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Abstract

This thesis concerns the maximum coding rate at which data can be transmitted

over a noncoherent, single-antenna, Rayleigh block-fading channel using an error-

correcting code of a given blocklength with a block-error probability not exceeding

a given value. This is an emerging problem originated by the next generation of

wireless communications, where the understanding of the fundamental limits in the

transmission of short packets is crucial. For this setting, traditional information-

theoretical metrics of performance that rely on the transmission of long packets, such

as capacity or outage capacity, are not good benchmarks anymore, and the study

of the maximum coding rate as a function of the blocklength is needed. For the

noncoherent Rayleigh block-fading channel model, to study the maximum coding

rate as a function of the blocklength, only nonasymptotic bounds that must be

evaluated numerically were available in the literature. The principal drawback of the

nonasymptotic bounds is their high computational cost, which increases linearly with

the number of blocks (also called throughout this thesis coherence intervals) needed

to transmit a given codeword. By means of different asymptotic expansions in the

number of blocks, this thesis provides an alternative way of studying the maximum

coding rate as a function of the blocklength for the noncoherent, single-antenna,

Rayleigh block-fading channel.

The first approximation on the maximum coding rate derived in this thesis is a

high-SNR normal approximation. This central-limit-theorem-based approximation

becomes accurate as the signal-to-noise ratio (SNR) and the number of coherence

intervals L of size T tend to infinity. We show that the high-SNR normal approxi-

mation is roughly equal to the normal approximation one obtains by transmitting

one pilot symbol per coherence block to estimate the fading coefficient, and by then

transmitting T− 1 symbols per coherence block over a coherent fading channel. This

suggests that, at high SNR, one pilot symbol per coherence block suffices to achieve

both the capacity and the channel dispersion. While the approximation was derived

under the assumption that the number of coherence intervals and the SNR tend to

infinity, numerical analyses suggest that it becomes accurate already at SNR values of

15 dB, for 10 coherence intervals or more, and probabilities of error of 10−3 or more.
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The derived normal approximation is not only useful because it complements

the nonasymptotic bounds available in the literature, but also because it lays the

foundation for analytical studies that analyze the behavior of the maximum coding

rate as a function of system parameters such as SNR, number of coherence intervals,

or blocklength. An example of such a study concerns the optimal design of a simple

slotted-ALOHA protocol, which is also given in this thesis.

Since a big amount of services and applications in the next generation of wireless

communication systems will require to operate at low SNRs and small probabilities

of error (for instance, SNR values of 0 dB and probabilities of error of 10−6), the

second half of this thesis presents saddlepoint approximations of upper and lower

nonasymptotic bounds on the maximum coding rate that are accurate in that regime.

Similar to the normal approximation, these approximations become accurate as the

number of coherence intervals L increases, and they can be calculated efficiently.

Indeed, compared to the nonasymptotic bounds, which require the evaluation of

L-dimensional integrals, the saddlepoint approximations only require the evaluation

of four one-dimensional integrals. Although developed under the assumption of

large L, the saddlepoint approximations are shown to be accurate even for L = 1 and

SNR values of 0 dB or more. The small computational cost of these approximations

can be further avoided by performing high-SNR saddlepoint approximations that

can be evaluated in closed form. These approximations can be applied when some

conditions of convergence are satisfied and are shown to be accurate for 10 dB or

more.

In our analysis, the saddlepoint method is applied to the tail probabilities ap-

pearing in the nonasymptotic bounds. These probabilities often depend on a set

of parameters, such as the SNR. Existing saddlepoint expansions do not consider

such dependencies. Hence, they can only characterize the behavior of the expansion

error in function of the number of coherence intervals L, but not in terms of the

remaining parameters. In contrast, we derive a saddlepoint expansion for random

variables whose distribution depends on an extra parameter, carefully analyze the

error terms, and demonstrate that they are uniform in such an extra parameter. We

then apply the expansion to the Rayleigh block-fading channel and obtain approxi-

mations in which the error terms depend only on the blocklength and are uniform in

the remaining parameters.

Furthermore, the proposed approximations are shown to recover the normal
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approximation and the reliability function of the channel, thus providing a unifying

tool for the two regimes, which are usually considered separately in the literature.

Specifically, we show that the high-SNR normal approximation can be recovered from

the normal approximation derived from the saddlepoint approximations. By means

of the error exponent analysis that recovers the reliability function of the channel,

we also obtain easier-to-evaluate approximations of the saddlepoint approximations

consisting of the error exponent of the channel multiplied by a subexponential

factor. Numerical evidence suggests that these approximations are as accurate as

the saddlepoint approximations.

Finally, this thesis includes a practical case study where we analyze the benefit of

cooperation in optical wireless communications, a promising technology that can play

an important role in the next generation of wireless communications due to the high

data rates it can achieve. Specifically, a cooperative multipoint transmission and

reception scheme is evaluated for visible light communication (VLC) in an indoor

scenario. The proposed scheme is shown to provide SNR improvements of 3 dB or

more compared to a noncooperative scheme, especially when there is non-line-of-sight

(NLOS) between the access point and the receiver.

Keywords: Channel dispersion, fifth generation, finite blocklength, high SNR,

information theory, machine-type communications, noncoherent setting, normal

approximation, Rayleigh block-fading channel, saddlepoint approximation, ultra-

reliable low-latency communications, wireless communications.
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MIMO multiple-input multiple-output

MISO multiple-input single-output

mMTC massive machine-type communications

NLOS non-line-of-sight

OFDM orthogonal frequency-division multiplexing

OOK on-off keying

OWC optical wireless communication

pdf probability density function

PPDM pulse-position division multiplexing

RCU random coding union

RHS right-hand side

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

URLLC ultra-reliable low-latency communications

USTM unitary space-time modulation

VLC visible light communication
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1
Introduction

1.1 Motivation

Under the paradigm of the Internet of Things (IoT), next generation wireless com-

munication systems are expected to interconnect a great variety of devices, ranging

from vehicles or drones, which will operate in high-mobility scenarios, to autonomous

machines or static sensors, operating in low-mobility scenarios [3, 4]. Traditional

wireless communication technologies, such as the fourth generation (4G) Long-Term

Evolution (LTE) or WiFi, focus on increasing the transmission data rates with no

stringent latency constraints. Thus, a long-packet assumption is deemed feasible and,

hence, capacity and outage capacity provide accurate benchmarks for the throughput

achievable in such systems. Furthermore, when transmitting long packets, the length

of metadata—extra information included in packets for the correct operation of

the communication protocols—is negligible compared to the length of information

payload contained in each packet. Thus, suboptimal encoding of metadata does not
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imply an impact in terms of efficiency. However, motivated by emerging services

and applications that require low latency and high reliability, the fifth generation

(5G) of wireless communication systems targets not only increased data rates, but

also transmission of short-packets, where metadata can play an important role since

its size may be comparable to the size of the information payload [3]. Specifically,

5G systems will support three main services, namely, enhanced mobile broadband

(eMBB), massive machine-type communications (mMTC), and ultra-reliable low-

latency communications (URLLC) [4].

In eMBB, very high data rates as well as moderate rates for cell-edge users are

to be supported maintaining a moderate reliability, i.e., probabilities of error of

around 10−3 [4]. This service can be seen as a natural extension of 4G, where the

devices are expected to be activated during long periods of time. As aforementioned,

under these requirements, capacity and outage capacity provide good benchmarks.

The easiest way to increase the data rates is to enlarge the transmission bandwidth.

However, since the radio-frequency spectrum is crowded, other alternatives have been

explored. Examples are massive multiple-input multiple-output (MIMO) and the use

of more sophisticated coding schemes and modulations. Nevertheless, there exists

also the alternative of using the optical spectrum for communication purposes [5].

This technology known as optical wireless communication (OWC) does not interfere

with radio-frequency technologies and larger bandwidths can be used (hundreds of

megahertz).

In mMTC, a massive number of devices operating at low rates will be activated

intermittently during very short periods of time with probabilities of error of around

10−1 [4]. Hence, this service will require the transmission of very short-packets.

In URLLC, the devices will transmit short-packets at low rates aiming for proba-

bilities of error smaller than or equal to 10−5 [4]. In URLLC, the devices could also

transmit intermittently with periodic control messages, but the main difference with

respect to mMTC resides in the smaller number of devices that will be connected to

the network.

For mMTC and URLLC, which require the transmission of short-packets, tra-

ditional asymptotic information theoretical analyses, based on capacity and outage

capacity, do not provide good benchmarks. Thus, for low-latency wireless commu-

nications, a more refined analysis of the maximum coding rate as a function of the

blocklength, commonly named finite-blocklength analysis, is needed. Such an analysis

12



CHAPTER 1. INTRODUCTION

is provided in this thesis.

1.2 State of the Art

Several techniques can be used to characterize the finite-blocklength performance.

One possibility is to fix a reliability constraint and study the maximum coding rate as

a function of the blocklength in the limit as the blocklength tends to infinity. Under

this category falls the work on normal approximations for various communication

channels. Specifically, among other people, Polyanskiy et al. [1] showed that, for

various channels with positive capacity C, the maximum coding rate R∗(n, ϵ) at

which data can be transmitted using an error-correcting code of fixed length n with

a block-error probability not larger than ϵ can be tightly approximated by

R∗(n, ϵ) = C −
√
V

n
Q−1(ϵ) +O (log n/n) (1.1)

where V denotes the channel dispersion, a quantity that measures the stochastic

variability of the channel compared to a deterministic channel with identical capacity;

Q−1(·) denotes the inverse Gaussian Q-function; and O
(
n−1 log n

)
comprises terms

that decay no slower than n−1 log n. The approximation that follows from (1.1) by

ignoring the O(n−1 log n) terms is commonly referred to as normal approximation.

The work by Polyanskiy et al. [1] has been generalized to some wireless channels.

For instance, the channel dispersion of coherent fading channels—where the receiver

has perfect knowledge of the realizations of the fading coefficients—was studied by

Polyanskiy and Verdú for the single-antenna case [6], and by Collins and Polyanskiy

for the multiple-input single-output (MISO) Rayleigh block-fading [7] and the MIMO

Rayleigh block-fading case [8, 9]. The channel dispersion of single-antenna quasistatic

fading channels when both transmitter and receiver have perfect knowledge of the

realization of the fading coefficients and the transmitter satisfies a long-term power

constraint was obtained by Yang et al. [10]. In the noncoherent setting—where

neither the transmitter nor the receiver have a priori knowledge of the realizations of

the fading coefficients—the channel dispersion is only known in the quasistatic case,

where it is zero [11, 12]. Upper and lower bounds on the second-order coding rate of

quasistatic MIMO Rayleigh-fading channels have further been reported in [13] for the

asymptotically-ergodic setup where the number of antennas grows linearly with the

13
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blocklength. For noncoherent Rayleigh block-fading channels, nonasymptotic bounds

on the maximum coding rate were presented by Yang et al. for the single-antenna

case [14] and by Östman et al. for the MIMO case [15, 16]. For further references

see [3].

In a nutshell, in the noncoherent setting the channel dispersion is only known

in the quasistatic case. For general block-fading channels, the maximum coding

rate needs to be assessed by means of nonasymptotic bounds, whose evaluation is

often computationally demanding. Obtaining the channel dispersion of noncoherent

block-fading channels is difficult because the capacity-achieving input distribution

is in general unknown. Thus, the standard approach to obtain expressions of the

form (1.1), which entails an analysis of nonasymptotic upper and lower bounds on

R∗(n, ϵ) based on the capacity-achieving input and output distributions in the limit as

n→ ∞, cannot be followed. However, the behavior of capacity at high signal-to-noise

ratio (SNR) is well understood for such channels. Indeed, it was demonstrated that

an input distribution referred to as unitary space-time modulation (USTM) yields

a lower bound on the capacity that is asymptotically tight [17, 18, 19]. Thus, a

characterization of the channel dispersion at high SNR is feasible.

An alternative analysis of the finite-blocklength performance follows from fixing

the coding rate and studying the exponential decay of the error probability as the

blocklength grows large. The resulting error exponent is usually referred to as the

reliability function [20, Ch. 5]. Error exponent results for the fading channel can be

found in [21] and [22], where a lower bound on the reliability function is derived for

multiple-antenna fading channels and for single-antenna Rician block-fading channels,

respectively.

Both the exponential and sub-exponential behavior of the error probability can

be characterized via the saddlepoint method [23, Ch. XVI]. This method has been

applied in [24, 25, 26] to obtain approximations of the random coding union (RCU)

bound [1, Th. 16], the RCU bound with parameter s (RCUs) [2, Th. 1], and the

meta converse (MC) bound [1, Th. 31] for some memoryless channels.

1.3 Outline and Contributions

This thesis is organized as follows. Chapter 2 presents the system model used through-

out Chapters 3–6. Chapter 3 presents a review of the nonasymptotic bounds on the

14
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maximum coding rate (or minimum probability of error) used in Chapters 5 and 6.

Chapter 4 introduces the Rayleigh block-fading channel model and the preliminary

definitions and results that will be useful throughout Chapters 5–6. Chapter 5 derives

a high-SNR normal approximation for noncoherent Rayleigh block-fading channels.

Chapter 6 presents saddlepoint approximations for noncoherent Rayleigh block-fading

channels. This chapter further demonstrates that the derived approximations recover

both the normal approximation and the reliability function of the channel. Chapter 7

presents a practical case study where a cooperative transmission and reception scheme

is evaluated for visible light communication (VLC). Chapter 8 concludes the thesis

with a summary and discussion of the results.

Chapter 5: A high-SNR Normal Approximation

In this chapter, we present an expression similar to (1.1) for the maximum coding rate

R∗(L, ϵ, ρ) achievable over noncoherent, single-antenna, Rayleigh block-fading chan-

nels using error-correcting codes that span L coherence intervals, have a block-error

probability no larger than ϵ, and satisfy the per-coherence-interval maximum power

constraint ρ. By replacing the capacity and channel dispersion by asymptotically

tight approximations, we obtain a high-SNR normal approximation of R∗(L, ϵ, ρ).

The obtained normal approximation is useful in two ways: On the one hand, it

complements the nonasymptotic bounds provided in [14, 15, 16]. On the other hand,

it allows for a mathematical analysis of R∗(L, ϵ, ρ).

Chapter 6: Saddlepoint Approximations

In this chapter, we apply the saddlepoint method to derive approximations of the

MC upper bound and the RCUs lower bound on the maximum coding rate R∗(L, ϵ, ρ)

(or vice-versa on the minimum probability of error ϵ∗(L,R, ρ)) for noncoherent,

single-antenna, Rayleigh block-fading channels using error-correcting codes that span

L coherence intervals, have a block-error probability no larger than ϵ, and satisfy the

per-coherence-interval equal power constraint ρ. While these approximations must be

evaluated numerically, the computational complexity is independent of the number

of diversity branches L. This is in stark contrast to the nonasymptotic MC and

RCUs bounds, whose evaluation has a computational complexity that grows linearly

in L. Numerical evidence suggests that the saddlepoint approximations, although
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developed under the assumption of large L, are accurate even for L = 1 if the SNR is

greater than or equal to 0 dB. Furthermore, the proposed approximations are shown

to recover the normal approximation and the reliability function of the channel, thus

providing a unifying tool for the two regimes, which are usually considered separately

in the literature.

Chapter 7: Cooperative OWC: A Case Study

In this chapter, we present a practical case study where a cooperative multipoint

transmission and reception scheme is evaluated for VLC in an indoor scenario. The

proposed scheme is shown to provide SNR improvements of 3 dB or more compared to

a noncooperative scheme, especially when there is non-line-of-sight (NLOS) between

the access point and the receiver.

1.4 Notation

We denote scalar random variables by upper case letters such as X, and their

realizations by lower case letters such as x. Likewise, we use boldface upper case

letters to denote random vectors, i.e., X, and we use boldface lower case letters

such as x to denote their realizations. We use upper case letters with the standard

font to denote distributions, and lower case letters with the standard font to denote

probability density functions (pdfs). We denote by E[·] the expectation operator, and

we use P[·] for probabilities.
We use the letter i to denote the imaginary unit, i.e., i =

√
−1. The superscripts

(·)T, (·)∗ and (·)H denote transposition, complex conjugation and Hermitian transpo-

sition, respectively. The complement of a set A is denoted as A c. We use “
L
=” to

denote equality in distribution.

We further use R to denote the set of real numbers, C to denote the set of complex

numbers, Z to denote the set of integers, Z+ for the set of positive integers, and Z+
0

for the set of nonnegative integers.

We denote by log(·) the natural logarithm, by cos(·) the cosine function, by sin(·)
the sine function, by I{·} the indicator function, by Q(·) the Gaussian Q-function, by

Γ(·) the Gamma function [27, Sec. 6.1.1], by γ̃(·, ·) the regularized lower incomplete

gamma function [27, Sec. 6.5], by ψ(·) the digamma function [27, Sec. 6.3.2], by
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2F1(·, ·; ·; ·) the Gauss hypergeometric function [28, Sec. 9.1], by E1(·) the exponential
integral function [27, Sec. 5.1.1] and by ζ(z, q) Riemann’s zeta function [28, Sec. 9.511].

