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Evolutionary dynamics is often viewed as a subtle process of change accumu-

lation that causes a divergence among organisms and their genomes.

However, this interpretation is an inheritance of a gradualistic view that has

been challenged at the macroevolutionary, ecological and molecular level.

Actually, when the complex architecture of genotype spaces is taken into

account, the evolutionary dynamics of molecular populations becomes intrin-

sically non-uniform, sharing deep qualitative and quantitative similarities

with slowly driven physical systems: nonlinear responses analogous to critical

transitions, sudden state changes or hysteresis, among others. Furthermore,

the phenotypic plasticity inherent to genotypes transforms classical fitness

landscapes into multiscapes where adaptation in response to an environ-

mental change may be very fast. The quantitative nature of adaptive

molecular processes is deeply dependent on a network-of-networks multi-

layered structure of themap fromgenotype to function thatwe begin to unveil.
1. Introduction
Gradualism posits that any profound change in nature is the result of minor

cumulative modifications due to the action of slow but sustained processes.

First proposed in the framework of Geology at the end of the eighteenth

century by James Hutton, gradualism underlies Charles Lyell’s theory of uni-

formitarianism [1], which formed one of the conceptual pillars of Charles

Darwin’s evolutionary theory soon after [2]. Ever since, gradualism has been

a powerful concept in the qualitative interpretation of evolutionary change.

The gradualistic view of evolution has been challenged at the macro- (fossil

record), meso- (ecological) and micro- (molecular) scales. In the 1970s, analyses

of data in the fossil record revealed an unanticipated pattern of evolutionary

stasis in the morphological change of species that was punctuated by sudden

jumps, leading to the theory of punctuated equilibria [3]. The mechanistic

models proposed to generate that dynamical pattern are not unique, though

the endogenous organization of the biosphere may have played a main

role [4,5]. At present, punctuated equilibrium is understood as an alternation of

periods with insignificant change (stasis) punctuated by rapid speciation,

which may, however, extend over a few hundred thousand years and result

from complex evolutionary dynamics [6]. Analogies between macroevolution

and evolutionary ecologywere suggested on the basis that the degree of complex-

ity observed in the spatial and temporal organization of both systems might be

reflecting a network-like organization close to critical points [7], the latter result-

ing from a combination of external drivers and internal adaptive responses.
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Figure 1. Punctuated behaviour in macroevolution, ecology and molecular dynamics. (a) Non-uniform pattern of extinctions (red symbols) and originations (green
symbols) in the last 610 Myr (0 is present). Each point corresponds to a geological epoch, vertical lines separate geological periods, as indicated. The vertical axis
gives the percentage of extinction/origination per estimated diversity at each epoch and per million years. Data from [12], geological epochs and periods as in [13].
(b) Minor changes in environmental variables might cause large, nonlinear responses in the state of a variety of systems. In some cases, two stable solutions (black
curves) coexist with an unstable solution (red curve) for a range of values of a control parameter. The trajectories of systems might follow the path indicated by the
grey arrows as that parameter increases, suffering a sudden jump from the upper to the lower branch. Hysteretic behaviour appears and prevents the recovery of
the initial state when the environmental variable is reverted. When the system is initiated close to the unstable branch, it may attain any of the two possible stable
solutions (black thin arrows). (c) In the genotype space, nodes represent genotypes and links correspond to single mutational moves. Heterogeneous molecular
populations contain a set of genotypes with variable abundances, the latter represented through circle size. Fitter regions in genotype space might be difficult to
find if there are few mutational incoming pathways (grey arrows). The population might be trapped in the red phenotype for a relatively long time (stasis) when
compared with the transition to the new state once suitable mutations have appeared (punctuation).
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Research in this century has unveiled a large number of cases

where smooth environmental changes may indeed trigger

sudden and irreversible ecological responses [8,9]. The com-

plex interaction between natural systems and varying

environments remains an open question of critical relevance.

The factors that make ecosystems respond smoothly or drasti-

cally to a weakly evolving environment have attracted special

interest, as there are direct implications in the relationship

between humans and a changing biosphere that could

eventually reach a hazardous tipping point [8,10,11].

The formal description of non-uniform dynamics in natural

systems is advancing concomitantly with the number of

examples supporting and clarifying the theoretical framework

(figure 1). Shifts in ecosystems have been formally described as

bifurcations leading to hysteretic behaviour and also as critical

transitions. Analogous to fluctuations close to critical points,

the so-called early warning signals can anticipate such

catastrophic responses [14]. Empirical evidence of this phenom-

enon with a single species has been described in laboratory
populations of yeast [15], while there is a variety of well-docu-

mented examples in ecology, such as the hysteretic loss and

recovery of charophyte vegetation at lake Veluwe [16], the

desertification of the Sahara [9,17], the loss of transparency in

shallow lakes [18] or the dynamics of woodlands in Tanza-

nia [19]. A thorough description of this phenomenology is a

hard task, as it involves a wide variety of time scales and

biological levels—many of them organized as complex

networks—that interact in a complex manner [20]. At the mol-

ecular level, the architecture of the genotype–phenotype map

entails non-uniform evolutionary dynamics [21]. In particular,

it has been shown that the steady accumulation of point

mutations under a selective pressure acting on the phenotype

yields population dynamics characterized by stasis (when

sequences explore neutral regions) punctuated by phenotypic

changes (when a fitter phenotype is found) [22]. Smooth

changes at the level of sequences do not preclude sudden adap-

tive changes at the level of function: well-motivated models

support that, like the state of ecosystems, changes in genomic
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composition might be sudden, irreversible and unavoid-

able [23]. These dynamics have been also documented in the

in vivo evolution of a virus, influenza A, which shows a seaso-

nal patternwhere expansion of genotypic diversity predates the

finding and fixation of strains with novel antigenic properties

that escape immune detection [24,25].

Despite mounting evidence, the long tradition of relating

small changes in sequences to gradual changes in organisms

and populations persists, often in a tacit way. A significant

example is Wright’s adaptive landscape [26], which appears

as a direct consequence of gradualistic thought and counts

among the most powerful metaphors in Biology, one that has

conditioned evolutionary thinking for almost a century [27].

Indeed, the image of a relatively smooth landscape, where

populations adapt by going uphill, are trapped in mountain

peaks and remain isolated from other possibly higher fitness

maxima by deep valleys, often appears as the way in which

adaptation proceeds. This picture implies a smooth and con-

tinuous genotype-to-phenotype (GP) map and a space of low

dimensionality. Thanks to advances in our knowledge of the

molecular structure of populations,we nowknowof important

elements missing in most theoretical adaptive landscapes. For

example, genotypes of similar fitness are found to form exten-

sive networks that occasionally traverse the genotype space,

especially in spaces of high dimensionality [28]. The GP map

actually entails a many-to-many correspondence: genotypes

are plastic andmay yield different phenotypeswhen expressed

in different environments. This latter case seems to be much

more common than previously thought, meaning that the co-

option of promiscuous, secondary gene functions [29] is

likely a common adaptive mechanism. From a formal view-

point, therefore, the complexity of the GP map implies that

fitness landscapes should be visualized as high-dimensional

and interwoven sets of networks that unfold into multiple

layers under environmental change [30]. New techniques, in

particular the use of deep sequencing and powerful massive

ways to evaluate the fitness of individual genotypes, represent

a breakthrough in the empirical characterization of the com-

plex genotype-to-phenotype-to-function relationship [31,32].

Interestingly, the network-of-networks structure of genotype

spaces described in realistic, though artificial, models is also

emerging in empirical characterizations of the diversity of

molecular populations [33].

