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Abstract

Censured functional data are becoming more recurrent in applications. In those
cases, the existing depth measure are useless. In this paper, an approach for measur-
ing depths of censured functional data is presented. Its performance for finite samples
is tested by simulation, showing that the new depth agrees with a integrated depth
for uncensured functional data.
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1 Introduction

For a random sample of functions [a, b] → R, partially observed functional data (POFD)

refers to the case where the records of the functions are available only on subsets of [a, b].

We deal with the challenging case where partial observability could occur systematically

on any observation of a functional data set, not only to isolated cases that affect to few

observations.

In practise, partially observed data appear by different reasons and have been reported

in different areas of research. Many medical data sets are recorded through periodical

examinations and typical sources of censoring are patients missing revisions or devices

failing to record. Some examples of such case studies are ambulatory blood pressure,

health status of human immunodeficiency virus (HIV), growth curves and evolution of

lung function (James et al., 2000; James and Hastie, 2001; Delaigle and Hall, 2013; Kraus,

2015; Delaigle and Hall, 2016). Also with medical purposes, Sangalli et al. (2009) present a

case study about aneurysm (Sangalli et al., 2014b) where functions are partially observed

at the extremes of the domain. Here the source of partial observability arises due to

a prior reconstruction from three-dimensional arrays and a posterior processing to make

them comparable across subjects. In Demography, it is common that age-specific mortality

rates for older ages are not completely observed due to the decreasing number of survivors

(University of California and for Demographic Research , Germany) and this cohort is the

focus of actuarial science studies (D’Amato et al., 2011). Other examples involve electricity

supply functions that may be not complete observed because suppliers and buyers typically

agree prices and quantities depending on the market conditions (Kneip and Liebl, 2017;

Liebl and Rameseder, 2019). Finally, partially observability could also emerge by-products

of a functional data preprocessing method such as alignment (Marron et al., 2015; Sangalli

et al., 2010).

The literature has tackled partial observability in several Functional Data Analysis

(FDA) problems; including classification (Delaigle and Hall, 2013), discriminant analysis

(James and Hastie, 2001), functional principal components (James et al., 2000; Yao et al.,

2005) and linear prediction (Delaigle and Hall, 2016). Many authors propose the recon-

struction or estimation of the missing parts, (Delaigle and Hall, 2016; Goldberg et al.,
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2014; Kneip and Liebl, 2017; Kraus, 2015). The majority of the proposals, directly or in-

directly, makes use of the so-called Missing-Completely-At-Random (MCAR) assumption

and any violation of this assumption lead to undesirable results. Roughly, MCAR states an

independent relationship between the censoring process and the functional process of inter-

est. Remarkably, Liebl and Rameseder (2019) proposed a mean and covariance estimator

applicable when MCAR is violated by allowing a particular dependency relationship.

Despite the important progress in the topic, there is a lack of depth notion for partially

observed functional data and, therefore, a lack of all their potential uses and applications.

Thus, the introduction of a suitable definition of depth measure is a contribution to the

literature in two ways.

In this work, we introduce a general building-block depth definition suitable for POFD.

The novelty here is that it takes into account the uncertainty related with the unobserved

fragments in such a way that regions of high density are rewarded and regions of low density

are penalized. The first component of the building-block is an integrated functional depth

(Nagy et al., 2016) and the second one a weighting function that penalizes the domain

where the sample is poorly observed.

This article is as follows: Next section presents the definition of the censured functional

depth and its properties. In Section 3 we test by simulation the performance of the new

measure. Some conclusions are presented at the end.

2 Depth Measures for POFD

Given a measurable space S equipped with a sample space Ω and some fixed σ-algebra,

consider the collection of all probability measures on S, denoted here by PΩ. A depth

measure is a mapping that assigns to each (ω, P ) ∈ Ω×PΩ a value into [0, 1] corresponding

to the centrality of ω with respect to P . The larger the depth value, the more central will

be ω with respect to P .

We consider the simplest functional data scenario in which Ω = C([0, 1]). In this

context, the existing depth measures may be categorized as integrated or non-integrated

(Nagy et al., 2016). In this paper, we are focused on the first, category, which includes many

popular functional depths, such as the Fraiman and Muniz Depth (Fraiman and Muniz,
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2001), the Modified Band Depth (MBD) of López-Pintado and Romo (2009), the Modified

Half Region Depth (López-Pintado and Romo, 2011), all of them particular cases of the

functional depths defined by Claeskens et al. (2014). For defining an integrated functional

depth, we first consider an univariate depth D : R × F → [0, 1], F being the collection

of all probability distribution functions on R. The literature always discuss the four key

properties that such depth should satisfy (Liu et al., 1999). We remark two additional and

necessary properties for the definition we propose in this article. Namely:

P1 (Weak continuity): For any {Fn} ⊂ F such that limn→∞ Fn(x) = F (x), at each

continuity point x of F ∈ F , D satisfies

sup
x∈R

|D(x, Fn)−D(x, F )| −−−→
n→∞

0.