The gamma distribution with parameters z and q is denoted by Gamma(z, q). We

use (x)+ to denote max{0, x}, and ⌈·⌉ to denote the ceiling function. We denote by γ

Euler’s constant.

We use the notation oξ(1) to describe terms that vanish as ξ → ∞ and are

uniform in the rest of parameters involved. For example, we say that a function

f(L, ρ) is oρ(1) if it satisfies

lim
ρ→∞

sup
L≥L0

|f(L, ρ)| = 0 (1.2)

for some L0 > 0 independent of ρ. Similarly, we use the notation Oξ(f(ξ)) to describe

terms that are of order f(ξ) and are uniform in the rest of parameters. For example,

we say that a function g(L, ρ) is OL

(
logL
L

)
if it satisfies

sup
ρ≥ρ0

|g(L, ρ)| ≤ K
logL

L
, L ≥ L0 (1.3)

for some K, L0, and ρ0 independent of L and ρ.

Double limits such as

lim
L→∞,
ρ→∞

f(L, ρ) = K (1.4)

indicate that for every ϵ > 0 there exists a pair (L0, ρ0) independent of (L, ρ) such

that for every L ≥ L0 and ρ ≥ ρ0 we have |f(L, ρ)− K| ≤ ϵ. We denote by lim the

limit inferior and by lim the limit superior. Double limit inferiors and double limit

superiors are defined accordingly using the above definition of a double limit. For

example,

lim
L→∞,
ρ→∞

f(L, ρ) = lim
L0→∞,
ρ0→∞

inf
L≥L0

inf
ρ≥ρ0

f(L, ρ). (1.5)
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2
System Model

Consider the communication system depicted in Fig. 2.1, where a transmitter wishes

to send a message A to a receiver by encoding it in a length-n sequence Xn =

[X1, . . . , Xn], where n is called the blocklength. This sequence is sent through

a channel, which can be viewed as a mathematical representation of the noisy

communication medium over which the message is transmitted. For the sake of

simplicity, we shall assume that the channel is memoryless in the sense that the

channel output at a given time instant only depends on the channel input at that

given time instant, i.e.,

PYn|Xn(yn|xn) =
n∏
k=1

W(yk|xk) (2.1)

for some conditional distribution W independent of k. The channel outputs the

sequence Yn = [Y1, . . . , Yn], based on which the receiver produces an estimate of A,

denoted as Â. A successful communication occurs when A = Â, and an error occurs

when A ̸= Â.
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Source Encoder Channel Decoder
A X1, . . . , Xn Y1, . . . , Yn Â

Figure 2.1: Schema of a communication system.

We next introduce the notion of a channel code. An (M,n, ϵ)-code consist of:

1. An encoder f : {1, . . . ,M} → Xn where X denotes the set of possible channel

inputs. Hence, the encoder maps the message A, which is uniformly distributed

on {1, . . . ,M}, to a codeword Xn = [X1, . . . , Xn].

2. A decoder g: Yn → {1, . . . ,M} that maps the received channel output Yn =

[Y1, . . . , Yn] to the estimated message g(Yn) = Â ∈ {1, . . . ,M}. Here, Y
denotes the set of possible channel outputs. The decoder must satisfy one of

the following error probability constraints:

(a) The maximum error probability constraint

max
1≤a≤M

P
[
Â ̸= A

⏐⏐A = a
]
≤ ϵ. (2.2a)

(b) The average error probability constraint

P
[
Â ̸= A

]
≤ ϵ. (2.2b)

The maximum coding rate and minimum error probability are respectively defined as

R∗(n, ϵ) ≜ sup

{
log(M)

n
: ∃(M,n, ϵ)-code

}
(2.3a)

ϵ∗(n,R) ≜ inf
{
ϵ : ∃(2nR, n, ϵ)-code

}
. (2.3b)

In words, R∗(n, ϵ) describes the largest data rate at which a message can be transmit-

ted over a channel with a channel code of blocklength n achieving an error probability

not larger than ϵ. Likewise, ϵ∗(n,R) describes the smallest probability of error

with which a message can be transmitted over a channel with a channel code of

blocklength n achieving a rate not smaller than R.

It is common to impose a power constraint on the channel inputs. When X and Y
are the set of real or complex numbers, perhaps the most common power constraints

are:
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1. The average-power constraint:

E
[
∥Xn∥2

]
≤ nρ. (2.4a)

2. The peak-power constraint:

|Xk|2 ≤ ρ, k = 1, . . . , n. (2.4b)

The peak-power constraint can be incorporated in the set of possible channel inputs

by defining

X = {x ∈ C : |x| ≤ ρ} . (2.5)

On the contrary, the average-power constraint limits the entire codeword Xn and

cannot be described by a Cartesian product Xn.

In this thesis, we consider a single-antenna Rayleigh block-fading channel with

coherence interval T (see Chapter 4). In a fading channel, there is both additive

and multiplicative noise. In a block-fading channel, the multiplicative noise remains

constant during the coherence interval T and then changes independently to a new

value. Such a channel can be modelled as a block-memoryless channel. More precisely,

we can set X = Y = CT and treat the codeword of length n as a length-L codeword

of T -dimensional symbols, i.e., Xn = XL = [X1, . . . ,XL]. For simplicity, we shall

restrict ourselves to codes whose blocklength n satisfies n = LT, where L denotes the

number of coherence intervals of length T needed to transmit the entire codeword.

We shall consider the following power constraints:

1. The per-coherence-interval maximum power constraint:

∥Xℓ∥2 ≤ Tρ, ℓ = 1, . . . , L. (2.6a)

2. The per-coherence-interval equal power constraint:

∥Xℓ∥2 = Tρ, ℓ = 1, . . . , L. (2.6b)

As already mentioned above, the power constraint can be incorporated in the set of

possible channel inputs. For the power constraint (2.6a), this gives

X = {x ∈ CT : ∥x∥2 ≤ Tρ}. (2.7a)
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For the power constraint (2.6b), this gives

X = {x ∈ CT : ∥x∥2 = Tρ}. (2.7b)

We shall denote by (M,L, ϵ, ρ) an (M,L, ϵ)-code that satisfies one of the power

constraints (2.6a) or (2.6b). The maximum coding rate and minimum error probability

for the Rayleigh block-fading channel are respectively defined as

R∗(L, ϵ, ρ) ≜ sup

{
log(M)

LT
: ∃(M,L, ϵ, ρ)-code

}
(2.8a)

ϵ∗(L,R, ρ) ≜ inf
{
ϵ : ∃(2LTR, L, ϵ, ρ)-code

}
. (2.8b)

Note that, upper (lower) bounds on ϵ∗(L,R, ρ) can be translated into lower (upper)

bounds on R∗(L, ϵ, ρ) and vice versa. Thus, throughout this thesis we shall present

our results in the form that is more convenient for the application at hand.
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3
Nonasymptotic Bounds

This chapter presents nonasymptotic bounds on the maximum coding rate as a

function of the blocklength and probability of error. These bounds will be the

starting point to derive asymptotic approximations of the maximum coding rate

(or minimum probability of error) presented in Chapters 5 and 6. As mentioned

in Chapter 1.1, traditional asymptotic information theoretical analyses, based on

capacity or outage capacity, only capture the behaviour of the maximum coding

rate in the limit as the blocklength tends to infinity. The nonasymptotic bounds

presented in this chapter allow for more refined asymptotic approximations (see, for

example, (1.1)). To facilitate their use in Chapters 5 and 6, we shall particularize the

nonasymptotic bounds to the block-fading channel to be introduced in Chapter 4.

Throughout this chapter, we assume that XL ∈ XL, where X is given by (2.7a) or

(2.7b) depending on the imposed power constraint. We further assume that PYL|XL

is absolutely continuous with respect to the Lebesgue measure, so the pdf pYL|XL

exists. This also implies that the output pdf pYL induced by pYL|XL and PXL exists.
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3.1 Achievability Bounds

This section reviews the achievability bounds that will be used in Chapters 5 and 6.

Note that an achievability bound for average probability of error provides automati-

cally a bound for maximum probability of error. Indeed, for maximum probability of

error, every codeword in the codebook must satisfy the error constraint, while for

average probability of error, the error constraint must be satisfied only in average

over all codewords in the codebook. Nonetheless, we introduce specific bounds for

maximum probability of error for those cases where tighter bounds can be obtained

when the maximum probability of error is considered.

3.1.1 RCU Bound [1, Th. 16]

3.1.1.1 Average Probability of Error

Fix an input distribution PXL . Assume that the transmitted codeword XL is

distributed according to PXL , and let X̄L be independent of XL but also distributed

according to PXL . Then, there exists a code with M codewords, blocklength LT,

and average probability of error ϵ not exceeding

ϵ ≤ E
[
min

{
1, (M − 1)P

[
i(X̄L;YL) ≥ i(XL;YL)|XL,YL

]}]
(3.1)

where i(XL;YL) is defined as

i(XL;YL) ≜ log

(
pYL|XL

(
YL

⏐⏐ XL
)

pYL

(
YL
) )

(3.2)

and

PXL,YL,X̄L(xL,yL, x̄L) = PXL(xL)pYL|XL(yL|xL)PXL(x̄L). (3.3)

The bound given in (3.1) is in general hard to evaluate analytically. In the following

sections, we provide two alternative achievability bounds. While these bounds are

weaker than the RCU bound, they are in general analytically more tractable. For

this reason, these are the bounds we shall use in Chapters 5 and 6.
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3.1.2 RCUs Bound [2, Th. 1]

3.1.2.1 Average Probability of Error

Fix an input distribution PXL . For any s > 0, there exists a code with M codewords,

blocklength LT, and average probability of error ϵ not exceeding

ϵ ≤ E
[
min

{
1, logM − is(X

L;YL)
}]

(3.4)

where is(X
L;YL) is defined as

is(X
L;YL) ≜ log

pYL|XL(YL|XL)s

E
[
pYL|XL(YL|XL)s|YL

] . (3.5)

Using that for any random variable A, E[min{1, A}] = P[A ≥ U ], where U is uniformly

distributed on the interval [0, 1], (3.4) can be alternatively written as

ϵ ≤ P
[
is(X

L;YL) ≤ logM − log(U)
]

(3.6)

which is a more tractable form to obtain closed form solutions or asymptotic approx-

imations.

3.1.3 DT Bound

3.1.3.1 Average Probability of Error [1, Th. 17]

Fix an input distribution PXL . Then, there exists a code with M codewords,

blocklength LT, and average probability of error ϵ not exceeding

ϵ ≤ E

[
exp

{
−
[
i(XL;YL)− log

M − 1

2

]+}]
(3.7)

where i(XL;YL) is given in (3.2) particularized for s = 1. After a standard change

of measure, (3.7) can be written as

ϵ ≤ P

[
i(XL;YL) ≤ log

M − 1

2

]
+ (M − 1)E

[
e−i(X

L;YL)I

{
i(XL;YL) > log

M − 1

2

}]
(3.8)

which is more tractable analytically.
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3.1.3.2 Maximum Probability of Error [1, Th. 22]

Fix an input distribution PXL . Assume that the cumulative distribution func-

tion (CDF) P
[
i(xL;YL) ≤ γ

]
does not depend on xL. (Here, YL is distributed

according to the output pdf pYL induced by the input distribution PXL and the

channel pYL|XL .) Then, there exists a code with M codewords, blocklength LT, and

maximum probability of error ϵ not exceeding

ϵ ≤ E
[
exp
{
−
[
i(XL;YL)− log(M − 1)

]+}]
(3.9)

where i(XL;YL) is given in (3.2) particularized for s = 1. Again, after a standard

change of measure, (3.9) can be written as

ϵ ≤ P
[
i(XL;YL) ≤ log(M − 1)

]
+ (M − 1)E

[
e−i(X

L;YL)I{i(XL;YL) > log(M − 1)}
]

(3.10)

which again is a more tractable form to obtain closed form solutions or asymptotic

approximations.

3.2 Converse Bounds

This section reviews the converse bounds that are used later in Chapters 5 and 6. As

in Section 3.1, we distinguish the cases of average probability of error and maximum

probability of error.

3.2.1 MC Bound

3.2.1.1 Average Probability of Error [1, Th. 27]

Let PXL be some input distribution. Further let QYL be any output distribution

(not necessarily the one induced by the input distribution and the channel). Then,

every code with M codewords, average probability of error ϵ, and blocklength LT,

satisfies

M ≤ sup
PXL

inf
QYL

log

(
1

β(PXL,YL ,PXLQYL)

)
(3.11)

where β(PXL,YL ,PXLQYL) denotes the minimum probability of error under hypothe-

sis PXLQYL if the probability of error under hypothesis PXL,YL does not exceed ϵ [1,
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Eq. (100)]. The expression (3.11) may be intractable, since it requires the evaluation

of the β(·, ·) function. To sidestep this problem, we can use [1, Eq. (106)] to relax

(3.11) as follows:

M ≤ sup
PXL

inf
qYL

sup
ξ>0

{
log ξ − log

(
P
[
j(XL;YL) ≤ log ξ

]
− ϵ
)}

(3.12)

where j(XL;YL) is defined as

j(XL;YL) ≜ log
pYL|XL(YL|XL)

qYL(YL)
. (3.13)

This relaxation of the MC bound coincides with the Verdú-Han bound [31, Th. 4]

with the only difference that the true output pdf pY is replaced by an arbitrary

output pdf qY . This bound (3.12) for an arbitrary output pdf qY coincides also with

the Hayashi-Nagaoka lemma for classical quantum channels [32, Lemma 4]. Even

though (3.12) is a relaxation of (3.11), throughout this thesis we shall refer to (3.12)

simply as the MC bound.

Note that the bound (3.12) still requires the maximization over PXL , which makes

its evaluation difficult. However, there are special cases, including the Rayleigh block-

fading channel to be introduced in Chapter 4 (see also Chapter 6.2.2) with USTM

channel inputs, where β(PXL,YL ,PXLQYL) does not depend on PXL . In those cases,

we have that

β(PXL,YL ,PXLQYL) = β(PYL|XL=xL ,QYL) (3.14)

where the right-hand side (RHS) is independent of the choice of xL ∈ XL. Thus, by

fixing an auxiliary output distribution QYL , we obtain [1, Th. 28]

M ≤ log

(
1

β(PYL|XL=xL ,QYL)

)
(3.15)

as well as the relaxed version

M ≤ sup
ξ>0

{
log ξ − log

(
P
[
j(xL;YL) ≤ log ξ

]
− ϵ
)}

(3.16)

where j(xL;YL) is given in (3.13). This is the form of the bound that will be used

later in Chapter 6.
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3.2.1.2 Maximum Probability of Error [1, Th. 31]

Choose an auxiliary output distribution QYL and assume that the transmitted

codeword xL belongs to the set XL. Then, every code with M codewords, maximum

probability of error ϵ, and blocklength LT, satisfies

M ≤ sup
xL∈XL

log

(
1

β(xL,QYL)

)
(3.17)

where β(xL,QYL) denotes the minimum probability of error under hypothesis QYL if

the probability of error under hypothesis PXL does not exceed ϵ [1, Eq. (100)]. Note

that the maximization in (3.17) is over all possible transmitted codewords xL ∈ XL,

rather than over all possible input distributions PXL . Hence, the main difficulty in

evaluating (3.17) lies in the evaluation of the β(·, ·) function. As in the previous

section, we can use [1, Eq. (106)] to obtain the following relaxation of (3.11), which

avoids the evaluation of the β(·, ·) function:

M ≤ sup
xL∈XL

sup
ξ>0

{
log ξ − log

(
P
[
j(xL;YL) ≤ log ξ

]
− ϵ
)}

(3.18)

where j(xL;YL) is given in (3.13). This bound will be used in Chapter 5.

28



4
The Rayleigh Block-Fading Channel

In this thesis, we consider a single-antenna Rayleigh block-fading channel with

coherence interval T. For this channel model, the input-output relation within the

ℓ-th coherence interval is given by

Yℓ = HℓXℓ +Wℓ (4.1)

where Xℓ and Yℓ are T-dimensional, complex-valued, random vectors containing the

input and output signals, respectively; Wℓ is the additive noise with independent

and identically distributed (i.i.d.), zero-mean, unit-variance, circularly-symmetric,

complex Gaussian entries; and Hℓ is a zero-mean, unit-variance, circularly-symmetric,

complex Gaussian random variable. We assume that Hℓ and Wℓ are mutually

independent and take on independent realizations over successive coherence intervals.

Moreover, the joint law of (Hℓ,Wℓ) does not depend on the channel inputs. We

consider a noncoherent setting where the transmitter and the receiver are aware of

the distribution of Hℓ but not of its realization. As aforementioned in Chapter 2, we
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denote the input codeword as XL = [X1, . . . ,XL] and the channel output induced

by the transmitted codeword as YL = [Y1, . . . ,YL].