Adaptive evolutionarysystems, suchas large-scale evolution,

ecology or (molecular) populations, share deep analogies that

can be likely ascribed to their networked architecture plus a

non-trivial relationship between exogenous drivers and endo-

genous responses. In this review, we will focus on molecular

dynamics, which is the least studied of those three profoundly

entangled levels of description of the evolutionary process. The

architecture of genotype spaces and the dynamics of evolving

molecular populations are two sides of the same coin. Thehetero-

geneous structure of genotype spaces and its apparently

hierarchical organization as a multilayered network of networks

explains, among others, punctuated dynamics [22], drift and

switch transitions [24], genomic shifts [23] or Waddington’s

genetic assimilation [30,34].
2. Genotype networks
Kimura [35,36] introduced the concept of neutral evolution in

order to explain why many mutations observed in RNA,
DNA or proteins do not affect fitness. Neutrality implies that

the GP map is not one-to-one, but many-to-one, consistently

explaining the high level of polymorphism observed in

natural populations. Soon after Kimura’s seminal work,

navigability was hypothesized as an essential requirement

to guarantee the evolvability of molecular populations [37].

Usually, navigability is believed to rely on the existence of

sufficiently large neutral networks (NNs) of genotypes [38]

since these should permit the neutral drift of populations

and a sustained exploration of alternative phenotypes with-

out a detrimental decrease in fitness. An NN is formed by

all genotypes that map into the same phenotype. As fitness

is linked to phenotype, all genotypes in an NN are implicitly

assumed to have the same fitness. Genotypes are the nodes of

such networks, and links correspond to single mutational

moves. In its simplest and most popular definition, a muta-

tional move stands for a point mutation. Neutral networks

can have one or several connected components. Navigability

on NNs has been subsequently identified as a robust property

of computational models [22,39–41] and natural molecular

populations [25,42–44].

The actual set of genotypes visited by an evolving popu-

lation, however, is rarely neutral. Nearly neutral mutations

are common in finite populations [45], augmenting their adap-

tive ability. In fact, any finite mutation rate entails that

populations are heterogeneous in sequence, phenotype and

function, such that the potential set of genotypes of a popu-

lation includes genotypes of different fitness, which constitute

the actual navigable network. In certain cases, as for ensembles

of fast mutating replicators such as quasi-species [46,47], the

maintenance of a large phenotypic diversity and the permanent

exploration of the genome space become critical survival strat-

egies [48]. We will call genotype network the network of visited

genotypes and, by extension, any potentially navigable net-

work in the space of genomes, regardless of the fitness or

phenotype of its nodes.
2.1. Neutral networks in computational genotype–
phenotype maps

Neutral networks have been quantitatively characterized in a

number of computational GP maps (figure 2). RNA sequences

fold into a minimum free energy secondary structure that we

can take as a proxy for its phenotype [38,56]. Given a sequence

length, the number of minimum free energy secondary struc-

tures is much smaller than the number of sequences, leading

to large NNs [38,50,57–61]. In models of protein structure,

such as the HP model [62], proteins are formed by strings of

two amino acids: hydrophobic (H) and polar (P). As in RNA,

this sequence will fold into a minimum free energy structure,

and there are manymore sequences than structures [51,63–65].

In a completely different model, gene regulatory networks

possess an evolvable architecture [66] that gives rise to several

temporal gene expression patterns, which represent the pheno-

type. Again, many interaction topologies representing the

genotype give rise to a much smaller number of gene

expression patterns [28,67]. Neutral networks also appear in

metabolic processes. If we consider the genotype as a list of

enzymatic reactions and the phenotype as the set of metabolic

sources on which an organism can survive, it is found that

many genotypes can actually survive in a set of environ-

ments [41,68–70]. Finally, NNs have also been observed in
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Figure 2. Some examples of simple GP maps. For each model, and from left to right, we depict an example phenotype, some of the sequences in its neutral
network (mutations that do not change the phenotype are highlighted in red), and the schematic functional form of the probability distribution p(S) of phenotypes
sizes S found in computational or analytical studies. (a) RNA sequence-to-minimum-free-energy secondary structure. Mutations that do not disrupt the secondary
structure appear with different probability in loops or stacks. In two-letter alphabets, the distribution of phenotype sizes is compatible with a power-law func-
tion [49], while in four-letter alphabets p(S) is well fit by a lognormal distribution [50]. For long sequences, only the right-most part of p(S) can be seen under
random sampling of the genotype space [50] (shaded). (b) The HP model, in its compact (as in the figure) or non-compact versions, has been studied as a model for
protein folding. In non-compact versions, the distribution p(S) has a maximum at S ¼ 1 and decays with a fat tail [51], while in compact versions p(S) resembles a
lognormal distribution [52]. (c) toyLIFE is a minimal model with several levels. HP-like sequences are read and translated to proteins that interact through
analogous rules to break metabolites. The p(S) of toyLIFE is compatible with a lognormal distribution [53]. (d,e) Effective models where phenotype is defined
in relation to the composition of sequences allow to analytically calculate the functional form of p(S). Two examples are (d ) Fibonacci’s model [54], where p(S)
follows a power-law distribution and (e) an RNA-inspired model [55] which yields a lognormal distribution of p(S).
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complex models that include cellular population dynamics

and several levels from genotype to phenotype [71], in

more abstract GP maps, such as the polyomino model of

polymer self-assembly [72,73], toyLIFE—a multilevel model

of a simplified cellular biology [53,74]—and in simplified

combinatorial models [54,55].

Most NNs studied in the literature share a remarkable

number of structural properties [28,75]:

1. Most phenotypes are rare, and only a few of them are very

common. Specifically, the probability of finding a pheno-

type when sampling uniformly at random among all of

them follows a lognormal distribution for a wide variety

of models [50,55,74] and a power law for some special

cases [49,54,55]. Therefore, a small fraction of the largest

phenotypes contains most genotypes, such that in practice

those are the only ones visible to natural selection [50,59,76];

together with the asymmetry in the mutual accessibility of

two phenotypes [58,77], that property causes a form of

(entropic) trapping in genotype space [74,76,78,79].
2. The degree of a node in an NN, defined as the number of

one-mutant neighbours that belong to the same NN (aka

its genotypic robustness), is a heterogeneous quantity,

although its distribution is often unimodal [28,39,61].

Additionally, the average degree of an NN is proportional

to the logarithm of the size of the network [55,60,61,80].

3. These NNs are assortative, at least for phenotypes defined

throughminimum-energy principles [61,81,82]. In an assor-

tative network, genotypes are connected to other genotypes

of similar degree, and this correlation in genotypic

robustness causes canalization [83], leads to phenotypic

entrapment [79] and enhances evolvability [80].

4. Neutral networks of common phenotypes percolate

genotype space. In other words, we can find two geno-

types expressing the same phenotype with a sequence

similarity comparable to that of two randomly chosen

genotypes [28,84].

5. Most large phenotypes are one mutation away from each

other, such that genotypes yielding every common

phenotype can be found at the boundary of any large NN
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[28,53,65,84]. As a result, the search for new phenotypes

among common ones is a fast process.