P2 (Measurability): (x, F ) ↦→ D(x, F ) is jointly Borel measurable and D(·, F ) ̸≡ 0 for all

F ∈ F .

P1 and P2 correspond to properties D6 and D7 discussed by Nagy et al. (2016). Fol-

lowing Claeskens et al. (2014), we define the functional depth in terms of D. Hereinafter,

P ∈ PC([0,1]) and X ∼ P .

Definition 1. Let Pt be the marginal distribution of X(t), this is Pt(x) = P(X(t) ≤ x).

The integrated functional depth of X with respect to P is

IFD(X,P ) =

∫︂ 1

0

D(X(t), Pt)w(t)dt, (1)

w being a weight function that integrates to one.

Let X1, . . . , Xn be n independent copies of X. As we previously commented, we con-

sider that the realizations X1, . . . , Xn are partially observed. Following Delaigle and Hall

(2013), we formalize this sampling framework by introducing a random censoring process

with distribution Q that generates compact subsets of [0, 1]. From now on, V1, . . . , Vn are

independent copies of V ∼ Q and Xi is only observed on Vi. The relationship between

P and Q plays here an important role and, as the majority of the literature, we assume

MCAR. This is, (X1, V1), . . . , (Xn, Vn) are i.i.d from P ×Q.

Now, we define the censored functional depth as an IFD restricted to the compact set

V where X is observed.
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Definition 2. The censored functional depth of (X, V ) with respect to P ×Q is defined

by

CFD((X, V ), P ×Q) =

∫︂

V

D(X(t), Pt)w(t|V )dt, (2)

w(t|V ) being the weight function defined by

w(t|V ) =
Q(t)∫︁

V
Q(t)dt

, (3)

with Q(t) = P(t ∈ V ).

Now denote by Pn the distribution that assigns mass 1/n to each sample curveX1, . . . , Xn.

Similarly, let Qn be the distribution that assigns mass 1/n to each sample compact set

V1, . . . , Vn. Thus, CFD((X, V ), Pn × Qn) is the plug-in estimator of CFD((X, V ), P × Q).

When the weight function w(t|V ) is defined as in (3), the plug-in estimator may be written

as

CFD((X, V ), Pn ×Qn) =

∫︂

V

D(X(t), Pt,n)qn(t)dt
/︂∫︂

V

qn(t)dt, (4)

Pt,n being the empirical distribution function of univariate sample {Xi(t), i ∈ I(t)} and

qn(t) = #{1 ≤ i ≤ n : t ∈ Vi}/n. (5)

As it occurs in practise, suppose now that the time points on which the curves may be

observed are t1 < · · · < tT . So, V and Vi, 1 ≤ i ≤ n, are all subsets of {t1, . . . , tT}. For

simplicity and without loss of generality, we will assume that 0 = t0 < t1 < · · · < tT <

tT+1 = 1 are equidistant. Then, we consider the sample version of the depth, by using a

standard Riemann approximation. This is,

CFDT ((X, V ), Pn ×Qn) =
∑︂

t∈V
D(X(t), Pt,n)

qn(t)∑︁
t∈V qn(t)

, (6)

3 Simulation study

The aim of this section is to study sample properties of our proposal when considering

different population features for P and Q. Hence, we compare CFDT ((Xi, Vi), (Pn × Qn))

values versus the corresponding discretization of IFD, namely

IFDT (Xi, Pn) =
T∑︂

k=1

D
(︁
Xi(tk), Ptk,n

)︁ qn(tk)∑︁T
j=1 qn(tj)

, (7)
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For generating samples (X1, V1), . . . , (Xn, Vn) from P ×Q, first we generated Gaussian

processes with periodic mean function and exponential covariance function. A detailed

description of theses processes is in the Appendix. Second, we considered the following two

censoring processes:

Model A: We censored data on m intervals uniformly spread on the unit interval,

controlling the total proportion p of censored data. For this, for each trajectory

Xi, we generated a random sample of size (m − p)/p from an uniform distribution.

Then, we considered the intervals (u(i−1), u(i)), u(i) being the i-th order statistics of

the sample, and censored data belong to m intervals chosen at random.