According to (4.1), conditioned on XL = xL, the output vector YL is blockwise

i.i.d. Gaussian. Thus, the conditional pdf of Yℓ given Xℓ = x is independent of ℓ

and satisfies

pY|X(y|x) = 1

πT(1 + ∥x∥2)
exp

{
−∥y∥2 + |yHx|2

1 + ∥x∥2

}
, y ∈ CT. (4.2)

Here and throughout the thesis, we omit the subscript ℓ when immaterial. We

shall refer to the distribution P
(U)

XL , according to which XL =
√
TρUL, where

UL = [U1, . . . ,UL] and U1, . . . ,UL are i.i.d. and uniformly distributed on the unit

sphere in CT, as USTM [17]. Note that, since the variance of Hℓ and of the entries of

Wℓ are normalized to one, ρ can be interpreted as the average SNR at the receiver.

The USTM distribution is relevant because it gives rise to a lower bound on capacity

that is asymptotically tight at high SNR [18, 19]. In fact, it can be shown that this

lower bound accurately approximates capacity already for intermediate SNR values.

For example, [14, Fig. 1] illustrates that the lower bound is indistinguishable from

the upper bound on capacity given in [14, Eq. (17)] for ρ ≥ 10 dB.

The outputs YL induced by the USTM input distribution have the pdf

q
(U)

YL(y
L) =

L∏
ℓ=1

q
(U)
Y (yℓ) (4.3)

where [14, Eq. (18)]

q
(U)
Y (y) =

e
−∥y∥2
1+Tρ ∥y∥2(1−T)Γ(T)

πT(1 + Tρ)
γ̃

(
T− 1,

Tρ∥y∥2

1 + Tρ

)(
1 + Tρ

Tρ

)T−1

, y ∈ CT. (4.4)

Note that (4.4) contains the regularized lower incomplete gamma function which is

difficult to analyze. The following lemma presents bounds on the logarithm of this

function, which we shall use throughout this thesis.

Lemma 4.1 The logarithm of the regularized lower incomplete gamma function can

be bounded as

0 ≤ log
1

γ̃(T− 1, x)
≤ (T− 1) log

(
1 +

Γ(T)
1

T−1

x

)
, x > 0. (4.5)
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Proof: See Appendix A.1.

In the remainder of this thesis, we shall denote by YL a blockwise i.i.d. Gaus-

sian random vector whose conditional pdf, conditioned on XL = xL, is given by∏L
ℓ=1 pY|X(yℓ|xℓ) with pY|X(y|x) as in (4.2). We shall denote by ỸL a blockwise

i.i.d. Gaussian random vector that is independent of XL and has pdf q
(U)

YL .

Conditioned on ∥Xℓ∥2 = Tαℓ, αℓ ∈ [0, ρ], the distributions of |YH
ℓ Xℓ|2 and ∥Yℓ∥2

are as follows:

|YH
ℓ Xℓ|2

L
= |H∗

ℓ Tαℓ +W ∗
ℓ (1)

√
Tαℓ|2

L
= Tαℓ(1 + Tαℓ)Z1,ℓ (4.6)

∥Yℓ∥2
L
= ∥Hℓ

√
Tαe1 +Wℓ∥2

L
= (1 + Tαℓ)Z1,ℓ + Z2,ℓ (4.7)

where Wℓ(1) denotes the first componet of Wℓ and e1 is the unitary vector

[1, 0, . . . , 0]T of dimension T × 1. Furthermore, {Z1,ℓ, ℓ ∈ Z} is a sequence of i.i.d.

Gamma(1, 1)-distributed random variables, and {Z2,ℓ, ℓ ∈ Z} is a sequence of i.i.d.

Gamma(T− 1, 1)-distributed random variables.

Conditioned on ∥Xℓ∥2 = Tαℓ, the distributions of |ỸH
ℓ Xℓ|2 and ∥Ỹℓ∥2 can be

written as

|ỸH
ℓ Xℓ|2

L
= |(H∗

ℓ

√
TρUℓ(1) +W ∗

ℓ (1))
√

Tαℓ|2 (4.8)

∥Ỹℓ∥2
L
= ∥Hℓ

√
TρUℓ +Wℓ∥2. (4.9)

In (4.6)–(4.9), the parameter αℓ can be thought of as the power allocated over the

coherence interval ℓ.

In the following sections we introduce some quantities that we shall need in the

remainder of the thesis.

4.1 Information Densities

The generalized information density random variable for XL and YL is defined for

any s > 0 as

is(X
L;YL) ≜ log

pYL|XL(YL|XL)s

E
[
pYL|XL(YL|XL)s|YL

] . (4.10)
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When the input distribution is USTM, the generalized information density is(X
L;YL)

can be expressed as

is(X
L;YL) =

L∑
ℓ=1

iℓ,s(ρ) (4.11)

where

iℓ,s(ρ)
L
= (T− 1) log(sTρ)− log Γ(T)− s

TρZ2,ℓ

1 + Tρ

+ (T− 1) log

(
(1 + Tρ)Z1,ℓ + Z2,ℓ

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1,ℓ + Z2,ℓ)

1 + Tρ

)
. (4.12)

For s = 1, is(X
L;YL) can be written as

i1(X
L;YL) = i(XL;YL) = log

(
pYL|XL

(
YL

⏐⏐ XL
)

pYL

(
YL
) )

(4.13)

where pYL

(
YL
)
is the output pdf induced by the input distribution.1 When the

input distribution is USTM, i(XL;YL) can be expressed as

i(XL;YL) =
L∑
ℓ=1

iℓ(ρ) (4.14)

where iℓ(ρ) = iℓ,1(ρ). Using the left-most inequality in Lemma 4.1, we can lower-

bound iℓ(ρ) by

iℓ(ρ) ≜ (T− 1) log(Tρ)− log Γ(T)− TρZ2,ℓ

1 + Tρ
+ (T− 1) log

(
(1 + Tρ)Z1,ℓ + Z2,ℓ

1 + Tρ

)
.

(4.15)

4.2 Mismatched Information Densities

Next, we consider the mismatched information density,2 which is defined as

j(XL;YL) ≜ log
PYL|XL(YL|XL)

qYL(YL)
(4.16)

1The existence of the conditional pdf pYL|XL implies that the output pdf pYL exists for every

input distribution.
2We use the word “mismatched” to indicate that the output pdf qYL (Y

L) in the denominator

is not the one induced by the input distribution and the channel.
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where qYL is an arbitrary auxiliary output pdf. When qYL is the pdf induced by

USTM channel inputs, i.e., q
(U)

YL given in (4.3), j(XL;YL) can be expressed as

j(XL;YL) =
L∑
ℓ=1

j(Xℓ;Yℓ) (4.17)

where

j(Xℓ;Yℓ) = log

(
1 + Tρ

Γ(T)

)
+

|Y H
ℓ Xℓ|2

1 + ∥Xℓ∥2
− Tρ∥Yℓ∥2

1 + Tρ
+ (T− 1) log

(
Tρ∥Yℓ∥2

1 + Tρ

)
− log(1 + ∥Xℓ∥2)− log γ̃

(
T− 1,

Tρ∥Yℓ∥2

1 + Tρ

)
. (4.18)

By (4.6) and (4.7), j(Xℓ;Yℓ) depends on Xℓ only via ∥Xℓ∥2 = Tαℓ. We can thus

express j(Xℓ;Yℓ) conditioned on ∥Xℓ∥2 = Tαℓ as

jℓ(αℓ) ≜ (T− 1) log(Tρ)− log Γ(T)− (Tρ− Tαℓ)Z1,ℓ

1 + Tρ
− TρZ2,ℓ

1 + Tρ
+ log

(
1 + Tρ

1 + Tαℓ

)
+ (T− 1) log

(
(1 + Tαℓ)Z1,ℓ + Z2,ℓ

1 + Tρ

)
− log γ̃

(
T− 1,

Tρ((1 + Tαℓ)Z1,ℓ + Z2,ℓ)

1 + Tρ

)
. (4.19)

Define β(ρ) ≜ Γ(T)
1

T−1
1+Tρ
Tρ , and let

j̄ℓ(αℓ) ≜ (T− 1) log(Tρ)− log Γ(T)− (Tρ− Tαℓ)Z1,ℓ

1 + Tρ
− TρZ2,ℓ

1 + Tρ
+ log

(
1 + Tρ

1 + Tαℓ

)
+ (T− 1) log

(
(1 + Tαℓ)Z1,ℓ + Z2,ℓ

1 + Tρ

)
+ (T− 1) log

(
1 +

β(ρ)

(1 + Tαℓ)Z1,ℓ + Z2,ℓ

)
. (4.20)

By Lemma 4.1, we have that, with probability one,

jℓ(αℓ) ≤ j̄ℓ(αℓ), αℓ ∈ [0, ρ]. (4.21)

We next consider an auxiliary output pdf that will be useful for the derivation of

the saddlepoint approximations in Chapter 6. Specifically, let

qYL,s(yℓ) ≜
L∏
ℓ=1

qYℓ,s
(yℓ) (4.22)
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where

qYℓ,s
(yℓ) =

1

µ(s)
E
[
pYℓ|Xℓ

(Yℓ|Xℓ)
s
⏐⏐ Yℓ = yℓ

]1/s
(4.23)

and µ(s) is a normalizing factor. Based on (4.22) and (4.23), we define the generalized

mismatched information density js(X
L;YL) as

js(X
L;YL) ≜ log

pYL|XL(YL|XL)

qYL,s(y
L)

. (4.24)

Using this definition together with (4.2) and (4.22), the mismatched information

density js(X
L;YL) can be written as

js(X
L;YL) =

L∑
ℓ=1

js(Xℓ;Yℓ). (4.25)

It holds that

js(Xℓ;Yℓ) = log µ(s) +
1

s
is(Xℓ;Yℓ). (4.26)

Note that for USTM inputs, we have jℓ(ρ) = iℓ(ρ).

4.3 Information Rates and Dispersions

We define the expectation and variance of iℓ,s(ρ) by

Is(ρ) ≜ E
[
iℓ,s(ρ)

]
(4.27)

Vs(ρ) ≜ Var
[
iℓ,s(ρ)

]
. (4.28)

Note that Is(ρ) evaluated at s = 1 corresponds to the mutual information between

Xℓ and Yℓ. We further define the expectation of jℓ,s(ρ) and jℓ(αℓ) as

Js(ρ) ≜ E[jℓ,s(ρ)] (4.29)

J(αℓ) ≜ E[jℓ(αℓ)], 0 ≤ αℓ ≤ ρ. (4.30)

Note that J1(ρ) = I1(ρ), in which case we omit the subscript and simply write I(ρ).

We next compute the expected value of (4.15), denoted by I(ρ) ≜ E
[
iℓ(ρ)], as

I(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)Tρ

1 + Tρ
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− (T− 1) log(1 + Tρ) + (T− 1)E
[
log((1 + Tρ)Z1 + Z2)

]
(4.31a)

= (T− 1) log(Tρ)− log Γ(T)− (T− 1)

[
log(1 + Tρ) +

Tρ

1 + Tρ
− ψ(T− 1)

]
+ 2F1

(
1,T− 1;T;

Tρ

1 + Tρ

)
(4.31b)

where the expected value has been solved using [28, Sec. 4.337-1] to integrate with

respect to Z1 and [28, Sec. 4.352-1], [28, Sec. 3.381-4], and [28, Sec. 6.228-2] to

integrate with respect to Z2. Clearly,

I(ρ) ≥ I(ρ). (4.32)

The conditional expected value of (4.20) given ∥Xℓ∥2 = Tαℓ, denoted by J̄(αℓ) ≜

E[j̄ℓ(αℓ)], can be evaluated as

J̄(αℓ) = (T− 1) log(Tρ)− log Γ(T)− Tρ− Tαℓ
1 + Tρ

− (T− 1)Tρ

1 + Tρ

+ log

(
1 + Tρ

1 + Tαℓ

)
− (T− 1) log(1 + Tρ)

+ (T− 1)E
[
log((1 + Tαℓ)Z1 + Z2 + β(ρ))

]
. (4.33)

It can be shown that J(·) and I(·) bound the capacity [29]

C(ρ) = sup
PXL : ∥Xℓ∥2≤Tρ

E[i(Xℓ;Yℓ)]

T
. (4.34)

Indeed, on the one hand we have

C(ρ) ≤ sup
0≤α≤ρ

J(α)

T
≤ sup

0≤α≤ρ

J̄(α)

T
(4.35)

where the first inequality follows from [30, Th. 5.1], and the second inequality follows

from (4.21). On the other hand,

C(ρ) ≥ I(ρ)

T
≥ I(ρ)

T
(4.36)

where the first inequality follows because USTM is a valid input distribution, and

the second inequality follows by (4.32). It can be further shown that

lim
ρ→∞

{
sup

0≤α≤ρ
J̄(α)− I(ρ)

}
= 0. (4.37)
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Thus, USTM yields an asymptotically tight lower bound on capacity, as already

mentioned before.

Let

V (ρ) ≜ E
[(
iℓ(ρ)− I(ρ)

)2]
(4.38a)

V̄ρ(α) ≜ E
[(
j̄ℓ(α)− J̄(α)

)2]
(4.38b)

where the subscript ρ in V̄ρ(α) is introduced to highlight that V̄ρ(α) depends both

on α and ρ, but it is omitted when α = ρ. In Lemma A.2 (Appendix A.9) and

Lemma A.3 (Appendix A.10), we show that I(ρ), V (ρ), J̄(ρ), and V̄ρ(ρ) can be

approximated as

I(ρ) = I(ρ) + oρ(1) (4.39a)

V (ρ) = Ṽ + oρ(1) (4.39b)

J̄(ρ) = I(ρ) + oρ(1) (4.39c)

V̄ (ρ) = Ṽ + oρ(1). (4.39d)

A closed form expression for I(ρ) is given in (4.31b). Moreover, Ṽ in (4.39b) and

(4.39d) is defined as

Ṽ ≜ (T− 1)2
π2

6
+ (T− 1). (4.40)

4.4 The Moment Generating Function

The moment generating function (MGF) of Is(ρ)− iℓ,s(ρ) is given by

mρ,s(τ) = E
[
eτ(Is(ρ)−iℓ,s(ρ))

]
(4.41)

and its cumulant generating function (CGF) is given by

ψρ,s(τ) = logmρ,s(τ). (4.42)

The region of convergence (RoC) of mρ,s(τ) is defined as

Sm(ρ, s) ≜ {τ ∈ R : mρ,s(τ) <∞}. (4.43)
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Similarly, we shall say that a set S is in the RoC of the family of MGFs mρ,s(τ)

(parametrized by (ρ, s)) if

sup
(τ,ρ,s)∈Sm

m(k)
ρ,s(τ) <∞, k ∈ Z+

0 . (4.44)

The following lemma presents two sets that are in the RoC of the family of MGFs

mρ,s(τ) (parametrized by (ρ, s)).

Lemma 4.2 (Region of Convergence)

Part 1): For every ρ0 > 0, s0 > 0, and 0 < a < 1/(T− 1) independent of (L, ρ, s, τ),

we have that

sup
−a(T−1)<τ≤a,

s∈[s0,1],
ρ≥ρ0

m(k)
ρ,s(τ) <∞, k ∈ Z+

0 . (4.45)

Part 2): For every 0 < s0 < smax < ∞, 0 < ρ0 < ρmax < ∞, 0 < a < 1, and

0 < b < min
{

T
T−1 ,

1+Tρmax

Tρmaxsmax

}
independent of (L, ρ, s, τ), we have that

sup
−a<τ≤b,
s∈[s0,smax],
ρ0≤ρ≤ρmax

m(k)
ρ,s(τ) <∞, k ∈ Z+

0 . (4.46)

Proof: See Appendix B.5.
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5
A high-SNR Normal Approximation

In this chapter, we present an expression similar to (1.1) for the maximum coding

rate R∗(L, ϵ, ρ) achievable over the noncoherent, single-antenna, Rayleigh block-

fading channel introduced in (4.1) using error-correcting codes that span L coherence

intervals, have a block-error probability no larger than ϵ, and satisfy the per-coherence-

interval maximum power constraint (2.6a). By replacing the capacity and channel

dispersion by asymptotically tight approximations, we obtain a high-SNR normal

approximation of R∗(L, ϵ, ρ). The obtained normal approximation is useful in two

ways: On the one hand, it complements the nonasymptotic bounds provided in

[14, 15, 16]. On the other hand, it allows for a mathematical analysis of R∗(L, ϵ, ρ).

5.1 Main Results

The main result of this chapter is a high-SNR normal approximation on R∗(L, ϵ, ρ)

presented in Section 5.1.1. In Section 5.1.2, we assess the accuracy of this approx-
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imation by means of numerical examples. Possible applications are discussed in

Section 5.1.3.

5.1.1 A High-SNR Normal Approximation

Theorem 5.1 Assume that T > 2 and that 0 < ϵ < 1
2 . Then, in the limit as L→ ∞

and ρ→ ∞, the maximum coding rate R∗(L, ϵ, ρ) can be approximated as

R∗(L, ϵ, ρ) =
I(ρ)

T
+ oρ(1)−

√
Ṽ + oρ(1)

LT2
Q−1(ϵ) +OL

(
logL

L

)
(5.1)

where I(ρ) and Ṽ are defined in (4.31b) and (4.40), respectively.

