 
treatment groups, about 5% of strategies are close to (20, 20), but in the control groups, the proportion is less 
than 3%. A typical measurement for individual strategies in the dual-role UG is empathy. An empathic individual 
will offer an amount that is equal to his/her minimum acceptance level17,20,23,25. We use this approach to define 
empathic behaviours (p = q) as well as altruistic behaviours (>q, i.e., offer more than expected) and selfish behav-
iours (p < q, i.e., offer less than expected). It has been shown in theory that empathy can emerge spontaneously 
if there is a fixed interaction structure and the role of proposer or responder is randomly changed from round 
to round25. In our experiments, although the proportion of empathic behaviours slightly increases with rounds 
(which results in the decline of p), the proportion of altruistic behaviours is much higher than the other two 
types of behaviours (76.37% in the treatment groups and 83.84% in the control groups, see Supplementary Figure 
12). Specifically, the difference between p and q keeps stable at about 10 in the second half of the games in all the 
groups (see Fig. 1 and Table 1). Furthermore, selfish behaviours have the lowest single round average payoff in 
both treatment groups and control groups. The average payoff of empathic behaviours is slightly higher than that 
of altruistic behaviours in the treatment groups, but there is no significant difference between the payoffs of altru-
istic behaviours and empathic behaviours in the control groups (see Supplementary Figure 13).

Although the above analysis is informative as to why p declines but q does not, the reason behind these rational 
behaviours is still unknown. Previous studies have indicated that individual behaviours in games involving fairness 
and cooperation are sensitive to decision time, it is then important to investigate the effect of time pressure on decision 
making34–37. Overall, the mean decision time decreases over rounds (see Supplementary Figure 14 and Supplementary 
Table 3). This means that subjects make decisions faster as they play the game repeatedly. Interestingly, there is a clear 
positive correlation between actual decision time and proportions of rational behaviours of proposers (Pearson corre-
lation, coefficient =0.9549, P-value = 0.0451, see Fig. 2). Note that a subject’s best response choice for p (denoted by BR 
(p)) depends on his/her neighbours’ strategies in the previous round. Therefore, it makes sense that shorter decision 
times decrease the ratio of rational behaviours since BR (p) may needs to be recalculated at each round. Since the actual 
decision time decreases over rounds, we further look at the relationship between relative decision time (i.e., actual deci-
sion time minus mean decision time in that round) and the proportion of best-response behaviours (Supplementary 
Figure 15). In T1-T2 and T5-T9, both faster and slower decisions are more likely to be best-response. The reason is 
simple. If a subject’s neighbours’ acceptance levels are stable, then his/her optimal offer does not change via rounds so 
he/she can make a fast decision. In contrast, if the acceptance levels are unstable, then the subject needs more time to 
calculate the optimal offer so he/she will make a slow decision. Supplementary Figure 14 further reveals that subjects in 
T3-T4 do not have enough time to make a slow decision. This explains why the proportion of best-response behaviours 
in T3-T4 is lower than T1-T2 and T5-T9. Moreover, when proposers do not best respond, their offers are often higher 
than the best-response (i.e., best-response in general leads to smaller p). We find a weak negative correlation between 
the discrepancy p − BR(p) and decision time (Pearson correlation, coefficient = −0.1412, P-value = 0.0117). This result 
agrees well with the observation in Cappelletti et al.35, where proposers are likely to make higher offers under time 
pressure. In contrast, because a subject’s optimal q does not change via rounds (always q = 0 or 1), the proportions of 
rational behaviours of responders are affected little by the decision time.

We now analyze the effects of population size on individual behaviors. Supplementary Tables 4, 5 show that the 
mean values of q in different treatment groups are similar. In contrast, the mean value of p in T3-T4 is higher than 
T1-T2 and T5-T9, but the difference between T1-T2 and T5-T9 is not significant. Moreover, we find there is no 
significant difference in proportion of best-response behaviours between T1-T2 and T5-T9 (see Supplementary 
Table 6). Overall, subjects in T1-T2 and T5-T9 display very similar behaviours. This implies that the population 
size does not affect the pattern of individual behaviours. In addition, p in T3-T4 is higher because the average 
decision time in T3-T4 is shorter, which affects the proportion of best-response behaviours.
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Finally, it is interesting to compare the results of the dual-role UG experiments with our previous single-role UG 
experiments31 (two treatment groups with fixed interaction structures and two control groups with well-mixed pop-
ulations, total n = 200, including 100 proposers and 100 responders, 60 rounds, see Supplementary Note 1.5 for the 
design of the single-role UG experiments). We use the data of the last 35 rounds in the control and treatment groups 
of the dual-role UG experiments and the last 30 rounds in the control and treatment groups of the single-role UG 
experiments. We first compare p and q between the dual-role UG experiments treatment groups and the single-role UG 
experiments treatment groups. As shown in Fig. 3a, both p and q in the dual-role UG experiments treatment groups 
are much lower than in the single-role UG ones (p: 19.18 vs 43.33, Mann-Whitney U-test, P-value < 0.001; q: 9.92 vs 
35.83, Mann-Whitney U-test, P-value < 0.001). The same is true for well-mixed populations, dual-role UG experiments 
control groups compared to single-role UG experiments control groups (see Fig. 3b, p: 13.03 vs 41.80, Mann-Whitney 
U-test, P-value < 0.001; q: 4.90 vs 33.65, Mann-Whitney U-test, P-value < 0.001). These observations support our first 
general conclusion that equal status in the UG is actually detrimental in terms of fairness. This is likely to arise from the 
fact that single-role UG responders can only increase their payoff by rising their acceptance level, thus forcing proposers 
to increase their offers; on the contrary, when playing both roles, subjects would mainly focus on the offer in order to 
increase their payoffs, instead of trying to do it by rising their acceptance levels. This is supported by what we observe in 
the first round of our dual-role experiments, i.e., proposers choose fair offers but responders agree to accept low offers. 
In particular, this observation is consistent with those by Oxoby and McLeish29, where they found that people are more 
likely to accept low offers in a strategy method UG compared to a sequential decision UG.