The space of genotypes can be depicted in this context by a

number of interconnecting NNs when each node is projected

in a horizontal (quasi-) neutral layer whose vertical position

represents its fitness value. In this multilayer perspec-

tive [85,86], intralayer connections between individual nodes

represent neutral mutations, while interlayer connections rep-

resent mutations that beneficially (upwards) or deleteriously

(downwards) affect fitness [87]. It is, however, important to

keep in mind that this representation is suitable only if the

GP map is approximated as a many-to-one relationship, since

it fails to include the frequent correspondence between one

genotype and several possible (environment dependent)

phenotypes, as will be discussed in §§5 and 6.
 80069
2.2. Genotype networks in genotype-to-function maps
The GP map is at best a toy representation of the relationship

between genotype and function, though it hopefully captures

some of its statistical properties. Computational studies

suggest that structural properties of GP maps are largely inde-

pendent of the precise definition of phenotype [88,89] and of

details of specific models [28,75], and data to assess whether

GP maps are a sufficiently accurate representation of geno-

type-to-function maps—which represent a qualitative step

forward—is mounting. Advances in experimental techniques

have allowed to study the structure of the genotype-to-fitness

mapping through either experimental evolution studies

[33,90–93] or high-throughput data [32,44,94]. The resulting

experimental fitness landscapes confirm and extend the picture

of molecular evolution gained through the computational

study of simple GP maps, showing the presence of many

quasi-neutral (eventually navigable) regions [95] and decaying

correlations between phenotypes as the mutational distance

increases [96]. Natural fitness landscapes have an intermediate

degree of ruggedness, they are neither smooth nor random,

therefore revealing an important role of epistasis in shaping

the topological properties of genotype networks and in defin-

ing eventually accessible genomic pathways for molecular

adaptation [44,90,97,98].

Fitness landscapes have been theoretically explored through

models where phenotypes need not be explicitly defined and,

instead, a fitness value is associated with each genotype. This

representation is closer to data retrieved through empirical evol-

utionary experiments. The NK model [99] has proved to be

especially useful to generate an underlying landscape with rea-

listic degrees of ruggedness [24,92]. Furthermore, it is relatively

simple, only depending on two parameters—the length of the

sequence N and the level of ruggedness K—but versatile

enough to model fitness landscapes with natural properties

such as epistasis, multiple fitness peaks and local optima [100].

It turns out that topological differences between genotype

networks, obtained through data that map genotype to func-

tion, and NNs, as described in the previous subsection, are

only cosmetic. It can be shown that spaces of genotypes

endowed with the structure of the NK model are also orga-

nized as a network of networks, that is, as a set of genotype

networks qualitatively equivalent to NNs connected through

a limited number of pathways [101]. The structural properties

of genotype networks, visualized as a multilayered network
of networks, define a particular class of dynamics for popu-

lations evolving on such architecture.

The following sections are devoted to the not yet fully

understood interaction between the topology of genotype

networks and the evolutionary dynamics of heterogeneous

populations—at least from the formal viewpoint of dyna-

mical systems. We begin by synthesizing current evidence

to demonstrate that three different dynamical situations

(competitive transitions between different regions of an

NN [102], punctuated molecular adaptation [22] and genomic

shifts under varying environments [23]) can be described

within a unique conceptual and theoretical framework. In

subsequent sections, we will show how the latter framework

can be extended to include the many-to-many inherent

structure of GP maps and environmental changes.
3. Population dynamics on neutral
networks

In order to describe mathematically the evolution of hetero-

geneous populations on NNs, let us recall that many

dynamical processes occurring on a network can be

expressed as

n(t) ¼ Mn(t� 1) ¼ Mtn(0), ð3:1Þ

where n(t) is a vector whose components are the population

of individuals at each node at time t and M is an evolution

matrix that contains the particulars of the dynamical process

(see box 1).

For the sake of illustration, let us start by considering a

simple fitness landscape with a single viable phenotype.

The genotypes yielding the latter constitute an NN and all

remaining genotypes have zero fitness. Consider genotypes

as sequences of length l whose elements are taken from an

alphabet of A letters. Nodes represent different sequences

and links connect those sequences differing only in one

letter. The evolution of a population through the space of gen-

otypes due to mutations is here limited to the NN—or to its

largest connected component in case the NN is disconnected.

An evolution matrix that models such a dynamical process is

M ¼ f(1� m)Iþ fm
(A� 1)l

G, ð3:5Þ

where I is the identity matrix andG is the adjacency matrix of

the connected network, with elements Gij ¼ 1 if nodes i and j
are connected and Gij ¼ 0 otherwise. The genotypic robust-

ness of a node is proportional to its degree ki, defined as the

number of genotypes one-mutation away that are on the net-

work, ki ¼
P

j Gij. M describes a population that every time

step replicates at each node at a rate f. 1, each daughter

sequence leaving the node with probability 0, m, 1 and

surviving with probability kim/(A2 1)l [103], with ki the

degree of the parental node. If we define kmin, kmax and kkl
as the smallest, largest and average degree of that NN,

respectively, we obtain kmin , kkl � g1 , kmax for any hetero-

geneous network, g1 being the largest eigenvalue of the

adjacency matrix G [104]. In the case of two-letter alphabets,

A ¼ 2, g1 is bounded from above by the logarithm of the

number of genotypes in an NN [105]. g1 also equals the aver-

age degree of the population at equilibrium, k, so the former

inequality implies k. kkl, indicating that the population



Box 1. Dynamics of replicators on a fitness landscape.

The evolution of a population of asexually replicating individuals on a fitness landscape described as a genotype network can

be written as

n(t) ¼ Mn(t� 1) ¼ Mtn(0) ¼
Xm
i¼1

lti(n(0) � ui)ui, ð3:2Þ

where ui and li are the eigenvectors and eigenvalues of the evolution matrixM and m is the number of nodes of the genotype

network; n(t) has length m. We order the eigenvalues and eigenvectors such that li � liþ1. If M is primitive, Perron–Frobe-

nius theorem for non-negative matrices ensures that, over time, the system evolves towards an asymptotic state characterized

by the (unique) first eigenvector u1. More precisely

lim
t!1

(lt1a1)
�1n(t) ¼ u1, a1 ¼ n(0) � u1 . 0, ð3:3Þ

regardless of the initial condition n(0). The components of u1 (all of them guaranteed to be strictly positive by the same the-

orem) are proportional to the fractions of the total population at each node once the process has reached mutation-selection

equilibrium, while its associated eigenvalue l1 represents the asymptotic growth rate of the population. The transient

dynamics towards equilibrium is ruled by the subsequent eigenvalues, but in most cases the time to reach the equilibrium

state verifies teq / [ln(l1/l2)]
21, since the contributions of higher-order terms are suppressed exponentially fast [103].

In a population of replicators that mutate with probability 0, m , 1 per genotype and replication cycle, matrix M can be

decomposed as1

M ¼ (1� m)Fþ m

S
GF, ð3:4Þ

where F is the diagonal matrix Fij ¼ fidij, fi being the fitness (i.e. replication rate) of node i; G is the adjacency matrix of a con-

nected graph, whose elements are Gij ¼ 1 if nodes i and j are connected and Gij ¼ 0 otherwise; and S stands for the maximum

number of neighbours of a genotype [23]. When replicators are sequences of length l whose elements are taken from an

alphabet of A letters, the size of the genotype space is m ¼ Al and S ¼ l(A 2 1).

Matrices such as M in (3.4) are guaranteed to be primitive if the network G is connected and the diagonal of F is strictly

positive.

Dynamics on a single NN is a particular case for which the fitness components are fi ¼ f if i is a genotype in the NN and 0

otherwise—all sequences replicate at a rate f.
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selects regions with connectivity above average on the NN.

This fact shows a natural evolution towards mutational

robustness, because the most connected nodes are those

with the lowest probability of experiencing lethal mutations.