Proof: See Section 5.2.

Remark 5.1 A common approach to deal with limits in two parameters is to couple

them so as to reduce the double limit to a single limit. For example, one could set

ρ = g(L) for some increasing function g(·) and then study the maximum coding rate

R∗(L, ϵ, g(L)) in the limit as L→ ∞. While this approach sidesteps the difficulties in

dealing with double limits, it gives rise to results that are hard to interpret, especially

if the asymptotic behavior of R∗(L, ϵ, g(L)) depends critically on g(·). Indeed, L

describes the blocklength of the error-correcting code, and ρ specifies the SNR at

which messages are sent over the channel. There is no physical reason why these two

parameters should be coupled, hence it is unclear which coupling g(·) describes the

communication system best. In contrast, the approximation presented in Theorem 5.1

is interpretable and more robust, since it holds for any sufficiently large L and ρ

(irrespective of their relation). In fact, since the oρ(1) terms are uniform in L, and

the O(logL/L) term is uniform in ρ, the approximation (5.1) applies also for any

(strictly increasing) coupling between L and ρ.

Remark 5.2 The assumption that 0 < ϵ < 1/2 is required to ensure that Q−1(ϵ) is

nonnegative, which simplifies the manipulations of the channel dispersion. Treating

the case 1/2 < ϵ < 1 would require a separate analysis. For the sake of compactness,

we decided to omit such an analysis, since we believe that 0 < ϵ < 1/2 covers all

cases of practical interest.
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Ignoring the OL(logL/L) and the oρ(1) terms in (5.1), we obtain the following

high-SNR normal approximation:

R∗(L, ϵ, ρ) ≈ I(ρ)

T
−

√
Ṽ

LT2
Q−1(ϵ). (5.2)

The closed form expression for I(ρ) in (4.31b) contains a hypergeometric function,

which is difficult to analyze mathematically. We therefore present also a simplified

expression that is less accurate than (4.31b) but easier to analyze. Specifically, it

follows from Lemma A.2 (Appendix A.9) that

I(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)(1 + γ) + oρ(1). (5.3)

The quantity I(ρ)/T is a high-SNR approximation of the information rate achievable

with i.i.d. USTM inputs; cf. [33, Eq. (12)] (see also [14, Eq. (5)]). It is shown in [17,

Th. 4] that I(ρ)/T is an asymptotically-tight lower bound on the capacity C(ρ) in

the sense that

lim
ρ→∞

{
C(ρ)− I(ρ)

T

}
= 0. (5.4)

For comparison, the capacity of the additive white Gaussian noise (AWGN)

channel is given by [3, Eq. (7)]

CAWGN(ρ) = log(1 + ρ) = log ρ+ oρ(1). (5.5)

The capacity of the coherent Rayleigh block-fading channel (when the channel state

information is available at the receiver) is given by [34]

Cc(ρ) ≜ E
[
log(1 + ρZ1)

]
= log ρ− γ + oρ(1) (5.6)

and in the noncoherent case (cf. (5.3))

I(ρ)

T
=

T− 1

T

[
log(ρ)− γ

]
+Oρ(1). (5.7)

It can be shown that the oρ(1) and Oρ(1) terms in (5.6) and (5.7) are uniform in T .

The channel dispersion of the AWGN channel is given by [3, Eq. (8)]

VAWGN(ρ) = ρ
2 + ρ

(1 + ρ)2
= 1 + oρ(1). (5.8)
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For the coherent Rayleigh block-fading channel, the channel dispersion Vc(ρ) is given

by [6, Th. 2]

Vc(ρ) ≜ TVar
[
log(1 + ρZ1)

]
+ 1− E

[
1

1 + ρZ1

]
=
π2

6
+

1

T
+ oρ(1). (5.9)

According to Theorem 5.1, the ratio Ṽ /T2 can be viewed as a high-SNR approximation

of the channel dispersion.

By comparing (5.7) and (5.6), we see that I(ρ)/T is, up to a Oρ(1) term, equal

to (1 − 1/T)Cc(ρ). Further observe that Ṽ /T2 corresponds to the dispersion one

obtains by transmitting one pilot symbol per coherence block to estimate the fading

coefficient, and by then transmitting T − 1 symbols per coherence block over a

coherent fading channel. This suggests the heuristic that, at high SNR, one pilot

symbol per coherence block suffices to achieve both capacity and channel dispersion.

However, this heuristic may be misleading since it is prima facie unclear whether one

pilot symbol per coherence block suffices to obtain a fading estimate that is (almost)

perfect. A more refined analysis of the maximum coding rate achievable with pilot

assisted transmission has been recently performed by Östman et al. [22].

Further observe that, as T tends to infinity, I(ρ)/T converges to Cc(ρ) and Ṽ /T
2

converges to Vc(ρ). Thus, as the coherence interval grows to infinity, both capacity

and channel dispersion of the noncoherent block-fading channel converge to the

corresponding quantities for the coherent channel. This agrees with the intuition

that the cost of estimating the channel vanishes as the coherence interval tends to

infinity.

Finally, observe that CAWGN(ρ) is larger than I(ρ)/T and Cc(ρ), and VAWGN(ρ)

is smaller than Ṽ /T2 and Vc(ρ) (except for T = 3, where Ṽ /T2 < VAWGN(ρ)). Thus,

the presence of fading results in a less favorable channel.

5.1.2 Numerical Examples

We illustrate the accuracy of the high-SNR normal approximation (5.2) by means

of numerical examples. In Figs. 5.1 and 5.2 we show the approximation (5.2) as a

function of L = n/T for a fixed coherence interval T and for different SNR values. In

the normal approximation, we evaluate I(ρ) using both the exact expression (4.31b)

as well as the approximation (5.3). For comparison, we also plot the coherent normal
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Figure 5.1: Bounds on R∗(L, ϵ, ρ) for ρ = 15dB, T = 20, ϵ = 10−3. The shaded area

indicates the area in which R∗(L, ϵ, ρ) lies.

approximation

R∗(L, ϵ, ρ) ≈ Cc(ρ)−
√
Vc(ρ)

L
Q−1(ϵ) (5.10)

where Cc(ρ) was defined in (5.6) and Vc(ρ) was defined in (5.9). We further plot

a nonasymptotic (in ρ and L) lower bound on R∗(L, ϵ, ρ) that is based on the

dependence testing (DT) lower bound (3.10) with USTM channel inputs (see (5.21)

below) and computed by Monte Carlo simulations. We further plot a nonasymptotic

(in ρ and L) upper bound on R∗(L, ϵ, ρ) that is based on the MC upper bound (3.17)

with auxiliary output pdf (4.3) (see (5.35) below). Specifically, we plot the weakened

version

R∗(L, ϵ, ρ) ≤ inf
ξ>0

{
log ξ

LT
− inf

α∈[o,ρ]L

log
(
1− ϵ− P

[∑L
ℓ=1 jℓ(αℓ) ≥ log ξ

])
LT

}
(5.11)

which is obtained using (3.18) and was evaluated by Monte Carlo simulations. In

(5.11), α = (α1, . . . , αL) denotes the vector of power allocations. We finally plot

I(ρ)/T as given by (4.31b). Observe that the high-SNR normal approximation of

R∗(L, ϵ, ρ) is fairly accurate already for ρ = 15 dB and L ≥ 10 when we use the exact
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Figure 5.2: Bounds on R∗(L, ϵ, ρ) for ρ = 25dB, T = 20, ϵ = 10−3. The shaded area

indicates the area in which R∗(L, ϵ, ρ) lies.

expression (4.31b) for I(ρ). For ρ = 25dB and L ≥ 10, the normal approximation

is accurate even when we approximate I(ρ) using the simplified expression (5.3).

Further observe that the normal approximation is pessimistic for ρ = 15dB and

optimistic for ρ = 25 dB. As expected, the coherent normal approximation is strictly

larger than the noncoherent high-SNR normal approximation. The gap between the

two normal approximations appears to be independent of L. This agrees with the

intuition that the cost for estimating the channel mostly depends on the coherence

interval T. Finally observe that the DT lower bound on R∗(L, ϵ, ρ), computed for

USTM channel inputs, is fairly close to the MC upper bound, which holds for any

input distribution satisfying the power constraint (2.6a), for L ≥ 5 and ρ = 15 dB or

L ≥ 2 and ρ = 25dB. Thus, while it was shown that USTM channel inputs achieve

the capacity asymptotically as the SNR tends to infinity, they also give rise to lower

bounds on R∗(L, ϵ, ρ) that are impressively tight for moderate SNR values and short

blocklengths. A similar observation was also made in [14].

In Figs. 5.3 and 5.4, we show the high-SNR normal approximation (5.2) (with

I(ρ)/T evaluated using the approximation (5.3)) as a function of the coherence

interval T for a fixed blocklength n (hence L is inversely proportional to T). We
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Figure 5.3: Bounds on R∗(L, ϵ, ρ) for LT = 500, ϵ = 10−3, ρ = 15dB. The MC bound and

the DT-USTM bound are almost indistinguishable. The shaded area indicates the area in

which R∗(L, ϵ, ρ) lies.
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Figure 5.4: Bounds on R∗(L, ϵ, ρ) for LT = 500, ϵ = 10−3, ρ = 25dB. The MC bound and

the DT-USTM bound are almost indistinguishable. The shaded area indicates the area in

which R∗(L, ϵ, ρ) lies.
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further plot the coherent normal approximation (5.10). For comparison, we also show

the DT bound (see (5.21) below), evaluated for an USTM input distribution, and

the weakened version of the MC bound (5.11) evaluated by Monte Carlo simulations.

Finally, we present the normal approximation that was proposed in [11] for quasistatic

MIMO block-fading channels. To adapt the quasistatic MIMO block-fading channel

to our system model, we replace H in [11] by an L×L diagonal matrix with diagonal

entries H1, . . . ,HL. Thus, specializing [11, Eq. (95)] to our case, we obtain

ϵ ≈ E

[
Q

(
C(H)− LR∗(L, ϵ, ρ)√

V (H)/T

)]
(5.12)

where

C(H) ≜
L∑
j=1

log(1 + ρ|Hj |2) (5.13a)

V (H) ≜ L−
L∑
j=1

1

log(1 + ρ|Hj |2)2
. (5.13b)

As already observed in Figs. 5.1 and 5.2, the high-SNR normal approximation is

fairly accurate for ρ = 15 dB and L ≥ 10, and it is indistinguishable from the DT and

MC bounds for ρ = 25 dB and L ≥ 10. The high-SNR normal approximation becomes

less accurate as L decreases. Observe that the coherent normal approximation (5.10)

provides a good approximation when T is large but becomes inaccurate when T ≤ 100.

Further observe that the normal approximation for the quasistatic case (5.12), which

is tailored towards the case where L is small, becomes accurate only for L ≤ 3 in

both figures. The figures show that there is an optimal tradeoff between L and T for

a fixed blocklength n. This is, for example, of relevance for the design of orthogonal

frequency-division multiplexing (OFDM) systems, where the duration of a codeword

is smaller than the coherence time, hence only frequency diversity is available. The

system designer can then determine the number of diversity branches L available

to each user by assigning OFDM symbols from different time and frequency slots.

Figs. 5.1 and 5.2 indicate the optimal value of L for ϵ = 10−3 and ρ = {15, 25}dB.
We refer to [35] for a more detailed discussion.

In Fig. 5.5, we plot the high-SNR normal approximation (5.2), evaluating I(ρ)

using both (4.31b) and (5.3), as a function of the SNR ρ for fixed T and L. Again,

we also plot the coherent normal approximation (5.10). For comparison, we further
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Figure 5.5: Bounds on R∗(L, ϵ, ρ) for T = 20, L = 25 and ϵ = 10−3. The shaded area

indicates the area in which R∗(L, ϵ, ρ) lies.

plot the DT bound (see (5.21) below) evaluated for an USTM input distribution,

the weakened version of the MC bound (5.11), and I(ρ)/T using (4.31b). Observe

that the normal approximation that uses (4.31b) becomes accurate already at SNR

values of 15 dB, while the normal approximation that uses I(ρ) in (5.3) is accurate

from SNR values of 20 dB. Further observe that the normal approximation is

pessimistic for ρ < 20 dB and optimistic for ρ ≥ 20 dB. As expected, the coherent

normal approximation is strictly larger than the noncoherent high-SNR normal

approximation. Observe that the gap between the coherent normal approximation

and the nonasymptotic bounds stays constant for ρ ≥ 15 dB but decreases as ρ

becomes small. This is because, for small values of ρ, knowledge of the fading

coefficients is less essential. Finally, we again observe that USTM channel input,

which achieve the capacity asymptotically as the SNR tends to infinity, also give

rise to lower bounds on R∗(L, ϵ, ρ) that are impressively tight for all SNR values

considered in the plot.

In Fig. 5.6, we plot the probability of error as a function of the SNR ρ for R = 4,

T = 20, and L = 25. Specifically, we show the high-SNR normal approximation

(5.2), with I(ρ) evaluated using (4.31b), the coherent normal approximation (5.10),

the DT bound (see (5.21) below) evaluated for an USTM input distribution, and
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Figure 5.6: Bounds on the probability of error ϵ for R = 4, T = 20 and L = 25. The shaded

area indicates the area in which the true probability of error ϵ lies.

the weakened version of the MC bound (5.11). For comparison, we further show

the performance of an accumulate-repeat-jagged-accumulate (ARJA) low-density

parity-check (LDPC) (3000,2000)-code combined with a 64-amplitude phase-shift

keying (APSK) modulation, pilot-assisted transmission (2 pilot symbols per coherence

block), and maximum likelihood channel estimation followed by mismatched nearest-

neighbor decoding at the receiver [36, Figure 3(b)] (see [37]). Observe that the

high-SNR normal approximation is accurate for the whole range of SNRs evaluated.

Further observe that the gap between the presented real code and the rest of curves is

substantial. This suggests that more sophisticated joint channel-estimation decoding

procedures together with shaping techniques need to be adopted to close the gap

(see e.g., [37]).

5.1.3 Engineering Wisdom

As argued, e.g., in [3], the normal approximation can be used to analyze the perfor-

mance of communication protocols. For example, let us consider the uplink scenario

in [3, Sec. IV-C], where d devices intend to send k information bits to a base station

within the time corresponding to n channel uses. The n channel uses are divided

into s equally-sized slots of ns ≜ n/s channels uses. The devices apply a simple
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slotted-ALOHA protocol: each device picks randomly one of the s slots in the frame

and sends its packet. If two or more devices pick the same slot, then a collision

occurs and none of their packets is received correctly. If only one device picks a

particular slot (singleton slot), then the error probability is calculated using the

normal approximation. Specifically, in [3, Sec. IV-C] the normal approximation for

the AWGN channel was considered, i.e.,1

R∗(n, ϵ) ≈ CAWGN(ρ)−
√
VAWGN(ρ)

n
Q−1(ϵ) +

1

2

log n

n
(5.14)

where

CAWGN(ρ) = log(1 + ρ) (5.15a)

VAWGN(ρ) = ρ
2 + ρ

(1 + ρ)2
. (5.15b)

By solving (5.14) for ϵ, we obtain an approximation for the packet error probability

as a function of the packet length n, the number of information bits k = nR to be

conveyed in a packet, and the SNR ρ, i.e.,

ϵ∗(k, n, ρ) ≈ Q

(
nCAWGN(ρ)− k log 2 + (log n)/2√

nVAWGN(ρ)

)
. (5.16)

By replacing (5.14) by our high-SNR normal approximation (5.2), we obtain the

following approximation for the packet error probability when packets are transmitted

over a noncoherent single-antenna Rayleigh block-fading channel of coherence interval

T:

ϵ∗(k, n, ρ) ≈ Q

(
nI(ρ)− kT log 2√

nTṼ

)
. (5.17)

Likewise, replacing (5.14) by the normal approximation for the coherent Rayleigh

block-fading channel [6, Eq. (34)], we obtain

ϵ∗(k, n, ρ) ≈ Q

(
nCc(ρ)− k log 2√

nTVc(ρ)

)
(5.18)

1For the AWGN channel, the O(logn/n) in (1.1) can be replaced by (logn)/(2n) + O(1/n)

[1, 38].

49



CHAPTER 5. HIGH-SNR NORMAL APPROXIMATION

Table 5.1: Optimal slot size for different channel models and n = LT = 480, k = 256,

d = 12.