In agreement with the explanation above, Fig. 3c shows that the proportion of rational behaviours of respond-
ers in the dual-role UG experiments treatment groups is much higher than the proportion in the single-role UG 
experiments treatment groups (37.53% vs 3.80%). However, the proportion of rational behaviours of proposers 
(best-response behaviours) in the dual-role UG experiments treatment groups is lower than the proportion in the 
single-role UG experiments treatment groups (39.78% vs 54.73%, Mann-Whitney U-test, P-value = 0.0027). For 
well-mixed populations, we find similar but even more dramatic results (see Fig. 3d): The proportion of rational 
behaviours of responders in the dual-role UG experiments control groups is much higher than the proportion 
in the single-role UG experiments control groups (55.47% vs 1.53%), but the proportion of rational behaviours 
of proposers (best-response behaviours) in the dual-role UG experiments control groups is lower than in the 
single-role UG experiments control groups (30.03% vs 45.93%, Mann-Whitney U-test, P-value < 0.001). This 
indicates that the acceptance level choices in the populations may be driving the offers, and that single-role UG 
responders move away from rationality in an attempt to increase their payoffs.

Discussion
In sum, our experiments show that equal status promotes rational splits, and that a fixed interaction structure has 
positive effects on fairness. Responders keep their acceptance level roughly constant and low all along the experiment, 
and proposers grow more inclined towards a best-response approach as the experiment proceeds. The best-response 
behaviour leads to fairer offers in the structured population than in the well-mixed population, although the values are 
far from what most theoretical models predict19,21–25 (see a comparison in Supplementary Table 2).

We note that the best-response offer for a proposer must be equal to one of his/her neighbors’ acceptance lev-
els, and in many cases, it coincides exactly with the maximum acceptance level. We then calculate the proportion 
of behaviours that offer the maximum acceptance level, finding that this proportion is slightly lower than that of 
the best-response behaviours (see Supplementary Notes 1.6). This reveals that some subjects indeed choose their 
offers based on the best-response consideration rather than simply adopt their neighbors’ maximum acceptance 

Figure 2.  Relationship between best-response behaviours and actual decision time. We analyze the data 
by classifying the 11 groups into 4 categories depending upon the experimental settings, namely, T1-T2 
(large groups with 45 seconds maximum time allowed), T3-T4 (median groups with 30 seconds maximum 
time allowed), T5-T9 (small groups with 45 seconds maximum time allowed) and C1-C2 (large groups with 
45 seconds maximum time allowed). Plotting proportion of best-response behaviours as a function of actual 
decision time in the 4 categories shows a clear positive correlation. The line is the result of linear regression by 
using the least squares approach. Error bars denote mean ± s.e.m.
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level. In addition to a large amount of best-response behaviours, there are also many subjects that choose a p 
value that is 1–5 higher than the best-response offer (see Supplementary Figure 9). This type of behaviour can 
be explained by a reinforcement learning model, where proposers update their offers based on trial-and-error 
and responders randomly pick their acceptance level from a database which is built upon the experimental data 
(see Supplementary Notes 1.7). The simulation results match the experimental results quite well. In both the 
structured and well-mixed populations, p declines fast in the first 20 rounds, but remains constant or decreases 
slowly in the last 20 rounds (see Supplementary Figure 16). This is consistent with previous studies showing that 
reinforcement learning can explain human behaviours in the spatial prisoner’s dilemma experiments38,39.