Nonetheless, the population might get trapped in regions of

lower connectivity if Nm, 1 [106]. The tendency towards

robustness does not preclude evolutionary innovation,

though. On the contrary, NNs relevant in evolution span

large regions in genome space [50], with the result that they

can be more robust and at the same time more evol-

vable [80,107,108]. A positive correlation between neutrality

and evolvability stems from the fact that NNs are very inter-

woven: for example, all common RNA structures of length l
can be found within a small radius of a randomly chosen

sequence in genotype space —a property known as ‘shape

space covering’ [84,109]. The mutual proximity of NNs in

genome space (the so-called NN apposition [58,110]) has

been observed empirically. Two remarkable examples are

ribozymes and viruses. Indeed, two RNA sequences with

independent origins can fold and function as different ribo-

zymes when their sequences are forced to evolve to increase

their similarity, eventually differing in only two nucleo-

tides [42]; diffusion on NNs is instrumental to permit

innovation and immune escape in influenza A [24].

The eigenvectors of the adjacency matrix G are also

eigenvectors of the evolution matrix M, as can be seen in

equation (3.5). Their respective eigenvalues, gi and li, are differ-

ent—albeit related through li ¼ f(12 m) þ gifm/(A2 1)l. As a

consequence, in NNs the asymptotic state of the system only
depends on the topology of the NN, and parameters such

as the mutation rate m or the sequence length l exclusively
affect the transient dynamics towards equilibrium [103,106].

This result cannot be extrapolated to more general fitness land-

scapes, where both the equilibrium state of the population and

the transient dynamics depend in a non-trivial fashion on net-

work topology and genotype fitness [103] (cf. equations (3.2)

and (3.4) in box 1).

Heterogeneity in the degree of the nodes, or equivalently

in genotypic robustness, and the assortativity inherent to

many NNs have important consequences in the dynamics

of populations. Soon after the hypothesis of the molecular

clock [111] was put forward, variations in genotypic robust-

ness were suggested as an explanation for its unexpected

overdispersion [112]. If networks are furthermore assortative,

the probability that the population leaves the network

diminishes the longer the time spent on it, leading to a pro-

gressive (phenotypic) entrapment. Beyond a systematic

increase in the overdispersion of the process with time, assor-

tativity entails an acceleration in the fixation rate of neutral

mutations [79], invalidating the Poissonian assumption

underlying the molecular clock.
4. Punctuated dynamics in molecular
adaptation

As soon as more realistic architectures of the genotype space

are considered, dynamics becomes punctuated. This fact has



Box 2. Competition for centrality in a network of networks.

In complex network theory, the eigenvector centrality xk of a node k in a network is defined as the kth component of the

eigenvector of its adjacency matrix G corresponding to the largest eigenvalue g1 [116]. The eigenvector centrality has

become one of the most widespread metrics for node importance because of its wide range of applications, which include

Google Pagerank [117], estimations of the professional impact of scientists [118] and journals [119], the importance of indi-

viduals in a social group [120] or of regions in the brain [121], and dynamical processes such as disease or rumour spreading

(see [116] for an overview).

This measure can be generalized to other dynamical processes if G is replaced by another (non-negative) matrix M: the

new eigenvector centrality is defined through u1, the eigenvector corresponding to l1, the largest eigenvalue of M (see

e.g. box 1). In evolutionary dynamics, the eigenvector centrality is thus the fraction of population with each genotype at

mutation-selection equilibrium [103]. We use this generalization in the following.

In a network of networks, the centrality of each network is the sum of the centralities of all its nodes, normalized in such a

way that the sum of the centralities of all networks is equal to one. Therefore, combining game theory and network science,

we can approach the spread of the total centrality on the different networks as a zero-sum game, where players are not nodes

but networks and compete for centrality, which is understood as a limited resource. The winnings of each competing network

a are calculated as the total centrality Ca accumulated by all its nodes

Ca ¼
P

j[a u1,jPm
k¼1 u1,k

,

where j runs on the nodes of network a and m ¼
P

mmm is the total number of nodes in the network of networks. The out-

come of such confrontations for centrality and the time needed by the winner to prevail drastically depend on (i) the internal

structure of the competing networks a ¼ 1, . . . ,K, as characterized by their maximum eigenvalue l1,a, in a way that networks

with larger l1,a in general obtain more centrality than their competitors and (ii) the connector nodes, that is, the boundary

nodes that connect one of these networks with the rest of them through connector links.

When connector links occur only through nodes with little centrality (aka peripheral connections), almost all centrality

remains in the network with the largest eigenvalue l1,a. If for some reason (e.g. an environmental change) the eigenvalue

of a different network overcomes l1,a, a sharp centrality redistribution takes place. The time to reach the equilibrium

significantly increases close to that transition.
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been highlighted in formal studies stating that GP maps based

on RNA sequence-to-structure relationship naturally imply

punctuation, irreversibility and modularity in phenotype evol-

ution [21], and has been nicely illustrated in computational

works [22,58,110].

The formal scenario that we use here starts at the level of

genotypes, but also takes into account the non-trivial top-

ology induced by the mapping onto phenotypes. By means

of techniques that exploit the networked and modular

structure of genotype spaces, we will show that the dynami-

cal behaviour is qualitatively similar in three different

situations, that is if (i) an NN has two or more regions of

high connectivity linked through few possible mutatio-

nal pathways, (ii) a population encounters a phenotype of

fitness higher than the extant one or (iii) mutation-selection

equilibrium is perturbed through an environmental change

that entails a modification of the fitness landscape. Under-

neath the punctuated dynamics observed in those situations

there is a common mechanism: a (formal) competition

between regions with a high internal connectivity that are

sparsely connected to one another. These highly internally

connected regions may be different clusters of genotypes

in a single NN, different phenotypes each characterized by

its own NN, or different regions in a fitness landscape.

Actually, this synthesis emerges as a generalization of

processes occurring on a wide variety of biological, techno-

logical and social dynamics on networks of networks

(i.e. networks connected through a limited number of con-

nector links). This class of processes admits a description

in terms of competitive scenarios where each network is
defined as an independent agent struggling with the rest

for a particular kind of resource [113–115]: eigenvector
centrality (see box 2).
4.1. Metastable states and punctuation in a network-
of-networks architecture

In §3, we have focused on the dynamics of populations

evolving on a single NN characterized by a well-defined

region of maximum connectivity. Under those conditions,

the evolutionary dynamics of a sufficiently large population

is smoothly canalized towards the maximally connected

region of the NN [83,103,106]—something that has measur-

able effects on the fixation rate of neutral mutations [79].

However, there is no a priori reason to assume that generic

NNs do not present a complex structure formed by more

than one cluster of nodes with high internal connectivity

and sparse connections to one another. For instance, the top-

ology of NNs associated with RNA secondary structures

recently revealed an intricate network-of-networks organiz-

ation, where the different communities can be further

divided into subcommunities attending to their sequence

composition [122, Fig. 6]. Some of these networked commu-

nities turned out to be two mutational steps away—such

mutations playing the role of what we have named connector

links—and therefore required an intermediate group of geno-

types for a population to move from one community to

another. In this type of complex structure, the evolutionary

dynamics of populations on NNs can display an alternance
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Figure 3. Genomic shifts result from the network-of-networks structure of
the space of genotypes. Without loss of generality, we assume that
l1,A , l1,B and the whole population is initially in network A. In (a– c),
colours indicate the fitness of each node, as shown by the colour scale,
and circle size is indicative of the number of individuals at each node.
Though nodes in network B are represented with small circles, we assume
they have no population initially. (a) Two weakly coupled regions of a
unique NN. Differences in their eigenvalues only depend on differences in
their topology. (b) Two different NNs with different fitness. The effect of fit-
ness and topology can be separated, both affect their eigenvalues. (c) Two
weakly connected regions in a fitness landscape. The effects of fitness and
topology cannot be decoupled. (d ) In all cases, the time of transitions is
a stochastic variable, but the transition is fast once the mutational pathway
is found (red curves, corresponding to different realizations of the process). In
changing or noisy environments, the fitness value of each sequence might
vary in time, so transitions are decorated by fluctuations (grey curve)
whose strength grows as the tipping point is approached.
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of metastable states (which might appear as true equilibria at

short times) with periods where neutral mutations are

rapidly fixed [102].