SNR coherence interval T

optimal number of slots s

noncoherent

Rayleigh

block-fading

coherent

Rayleigh

block-fading

AWGN
classic

slotted-ALOHA

ρ = 15 dB
T = 5 s = 4 s = 6 s = 8 s = 12

T = 20 s = 6 s = 6 s = 8 s = 12

ρ = 25 dB
T = 5 s = 8 s = 12 s = 12 s = 12

T = 20 s = 8 s = 8 s = 12 s = 12

where

Cc(ρ) ≜ E
[
log(1 + ρZ1)

]
(5.19a)

Vc(ρ) ≜ TVar
[
log(1 + ρZ1)

]
+ 1− E

[
1

1 + ρZ1

]
. (5.19b)

The probability of successful transmission is given by [3, Eq. (24)], namely,

Psuccess =
d

s

(
1− 1

s

)d−1(
1− ϵ∗(k, ns, ρ)

)
(5.20)

where (d/s)(1− 1/s)d−1 is the probability that only one device transmits in a given

slot [39, Sec. 5.3.2]. Our goal is to choose s such that the probability of successful

transmission is maximized given d, k, n and ρ. This problem entails a tradeoff

between the probability of collision and the number of channel uses available for each

packet, which affects the achievable error probability in a singleton slot.

As a concrete example, we consider the case when n = 480, d = 12, and k = 256.2

In Table 5.1, we show the optimal number of slots s for the noncoherent Rayleigh

block-fading channel (with ϵ∗(k, ns, ρ) approximated by (5.17)), the coherent Rayleigh

block-fading channel (with ϵ∗(k, ns, ρ) approximated by (5.18)), the AWGN channel

(with ϵ∗(k, ns, ρ) approximated by (5.16)), and the classic slotted-ALOHA protocol

(ϵ∗(k, ns, ρ) = 0) for the SNR values ρ = 15 dB and ρ = 25 dB and coherence intervals

T = 5 and T = 20. To be consistent with our system model, for the Rayleigh

2The fact that n is fixed implies that the number of coherence intervals L changes inversely

proportional to T for the block-fading cases.
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block-fading channel (both coherent and noncoherent) we only consider slot sizes ns

that are integer multiples of T. Observe that the optimal number of slots s depends

critically on the SNR, the coherence interval, and the considered channel model.

For example, for the classic slotted-ALOHA protocol, the optimal number of slots

is s = 12, which coincides with the total number of devices d = 12. In contrast,

for the AWGN channel, the optimal number of slots is s = 8 for ρ = 15 dB and

coincides with the one of the classic slotted-ALOHA for ρ = 25 dB. In most cases, the

optimal number of slots s for the Rayleigh block-fading channel (both coherent and

noncoherent) is yet again smaller and depends both on the SNR and the coherence

interval T. When T = 20, the optimal number of slots s for the noncoherent Rayleigh

block-fading channel coincides with that for the coherent channel. This agrees with

the intuition that, when T is sufficiently large, the fading coefficients can be learned

with little training overhead. In general, the optimal number of slots s decreases as

the channel becomes less favorable. Intuitively, larger codes are required to combat

the impairments due to AWGN and fading. Hence, the packet length ns must be

increased or, equivalently, the number of slots s = n/ns must be reduced.

5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 is based on a lower bound on R∗(L, ϵ, ρ), given in Sec-

tion 5.2.1, and on an upper bound on R∗(L, ϵ, ρ), given in Section 5.2.2. Since these

bounds coincide up to terms of order OL(logL/L) and oρ(1) (compare (5.22) with

(5.53) below, using (4.39a) and (4.39b)) they prove (5.1).

5.2.1 DT Lower Bound

To obtain a lower bound on R∗(L, ρ, ϵ), we evaluate the DT bound defined in

Chapter 3.1.3.2 for the USTM input distribution defined in Chapter 4. Thus, assume

that XL ∼ P
(U)

XL , which implies YL ∼ q
(U)

YL . One can show (see [16, App. A]) that

the CDF P[i(xL; Ỹ L) ≤ α] does not depend on xL. Furthermore, the USTM input

distribution satisfies the power constraint (2.6a) with probability one. A lower bound

on R∗(L, ϵ, ρ) follows therefore from the DT bound (maximum probability of error)

(see Chapter 3.1.3.2), which, after a standard change of measure, can be stated

as follows: there exists a code with M codewords, blocklength LT, and maximum
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probability of error ϵ not exceeding

ϵ ≤ P
[
i(XL;YL) ≤ log(M − 1)

]
+ (M − 1)E

[
e−i(X

L;YL)I{i(XL;YL) > log(M − 1)}
]
. (5.21)

To show that (5.21) yields the lower bound

R∗(L, ϵ, ρ) ≥ I(ρ)

T
−
√
V (ρ)

LT2
Q−1(ϵ) +OL

(
1

L

)
(5.22)

we follow almost verbatim the steps in [1, Eqs. (258)–(267)] (with γ in [1] replaced

by M − 1). The main difference is that, in our case, V (ρ) defined in (4.38a) and B(ρ)

(cf. [1, Eq. (254)]) defined as

B(ρ) ≜
6E
[⏐⏐iℓ(ρ)− I(ρ)

⏐⏐3]
V (ρ)3/2

(5.23)

depend on ρ. To ensure that the term OL(1/L) in (5.22) is uniform in ρ, we will

show that both V (ρ) and B(ρ) are bounded in ρ. We then apply the Berry-Esseen

theorem [23, Ch. XVI.5] to obtain [1, Eq. (259)] with B(ρ) replaced by an upper

bound B(ρ0) that holds for all ρ ≥ ρ0 and a sufficiently large ρ0, followed by [1, Eqs.

(261)–(265)], which gives

R∗(L, ϵ, ρ) ≥ I(ρ)

T
−
√
V (ρ)

LT2
Q−1(τ) (5.24)

where

τ = ϵ−
(
2 log 2√

2π
+ 5B(ρ0)

)
1√
L
. (5.25)

A Taylor-series expansion of Q−1(τ) around ϵ yields then

Q−1(τ) = Q−1(ϵ) +OL

(
1√
L

)
(5.26)

which in turn gives (5.22).

To show that V (ρ) and B(ρ) are bounded in ρ, we resort to the following lemmas:

Lemma 5.2 Let V̄ρ(α) be defined as in (4.38b) and let 0 ≤ δ ≤ 1/2. For every

ρ(1− δ) ≤ α ≤ ρ, we have

V̄ρ(α) ≥
(

Tρ

1 + Tρ

)2

(T− 1)− Ξδ + oρ(1) (5.27)

where Ξ is a positive constant that only depends on T.
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Proof: See Appendix A.2.

Lemma 5.3 For every ρ0 > 0, we have

sup
α≥0,
ρ≥ρ0

V̄ρ(α) <∞ (5.28a)

sup
ρ≥ρ0

V (ρ) <∞. (5.28b)

Proof: See Appendix A.3.

Lemma 5.4 For every ρ0 > 0, we have

sup
α≥0,
ρ≥ρ0

E
[⏐⏐j̄ℓ(α)− J̄(α)

⏐⏐3] <∞ (5.29a)

sup
ρ≥ρ0

E
[⏐⏐iℓ(ρ)− I(ρ)

⏐⏐3] <∞. (5.29b)

Proof: See Appendix A.4.

For δ = 0, Lemma 5.2 yields

V̄ (ρ) ≥
(

Tρ

1 + Tρ

)2

(T− 1) + oρ(1). (5.30)

Together with (4.39b) and (4.39d), this implies that

V (ρ) ≥
(

Tρ0
1 + Tρ0

)2
T− 1

2
, ρ ≥ ρ0 (5.31)

for a sufficiently large ρ0. Furthermore, Lemma 5.3 implies that, for every ρ0 > 0,

there exists an VUB(ρ0) that is independent of ρ and that satisfies

V (ρ) ≤ VUB(ρ0), ρ ≥ ρ0. (5.32)

Finally, Lemma 5.4 implies that for every ρ0 > 0 there exists an S(ρ0) that is

independent of ρ and satisfies

E
[⏐⏐iℓ(ρ)− I(ρ)

⏐⏐3] ≤ S(ρ0), ρ ≥ ρ0. (5.33)

Combining (5.31) and (5.33), it follows that for a sufficiently large ρ0 > 0 there exists

a B(ρ0) that is independent of ρ and that satisfies

B(ρ) ≤ 6S(ρ0)(
Tρ0

1+Tρ0

)3(
T−1
2

)3/2 ≜ B(ρ0), ρ ≥ ρ0. (5.34)

This concludes the proof of the lower bound (5.22).
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5.2.2 MC Upper Bound

An upper bound on R∗(L, ϵ, ρ) follows from the MC bound defined in Chapter 3.2.1.2

computed for the auxiliary pdf q
(U)

YL defined in (4.3), i.e.,

R∗(L, ϵ, ρ) ≤ 1

LT
sup

α∈[0,ρ]L
log

(
1

β(α, q
(U)

YL)

)
. (5.35)

Here, α = (α1, . . . , αL) denotes the vector of power allocations, and β(α, q
(U)

YL)

denotes the minimum probability of error under hypothesis q
(U)

YL if the probability of

error under hypothesis pYL|XL=xL does not exceed ϵ [1, Eq. (100)]. Note that, by

(4.6)–(4.9), β(α, q
(U)

YL) depends on xL only via α (recall that ∥Xℓ∥2 = Tαℓ).

For 0 < δ < 1, let Lδ(α) denote the number of αℓ’s in α that satisfy ρ(1− δ) ≤
αℓ ≤ ρ. The following lemma demonstrates that we can assume without loss of

optimality that Lδ(α) ≥ L/2, i.e., in at least half of the coherence intervals αℓ is

larger than ρ(1− δ).

Lemma 5.5 For every 0 < δ < 1, T > 2, and 0 < ϵ < 1/2, there exists a pair

(L0, ρ0) such that, for L ≥ L0 and ρ ≥ ρ0, the supremum in (5.35) can be replaced

without loss of optimality by a supremum over α ∈ Aρ,δ, where

Aρ,δ ≜ {α ∈ [0, ρ]L : Lδ(α) ≥ L/2}. (5.36)

Proof: See Appendix A.5.

In the following, we implicitly assume that L ≥ L0 and ρ ≥ ρ0 for some sufficiently

large L0 and ρ0 so that Lemma 5.5 holds. Applying Lemma 5.5 to (5.35), and upper-

bounding the RHS of (5.35) using (3.18) and (4.21), we obtain

R∗(L, ϵ, ρ) ≤ sup
α∈Aρ,δ

⎧⎨⎩ log ξ(α)

LT
−

log
(
P
[∑L

ℓ=1 j̄ℓ(αℓ) ≤ log ξ(α)
]
− ϵ
)

LT

⎫⎬⎭ (5.37)

for every ξ : [0, ρ]L → (0,∞).

Let

B̄(α) ≜

6
L∑
ℓ=1

E
[⏐⏐j̄ℓ(αℓ)− J̄(αℓ)

⏐⏐3](
L∑
ℓ=1

V̄ρ(αℓ)

)3/2
. (5.38)
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By Lemma 5.4, the expectation E
[
|j̄ℓ(α) − J̄(α)|3

]
can be upper-bounded by a

constant S̄(ρ0) that is independent of α and ρ. Furthermore, by the nonnegativity of

V̄ρ(αℓ),
L∑
ℓ=1

V̄ρ(αℓ) ≥
∑

ℓ∈Lδ(α)

V̄ρ(αℓ) (5.39)

where Lδ(α) ≜ {ℓ = 1, . . . , L : αℓ ≥ ρ(1− δ)}. Lemma 5.2 demonstrates that, for

α ≥ ρ(1− δ),

V̄ρ(α) ≥
(

Tρ

1 + Tρ

)2

(T− 1)− Ξδ + oρ(1). (5.40)

Thus, for

δ =

(
Tρ0

1 + Tρ0

)2
T− 1

3Ξ
(5.41)

and ρ0 sufficiently large, we have

L∑
ℓ=1

V̄ρ(αℓ) ≥ Lδ(α)

(
Tρ0

1 + Tρ0

)2
T− 1

2
, ρ ≥ ρ0. (5.42)

Hence, for every α ∈ Aρ,δ and δ as chosen in (5.41),

B̄(α) ≤ 6LS̄(ρ0)(
(T−1)L

4

)3/2(
Tρ0

1+Tρ0

)3 ≜
B̄(ρ0)√

L
. (5.43)

Let

λ = Q−1

(
ϵ+

2B̄(ρ0)√
L

)
(5.44)

and

log ξ(α) =
L∑
ℓ=1

J̄(αℓ)− λ

√ L∑
ℓ=1

V̄ρ(αℓ). (5.45)

With this choice, the Berry-Esseen theorem and (5.43) imply that, for every α ∈ Aρ,δ,⏐⏐⏐⏐⏐P
[
L∑
ℓ=1

j̄ℓ(αℓ) ≤ log ξ(α)

]
−Q(λ)

⏐⏐⏐⏐⏐ ≤ B̄(α) ≤ B̄(ρ0)√
L

. (5.46)

Thus, for such α,

P

[
L∑
ℓ=1

j̄ℓ(αℓ) ≤ log ξ(α)

]
≥ ϵ+

B̄(ρ0)√
L

. (5.47)
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Substituting (5.47) into the upper bound (5.37), we obtain

R∗(L, ϵ, ρ) ≤ sup
α∈Aρ,δ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L∑
ℓ=1

J̄(αℓ)

LT
−

√ L∑
ℓ=1

V̄ρ(αℓ)

L2T2
Q−1

(
ϵ+

2B̄(ρ0)√
L

)⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
− log B̄(ρ0)

LT
+

1

2

logL

LT
. (5.48)

By the assumption 0 < ϵ < 1
2 , the inverse Q-function on the RHS of (5.48) is positive

for sufficiently large L. It follows by the concavity of x ↦→
√
x and Jensen’s inequality

that (5.48) can be further upper-bounded as

R∗(L, ϵ, ρ) ≤ 1

L

L∑
ℓ=1

sup
0≤αℓ≤ρ

{
J̄(αℓ)

T
−
√
V̄ρ(αℓ)

LT2
Q−1

(
ϵ+

2B̄(ρ0)√
L

)}
− log B̄(ρ0)

LT
+

1

2

logL

LT

= sup
0≤α≤ρ

{
J̄(α)

T
−
√
V̄ρ(α)

LT2
Q−1

(
ϵ+

2B̄(ρ0)√
L

)}
− log B̄(ρ0)

LT
+

1

2

logL

LT
(5.49)

where the second step follows because the channel is blockwise i.i.d., so the terms

inside the curly brackets do not depend on ℓ.

Applying a Taylor-series expansion of Q−1(ϵ+ 2B̄(ρ0)/
√
L) around ϵ, we obtain

Q−1

(
ϵ+

2B̄(ρ0)√
L

)
= Q−1(ϵ) +OL

(
1√
L

)
. (5.50)

Further using that, by Lemma 5.3, V̄ρ(α) is bounded in ρ and α, and collecting terms

of order logL/L, we can rewrite (5.49) as

R∗(L, ϵ, ρ) ≤ sup
0≤α≤ρ

{
J̄(α)

T
−
√
V̄ρ(α)

LT2
Q−1(ϵ)

}
+OL

(
logL

L

)
. (5.51)

We next show that

sup
0≤α≤ρ

{
J̄(α)

T
−
√
V̄ρ(α)

LT2
Q−1(ϵ)

}
=
J̄(ρ)

T
−
√
V̄ (ρ)

LT2
Q−1(ϵ) +OL

(
1

L

)
. (5.52)
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We then obtain the desired upper bound

R∗(L, ϵ, ρ) ≤ I(ρ) + oρ(1)

T
−

√
Ṽ + oρ(1)

LT2
Q−1(ϵ) +OL

(
logL

L

)
(5.53)

from (4.39c) and (4.39d).

To prove (5.52), we first present the following auxiliary results.

Lemma 5.6 1. Assume that T > 2. For sufficiently large ρ, we have

sup
0≤α≤ρ

J̄(α) = J̄(ρ). (5.54)

2. Assume that T > 2 and 0 < ϵ < 1
2 . Consider the supremum on the left-hand

side (LHS) of (5.52). For sufficiently large L and ρ, we can assume without

loss of optimality that α ∈ [ρ(1− K
L ), ρ] for some nonnegative constant K that

is independent of (L, ρ, α).

Proof: See Appendix A.6.

We next set out to prove (5.52). By Part 2) of Lemma 5.6, we can assume without

loss of optimality that

α ≥ ρ

(
1− K

L

)
. (5.55)

Furthermore, we show in Appendix A.8 that

V̄ρ(α) ≥ V̄ (ρ)−Υδ, ρ(1− δ) ≤ α ≤ ρ (5.56)

where Υ is a positive constant that only depends on T. Particularizing this bound

for δ = K/L, we obtain

V̄ρ(α) ≥ V̄ (ρ)−Υ
K

L
, ρ

(
1− K

L

)
≤ α ≤ ρ. (5.57)

Combining (5.57) with Part 1) of Lemma 5.6, and using that by the assumption

0 < ϵ < 1
2 we have Q−1(ϵ) > 0, we obtain

sup
0≤α≤ρ

{
J̄(α)

LT
−
√
V̄ρ(α)

LT2
Q−1(ϵ)

}
≤ J̄(ρ)

T
−

√
V̄ (ρ)− ΥK

L

LT2
Q−1(ϵ)

=
J̄(ρ)

T
−
√
V̄ (ρ)

LT2
Q−1(ϵ) +OL

(
1

L

)
. (5.58)

This proves (5.52) and concludes the proof of the upper bound.
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5.3 Conclusion

We presented a high-SNR normal approximation for the maximum coding rate

R∗(L, ϵ, ρ) achievable over noncoherent, single-antenna, Rayleigh block-fading chan-

nels using an error-correcting code that spans L coherence intervals, has a block-error

probability no larger than ϵ, and satisfies the power constraint ρ. The high-SNR

normal approximation is roughly equal to the normal approximation one obtains by

transmitting one pilot symbol per coherence block to estimate the fading coefficient,

and by then transmitting T− 1 symbols per coherence block over a coherent fading

channel. This suggests that, at high SNR, one pilot symbol per coherence block

suffices to achieve both the capacity and the channel dispersion. While the approxi-

mation was derived under the assumption that the number of coherence intervals L

and the SNR ρ tend to infinity, numerical analyses suggest that it becomes accurate

already at SNR values of 15 dB and for 10 coherence intervals or more.