Models based on evolutionary game theory fail to predict the experimental results because most subjects in 
the experiments used best-response like strategies or trial-and-error rather than imitation. Rejecting unfair offers 
can reduce the payoff difference between a subject and his/her neighbors but cannot improve his/her own pay-
off. Therefore, higher q can spread through (local) imitation, but subjects based on payoff considerations prefer 
to choose lower q. In particular, the proportions of rational behaviours of responders decrease over time in the 
treatment groups but remain constant in the control groups (see Supplementary Figure 11). This may be because 
some rational responders in the treatment groups raise their q to fit the minimum offer of their neighbors (see 
Supplementary Figure 6). Note that such change is riskless when their neighbors’ offers are stable. In contrast, 
rational responders keep low acceptance level all the time in the control groups because they don’t know the 
history offers of their opponents. This explains why a fixed interaction structure has some effects on promoting 
fairness.

Figure 3.  Comparison between dual-role UG experiments and single-role UG experiments. We analyze the 
data of the last 35 rounds in the treatment and control groups of the dual-role UG experiments and the last 
30 rounds in the treatment and control groups of the single-role UG experiments. For each role, there are 
318 samples in the dual-role UG experiments and 100 samples in the single-role UG experiments. (a) Mean 
values of p and q in the dual-role UG treatment groups and single-role UG treatment groups which include 50 
proposers and 50 responders. (b) Mean values of p and q in the dual-role UG control groups and single-role 
UG control groups which include 50 proposers and 50 responders. (c) Proportions of rational behaviours of 
proposers and responders in the dual-role UG treatment groups and single-role UG treatment groups. (d) 
Proportions of rational behaviours of proposers and responders in the dual-role UG control groups and single-
role UG control groups. Error bars indicate ±1 s.e.m.
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Interestingly, the result of the dual-role UG is very different from the single-role UG experiment31 where, 
when subjects play only as responders, they depart considerably from rationality, in contrast with what we 
observe here. This in turn raises an interesting question. In the single-role UG, the statuses of subjects are une-
qual, but they still seem to acknowledge that the responders should obtain about 40% of the pot, which is close 
to the fair split. By contrast, although subjects have equal status in the dual-role UG, subjects forgo getting large 
payoffs as responders. It thus seems that when there is no fundamental inequity in initial allocation, offers are 
more salient to subjects. This is probably because they are perceived as an ‘active’ choice, while the acceptance 
level may be regarded as more ‘passive’ and then less useful to improve the subjects’ payoffs. In contrast, in the 
single-role UG, responders’ payoffs depend entirely on proposers making substantial offers. Thus, responders can 
only increase their payoff by rising their acceptance level. Another possible explanation would be that the une-
qual status in the single-role UG activates inequity aversion or ‘negative’ emotions of responders40,41, while equal 
status in the dual-role UG promotes rational thinking. Whatever the ultimate reasons behind these anomalous 
behaviours, the fact that subjects adjust their offers to their environments while keeping their acceptance levels 
low can provide a sound basis on which new, more accurate theoretical approaches to understand the evolution 
of fairness can be designed.

Methods
We conducted a series of repeated dual-role UG experiments, including 9 treatment groups T1-T9 with struc-
tured populations and 2 control groups C1-C2 with well-mixed populations, in computer labs at Beijing Normal 
University. All 321 subjects were freshmen and sophomores recruited from Beijing Normal University that had 
not taken courses on game theory or economy. The interactions were anonymous, and via computers. In the 9 
treatment groups, every subject plays with four fixed partners. To be precise, each participant occupies a loca-
tion of a static 4-degree ring structure and plays the dual-role UG with his/her four immediate neighbours (see 
Supplementary Figures 3). In addition, a sketch map of the ring structure is showed to subjects. Thus, subjects 
knew that any two of them don’t have exactly the same neighbours, but they are not completely independent. In 
the 2 control groups, a subject also plays with four subjects, but he/she randomly encounters his/her neighbours 
in each round. At each round, a subject submits his/her choices for p and q simultaneously (0 ≤ p, q ≤ 100), and 
plays the standard UG with each of his/her neighbours with the two different roles. To be specific, when a subject 
plays proposer, all his/her neighbours play responders, and when he/she plays responder, all his/her neighbours 
play proposers.

In the dual-role UG, a subject’s total points interacting with one of his/her neighbours are the sum of his/her 
points obtained as a proposer and as a responder. For instance, denote the strategy of subject i by (pi, qi). Then the 
points of subject i interacting with neighbor j can be denoted as follows

U

p p p q and p q

p p q and p q

p p q and p q

p q and p q

100

100

0 , (1)

ij

j i i j j i

i i j j i

j i j j i

i j j i

=











+ − ≥ ≥

− ≥ <

< ≥

< <

where pi, pj, qi, qj ∈[0, 100]15–17. In the experiments, the payoff of a subject (in a round) is taken as the average 
points of his/her four interactions. That is, subject i’s payoff can be calculated as U U /4i j iji

= ∑ ∈Γ , where Γi is the set 
of his/her neighbours. At the end of each round, subjects are informed of their neighbours’ choices and payoffs 
(see Supplementary Figures 2 for more details). Note that this differs from setups in which there is competition 
among responders or proposers, as all deals that verify that the offer is larger than the acceptance level are actually 
realized.