The formalism that describes competition between

networks for centrality, while originally introduced in the fra-

mework of complex network theory, was recently proven to be

fully applicable to the study of populations evolving in the

space of genotypes [101]. The population distribution at

mutation-selection equilibrium is given by the first eigenvector

u1 of the matrix M that characterizes the dynamical process,

and therefore the centrality that each network competes for

coincides with the fraction of organisms that populate its cor-

responding sequences in the asymptotic state. In general, the

most populated network in the equilibrium is the one with

the largest eigenvalue l1 of matrix M (box 2).

Let us illustrate in the simplest case how a population

moves from a subnetwork with a lower eigenvalue l1,A to a

subnetwork with a larger eigenvalue l1,B in the frame-

work of competition for centrality. Figure 3a represents two

regions of an NN weakly connected. As previously described,

we have l1,A ¼ f(12 m) þ gAfm/(A2 1)l, and similarly for

network B. Note that the latter network will eventually be

attracting the population if the eigenvalue corresponding

to its evolution matrix l1,B is larger than that of A and, as a

consequence, the same applies to the adjacency matrices (i.e.

gB . gA). This result shows that the separating barrier only

depends on the topological structure (size and connectivity)

of each subnetwork. The transition to a region with higher

connectivity occurs upon stochastic appearance of mutations

along connecting pathways. This process is highly contingent,

so the time of the punctuation is difficult to predict (red lines

in figure 3d ). Actually, too small populations might be indefi-

nitely trapped in regions as A [22].

4.2. Drift and switch dynamics in adaptive transients
Early evidences of punctuation in molecular adaptation came

from computational simulations of populations of RNA

sequences evolving towards a target secondary structure [22].

Typically, populations remain on the current phenotype until

a higher-fitness solution is found, that is, until one of the gen-

otypes in the population acquires a mutation that produces a

new, fitter phenotype. This event is preceded by a ‘search’ in

the original phenotype during which the population accumu-

lates neutral mutations and increases its genotypic diversity.

The switch transition is not deterministic, since different

phenotypes can be reached first depending on the stochastic

occurrence of mutations. Once the new phenotype has been

found, the transition occurs exponentially fast but, concomi-

tantly, the population experiences a severe bottleneck

that reduces its genotypic diversity. In this scenario, a new

phenotype can be accessed through any genotype in the neigh-

bourhood of genotypes of the original phenotype, though

peripheral genotypes (those with a higher number of links

pointing to different phenotypes, i.e. of low robustness) are

more likely to act as connectors than highly robust, central gen-

otypes [79]. This drift and switch dynamics is characteristic of

any realistic GP map with a structure such as that described

in §2. In the dynamical framework of competition between

networks, each phenotype represents now a distinguishable

network characterized by its size, connectivity and fitness

level. Connector links correspond to regions of apposition

between the two networks, which exist in most cases (in
particular when the two phenotypes considered are

common) but are difficult to find if populations are finite due

to the vastness of genotype spaces and NN [30]. Also, the con-

nector linksmight join regionswith similar fitness but different

internal connectivity, or regions with different fitness, among

many other possibilities. Different paths to adaptive improve-

ment are taken with different probability. For example,

narrow neutral paths are crossed much faster than fitness

valleys [123].
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Figure 3b illustrates the situation of two phenotypes with

different fitness values (i.e. replicative ability of its nodes)

coupled through narrow paths. The transition to phenotype

B might occur if lB,1 . lA,1 which implies that

fA
fB
<
1�mþmgB=(A�1)l
1�mþmgA=(A�1)l

�1þ m

(A�1)l
(gB�gA), m�1, ð4:1Þ

where the specific effect of fitness fi and topology gi is

quantified.

The survival-of-the-flattest effect represents one particular

case of such competition where the two competing regions

have different levels of fitness, different mutation rates

(a situation that can be easily included in the framework

above), and different levels of robustness [124,125], which

effectively accounts for different topologies [126]. Some

computational models that consider relevant features of

molecular populations have been developed, leading to an

improved understanding of this interesting phenomenon.

The effective implementation of networks with different

degrees of neutrality permits to capture competitions

between RNA populations subject to selection for different

folds (characterized by different neutral networks), showing

how the relative advantage of either population changes

sign as a function of the mutation rate [127]. Also, in a

model of quasi-species characterized by bit strings, it has

been shown that a discontinuous phase transition separates

the regions of selection for replication and selection for

robustness [128]. At odds with results emphasizing selection

for robustness along evolution, models with RNA quasi-

species show that high mutation rates might be evolutionarily

advantageous in situations where a single RNA sequence

might code for a molecular ecosystem [129]. It has been

also argued that fitness landscapes with fitter and flatter

regions might be behind the enigmatic richness of microbial

metabolisms [130]. Epochal evolution (i.e. metastable states

punctuated by rapid transitions to fitter states) have also

been observed in evolutionary search algorithms, as referred

to a class of optimization techniques [131,132].

The theory can be easily extended to any number of phe-

notypes in competition and yields a clear prediction

regarding the phenotype that will be eventually attracting

the population. The largest eigenvalue of any matrix M, l1,

is a fundamental quantity that synthesizes information on

the topology of the underlying network, on the fitness of its

nodes and on the mutation rate. These three elements com-

bine in a non-trivial way to determine the competitive

ability of a population on a given network. In this respect,

a population can asymptotically displace a competitor for a

number of different reasons, namely because (i) it spreads

on a larger NN, (ii) its average fitness is higher, (iii) it spreads

on a network with higher connectivity, (iv) it mutates at an

advantageous rate with respect to its competitors or (v) any

suitable combination of the previous reasons.
4.3. Smooth environmental changes and genomic shifts
There is empirical evidence that environmental changes

affect the evolutionary dynamics of populations and their

eventual fate [133]. Recalling that fitness is an environment-

dependent quantity, environmental changes can be formally

cast as modifications of the fitness associated with genotypes.

When a genotype space is mapped to a realistic fitness
landscape, smooth environmental changes can be rep-

resented as gradual modifications of the fitness value of

each genotype. As phenotype is here a hidden variable, at

this point we do not need to consider possible changes in

phenotypic expression due to environmental variation. This

possibility will be discussed later though.

Even if environmental variations are smooth, populations

may eventually suffer sudden transitions in their genomic

composition [23]. In the case of finite populations, there is a

non-zero probability of extinction if the pathway linking the

(decreasingly fit) current state of the population to a new

region populated by fitter phenotypes is not found suffi-

ciently fast [101]. The abundance and breadth of connecting

pathways depends on the roughness of the landscape and

on the fraction of lethal mutations, which can be put in corre-

spondence with important variables such as the degree of

heterogeneity of the corresponding genotype networks and

the holeyness of the landscape [134]. These quantities tune

the number of connector links between different regions

with significant fitness and the centrality of their connector

nodes. As a consequence of the above, fitness landscapes

can be described as a network of networks formally

analogous to the examples discussed previously (figure 3c).
Early warning signals that forecast the proximity of

tipping points (and therefore of a putative extinction

threshold) can be defined in analogy to studies of sudden

shifts in ecology [14]. Close to those state transitions popu-

lations show flickering and hysteresis, i.e. a dependence on

its previous states that causes trapping and metastability,

and is eventually responsible for extinction [101].