The obtained normal approximation is useful in two ways. First, it complements

the nonasymptotic bounds provided in Chapter 3 ( see also [14, 15, 16]), whose

evaluation is computationally demanding. Second, it lays the foundation for analytical

studies that analyze the behavior of the maximum coding rates as a function of system

parameters such as SNR, number of coherence intervals, or blocklength. An example

of such a study was illustrated in Section 5.1.3 concerning the optimal design of a

simple slotted-ALOHA protocol. Needless to say, the obtained normal approximation

can also be used to study more sophisticated communication protocols.
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6
Saddlepoint Approximations

In this chapter, we apply the saddlepoint method to derive approximations of the MC

upper bound and the RCUs lower bound introduced in Chapter 3 on the maximum

coding rate R∗(L, ϵ, ρ) (or vice-versa on the minimum probability of error ϵ∗(L,R, ρ))

for the noncoherent, single-antenna, Rayleigh block-fading channel introduced in

(4.1) using error-correcting codes that span L coherence intervals, have a block-error

probability no larger than ϵ, and satisfy the per-coherence-interval equal power

constraint (2.6b). While these approximations must be evaluated numerically, the

computational complexity is independent of the number of diversity branches L. This

is in stark contrast to the nonasymptotic MC and RCUs bounds, whose evaluation has

a computational complexity that grows linearly in L. Numerical evidence suggests that

the saddlepoint approximations, although developed under the assumption of large L,

are accurate even for L = 1 if the SNR is greater than or equal to 0 dB. Furthermore,

the proposed approximations are shown to recover the normal approximation and

the reliability function of the channel, thus providing a unifying tool for the two
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regimes, which are usually considered separately in the literature.

In our analysis, the saddlepoint method is applied to the tail probabilities ap-

pearing in the nonasymptotic bounds. These probabilities often depend on a set

of parameters, such as the SNR. Existing saddlepoint expansions do not consider

such dependencies. Hence, they can only characterize the behavior of the expansion

error in function of the number of coherence intervals L, but not in terms of the

remaining parameters. In contrast, we derive a saddlepoint expansion for random

variables whose distribution depends on an extra parameter, carefully analyze the

error terms, and demonstrate that they are uniform in such an extra parameter. We

then apply the expansion to the Rayleigh block-fading channel and obtain approxi-

mations in which the error terms depend only on the blocklength and are uniform in

the remaining parameters.

6.1 Saddlepoint Expansion

Let {Xk}nk=1 be a sequence of i.i.d., real-valued, zero-mean, random variables, whose

distribution depends on θ ∈ Θ, where Θ denotes the set of possible values of θ.

The MGF of Xk is defined as

mθ(ζ) ≜ E
[
eζXk

]
(6.1)

the CGF is defined as

ψθ(ζ) ≜ logmθ(ζ) (6.2)

and the characteristic function is defined as

φθ(ζ) ≜ E
[
eiζXk

]
. (6.3)

We denote by m
(k)
θ (ζ) and ψ

(k)
θ (ζ) the k-th derivative of ζ ↦→ mθ(ζ) and ζ ↦→ ψθ(ζ),

respectively. For the first, second, and third derivatives we sometimes use the notation

m′
θ(ζ), m

′′
θ (ζ), m

′′′
θ (ζ), ψ

′
θ(ζ), ψ

′′
θ (ζ), and ψ

′′′
θ (ζ).

A random variable Xk is said to be lattice if it is supported on the points b,

b± h, b± 2h. . . for some b and h. A random variable that is not lattice is said to be

nonlattice. It can be shown that a random variable is nonlattice if, and only if, there

exists a δ > 0 such that [23]

|φθ(ζ)| < 1, |ζ| > δ. (6.4)
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We shall say that a family of random variables Xk (parametrized by θ) is nonlattice

if there exists a δ > 0 such that

sup
θ∈Θ

|φθ(ζ)| < 1, |ζ| > δ. (6.5)

Similarly, we shall say that a family of distributions (parametrized by θ) is nonlattice

if the corresponding family of random variables is nonlattice.

Proposition 6.1 Let the family of i.i.d. random variables {Xk}nk=1 (parametrized

by θ) be nonlattice. Suppose that there exists a ζ0 > 0 such that

sup
θ∈Θ,
|ζ|<ζ0

⏐⏐⏐m(k)
θ (ζ)

⏐⏐⏐ <∞, k = 0, 1, 2, 3, 4 (6.6)

and

inf
θ∈Θ,
|ζ|<ζ0

⏐⏐ψ′′
θ (ζ)

⏐⏐ > 0. (6.7)

Then, we have the following results:

Part 1): If for the nonnegative γ there exists a τ ∈ [0, ζ0) such that nψ′
θ(τ) = γ,

then

P

[
n∑
k=1

Xk ≥ γ

]
= en[ψθ(τ)−τψ

′
θ(τ)]

[
fθ(τ, τ) +

Kθ(τ, n)√
n

+ o

(
1√
n

)]
(6.8)

where o(1/
√
n) comprises terms that vanish faster than 1/

√
n and are uniform in τ

and θ. Here,

fθ(u, τ) ≜ en
u2

2 ψ
′′
θ (τ)Q

(
u
√
nψ′′

θ (τ)

)
(6.9a)

Kθ(τ, n) ≜
ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2

(
− 1√

2π
+
τ2ψ′′

θ (τ)n√
2π

− τ3ψ′′
θ (τ)

3/2n3/2fθ(τ, τ)

)
. (6.9b)

Part 2): Let U be uniformly distributed on [0, 1]. If for the nonnegative γ there exists

a τ ∈ [0, ζ0) such that nψ′
θ(τ) = γ, then

P

[
n∑
k=1

Xk ≥ γ + logU

]

= en[ψθ(τ)−τψ
′
θ(τ)]

[
fθ(τ, τ) + fθ(1− τ, τ) +

K̃θ(τ, n)√
n

+ o

(
1√
n

)]
(6.10)
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where K̃θ(τ, n) is defined as

K̃θ(τ, n) ≜
ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2

[(
1 + 2

(
τ2 − τ

))
ψ′′
θ (τ)n√

2π

− (ψ′′
θ (τ)n)

3/2
(
τ3fθ(τ, τ)− (1− τ)

3
fθ(1− τ, τ)

)]
(6.11)

and o(1/
√
n) is uniform in τ and θ.

Corollary 6.2 Assume that there exists a ζ0 > 0 satisfying (6.6) and (6.7). If for

the nonnegative γ there exists a τ ∈ [0,min{ζ0, 1 − δ}) (for some arbitrary δ > 0

independent of n and θ) such that nψ′
θ(τ) = γ, then the saddlepoint expansion (6.10)

can be upper-bounded as

P

[
n∑
k=1

Xk ≥ γ + logU

]

≤ en[ψθ(τ)−τψ
′
θ(τ)]

[
fθ(τ, τ) + fθ(1− τ, τ) +

K̂θ(τ)√
n

+ o

(
1√
n

)]
(6.12)

where K̂θ(τ) is independent of n, and is defined as

K̂θ(τ) ≜
1√
2π

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
(6.13)

and o(1/
√
n) is uniform in τ and θ.

Remark 6.1 Since Xk is zero-mean by assumption, we have that mθ(ζ) ≥ 1 by

Jensen’s inequality. Together with (6.6), this implies that

sup
θ∈Θ,
|ζ|<ζ0

⏐⏐ψ(k)
θ (ζ)

⏐⏐ <∞, k = 0, 1, 2, 3, 4. (6.14)

Remark 6.2 When the nonnegative γ grows sublinearly in n, for sufficiently large n,

one can always find a τ ∈ (−ζ0, ζ0) such that nψ′
θ(τ) = γ. Indeed, it follows by (6.6)

and Remark 6.1 that τ ↦→ ψθ(τ) is an analytic function on (−ζ0, ζ0) with power series

ψθ(τ) =
1

2
ψ′′
θ (0)τ

2 +
1

6
ψ′′′
θ (0)τ3 + . . . (6.15)
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Here, we have used that ψθ(0) = 0 by definition and ψ′
θ(0) = 0 because Xk is zero-

mean. By assumption (6.7), the function τ ↦→ ψθ(τ) is strictly convex. Together with

ψ′
θ(0) = 0, this implies that ψ′

θ(τ) strictly increases for τ > 0. Hence, the choice

ψ′
θ(τ) =

γ

n
(6.16)

establishes a one-to-one mapping between τ and γ, and γ/n→ 0 implies that τ → 0.

Thus, for sufficiently large n, τ is inside the region of convergence (−ζ0, ζ0).

Proof of Proposition 6.1, Part 1): The proof follows closely the steps by

Feller [23, Ch. XVI]. Since we consider a slightly more involved setting, where the

distribution of Xk depends on a parameter θ, we reproduce all the steps here. Let Fθ

denote the distribution of Yk ≜ Xk − γ̃, where γ̃ ≜ γ/n. The CGF of Yk is given by

ψ̃θ(ζ) ≜ ψθ(ζ)− ζγ̃. (6.17)

We consider a tilted random variable Vk with distribution

ϑθ,τ (x) = e−ψ̃θ(τ)
∫ x

−∞
eτtdFθ(t) = e−ψθ(τ)+τγ̃

∫ x

−∞
eτtdFθ(t) (6.18)

where the parameter τ lies in (−ζ0, ζ0). Note that the exponential term e−ψθ(τ)+τγ̃ on

the RHS of (6.18) is a normalizing factor that guarantees that ϑθ,τ is a distribution.

Let vθ,τ (ζ) denote the MGF of the tilted random variable Vk, which is given by

vθ,τ (ζ) =

∫ ∞

−∞
eζxdϑθ,τ (x)

=

∫ ∞

−∞
eζxe−ψθ(τ)+τγ̃eτxdFθ(x)

= e−ψθ(τ)+τγ̃
∫ ∞

−∞
e(ζ+τ)xdFθ(x)

= e−ψθ(τ)+τγ̃E
[
e(ζ+τ)(Xk−γ̃)

]
= e−ψθ(τ)E

[
e(ζ+τ)Xk

]
e−ζγ̃

=
mθ(ζ + τ)

mθ(τ)
e−ζγ̃ . (6.19)
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Together with E[Vk] = v′θ,τ (0), this yields

E[Vk] =
∂vθ,τ (ζ)

∂ζ

⏐⏐⏐⏐
ζ=0

= e−ψθ(τ)
(
E
[
Xke

(ζ+τ)Xk
]
e−ζγ̃ − γ̃e−ζγ̃E

[
e(ζ+τ)Xk

]) ⏐⏐⏐⏐
ζ=0

= e−ψθ(τ)
(
E
[
Xke

τXk
]
− γ̃eψθ(τ)

)
= e−ψθ(τ)E

[
Xke

τXk
]
− γ̃

= ψ′
θ(τ)− γ̃. (6.20)

Note that, by (6.6), derivative and expected value can be swapped as long as

|ζ + τ | < ζ0. This condition is, in turn, satisfied for sufficiently small ζ as long as

|τ | < ζ0. Following along similar lines, one can show that

Var[Vk] = E
[
V 2
k

]
− E[Vk]

2

= v′′θ,τ (0)− v′θ,τ (0)
2

= ψ′′
θ (τ) (6.21)

E
[
(Vk − E[Vk])

3
]
= E

[
V 3
k

]
+ 2E[Vk]

3 − 3E
[
V 2
k

]
E[Vk]

= v′′′θ,τ (0) + 2v′θ,τ (0)
3 − 3v′′θ,τ (0)v

′
θ,τ (0)

= ψ′′′
θ (τ) (6.22)

and

E
[
(Vk − E[Vk])

4
]
= E

[
V 4
k

]
− 3E[Vk]

4 − 4E
[
V 3
k

]
E[Vk] + 6E

[
V 2
k

]
E[Vk]

2

= ψ
(4)
θ (τ) + 3ψ′′

θ (τ)
2. (6.23)

Let now F ⋆nθ denote the distribution of
∑n
k=1(Xk − γ̃) and ϑ⋆nθ,τ denote the distribu-

tion of
∑n
k=1 Vk. By (6.18) and (6.19), the distributions F ⋆nθ and ϑ⋆nθ,τ again stand in

the relationship (6.18) except that the term e−ψθ(τ) is replaced by e−nψθ(τ) and γ̃ is

replaced by nγ̃. Since nγ̃ = γ, by inverting (6.18) we can establish the relationship

P

[
n∑
k=1

Xk ≥ γ

]
= enψθ(τ)−τγ

∫ ∞

0

e−τydϑ⋆nθ,τ (y). (6.24)
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Furthermore, by choosing τ such that nψ′
θ(τ) = γ, it follows from (6.20) that the

distribution ϑ⋆nθ,τ has zero mean. We next substitute in (6.24) the distribution ϑ⋆nθ,τ
by the zero-mean normal distribution with variance nψ′′

θ (τ), denoted by Nnψ′′
θ (τ)

,

and analyze the error incurred by this substitution. To this end, we define

Aτ ≜ enψθ(τ)−τγ
∫ ∞

0

e−τydNnψ′′
θ (τ)

(y). (6.25)

By fixing τ according to (6.16), (6.25) becomes

Aτ =
en[ψθ(τ)−τψ

′
θ(τ)]√

2πnψ′′
θ (τ)

∫ ∞

0

e−τye
− y2

2nψ′′
θ

(τ) dy

=
en[ψθ(τ)−τψ

′
θ(τ)]

√
2π

∫ ∞

0

e−τt
√
nψ′′

θ (τ)e−
t2

2 dt

=
e
n
[
ψθ(τ)−τψ′

θ(τ)+
τ2

2 ψ
′′
θ (τ)

]
√
2π

∫ ∞

0

e−
1
2 (t+τ

√
nψ′′

θ (τ))
2

dt

=
e
n
[
ψθ(τ)−τψ′

θ(τ)+
τ2

2 ψ
′′
θ (τ)

]
√
2π

∫ ∞

τ
√
nψ′′

θ (τ)

e−
x2

2 dx

= e
n
[
ψθ(τ)−τψ′

θ(τ)+
τ2

2 ψ
′′
θ (τ)

]
Q

(
τ
√
nψ′′

θ (τ)

)
(6.26)

where the second equality follows by the change of variable y = t
√
nψ′′

θ (τ), and the

fourth equality follows by the change of variable x = t+ τ
√
nψ′′

θ (τ).

We next show that the error incurred by substituting Nnψ′′
θ (τ)

for ϑ⋆nθ,τ in (6.24)

is small. To do so, we write

P

[
n∑
k=1

Xk ≥ nψ′
θ(τ)

]
−Aτ = en[ψθ(τ)−τψ

′
θ(τ)]

∫ ∞

0

e−τy
(
dϑ⋆nθ,τ (y)− dNnψ′′

θ (τ)
(y)
)

= en[ψθ(τ)−τψ
′
θ(τ)]

[
−
(
ϑ⋆nθ,τ (0)−Nnψ′′

θ (τ)
(0)
)

+ τ

∫ ∞

0

(
ϑ⋆nθ,τ (y)−Nnψ′′

θ (τ)
(y)
)
e−τydy

]
(6.27)

where the last equality follows by integration by parts [23, Ch. V.6, Eq. (6.1)].

We next use [23, Sec. XVI.4, Th. 1] (stated as Lemma 6.3 below) to assess the

error commited by replacing ϑ⋆nθ,τ by Nnψ′′
θ (τ)

. To state Lemma 6.3, we first introduce

the following additional notation. Let
{
X̃k

}n
k=1

be a sequence of i.i.d., real-valued,
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zero-mean, random variables with one-dimensional probability distribution F̃θ that

depends on an extra parameter θ ∈ Θ. We denote the k-th moment for any possible

value of θ ∈ Θ by

µk,θ =

∫ ∞

−∞
xkdF̃θ(x) (6.28)

and we denote the second moment as µ2,θ = σ2
θ .

For the distribution of the normalized n-fold convolution of a sequence of i.i.d.,

zero-mean, unit-variance random variables, we write

F̃n,θ(x) = F̃ ⋆nθ (xσθ
√
n). (6.29)

Note that F̃n,θ has zero-mean and unit-variance. As above, we denote by N the

zero-mean, unit-variance, normal distribution, and we denote by n the zero-mean,

unit-variance, normal pdf.