Ethics.  All participants provided written informed consent. All experimental methods were carried out 
in accordance with the approved guidelines. All experimental protocols were approved by the Ethics Review 
Committee of Beijing Normal University.
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1 Supplementary Notes

1.1 Experimental settings for dual-role ultimatum game experiments

We conducted a series of repeated dual-role UG experiments, including 9 treatment groups with struc-

tured populations and 2 control groups with well-mixed populations in computer labs of Beijing Normal

University. Detail settings of the groups are shown in Supplementary Table 2. All 321 subjects were

freshmen and sophomores recruited from Beijing Normal University without taking classes of game the-

ory and economy. The interactions were anonymous, and via computers. Frosted glass dividers ensured

that the students could not see each other (see Supplementary Figure 1). We built the experimental plat-

form by using PHP, mySQL and javascript, and ran the platform programs on the server. Schematic

diagrams of our experimental platform are shown in Supplementary Figure 2.

Before starting the experiment, we explained the game to all subjects, including the rules of the game,

the purpose of the game, and the feedback information in the computer in 20 minutes. All subjects in

each session were given the same instructions (in Chinese). To ensure that all subjects fully understand

the game, we implemented 2 exercises and 5 practice rounds before the formal experiment (last about

10 minutes). During the period, all subjects can raise their hands, and our experimenters would answer

their questions. The formal experiment lasted about 60 minutes, and subjects were not told the number

of rounds, so as to avoid end round effects. Each round is time limited (except for the first round). In T3-

T4, subjects have 30 seconds to submit their decisions at each round, and in other groups, subjects have

45 seconds to submit their decisions. Subjects knew that if they did not decide within the given time,

they would be allocated their own decisions in the previous round. Since the subjects had familiarized

themselves with the game during the practice rounds, this happened only 412 times in 24672 decisions

(1.67 %). After the experiment, the total payoffs of each subject obtained in the formal experiment was

converted to Chinese Yuan at a ratio of 100 : 1. This pay plus 30 Chinese Yuan is his/her final income

(see Supplementary Table 2 for details).

In all experiments, the data of three subjects (two in C1 and one in T3) are excluded because we

notice that they do not really understand the game. To keep the comparison unbiased, all results were

calculated using data in 1-70 rounds.

1.2 Experimental instructions for T1-T9

Welcome and thanks for participating in this game. Please read the game instruction carefully. If you

have any questions please raise your hand. One experimenters will then come to you and answer your

questions. From now on, communication with other participants is not allowed. Please switch off your

mobile phone and keep quiet in the whole game.

You will play a decision making game. In the game, you would not know other persons’ true identity.

Your scores depend on your and your partners’ decisions. Your final income = fixed income 30 Chinese

Yuan + 0.01 × total scores.
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Game instruction
1. In this game, you play two roles, proposer and responder, and submit your offer and demand simulta-

neously. You play the game with four fixed partners, who also play the two roles.

2. At each round, you play the game twice with different roles at the same time. When you play proposer,

all your partners play responders; when you play responder, all your partners play proposers.

3. A proposer and a responder share 100 points. If proposer’ offer greater than or equal to responder’

demand, the proposer receives (100−proposer’s offer), and the responder receives (proposer’s offer),
otherwise, both receive 0.

4. Your total points are the sum of your four interactions. Your score = (your total points)/(number of

partners). After all the participants submit their offer and demand, the system will calculate your points

obtained as a proposer, your points obtained as a responder, your total points, and your scores.

Example (A sketch map of the ring structure is showed to subjects.)
1. Suppose you have four partners, A, B, C and D.

2. At each round, you play the game with all your four partners.

3. You submit your offer p and demand q.

4. Suppose the four partners’ offers are pA, pB , pC and pD, and demands are qA, qB , qC , qD.

5. Suppose your offer p satisfies qC , qD > p ≥ qA, qB . Then, as a proposer, your offer is accepted by A

and B, and your points obtained as a proposer are (100− p) + (100− p).

6. Suppose your demand q satisfies pA < q ≤ pB, pC , pD. Then, as a responder, you accept offers from

B, C and D, and your points obtained as a responder are pB + pC + pD.

7. In this round, your total points are (200− 2p) + pB + pC + pD.

8. Your scores are [(200− 2p) + pB + pC + pD]/4, where 4 is the number of your partners.

Exercise 1
Now we generate your and your partners’ offers and demands randomly. For simplicity, we only gener-

ate multiples of 10 for offers and demands. You need calculate your points obtained as a proposer, your

points obtained as a responder, your total points and your scores. Different subjects may have different

partners, so you cannot calculate your partners’ scores.

Exercise 2
Same as Exercise 1.

1.3 Experimental instructions for C1-C2

Game instruction
1. In this game, you play two roles, proposer and responder, and submit your offer and demand simulta-

neously. You play the game with four partners, who also play the two roles.