Summarizing, facing evolutionary systems from the view-

point of competing networks turns the space of genotypes

into a network of networks at several different levels. The full

consequences of this architecture are still to be understood,

though they are certainly far from trivial: relevant phenomena

such as robustness [135,136], synchronization [137,138],

cooperation [115,139,140] or epidemic spreading [141–143]

exhibit different features when their dynamics occur on a

single network or on a network of networks.
5. The many-to-many nature of the
genotype–phenotype map

Our discussion so far has assumed that each genotype

corresponds to a unique phenotype. Adaptation to a new

environment or selectionpressure, therefore, has to be achieved

throughmutations, andwe have discussed some of the non-tri-

vial phenomena that appear when heterogeneous populations

evolve in a complex genotype space. However, there are many

cases in which genotypes express more than one phenotype,

opening up new possibilities for adaptation: in any realistic

realization, the GP map is many-to-many, since genotypes

are able to express different phenotypes in a variety of situ-

ations. In this section, we present several examples of this

phenomenon and discuss how it alters the dynamics discussed

in previous sections. The reader should know that the level of

formal description achieved is poorer than for dynamics on

networks and has received much less attention up to now.

Our feeling is that, as shown in previous sections, theory

should help towards unifying processes and concepts that

are treated at present as different phenomena. However, the

following sections rely much more on the description of the
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latter than on quantitative results. A full mathematical

formalism that describes at once the multilayered, network-

of-networks structure of the genotype-to-function map is an

open and on-going problem of the highest relevance.

5.1. Molecular promiscuity
Enzymes were classically thought to be highly specific: one

enzyme–one substrate–one reaction. However, recent exper-

imental data have shown that, in fact, many enzymes are

able to catalyse more than one reaction, a phenomenon that

has been termed catalytic or functional promiscuity [144–149].

This means one amino acid sequence corresponds tomore than

one phenotype. Promiscuous enzymes are not hard to find in

sequence space. For example, single-site mutants of bacterial

enolases can actually perform secondary functions not found

in thewild-type, whilemaintaining their original activity [150].

Moreover, these promiscuous functions are easily evolvable:

enzymes can accumulate mutations that do not alter their

main function, but which radically change their secondary

ones [151–153], and the activity of secondary functions can

be increased several orders of magnitude with very few

mutations [144,154,155].

Promiscuous activities can help enzymes evolve towards

new functions. A polymorphic population of enzymes can

diversify with respect to its secondary functions if they bear

no fitness costs to the organism, leading to the accumulation

of what has been termed cryptic genetic variation [156].

When selection pressure for a new function appears, those

enzymes in the population that carry out that function as a pro-

miscuous activity will be already functional and, in a sense,

pre-adapted for it. The new function can then be improved

through over-expression [147] or gene duplication that

liberates one copy of the enzyme to specialize in the new func-

tion [144,148,157]. These promiscuous activities also have an

effect onmetabolism, connecting different metabolic pathways

[148,158], and therefore enabling their gradual evolution:

promiscuous enzymes can develop their secondary functions,

so that certain steps in a pathway become more efficient, in

turn liberating other enzymes to focus on other parts of the

pathway. The evolution of metabolic pathways, therefore,

can be achieved in a more parsimonious way. When a new

pathway is needed, cells with promiscuous enzymes may

perform the needed reactions, and give these sequences an

adaptive advantage.

Functional promiscuity is not restricted to enzymes: tran-

scription factors have been shown to bind many different

motifs with comparable binding energies [32,44,148]. Also,

proteins can be mistranslated [159], a process that is several

orders of magnitude more common than genetic mutations,

and thus at a given moment in time, some proteins will

have a different amino acid sequence, with potentially differ-

ent functions that can accelerate adaptation to a new function

[160–162]. Some protein sequences will be more likely to

yield new functions under these phenotypic mutations.

Promiscuity is also not restricted to proteins. Early compu-

tational work on RNA secondary structures [38] already

suggested that RNA molecules could fold into more than one

structure, and recent experimental studies have found evidence

of RNA molecules that can perform more than one different

function [163,164]. The best examples are ribozymes (RNA

enzymes) that are able to catalyse two different reactions

[42,165,166]. Computational [83,167] and experimental studies
[166] suggest that secondary functions in RNA molecules can

evolve as easily as in proteins, and that this functional promis-

cuity can spread through populations as cryptic genetic

variation, accelerating the rate at which new functions are

found in evolution. Even if these functions are performedmar-

ginally at first, they will give the sequence an advantage if they

are selected for, and freedom to improve the new function in

genotype space. In fact, theoretical models predict that

promiscuous functions can help accelerate evolution towards

a new function, through what has been called the look-

ahead effect [160]. Although this phenomenon was originally

proposed for phenotypic mutations, it is also valid for

promiscuous enzymes and RNA molecules.

5.2. Phenotypic heterogeneity and bet-hedging
The fact that one sequence can perform more than one func-

tion is not restricted to the molecular level. At the regulatory

level, for instance, expression noise is very common

[168–170], due to the stochastic nature of transcription and

translation and the small number of molecules involved in

these processes. Expression noise leads to phenotypic hetero-

geneity [171,172], where two genetically identical genotypes

can, under the same conditions, express two different pheno-

types at the cellular level. Although expression noise is

inherent to the biochemical process of building the pheno-

type from the genotype, cells can control it to some level

[169,173–175], and they can also use it to their advantage

[171,172,176]. For instance, genotypes can evolve a stochastic

switching mechanism that enables them to alternate between

two different phenotypes, a phenomenon that has been

termed bet-hedging [177]. At a given moment in time, a frac-

tion of the population will express one phenotype and the

rest another one. Each phenotype is typically advantageous

in one environment and disadvantageous in another, and

so the ability to switch between them is adaptive under

some conditions [178]. Typical examples of bet-hedging are

bacterial competence [179] and persistence [180]. Bet-hedging

is a common mechanism that can also emerge in evolution

experiments [181]. These strategies would not be possible

without functional promiscuity.

5.3. Phenotypic plasticity
Another piece of this puzzle comes from phenotypic plasticity,

a well-known phenomenon in which a genotype is able to

express different phenotypes in different environments [182].

Notice the difference from phenotypic heterogeneity as dis-

cussed above: phenotypic plasticity is only unveiled when

an environmental cue appears. In fact, strategies such as

bet-hedging arise when the cost of developing a plastic

response—which is able to sense the environment—is so

high that it becomes disadvantageous [178].

Phenotypic plasticity has been known for a long time in

multicellular organisms, but it appears at the unicellular and

molecular level as well. Proteins are not only promiscuous:

they can also carry out different functions in different environ-

ments, a phenomenon that is called moonlighting [183,184].

One classical example is crystallin lenses, enzymatic proteins

whose function becomes structural when expressed at very

high concentrations [185]. The same gene can also express

different proteins through alternative splicing [184]. RNA

molecules can fold into different structures at different
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temperatures, performing different functions [186]. RNA

thermometers, as they are called, can be designed computa-

tionally [187]. Gene regulatory networks have different

spatio-temporal expression patterns when exposed to different

environmental inputs [188–190], and metabolic systems are

able to survive on different food sources [68–70].

A plastic population will be able to automatically survive

in a new environment, if it expresses a viable phenotype.