Lemma 6.3 Assume that the family of distributions F̃n,θ (parametrized by θ) is

nonlattice. Further assume that, for any θ ∈ Θ,

sup
θ∈Θ

µ4,θ <∞ (6.30)

and

inf
θ∈Θ

σθ > 0. (6.31)

Then, for any θ ∈ Θ,

F̃n,θ(x)−N(x) =
µ3,θ

6σ3
θ

√
n
(1− x2)n(x) + o

(
1√
n

)
(6.32)

where the o(1/
√
n) term is uniform in x and θ.

Proof: See Appendix B.1.

We next use (6.32) from Lemma 6.3 to expand (6.27). To this end, we first note that,

as shown in Appendix B.2, if a family of distributions is nonlattice, then so is the

corresponding family of tilted distributions. Consequently, the family of distributions

ϑ⋆nθ,τ (parametrized by θ) is nonlattice since the family F ⋆nθ (parametrized by θ) is

nonlattice by assumption. We next note that the variable y in (6.27) corresponds
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to xσθ
√
n in (6.29). Hence, y = x

√
ψ′′
θ (τ)n, so applying (6.32) to (6.27) with

ϑ⋆nθ,τ (y) = F̃n,θ(y/
√
ψ′′
θ (τ)n) and Nnψ′′

θ (τ)
(y) = N(y/

√
ψ′′
θ (τ)n), we obtain

P

[
n∑
k=1

Xk ≥ nψ′
θ(τ)

]
−Aτ

= en[ψθ(τ)−τψ
′
θ(τ)]

[
− 1√

2π

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n
+ o

(
1√
n

)

+ τ

∫ ∞

0

(
ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n

(
1− y2

nψ′′
θ (τ)

)
n

(
y√

ψ′′
θ (τ)n

)
+ o

(
1√
n

))
e−τydy

]

= en[ψθ(τ)−τψ
′
θ(τ)]

[
o

(
1√
n

)

+
1√
2π

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n

(
−1 +

∫ ∞

0

τ
√
ψ′′
θ (τ)n

(
1− z2

)
e−τ

√
ψ′′
θ (τ)nz−

z2

2 dz

)]

= en[ψθ(τ)−τψ
′
θ(τ)]

[
o

(
1√
n

)

+
ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n

(
− 1√

2π
+
τ2ψ′′

θ (τ)n√
2π

− τ3ψ′′
θ (τ)

3/2n3/2fθ(τ, τ)

)]

= en[ψθ(τ)−τψ
′
θ(τ)]

[
Kθ(τ, n)√

n
+ o

(
1√
n

)]
(6.33)

with fθ(τ, τ) defined in (6.9a), and Kθ(τ, n) defined in (6.9b). Here we used that

ψ′′
θ (τ) and ψ

′′′
θ (τ) coincide with the second and third moments of the tilted random

variable Vk, respectively; see (6.21) and (6.22). The second equality follows by the

change of variable y = z
√
nψ′′

θ (τ).

Finally, substituting Aτ in (6.26) into (6.33), and recalling that nψ′
θ(τ) = γ, we

obtain Part 1) of Proposition 6.1, namely

P

[
n∑
k=1

Xk ≥ nψ′
θ(τ)

]
= en[ψθ(τ)−τψ

′
θ(τ)]

[
fθ(τ, τ) +

Kθ(τ, n)√
n

+ o

(
1√
n

)]
. (6.34)

Proof of Proposition 6.1, Part 2): The proof of Part 2) follows along similar

lines as the proof of Part 1). Hence, we will focus on describing what is different.

Specifically, the LHS of (6.10) differs from the LHS of (6.8) by the additional term
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logU . To account for this difference, we can follow the same steps as Scarlett et

al. [24, Appendix E]. Since in our setting the distribution of Xk depends on the

parameter θ, we repeat the main steps in the following:

P

[
n∑
k=1

Xk ≥ γ + logU

]
= enψθ(τ)−τγ

∫ 1

0

∫ ∞

log u

e−τydϑ⋆nθ,τ (y)du

= enψθ(τ)−τγ
∫ ∞

−∞

∫ min{1,ey}

0

e−τydu dϑ⋆nθ,τ (y)

= enψθ(τ)−τγ
(∫ ∞

0

e−τydϑ⋆nθ,τ (y) +

∫ 0

−∞
e(1−τ)ydϑ⋆nθ,τ (y)

)
(6.35)

where the second equality follows from Fubini’s theorem [40, Ch. 2, Sec. 9.2]. We

next proceed as in the proof of the previous part. The first term in (6.35) coincides

with (6.24). We next focus on the second term, namely,

enψθ(τ)−τγ
∫ 0

−∞
e(1−τ)ydϑ⋆nθ,τ (y). (6.36)

We substitute in (6.36) the distribution ϑ⋆nθ,τ by the zero-mean normal distribution

with variance nψ′′
θ (τ), denoted by Nnψ′′

θ (τ)
, which yields

Ãτ ≜ enψθ(τ)−τγ
∫ ∞

0

e(1−τ)ydNnψ′′
θ (τ)

(y). (6.37)

By fixing τ according to (6.16), (6.37) can be computed as

Ãτ =
en[ψθ(τ)−τψ

′
θ(τ)]√

2πnψ′′
θ (τ)

∫ 0

−∞
e(1−τ)ye

− y2

2nψ′′
θ

(τ) dy

=
en[ψθ(τ)−τψ

′
θ(τ)]

√
2π

∫ 0

−∞
e(1−τ)t

√
nψ′′

θ (τ)e−
t2

2 dt

=
e
n

[
ψθ(τ)−τψ′

θ(τ)+
(1−τ)2

2 ψ′′
θ (τ)

]
√
2π

∫ 0

−∞
e−

1
2 (t−(1−τ)

√
nψ′′

θ (τ))
2

dt

=
e
n

[
ψθ(τ)−τψ′

θ(τ)+
(1−τ)2

2 ψ′′
θ (τ)

]
√
2π

∫ −(1−τ)
√
nψ′′

θ (τ)

−∞
e−

x2

2 dx

=
e
n

[
ψθ(τ)−τψ′

θ(τ)+
(1−τ)2

2 ψ′′
θ (τ)

]
√
2π

∫ ∞

(1−τ)
√
nψ′′

θ (τ)

e−
x2

2 dx
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= e
n

[
ψθ(τ)−τψ′

θ(τ)+
(1−τ)2

2 ψ′′
θ (τ)

]
Q

(
(1− τ)

√
nψ′′

θ (τ)

)
(6.38)

where the second equality follows by the change of variable y = t
√
nψ′′

θ (τ), and the

fourth equality follows by the change of variable x = t− (1− τ)
√
nψ′′

θ (τ).

As we did in (6.27), we next evaluate the error incurred by substituting ϑ⋆nθ,τ by

Nnψ′′
θ (τ)

in (6.36). Indeed,

enψθ(τ)−τγ
∫ 0

−∞
e(1−τ)ydϑ⋆nθ,τ (y)− Ãτ

= en[ψθ(τ)−τψ
′
θ(τ)]

∫ 0

−∞
e(1−τ)y

(
dϑ⋆nθ,τ (y)− dNnψ′′

θ (τ)
(y)
)

= en[ψθ(τ)−τψ
′
θ(τ)]

[(
ϑ⋆nθ,τ (0)−Nnψ′′

θ (τ)
(0)
)

− (1− τ)

∫ 0

−∞

(
ϑ⋆nθ,τ (y)−Nnψ′′

θ (τ)
(y)
)
e(1−τ)ydy

]
= en[ψθ(τ)−τψ

′
θ(τ)]

[
o

(
1√
n

)
+

1√
2π

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n

×
(
1−

∫ 0

−∞
(1− τ)

√
ψ′′
θ (τ)n

(
1− z2

)
e(1−τ)

√
ψ′′
θ (τ)nz−

z2

2 dz

)]
= en[ψθ(τ)−τψ

′
θ(τ)]

[
o

(
1√
n

)
+

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n

×
(

1√
2π

+
(1− τ)2ψ′′

θ (τ)n√
2π

− (1− τ)3(ψ′′
θ (τ)n)

3/2
fθ(1− τ, τ)

)]
(6.39)

where the second step follows by integration by parts [23, Ch. V.6, Eq. (6.1)], and

the second-to-last step by Lemma 6.3.

Combining (6.35) with (6.24), (6.34), (6.38), and (6.39), we obtain the desired

result, namely,

P

[
n∑
k=1

Xk ≥ nψ′
θ(τ) + logU

]

= en[ψθ(τ)−τψ
′
θ(τ)]

[
fθ(τ, τ) + fθ(1− τ, τ) +

K̃θ(τ, n)√
n

+ o

(
1√
n

)]
(6.40)

where τ is chosen according to (6.16) and K̃θ(τ, n) is defined in (6.11).
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Proof of Corollary 6.2: Using (6.35) with (6.25) and (6.37), and fixing τ

according to (6.16), we can write

P

[
n∑
k=1

Xk ≥ γ + logU

]
−Aτ − Ãτ

= en[ψθ(τ)−τψ
′
θ(τ)]

[
−
(
ϑ⋆nθ,τ (0)−Nnψ′′

θ (τ)
(0)
)
+
(
ϑ⋆nθ,τ (0)−Nnψ′′

θ (τ)
(0)
)

+ τ

∫ ∞

0

(
ϑ⋆nθ,τ (y)−Nnψ′′

θ (τ)
(y)
)
e−τydy

− (1− τ)

∫ 0

−∞

(
ϑ⋆nθ,τ (y)−Nnψ′′

θ (τ)
(y)
)
e(1−τ)ydy

]
. (6.41)

Using integration by parts as we did in (6.27) and (6.39), together with the change

of variable y = z
√
ψ′′
θ (τ), the RHS of (6.41) can be written as

en[ψθ(τ)−τψ
′
θ(τ)]

[
1√
2πn

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2

(∫ ∞

0

τ
√
ψ′′
θ (τ)n

(
1− z2

)
e−τ

√
ψ′′
θ (τ)nz−

z2

2 dz

−
∫ 0

−∞
(1− τ)

√
ψ′′
θ (τ)n

(
1− z2

)
e(1−τ)

√
ψ′′
θ (τ)nz−

z2

2 dz

)
+ o

(
1√
n

)]
= en[ψθ(τ)−τψ

′
θ(τ)]

[
1√
2πn

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2

(∫ ∞

0

τ
√
ψ′′
θ (τ)n

(
1− z2

)
e−τ

√
ψ′′
θ (τ)nz−

z2

2 dz

+

∫ ∞

0

(1− τ)
√
ψ′′
θ (τ)n

(
z2 − 1

)
e−(1−τ)

√
ψ′′
θ (τ)nz−

z2

2 dz

)
+ o

(
1√
n

)]
(6.42)

where we replaced z by −z in the second integral. Keeping the positive part of each

integral on the RHS of (6.42), it follows that

en[ψθ(τ)−τψ
′
θ(τ)]

[
1√
2πn

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2

(∫ ∞

0

τ
√
ψ′′
θ (τ)n

(
1− z2

)
e−τ

√
ψ′′
θ (τ)nz−

z2

2 dz

+

∫ ∞

0

(1− τ)
√
ψ′′
θ (τ)n

(
z2 − 1

)
e−(1−τ)

√
ψ′′
θ (τ)nz−

z2

2 dz

)
+ o

(
1√
n

)]
≤ en[ψθ(τ)−τψ

′
θ(τ)]

[
1√
2π

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n

(∫ 1

0

τ
√
ψ′′
θ (τ)n

(
1− z2

)
e−τ

√
ψ′′
θ (τ)nz−

z2

2 dz

+

∫ ∞

1

(1− τ)
√
ψ′′
θ (τ)n

(
z2 − 1

)
e−(1−τ)

√
ψ′′
θ (τ)nz−

z2

2 dz

)
+ o

(
1√
n

)]
.

(6.43)
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We next bound each integral separately. The first integral on the RHS of (6.43) can

be upper-bounded as∫ 1

0

τ
√
ψ′′
θ (τ)n

(
1− z2

)
e−τ

√
ψ′′
θ (τ)nz−

z2

2 dz ≤
∫ 1

0

τ
√
ψ′′
θ (τ)ne

−τ
√
ψ′′
θ (τ)nzdz

= 1− e−τ
√
ψ′′
θ (τ)n

≤ 1 (6.44)

where the first inequality follows by disregarding the quadratic exponent. The second

integral on the RHS of (6.43) can be upper-bounded as∫ ∞

1

(1− τ)
√
ψ′′
θ (τ)n

(
z2 − 1

)
e−(1−τ)

√
ψ′′
θ (τ)nz−

z2

2 dz

≤
∫ ∞

1

(1− τ)
√
ψ′′
θ (τ)nz

2e−(1−τ)
√
ψ′′
θ (τ)nzdz

=

[
(1− τ)

√
ψ′′
θ (τ)n

[
(1− τ)

√
ψ′′
θ (τ)n+ 2

]
+ 2
]
e−(1−τ)

√
ψ′′
θ (τ)n(

(1− τ)
2
ψ′′
θ (τ)n

) . (6.45)

If τ ∈ [0,min{ζ0, 1− δ}) for some arbitrary δ independent of n and θ, then the RHS

of (6.45) vanishes faster than 1/
√
n uniformly in n and θ. Substituting (6.44) and

(6.45) into (6.43), we thus obtain the upper bound

P

[
n∑
k=1

Xk ≥ nψ′
θ(τ) + logU

]
−Aτ − Ãτ

≤ en[ψθ(τ)−τψ
′
θ(τ)]

[
1√
2π

ψ′′′
θ (τ)

6ψ′′
θ (τ)

3/2
√
n
+ o

(
1√
n

)]
. (6.46)

Consequently,

P

[
n∑
k=1

Xk ≥ γ + logU

]

≤ en[ψθ(τ)−τψ
′
θ(τ)]

[
fθ(τ, τ) + fθ(1− τ, τ) +

K̂θ(τ)√
n

+ o

(
1√
n

)]
(6.47)

where K̂θ(τ) was defined in (6.13).
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6.2 Saddlepoint Expansions for RCUs and MC

6.2.1 RCUs Bound

As upper bound on ϵ∗(L,R, ρ), we use the RCUs bound (3.6) which states that, for

any s ≥ 0,

ϵ∗(L,R, ρ) ≤ P

[
L∑
ℓ=1

(Is(ρ)− iℓ,s(ρ)) ≥ LIs(ρ) + log(U)− LTR

]
(6.48)

where U is uniformly distributed on the interval [0, 1].

Theorem 6.4 (Saddlepoint Expansion RCUs) Suppose that S is characterized

either by (4.45) or by (4.46). Then, the coding rate R and minimum error probability

ϵ∗ can be parametrized by (τ, ρ, s) ∈ S as

R(τ, s) =
1

T
(Is(ρ)− ψ′

ρ,s(τ)) (6.49a)

ϵ∗(τ, s) ≤ eL[ψρ,s(τ)−τψ
′
ρ,s(τ)]

[
fρ,s(τ, τ) + fρ,s(1− τ, τ) +

K̂ρ,s(τ)√
L

+ o

(
1√
L

)]
(6.49b)

where f(·, ·) is defined in (6.9a), K̂ρ,s(·) is defined in (6.13), and o(1/
√
L) is uniform

in τ , s and ρ.

Proof: The desired result follows by applying Proposition 6.1 and Corollary 6.2

to (6.48). Indeed, by Lemma B.2 (Appendix B.3), the family of random variables

Is(ρ)− is,ℓ(ρ) (parametrized by (ρ, s)) is nonlattice. The first condition (6.6) required

for Proposition 6.1 and Corollary 6.2 is satisfied by Lemma 4.2. It can be further

observed that Vs(ρ) is strictly increasing in ρ (for a fixed s) and strictly increasing

in s (for a fixed ρ). Consequently, it is bounded away from zero for every ρ ≥ ρ0

and s ≥ s0 (for arbitrary ρ0 > 0 and s0 > 0). Since ψ′′
ρ,s(0) = Vs(ρ), it follows

from Lemma B.3 that the second condition (6.7) required for Proposition 6.1 and

Corollary 6.2 is satisfied, too.

Remark 6.3 The set S characterized by (4.46) with smax = 1 includes 0 ≤ τ < 1.

In this case, the identity (6.49a) with s ∈ (0, 1] and τ ∈ [0, 1) characterizes all rates

R between the critical rate

Rcr
s (ρ) ≜

1

T

(
Is(ρ)− ψ′

ρ,s(1)
)

(6.50)
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and Is(ρ). Solving (6.49a) for τ , we obtain from Theorem 6.4 an upper bound on the

minimum error probability ϵ∗(L,R, ρ) as a function of the rate R ∈ (Rcr
s (ρ) , Is(ρ)],

s ∈ (0, 1].