2. At each round, you play the game twice with different roles at the same time. When you play proposer,
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all your partners play responders; when you play responder, all your partners play proposers.

3. A proposer and a responder share 100 points. If proposer’ offer greater than or equal to responder’

demand, the proposer receives (100−proposer’s offer), and the responder receives (proposer’s offer),
otherwise, both receive 0.

4. Your total points are the sum of your four interactions. Your score = (your total points)/(number of

partners). After all the participants submit their offer and demand, the system will calculate your points

obtained as a proposer, your points obtained as a responder, your total points, and your scores.

5. At the beginning of each round, you will randomly encounter four new partners.

[The rest parts are same as Instructions for T1-T2.]

1.4 Calculating best-response behaviour

We used a rigorous definition of best-response behaviour to identify whether proposers were rational.

The best strategy for rational proposers in each round was to offer the amount that maximizes payoff,

keeping in mind the acceptance levels of indicated by neighbouring responders in the previous round

[1, 2]. For a proposer with k neighbouring responders whose acceptance levels in the previous round

were respectively q1, ..., qk (with q1 < · · · < qk), the best strategy was p = argmaxqi{i × (100 −
qi)/k}, where i× (100− qi)/k was the payoff if the proposers offered qi. We found that the proportion

of rational proposers gradually increased and eventually nearly about half of all proposers take best-

response behaviours in all groups. Our definition of best-response behaviours of proposers was extremely

rigorous which indicate that the proportion of rational proposers was quite high in the last several rounds.

1.5 Experimental settings for single-role ultimatum game experiments

In our previous single-role UG experiments, we totally conducted 2 treatment groups and 2 control group-

s [3]. In each group, we recruited 50 subjects, half of whom were randomly assigned proposers and the

rest randomly assigned responders. The interactions were executed via computer and were anonymous.

We built the experimental platform by using z-Tree [4]. In the single-role UG experiments, each subject

only enacted one role, proposer or responder, and his/her role didn’t change during the experiment. In

the treatment groups, each subject was assigned in a location within a static bipartite network, and played

UG with their neighbours who enacted the other role. All of the proposers’ neighbours are responders

and vice versa. We use two static bipartite networks including a regular bipartite network in which each

node has four neighbors and a random bipartite network in which the number of neighbors ranges from

2 to 6 (with an average degree of 4). In the control groups, the population structure changes and players

randomly encounter their neighbours in each round.

In the single-role UG, all subjects must use one decision behavior as they interact with their neigh-

bors; that is, a proposer must make the same offer p(0 ≤ p ≤ 100) to all of his or her neighboring

responders, and a responder must indicate the same minimum acceptance level q(0 ≤ q ≤ 100) to all of
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his or her neighboring proposers. The payoff of a subject (proposer or responder) is taken as the average

points of his/her all interactions. That is, a subject i’s payoff can be calculated as Ui =
∑

j∈Γi
Uij/ki,

where Γi is the set of his/her neighbours, ki is the number of his/her neighbours, and Uij is the points of

subject i interacting with neighbor j.

1.6 Calculating ‘offering the maximum acceptance level’ behaviour

We note that the best-response offer for a proposer must be equal to one of his/her neighbors’ acceptance

levels. In particular, the best-response offer is exactly the maximum acceptance level if max{qi(t)} ≤
25. We then calculate the proportion of behaviours that offer the maximum acceptance level, i.e., p(t +

1) = max{qi(t)}. The proportions of ‘offering the maximum acceptance level’ behaviours are 0.3043

and 0.2250 for the treatment groups and the control groups, respectively. Note that the proportions

of best-response behaviours are 0.3047 and 0.2264 for the treatment groups and the control groups,

respectively, i.e., the proportion of behaviours that offer the maximum acceptance level is slightly lower

than that of the best-response behaviours. This reveals that some subjects indeed choose their offers

based on the best-response consideration rather than simply adopt their neighbors’ maximum acceptance

level.

1.7 Reinforcement learning model

In order to get a deeper insight into this theoretical significance of our experimental results, we have run

simulations based on a type of reinforcement learning model [5]. Firstly, we build two databases of all

responder acceptance levels obtained from all treatment groups and all control groups, respectively. Then

we randomly pick responder acceptance level sequences from the two databases and use reinforcement

learning model to reproduce proposers’ offer p for treatment groups and control groups, respectively. We

use a static 4-degree ring structure and well-mixed population with 50 subjects in treatment simulations

and control simulations, respectively. The simulation process of reinforcement learning model is as

follows.

1. Initial propensities: We reduce the offer set of proposers into {0, 5, 10, ..., 100} in our simulations

and assume that all proposers have the same initial propensities for all offers p in the simplified strategy

set, which are set equal to fair split 50.