Once in the new environment, it might spread through the

new fitness landscape, maybe losing its original plasticity.

Many theoretical and computational studies of plasticity

and its relationship with adaptation have been proposed

[191–197], although most of them do not include the com-

plexities of the GP map that we have discussed in our

previous sections. They assume that phenotypes that are

close in trait value to the ones present in the population

will always be achievable through mutations. Therefore, the

discussion of when and how phenotypic plasticity will be

promoted cannot account for the biases induced by more or

less abundant phenotypes, asymmetric connections between

them and other factors discussed so far in this review,

which could affect how easily plasticity is developed. There

are, however, some computational studies that explicitly

model GP maps, focusing on RNA molecules [83] and gene

regulatory networks [189,198].
6. Hints for a dynamical theory of many-
to-many genotype–phenotype maps

6.1. Promiscuity redefines the fitness landscape
How do we integrate all of these data into the framework we

have been discussing so far in this review? The presence of

phenotypic noise or functional promiscuity (at the molecular

or regulatory level) implies that a single genotype, in a given

environment, will express more than one phenotype in a

probabilistic manner. Therefore, the effective fitness of the

genotype will be an intermediate value related to the fitness

associated with each phenotype. Naively, one could guess

that the fitness fi of sequence i would be fi ¼
P

p[P f(p)pi(p),
where P is the set of all phenotypes, f(p) is the fitness of phe-
notype p and pi(p) is the probability that sequence i expresses
phenotype p (alternatively, pi(p) represents the fraction of the

homogeneous population with genotype i expressing pheno-

type p). To illustrate one such case, consider a population of

RNA sequences that perform their function by interacting

with a ligand. Under the minimum free energy mapping

usually considered in the literature, all RNA sequences

expressing the optimal structure as their minimum free

energy are assigned the same fitness. Including promiscuity,

however, alters this fitness function. Two sequences belong-

ing to the same NN have different compositions, and this

variation leads, in general, to differences in their folding ener-

gies and also in the repertoire of structures with which they

are compatible [199]. Differences in the folding energy entail

differences in the average time spent in the minimum free

energy secondary structure for each specific sequence. In

this situation, a more accurate definition of fitness takes it

as proportional to the time spent in the optimal secondary

structure. Therefore, two sequences belonging to the same

NN have different fitness values under this more realistic

quantification of their function.
However, a careful investigation of the underlying

(stochastic) population dynamics reveals that the simple

average above is not of general applicability, as the next

example illustrates. Consider a homogeneous population of

cells expressing a certain phenotype with probability p, and
another one with probability 12 p. The replication rate b of

both phenotypes is the same, but the second phenotype has

a higher death rate d2 . d1—i.e. it has a lower fitness, defined

as the difference between birth and death rates, f ¼ b2 d.

There is no mutation in this example. Whenever any cell

replicates, the daughter cell expresses one of the two pheno-

types with the aforementioned probabilities, regardless of the

mother’s phenotype. Calling m1(t) and m2(t) the number of

cells of each type at time t, we can use results from birth–

death processes theory to derive the following system of

ordinary differential equations:

_m1(t)
_m2(t)

� �
¼ bp� d1 bp

b(1� p) b(1� p)� d2

� �
m1(t)
m2(t)

� �
: ð6:1Þ

We diagonalize the system to obtain its largest eigenvalue

(and thus, the asymptotic fitness of the population):

l1 ¼
b� d1 � d2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b� (d2 � d1))

2

4
þ bp(d2 � d1)

s
: ð6:2Þ

With some algebra, we can show that l1 . (b 2 d1)p þ
(b 2 d2)(1 2 p), the latter being the result of the naive

guess above, i.e. that the average fitness of the population

is the weighted average of the fitness of the visited pheno-

types, where weights are the probability that a genotype

expresses each phenotype. The discrepancy arises, in this

case, because cells expressing the second phenotype die

more often. As a result, the population has an overrepre-

sentation of cells expressing the more stable phenotype:

their fraction in the population is actually greater than p.
Despite the differences between the two examples dis-

cussed, it appears that the effect of promiscuity can be

accounted for by properly redefining the fitness landscape.

Each example, however, will need to be carefully examined

to correctly translate its dynamical details to a suitable

definition of fitness.
6.2. Dynamics of plastic phenotypes under frequent
environmental changes

Phenotypic plasticity means that the same genotype expresses

different phenotypes in different environments, such that differ-

ent evolution matrices have to be considered in each of the

environments (see box 3). This is equivalent to considering one

GP map per environment, and switching between them when

the environment changes. To fix ideas, suppose we have two

different environments alternatingeverygeneration,withassoci-

ated matrices M1 andM2. Then the evolution of the population

will be given by the largest eigenvalue of the matrixM2M1 and

the asymptotic state of the population turns out to be an orbit

with period 2, as long as some conditions are fulfilled. Both

matrices (and their product) must be primitive (see box 1).

This happens, for instance, if all nodes have positive fitness or

if, after removal of the zero-fitness nodes, none of the two net-

works breaks down into different connected components.

If this condition is not met, the asymptotic state will depend

on the initial condition. Likewise, even if all nodes have positive



Box 3. Dynamics of replicators on a shifting fitness landscape.

The framework introduced in box 1 can be extended to account for environmental changes. For the sake of simplicity, we will

just consider the case in which the environment alternates between two states, but generalizations of this are self-evident. The

fitness of every node needs not be the same in each environment, and as a result the evolution matrices of both environments

(we will denote them by M1 and M2) will be different.

Let us begin by exploring the case in which, starting in environment 1, we alternate environments every generation. Then

the equation for the evolution of the population reads

nðtÞ ¼ ½M2M1�t=2nð0Þ, t even,

½M1M2�ðt�1Þ=2M1nð0Þ, t odd:

(
ð6:3Þ

This means that, in general, the evolution of the population will be dominated by the largest eigenvalue of the matrixM2M1 at

even times and of the matrixM1M2 at odd times, regardless of n(0). (Starting from environment 2 would only swap the parity

of times, but not the general results.)

Interestingly, the eigenvalues of cyclic permutations of a product of matrices are the same, and the corresponding eigen-

vectors are easily related to each other. Thus, if l1 is the largest eigenvalue of M2M1 and v1 its corresponding eigenvector,

then the eigenvector of matrix M1M2 will be M1v1, so the asymptotic population will grow as lt/21 and the fraction of

population will cycle through

v1 ! M1v1
jM1v1j

! v1: ð6:4Þ

The case in which environments change following a random pattern is particularly interesting. In this case,

n(t) ¼ Mtn(0), M ; kYt
k¼1

Mmkl
1=t

, ð6:5Þ

where mk [ f1, 2g is a discrete random process whose dynamics is prescribed (for instance, it can take each of the two values

with a certain probability, or m1 can take any value with a certain probability and swap every time step with another prob-

ability). The expected value is to be taken over realizations of this process. The largest eigenvalue of M and its corresponding

eigenvector will determine the asymptotic behaviour of the population. Mathematically, this process is not fully characterized

yet, but it is not difficult to carry out its numerical implementation.

rsob.royalsocietypublishing.org
Open

Biol.8:180069

12
fitness but the fitness of some of them is very small, the popu-

lation can get trapped in metastable states for very long times.

But one can also imagine that alternating environments can

have the opposite effect, namely, that the transit of certain path-

ways strongly hindered in both environments when kept

constant may be facilitated by their alternation.

This analysis can be extended to more complicated alter-

nating patterns of the two environments, the only difference

being that the asymptotic state will exhibit a longer period.