Model B: We censored data at the extremes of the observation domain. We simu-

lated this situation also controlling the total proportion p. For this, we censored data

on [0, a)∪(b, 1], being a ∼ U [0, p/2] and b ∼ Unif [1−p/2, 1]. This setting mimics the

censoring that arises when a functional sample is aligned by affine methods (Sangalli

et al., 2014a; Marron et al., 2015).

Then, we computed the Willmott index (Duveiller et al., 2016; Willmott, 1981) between

the uncensured and censured depths. Given two vectors of depths Ỹ and Y , this statistic

provides a number between 0 and 1, being one a perfect agreement between Ỹ and the

reference Y . Notice that, Pearson correlation would indicate a strong agreement for any

two vectors with a linear relationship, however, Willmott only would provide an agreement

of 1 to relationships in the 45◦ line.

We generated 100 samples of size 100 and considered different IFDs. They were, the

Fraiman and Muniz Depth (FM) (Fraiman and Muniz, 2001), the Modified Band Depth

(MBD) (López-Pintado and Romo, 2009) and the Modified Half Region Depth (MHRD)

(López-Pintado and Romo, 2011). In addition, we considered the Modified Epigraph Index

(MEPI) (López-Pintado and Romo, 2011) because, in conjunction with MBD, the Out-

liergram is built (Arribas-Gil and Romo, 2014), an outlier detection tool. Table 1 shows

mean values of the Willmott index for different settings. Notably, the means are always

close to 1 indicating a high agreement even for high levels of censoring (up to fifty percent

missing). In addition, from this simulation study, we could say that a high number of

missing intervals is preferable than just one for a given level of censoring. Figure 1 shows
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Mean Willmott

m 10% 25% 50%

FM Model A 1 0.9969 0.9804 0.9219

2 0.9984 0.9891 0.9496

4 0.9992 0.9938 0.9676

Model B 2 0.9974 0.9878 0.9568

MBD Model A 1 0.9973 0.9826 0.9287

2 0.9986 0.9907 0.954

4 0.9993 0.9946 0.97

Model B 2 0.9978 0.9896 0.9615

MEPI Model A 1 0.9964 0.9771 0.911

2 0.9982 0.9874 0.9421

4 0.9991 0.9928 0.9642

Model B 2 0.9969 0.986 0.9526

MHRD Model A 1 0.9989 0.9927 0.9701

2 0.9995 0.9962 0.9804

4 0.9997 0.9979 0.989

Model B 2 0.9991 0.996 0.9848

Table 1: Mean values of Willmott index based on one hundred replicates of models A and B and

different levels of censoring and number of intervals.

the scatter plots between both depths, revealing a symmetry along the 45◦ line. Notice

that some particular features of the scatter plots are inherit to the used depth. For ex-

ample, MBD is more concentrated around high values of depth (0.4) meanwhile MHRD

assigns values in a more uniform way. In contrast, the censoring has an important effect

on the dispersion as can be noticed by the way the points are more spread as the censoring

proportion is increased. Furthermore, the dispersion is not uniform along the line. This

is due to Gaussian processes are more dense along the center. Hence, a missing interval is

more determinant for a function in the center than for an observation outside the mass.

In contrast with other simulation settings, the censoring process above is applied to
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Figure 1: Cloud of (CFDT , IFDT )-points, based on FM, MBD, MHRD and MEPI, over one

hundred simulations of size n = 100. Joint density estimators are represented in a blues scale,

from light blues (highest density values) to dark ones (lowest values) . The censoring processes

correspond to Model A with m = 2 missing intervals and p = 0.10, 0.25, 50% levels of censoring.
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any single observation. Other articles, Kraus (2015) and Kneip and Liebl (2017) censor

a function with a probability smaller than 1; in this setting our proposal would achieve

better performance due to the inclusion of completely observed functions to the sample.

4 Conclusions

We introduce a censored functional depth for partially observed functional data. Our

simulations show that the empirical version of the censored depth nearly matches the

corresponding empirical version of the uncensored depth for finite samples even for large

proportions of missing data. We believe that our approach can be an articulation to

spread the application of existing depth-based tools for partially observed functional data,

a situation more a more frequent today.
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Appendix

The simulated functional sample follows the model

X(t) = µ(t) + ϵ(t), t ∈ [0, 1],

where µ(t) = sin(2πt) and ϵ(t) is a zero mean Gaussian process with covariance function

E[ϵ(s)ϵ(t)] = αe−β|s−t|, s, t ∈ [0, 1].

In particular, we set α = 0.3 and β = 0.5. Figure 2 shows a generated sample.
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Figure 2: Left panel: 100 Gaussian processes with sinusoidal mean and exponential covariance

function. Right panel: the same sample but censored with the Model A, m = 10 and p = 0.5.
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