2. Update propensities : Suppose a proposer i has chosen offer pk in round t, the propensity in round

t+ 1 is updated by

Qk
i (t+ 1) = θuki (t) + (1− θ)Qk

i (t), (1)

where Qk
i (t + 1) and Qk

i (t) denote the propensities of proposer i chosen offer pk at round t + 1 and

round t, respectively, uki (t) is the payoff of proposer i chosen offer pk at round t, θ is the learning rate

which is set to 0.2 in our simulations.
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3. Update probabilities: The probability of choosing offer pk in round t+ 1 is determined by

P k
i (t+ 1) =

eλQ
k
i (t+1)∑21

k=1 e
λQk

i (t+1)
, (2)

where k = 1, 2, · · · , 21 and λ is a parameter that determines reinforcement sensitivity which is set to 0.2

in our simulations. We repeat step 2 and step 3 until the simulation reaches a predetermined round.
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2 Supplementary Figures

Supplementary Figure 1: Photos of the computer lab. Frosted glass dividers are used to avoid subjects
glancing others screens. All subjects can play the game in a quiet environment.
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Supplementary Figure 2: Screenshots of the experimental platform. a, Chinese version. b, English
version, translated from the Chinese version. We used the interface in Chinese in the experiments.
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Supplementary Figure 3: Illustrations of the ring structures in the treatments. In the treatmen-

t groups, subjects played dual-role UG on the 4-degree ring structures (these figures were showed to

subjects). These ring structures have 50 nodes (treatment groups T1-T2, see left), 30 nodes(treatment

groups T3-T4, see middle), or 10 nodes (treatment groups T5-T9, see right). We note that two neigh-

bouring subjects have and only have two joint neighbours. Thus, any two subjects don’t have exactly the

same neighbours, but on the other hand they are not completely independent either.

Supplementary Figure 4: Spatio-temporal patterns of proposers’ offers and responders’ accep-
tance levels. a-d, Spatio-temporal patterns of the proposers’ offer p in T1-T2 (a), T3-T4 (b), T5-T9

(c) and C1-C2 (d). The ordinate represents the spatial orders of proposers. Two proposers with most

common neighbours will be adjacent to each other. The color bar represents the value of offer p. e-f,
Spatio-temporal patterns of the responders’ acceptance levels q in T1-T2 (e), T3-T4 (f), T5-T9 (g) and

C1-C2 (h). The ordinate represents the spatial orders of responders. Two responders with most common

neighbours will be adjacent to each other. The color bar represents the value of acceptance level q.
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Supplementary Figure 5: Distributions of individual strategies in the dual-role UG. a, The treatment

groups, b, the control groups.
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Supplementary Figure 6: Distribution of subjects offers p and acceptance levels q. a-b, Histograms

of the proposers’ offers p at round 1, round 35 and round 70 in the treatment and control groups, respec-

tively. c-d, Histograms of the responders’ acceptance levels q at round 1, round 35 and round 70 in the

treatment and control groups, respectively.
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Supplementary Figure 7: Power law regressions for the time evolution of mean values of offers p. In
the control groups, p(t) = 49.81t−0.327 (t is the round number) with coefficient of determination R2 =

0.9576. In the treatment groups, p(t) = 50.41t−0.250 with coefficient of determination R2 = 0.9760.

The regression result shows clearly that the mean value of p decreases faster in the control groups than

the treatment groups.
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Supplementary Figure 8: Time evolution of mean values and standard deviations of payoffs.
(a)Treatment groups, (b) Control groups. The mean payoffs of the treatment groups and control groups

are 90.47 and 92.14, respectively. There are positive correlation between the payoffs and rounds in the

treatment groups (Pearson correlation coefficient= 0.6657, P -value< 0.001) and control groups (Pear-

son correlation coefficient= 0.6619, P -value< 0.001). Moreover, the standard deviations of payoffs and

rounds have negative correlations in the treatment groups (Pearson correlation coefficient= −0.8514,

P -value< 0.001) and control groups (Pearson correlation coefficient= −0.8633, P -value< 0.001).
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Supplementary Figure 9: Distributions of p − BR(p) and acceptance level q. We show the distri-

butions of p − BR(p) and q separately for rounds 1 to 35 and rounds 36 to 70. a-b, The distributions

of p − BR(p) in the treatment and control groups, respectively. In all the groups, the proportions of

best-response behaviours in the last 35 rounds are higher than that in the previous 35 rounds. c-d, The
distributions of q in the treatment and control groups, respectively. In all the groups, the distributions in

the previous 35 rounds and the last 35 rounds are similar. The result is consistent with Supplementary

Figure 7.
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Supplementary Figure 10: Spatio-temporal patterns of rational and irrational behaviours of pro-
posers and responders. a-d, Spatio-temporal patterns of rational behaviours (rigorous best-response

behaviours) and irrational behaviours of proposers in T1-T2 (a), T3-T4 (b), T5-T9 (c) and C1-C2 (d).