For instance, if environments change according to the pattern

112112112 . . . , and l1 and v1 are the largest eigenvalue and

its corresponding eigenvector of the matrix M2M
2
1, then the

population will grow as lt/31 and the fraction of population

will cycle through

v1 ! M1v1
jM1v1j

! M2
1v1

jM2
1v1j

! v1:

A qualitative representation of this idea was already pro-

posed in the form of adaptive multiscapes [30] (figure 4). It

was shown there that the evolutionary phenomena introduced

by phenotypic plasticity, such as Waddington’s genetic assim-

ilation [34], could be easily understood in terms of a

multilayered network of genotype networks. Genetic assimila-

tion is a very interesting phenomenon. In Waddington’s

experiment, a plastic population of flies was exposed to a

new environment, in which they expressed a different pheno-

type (called cross-veinless). They were selected for this new

phenotype under the new environment, so they spread

through the genotype network in the way we have discussed
in §4. After some time, when the population was brought

back to the original environment, some of the individuals

kept the cross-veinless phenotype, instead of reverting to the

wild-type (figure 4). The phenotype that originally appeared

only plastically was now being expressed without environ-

mental changes: it had become genetically assimilated.

Adaptive multiscapes help in the qualitative understanding

of the molecular mechanisms underlying genetic assimilation,

among others, since the population dynamics sketched in box 3

suffice to explain it.
7. Discussion and prospects
A large body of current evidence shows that the gradualistic

view of evolution is at odds with the mechanisms operating

at the molecular level, where discontinuous changes and

fast pre-adaptations are the rule rather than the exception.

We have presented three basic mechanisms with a strong

effect on the evolutionary dynamics of biomolecules: fast

exploration of new phenotypes by heterogeneous popu-

lations spread over neutral networks, competition between

different networks for population (the evolutionary counter-

part of eigenvalue centrality) and plasticity of phenotypes.

But ubiquitous and general as they may be, these are by

no means the only ones. Several other mechanisms and

phenomena have been left out from our framework.

The first one has to do with mutations. The most parsimo-

nious change in a genome is represented by point mutations.

All through this review, we have shown how even these



normal conditions

normal conditions

heat shock

heat shock heat shock

normal conditions

wt (  )

cv (  )

(a)

(b)

(c)

(d)

Figure 4. Waddington’s genetic assimilation under the light of genotype networks. Each layer of the network represents a different environment. Here, there are
two environments: normal conditions and heat shock. As in previous figures, circle size is proportional to the number of individuals populating that node—small
circles represent unpopulated nodes. The colour of each node represents now its phenotype, instead of its fitness. Note that every genotype appears in both layers,
and that connections between them are the same in both environments: the only property that changes is the phenotype. (a) A population of flies develops wings
with a cross-vein (the wild-type phenotype, wt, blue) when bred in normal conditions. (b) When exposed to heat shock during development, some of the flies in
the original population develop new wings without cross-veins (the cross-veinless phenotype, cv, yellow). (c) Breeding the flies under heat shock and then selecting
for those flies expressing the cross-veinless phenotype, the population drifts towards a new part of genotype space, exploring a new neutral network (or possibly
increasing fitness in the new environment). (d ) After some time, the population is bred again in normal conditions, and some flies in the population keep expressing
the cross-veinless phenotype. Their phenotype has been genetically assimilated.
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minor changes frequently cause major phenotypic modifi-

cations. The evolution of genomes, however, is often driven

by mutational mechanisms that substantially modify them,

such as gene duplication or horizontal gene transfer (HGT).

The latter will potentially cause effects of magnitude larger

than point mutations, and therefore entail still stronger effects

on phenotypes and functions. The structure of genomes,

especially the existence of universal regularities in the distri-

bution of genomic elements [200], speaks about dominant

mechanisms beyond organismal adaptation [201,202]. Gene

sharing through HGT has played a main role in the adap-

tation of microorganisms [203] and is so common in

microbial evolution that it has led to the idea of network

genomics [204]. The reconstruction of gene-sharing networks

for viruses [205] has uncovered a hierarchical and modular

structure that drastically changes our view of viral species

as well-defined entities. Instead, the topology of such net-

works reveals an utmost plastic system where genes behave

as highly mobile pieces, and where not only adaptation but

also evolutionary innovations might be strongly promoted

through combinatorial processes—especially in viruses with

segmented genomes [206]. This plastic view of the genome

can be straight forwardly extended to cellular organisms.

Secondly, we have not included any kind of sexual repro-

duction nor recombination—of which HGT is a particular
case. Though recombination might slow-down evolution

under strong selection [207], inmost of its forms it is a powerful

enhancer of the search for novelty [208]. This power is verywell

illustrated in experiments of DNA shuffling [209], where a

chimaeric cephalosporin created from recombination of

four different ones achieves a 270-fold increase of resistance

to antibiotic—compared to the eightfold increase achieved

by the best cephalosporin created through point mutations

alone. On top of that, the interplay between recombination

and the genotype–phenotype map may induce a fascinating

disruptive dynamics that resembles sympatric speciation

[210], so speciation—one of evolution’s major themes—may

not be properly understood unless recombination is suitably

incorporated in our dynamical models. However, this cannot

be done if size- and frequency-dependent evolution operators

are not introduced, because the probability that a recombina-

tion event takes place depends on the relative presence in the

population of the sequences to be recombined. The lack of a

suitable framework to describe this complication leaves any

‘ecological’ interaction between molecules or genes out of the

picture. This is probably the weakest point of the network

formalism—one that is of paramount importance to tackle in

future work.

Even if we constrain ourselves to the range of applications

to which the formalism we are advocating does apply, its
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actual implementation is not free from serious difficulties. To

begin with, the vastness of genotype spaces makes it imposs-

ible to explore any realistic genotype–phenotype map in

depth. This is a handicap that will not be solved with more

powerful computers, so we need to turn to an alternative

description of evolutionary dynamics. Fortunately, all

models of the genotype–phenotype map share a set of

common properties regardless of the details. This situation

is similar to the one faced by Statistical Physics in its aim to

go from microscopic models to macroscopic description,

and so it can be dealt with in a similar vein. If details do

not matter, we may try to build a mesoscopic description in

which phenotypes, rather than genotypes, are the basic

elements of our dynamical framework, and in which

microscopic details are subsumed in an effective, possibly

non-Markovian stochastic dynamics [79].

We also need to figure out how to incorporate promis-

cuity and environment in our evolutionary picture, in a

way that does not require the running of specific simulations

for each particular case. If a mesoscopic description is to be

made, any change in the environment would entail a full

reconfiguration of the network of phenotypes, thus affecting

not only the phenotype that the population currently

occupies but also the transitions between different
phenotypes—hence the evolutionary pathways. A way to

incorporate the effect of the environment would be through

a multilayer formalism for networks [85,86], where different

layers would correspond to different environments. General-

izing the dynamics described here to a multilayer network is

as yet an open problem.
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Endnote
1In [23,101] a slightly different form of this equation was used, with
the matrix product (F G) instead of (G F) in the second term on the
right. While the former can be interpreted as a filtering criteria for the
stability of mutants (fitness is applied once mutation has occurred),
the latter represents more precisely the evolutionary process here
described (fitness affects replication rates and mutation occurs conco-
mitantly). The qualitative results of both expressions are equivalent,
in practice only differing in the specific moment when the population
state is measured.
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Buldú JM. 2014 Synchronization of interconnected
networks: the role of connector nodes. Phys. Rev.
Lett. 112, 248701. (doi:10.1103/PhysRevLett.112.
248701)
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