The ordinate represents the spatial orders of proposers. Two proposers with most common neighbours

will be adjacent to each other. e-h, Spatio-temporal patterns of rational behaviours (q = 0 or 1) and

irrational behaviours of responders in T1-T2 (e), T3-T4 (f), T5-T9 (g) and C1-C2 (h). The ordinate

represents the spatial orders of responders. Two responders with most common neighbours will be adja-

cent to each other. The red color represents rational behaviours and the blue color represents irrational

behaviours.

Supplementary Figure 11: Time evolution of fractions of rational behaviours. a, The mean values of

fractions of rational behaviours of proposers (i.e., best response) are 0.3047 and 0.2264 in the treatment

groups and control groups, respectively. The Pearson correlation coefficient between proportions of

rational behaviours of proposers are 0.9699 and 0.9011 in the treatment groups and control groups,

respectively. b, The mean values of fractions of rational behaviours of responders (i.e., q = 0 or 1) are

0.4095 and 0.5628 in the treatment groups and control groups, respectively. The Pearson correlation

coefficient between proportions of rational behaviours of responders are −0.7367 and −0.0346 in the

treatment groups and control groups, respectively.
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Supplementary Figure 12: Time evolution of the proportions of the three types of behaviours,
namely, altruistic behaviours p > q, empathic behaviours p = q and selfish behaviours p < q.
a, In the treatment groups, the mean proportion of altruistic behaviours p > q, empathic behaviours

p = q and selfish behaviours p < q are 76.37%, 14.72% and 8.91%. b, In the control groups, the mean

proportion of altruistic behaviours p > q, empathic behaviours p = q and selfish behaviours p < q are

83.84%,10.55% and 5.61%. Most subjects in our experiments adopt altruistic behaviours.
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Supplementary Figure 13: Mean payoffs of the three types of behaviours, namely, altruistic be-
haviours p > q, empathic behaviours p = q and selfish behaviours p < q. a, In the treatment groups,

the mean payoffs of altruistic behaviours p > q, empathic behaviours p = q and selfish behaviours p < q

are 90.99, 92.31 and 82.99. b, In the control groups, the mean payoffs of altruistic behaviours p > q,

empathic behaviours p = q and selfish behaviours p < q are 92.61, 92.71 and 84.06. The mean payoff

of altruistic behaviours p > q is less than that of empathic behaviours p = q in the treatment groups

(Mann-Whitney U-test, P -value< 0.001), however, there is no big difference between the mean payoff

of altruistic behaviours p > q and empathic behaviours p = q in the control groups (Mann-Whitney

U-test, P -value= 0.057). Clearly, the mean payoffs of selfish behaviours are lowest in both treatment

groups and control groups.
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Supplementary Figure 14: Time evolution of actual decision time. Mean actual decision time from

round 2 to round 70 in the four categories. Overall, the decision time decreases over rounds. Furthermore,

the mean actual decision time in T3-T4 is 3 seconds shorter than T1-T2 and T5-T9, but there is no large

difference between T3-T4 and C1-C2.
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Supplementary Figure 15: Relationship between best-response behaviours and relative decision
time. t denotes the actual decision time and t̄ is the mean actual decision time in that round. In T1-T2 (a)

and T5-T9 (c), we find there are U-shaped relationships between the proportion of best response and t− t̄,

i.e., both faster and slower decisions are more likely to be best-response. However, in T3-T4 (b), subjects

do not have enough time to make a slow decision given the 30 seconds time limit. This explains why

the proportion of best-response behaviours in T3-T4 is lower than T1-T2 and T5-T9. Finally, in C1-C2

(d), the correlation between best-response behaviours and t − (̄t) is not significant (Pearson correlation

coefficient= 0.0981, P -value= 0.4933). This implies that in decision time may not affect best-response

behaviours in a well-mixed population.
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Supplementary Figure 16: Reinforcement learning simulation results. a, Mean acceptance levels q

are calculated by randomly picking from the treatment database. Mean offers p are reproduced by using

reinforcement learning model with fixed interaction structures. b, Mean acceptance levels q are calculat-

ed by randomly picking from the control database. Mean offers p are reproduced by using reinforcement

learning model with well-mixed populations. The results are obtained by averaging 100 independent

simulations.
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3 Supplementary Tables

Supplementary Table 1: Details of experimental conditions. Our dual-role experiments include four

conditions: two large treatment groups (T1 and T2) with structured populations, two median treatment

groups (T3 and T4) with structured populations, five small treatment groups (T5-T9) with structured

populations, and two control groups (C1 and C2) with well-mixed populations. In our analyses, the data

of two subjects in C1 and one subject in T3 are excluded, thus there are only 48 subjects in C2 and 29

subjects in T3 to be analyzed.

T1 T2 T3-T4 T5-T9 C1 C2

Number of subjects per group 50 53 30 10 50 58

Number of rounds 70 80 100 70 70 80

Decision time per round (sec) 45 45 30 45 45 45

Average income (Yuan) 94 103 119 94 95 104

Supplementary Table 2: A comparison between the theoretical predictions and empirical results
Both the single-role and dual-role UG have the same (subgame perfct) Nash equilibrium. Single role

MAO UG experiments found (p, q) ≈ (40, 30) no matter the population is well-mixed or structured [3].

Most theoretical studies based on evolutionary game theory considered dual-role MAO UG, and found

that fixed interaction structures can promote fairness [6, 7].

Well-mixed Structured

Single-role Nash equilibrium (p, q) = (0, 0) (p, q) = (0, 0)

Single-role experiments (p, q) ≈ (40, 30) (p, q) ≈ (40, 30)

Dual-role Nash equilibrium (p, q) = (0, 0) (p, q) = (0, 0)

Our dual-role experiments (p, q) ≈ (15, 5) (p, q) ≈ (20, 10)

Dual-role evolutionary game model (p, q) = (0, 0) (p, q) ≈ (30, 30)
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Supplementary Table 3: Statistics results for decision time. Mean actual decision time in T1-T2

(n = 103), T3-T4 (n = 59), T5-T9 (n = 50) and C1-C2 (n = 106) from round 2 to round 70. Corr

represents the correlation coefficient between actual decision time and rounds. The symbol “*” denotes

that the correlation is strong, i.e. P -value<0.05.

Mean Corr

T1-T2 20.80 −0.8035∗

T3-T4 17.90 −0.7822∗

T5-T9 20.51 −0.8683∗

C1-C2 18.28 −0.9480∗

Supplementary Table 4: The mean values and standard deviations of offers and acceptance levels.
We calculate mean values and standard deviations of p and q for all 70 rounds, and separately for rounds

1 to 35 and rounds 36 to 70. Mean(p) and std(p) represent the mean value and the standard deviation of

offers of all proposers, respectively, in which a proposer’s offer p is taken as the average of his/her offers

p over 1-70 rounds/ 1-35 rounds/ 36-70 rounds. Similarly, mean(q) and std(q) represent the mean value

and the standard deviation of acceptance levels q of all responders, respectively, in which a responder’s

acceptance level is taken as the average of his/her acceptance levels q over 1-70 rounds/ 1-35 rounds/

36-70 rounds.

1-70 rounds/ 1-35 rounds/ 36-70 rounds

mean(p) std(p) mean(q) std(q)

T1-T2 21.66/25.21/18.10 7.11/10.91/5.91 9.86/10.47/9.25 7.04/9.49/7.37

T3-T4 26.14/31.01/21.27 12.93/14.82/12.55 11.90/13.18/10.63 10.87/12.79/11.00

T5-T9 21.12/23.30/18.94 6.67/8.08/6.36 9.97/9.50/10.44 6.51/6.71/7.29

C1-C2 17.78/22.52/13.03 5.40/8.65/3.27 5.70/6.50/4.90 5.82/7.35/5.32
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Supplementary Table 5: Mann-Whitney U-test for offer p and acceptance level q. Statistics results
of Mann-Whitney U-test for offer p and acceptance level q (n = 103 in T1-T2, n = 59 in T3-T4, n = 50

in T5-T9, and n = 106 in C1-C2). A subject’s offer (or acceptance level) is taken as the average of his/her

p (or q) over 70 rounds. The symbol “*” denotes that the mean values of two groups are significantly

different, i.e. P -value<0.05.

P -value for p T1-T2 T3-T4 T5-T9 C1-C2

T1-T2 1 0.0288∗ 0.9133 < 0.001∗

T3-T4 0.0288∗ 1 0.0468∗ < 0.001∗

T5-T9 0.9133 0.0468∗ 1 < 0.001∗

C1-C2 < 0.001∗ < 0.001∗ < 0.001∗ 1

P -value for q T1-T2 T3-T4 T5-T9 C1-C2

T1-T2 1 0.7356 0.8641 < 0.001∗

T3-T4 0.7356 1 0.9806 < 0.001∗

T5-T9 0.8641 0.9806 1 < 0.001∗

C1-C2 < 0.001∗ < 0.001∗ < 0.001∗ 1

Supplementary Table 6: Mann-Whitney U-test for proportion of best-response behaviours. Statis-
tics results of Mann-Whitney U-test for proportion of best-response behaviours (n = 103 in T1-T2,

n = 59 in T3-T4, n = 50 in T5-T9, and n = 106 in C1-C2). The symbol “*” denotes that the mean

values of two groups are significantly different, i.e. P -value<0.05.

P -value for p T1-T2 T3-T4 T5-T9 C1-C2

T1-T2 1 < 0.001∗ 0.1182 < 0.001∗

T3-T4 < 0.001∗ 1 < 0.001∗ 0.0028∗

T5-T9 0.1182 < 0.001∗ 1 0.003∗

C1-C2 < 0.001∗ 0.0028∗ 0.003∗ 1
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