6.2.2 MC Bound

A lower bound on ϵ∗(L,R, ρ) follows by evaluating the MC bound (3.15) for the

auxiliary distribution qYℓ,s
(yℓ) given in (4.23) and using (3.16). This yields, for

every ξ > 0 and s > 0,

ϵ∗(L,R, ρ) ≥ P

[
L∑
ℓ=1

(Is(ρ)− iℓ,s(ρ)) ≥ sLJs(ρ)− s log ξ

]
− e(log ξ−LTR) (6.51)

where we have used (4.26) to express jℓ,s(ρ) in terms of iℓ,s(ρ).

Theorem 6.5 (Saddlepoint Expansion MC) Suppose that S is characterized

either by (4.45) or by (4.46). Then, for every rate R and (τ, ρ, s) ∈ S

ϵ∗(L,R, ρ) ≥ eL[ψρ,s(τ)−τψ
′
ρ,s(τ)]

[
fρ,s(τ, τ) +

Kρ,s(τ, L)√
L

+ o

(
1√
L

)]
− e

L

[
Js(ρ)−

ψ′
ρ,s(τ)

s −TR

]
(6.52)

where f(·, ·) is defined in (6.9a), Kρ,s(·, ·) is defined in (6.11), and the o(1/
√
L) term

is uniform in τ , s and ρ.

Proof: The inequality (6.52) follows by applying Proposition 6.1, Part 1) to

(6.51) with ξ = LJs(ρ) − Lψ′
ρ,s(τ)/s. Indeed, by Lemma B.2 (Appendix B.3), the

family of random variables Is(ρ)− is,ℓ(ρ) (parametrized by (ρ, s)) is nonlattice. The

first condition (6.6) required for Proposition 6.1 is satisfied by Lemma 4.2. It can

be further observed that Vs(ρ) is strictly increasing in ρ (for a fixed s) and strictly

increasing in s (for a fixed ρ). Consequently, it is bounded away from zero for every

ρ ≥ ρ0 and s ≥ s0 (for arbitrary ρ0 > 0 and s0 > 0). Since ψ′′
ρ,s(0) = Vs(ρ), it

follows from Lemma B.3 that the second condition (6.7) required for Proposition 6.1

is satisfied, too.

The expansions (6.49b) and (6.52) can be evaluated more efficiently than the

nonasymptotic bounds (6.48) and (6.51). Indeed, (6.48) and (6.51) require the
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evaluation of the L-dimensional distribution of
∑L
ℓ=1 iℓ,s(ρ), whereas (6.49b) and

(6.52) depend only on the CGFs ψρ,s(τ), ψ
′
ρ,s(τ), ψ

′′
ρ,s(τ) and ψ

′′′
ρ,s(τ), which can be

obtained by solving one-dimensional integrals.

6.3 Normal Approximation

The maximum coding rate can be expanded as

R∗(L, ϵ, ρ) =
I(ρ)

T
−
√
V (ρ)

LT2
Q−1(ϵ) +O

(
logL

L

)
(6.53)

where I(ρ) = I1(ρ) is defined in (4.27), and V (ρ) = V1(ρ) is defined in (4.28). This

is usually referred to as normal approximation. As we shall show next, (6.53) can

also be recovered from the expansions (6.49b) and (6.52).

6.3.1 Achievability Part

Let ρ ≥ ρ0 for some arbitrary ρ0 > 0. To prove that the RHS of (6.53) is achievable,

we consider (6.49a) and (6.49b) evaluated for s = 1, namely,

R(τ, 1) =
1

T
(I(ρ)− ψ′

ρ,1(τ)) (6.54a)

ϵ∗(L,R, ρ) ≤ eL[ψρ,1(τ)−τψ
′
ρ,1(τ)]

[
fρ,1(τ, τ) + fρ,1(1− τ, τ) +

K̂ρ,1(τ)√
L

+ o

(
1√
L

)]
(6.54b)

and evaluate (6.54) for a sequence of τ ’s (as a function of L) defined as

τL ≜
Q−1

(
ϵ− k1,ρ√

L

)
√
Lψ′′

ρ,1(0)
. (6.55)

Here, k1,ρ is a positive constant independent of L and uniform in ρ, which will

be specified later. Note that, since τL decays to zero as L → ∞, we have that

(τL, ρ, 1) ∈ S (with S characterized by (4.45)) for sufficiently large L. Consequently,

Theorem 6.4 applies and the o(1/
√
L) term in (6.54b) is uniform in ρ ≥ ρ0 for some

arbitrary ρ0 > 0.
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We next show that, for the choice of τL in (6.55), the RHS of (6.54a) equals the

RHS of (6.53) and that the RHS of (6.54b) is less than ϵ, which demonstrates that

the rate R(τ, 1) is indeed a lower bound on R∗(L, ϵ, ρ).

To evaluate (6.49a), we first expand ψ′
ρ,1(τ) as the Taylor series

ψ′
ρ,1(τ) = τψ′′

ρ,1(0) +
τ2

2
ψ′′′
ρ,1(τ̃) (6.56)

for some τ̃ ∈ (0, τ). Applying then (6.55) and (6.56) to (6.54a), we obtain

R(τL, 1) =
I(ρ)

T
−

√
ψ′′
ρ,1(0)

LT2
Q−1

(
ϵ− k1,ρ√

L

)
−
Q−1

(
ϵ− k1,ρ√

L

)2
ψ′′′
ρ,1(τ̃)

2Lψ′′
ρ,1(0)

. (6.57)

Using that ψ′′
ρ,1(0) = V (ρ), and expanding Q−1(ϵ− k1,ρ/

√
L) around ϵ, we can write

(6.57) as

R(τL, 1) =
I(ρ)

T
−
√
V (ρ)

LT2
Q−1(ϵ) +O

(
1

L

)
. (6.58)

where the O(1/L) term is uniform in ρ by Part 1) of Lemma 4.2, the assumption

that k1,ρ is uniform in ρ, and the observation that Vs(ρ) is bounded away from zero

for every ρ ≥ ρ0 and s ≥ s0 (for arbitrary ρ0 > 0 and s0 > 0).

We next prove that, for the choice of τL in (6.55), and for L sufficiently large, the

RHS of (6.54b) is less than ϵ. Consequently, R(τL, 1) is a lower bound on R∗(L, ϵ, ρ).

To this end, we first show that

ϵ∗(L,R, ρ) ≤ eL[ψρ,1(τL)−τLψ
′
ρ,1(τL)]

×
[
fρ,1(τL, τL) + fρ,1(1− τL, τL) +

k2,ρ√
L

+ o

(
1√
L

)]
(6.59)

where k2,ρ > 0 is independent of L and uniform in ρ. To obtain (6.59), we show that

K̂ρ,1(τL) on the RHS of (6.54b) can be written as

K̂ρ,1(τL) =
1√
2π

ψ′′′
ρ,1(τL)

6ψ′′
ρ,1(τL)

3/2

=
1√
2π

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
+O

(
1√
L

)
= k2,ρ +O

(
1√
L

)
(6.60)

75



CHAPTER 6. SADDLEPOINT APPROXIMATIONS

where the O
(

1√
L

)
term is uniform in ρ. Indeed, by using Taylor series expansions,

it follows that

ψ′′
ρ,1(τL) = ψ′′

ρ,1(0) + τLψ
′′′
ρ,1(0) +

τ2L
2
ψ
(4)
ρ,1(τ2) (6.61a)

ψ′′′
ρ,1(τL) = ψ′′′

ρ,1(0) + τLψ
(4)
ρ,1(τ3) (6.61b)

for some τ2, τ3 ∈ (0, τL). Using (6.61a) and (6.61b), it then follows that

ψ′′′
ρ,1(τL)

ψ′′
ρ,1(τL)

3/2
=

ψ′′′
ρ,1(0) + τLψ

(4)
ρ,1(τ3)(

ψ′′
ρ,1(0) + τLψ′′′

ρ,1(0) +
τ2
L

2 ψ
(4)
ρ,1(τ2)

)3/2
=

ψ′′′
ρ,1(0)(

ψ′′
ρ,1(0) + τLψ′′′

ρ,1(0) +
τ2
L

2 ψ
(4)
ρ,1(τ2)

)3/2
+

τLψ
(4)
ρ,1(τ3)(

ψ′′
ρ,1(0) + τLψ′′′

ρ,1(0) +
τ2
L

2 ψ
(4)
ρ,1(τ2)

)3/2 . (6.62)

The second term on the RHS of (6.62) is O(1/
√
L) uniformly in ρ by Part 1) of

Lemma 4.2 and because Vs(ρ) is bounded away from zero for every ρ ≥ ρ0 and s ≥ s0

(for arbitrary ρ0 > 0 and s0 > 0). A Taylor series expansion over the first term on

the RHS of (6.62) yields

ψ′′′
ρ,1(0)(

ψ′′
ρ,1(0) + τLψ′′′

ρ,1(0) +
τ2
L

2 ψ
(4)
ρ,1(τ2)

)3/2
=

ψ′′′
ρ,1(0)

ψ′′
ρ,1(0)

3/2
− 3

2

ψ′′′
ρ,1(0)

(
τLψ

′′′
ρ,1(0) +

τ2
L

2 ψ
(4)
ρ,1(τ2)

)
(
ψ′′
ρ,1(0) + τ̃ψ′′′

ρ,1(0) +
τ̃2

2 ψ
(4)
ρ,1(τ2)

)5/2 (6.63)

for some τ̃ ∈ (0, τL). The second term on the RHS of (6.63) is O(1/
√
L) uniformly

in ρ, again by Part 1) of Lemma 4.2 and because Vs(ρ) is bounded away from zero for

every ρ ≥ ρ0 and s ≥ s0 (for arbitrary ρ0 > 0 and s0 > 0). By the same arguments,

the first term on the RHS of (6.63) is uniform in ρ. Combining (6.62) and (6.63), we

thus obtain (6.60), from which (6.59) follows.

By using the definition of fθ(u, τ) in (6.9a), we next show that (6.59) can be
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written as

ϵ∗(L,R, ρ) ≤ eL[ψρ,1(τL)−τLψ
′
ρ,1(τL)]

×
[
eL

τ2L
2 ψ′′

ρ,1(τL)Q
(
τL

√
Lψ′′

ρ,1(τL)
)
+
k2,ρ√
L

+
k3,ρ√
L

+ o

(
1√
L

)]
(6.64)

where k3,ρ > 0 is independent of L and uniform in ρ. To show this, we consider the

upper bound

Q
(
(1− τL)

√
Lψ′′

ρ,1(τL)
)
≤ 1

√
2π(1− τL)

√
Lψ′′

ρ,1(τL)
e−

(1−τL)2

2 ψ′′
ρ,1(τL) (6.65)

from which we obtain that, for sufficiently large L,

0 < eL
(1−τL)

2

2 ψ′′
ρ,1(τ)Q

(
(1− τL)

√
Lψ′′

ρ,1(τL)
)
≤ 1

√
2π(1− τL)

√
Lψ′′

ρ,1(τL)
≤ k3,ρ√

L

(6.66)

where the right-most inequality follows because

1

1− τL
=

1

1−
Q−1

(
ϵ− k1,ρ√

L

)
√
Lψ′′

ρ,1(0)

≤ 1

1− Q−1(ϵ−k1,ρ)√
ψ′′
ρ,1(0)

(6.67)

and because Vs(ρ) is bounded away from zero for every ρ ≥ ρ0 and s ≥ s0 (for

arbitrary ρ0 > 0 and s0 > 0), which together with (6.61a) implies that also ψ′′
ρ,1(τL)

is bounded away from zero for sufficiently large L. Hence, we can find a positive

constant k3,ρ that is independent of L and uniform in ρ and that satisfies (6.66) for

sufficiently large L. It then follows that we can upper-bound fρ,1(1 − τL, τL) by

k3,ρ/
√
L.

We finally show that we can write (6.64) as

ϵ∗(L,R, ρ) ≤
[
1 +

k4,ρ√
L

+O
(
1

L

)][
ϵ− k1,ρ√

L
− k5,ρ√

L
+O

(
1

L

)]
+ e−

Q−1(ϵ)2

2

[
1 +O

(
1√
L

)][
k2,ρ√
L

+
k3,ρ√
L

+ o

(
1√
L

)]
= ϵ− k1,ρ√

L
− k5,ρ√

L
+
ϵk4,ρ√
L

+ e−
Q−1(ϵ)2

2

[
k2,ρ√
L

+
k3,ρ√
L

]
+ o

(
1√
L

)
(6.68)

where k4,ρ > 0 and k5,ρ > 0 are specified below and are independent of L and uniform

in ρ. Thus, if we choose k1,ρ larger than

k1,ρ > ϵk4,ρ + e−
Q−1(ϵ)2

2 [k2,ρ + k3,ρ]− k5,ρ (6.69)
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then, for sufficiently large L, the RHS of (6.68) is upper-bounded by ϵ uniformly

in ρ.

To show (6.68), we first consider the Taylor series expansions

ψρ,1(τL) =
τ2L
2
ψ′′
ρ,1(0) +

τ3L
6
ψ′′′
ρ,1(0) +

τ4L
24
ψ
(4)
ρ,1(τ0) (6.70a)

ψ′
ρ,1(τL) = τLψ

′′
ρ,1(0) +

τ2L
2
ψ′′′
ρ,1(0) +

τ3L
6
ψ
(4)
ρ,1(τ1) (6.70b)

for τ0, τ1 ∈ (0, τL). By using (6.70) together with (6.61), and by following similar

steps as above, it can be shown that

eL[ψρ,1(τL)−τLψ
′
ρ,1(τL)] = e−

Q−1(ϵ)2

2

(
1 +O

(
1√
L

))
(6.71a)

eL[ψρ,1(τL)−τLψ
′
ρ,1(τL)+

τ2L
2 ψ′′

ρ,1(τL)] = 1 +
k4,ρ√
L

+O
(
1

L

)
(6.71b)

Q
(
τL

√
Lψ′′

ρ,1(τL)
)
= ϵ− k1,ρ√

L
− k5,ρ√

L
+O

(
1

L

)
(6.71c)

where k4,ρ > 0 and k5,ρ > 0 are independent of L and uniform in ρ, and both

O(1/
√
L) and O(1/L) are uniform in ρ. Substituting (6.71) into (6.64), the upper

bound in (6.68) follows.

6.3.2 Converse Part

To show that the RHS of (6.53) is also a converse bound, we evaluate (6.52) for

s = 1, namely,

ϵ∗(L,R, ρ) ≥ eL[ψρ,1(τ)−τψ
′
ρ,1(τ)]

[
fρ,1(τ, τ) +

Kρ,1(τ, L)√
L

+ o

(
1√
L

)]
− e

L

[
I(ρ)−

ψ′
ρ,1(τ)

s −TR

]
(6.72)

and evaluate (6.72) for a sequence of τ ’s defined as

τL ≜
Q−1(ϵ̃L)√
Lψ′′

ρ,1(0)
−
ψ′′′
ρ,1(0)

(
1 +Q−1(ϵ̃L)

2
)

3Lψ′′
ρ,1(0)

2
(6.73)

where

ϵ̃L ≜ ϵ+
kρ√
L

(6.74)
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and kρ is a constant independent of L and uniform in ρ, which will be specified later.

Again, since τL vanish as L→ ∞, we have that (τL, ρ, 1) ∈ S (with S characterized by

(4.45)) for sufficiently large L. Consequently, Theorem 6.5 applies and the o(1/
√
L)

term in (6.72) is uniform in ρ for any ρ ≥ ρ0 with ρ0 > 0. We next show that (6.72)

can be written as

ϵ∗(L,R, ρ) ≥ −e
L

[
I(ρ)−

ψ′
ρ,1(τL)

s −TR

]
+ eL[ψρ,1(τL)−τLψ

′
ρ,1(τL)]

×

[
fρ,1(τL, τL) +

(
Q−1(ϵ̃L)

2 − 1√
2π

− ϵ̃LQ
−1(ϵ̃L)

3e
Q−1(ϵ̃L)

2

)
ψ′′′
ρ,1(0)

6
√
Lψ′′

ρ,1(0)
3/2

+ o

(
1√
L

)]
. (6.75)

Indeed, Kρ,1(τL, L) is given by

Kρ,1(τL, L) ≜
ψ′′′
ρ,1(τL)

6ψ′′
ρ,1(τL)

3/2

(
τ2Lψ

′′
ρ,1(τL)L− 1
√
2π

− τ3Lψ
′′
ρ,1(τL)

3/2L3/2fρ,1(τL, τL)

)
.

(6.76)

Using (6.62) and (6.63), and performing a Taylor series expansion of the terms inside

the square brackets around zero, for our choice of τL in (6.73), it follows that

Kρ,1(τL, L) =

((
Q−1(ϵ̃L)

2 − 1
)

√
2π

− ϵ̃LQ
−1(ϵ̃L)

3e
Q−1(ϵ̃L)

2

)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
+O

(
1√
L

)
(6.77)

where it can be shown that the O(1/
√
L) term is uniform in ρ by following similar

steps as the ones used to analyze the error term in (6.60). Hence, substituting (6.77)

into (6.72), we obtain the lower bound in (6.75).

We next show that

ϵ∗(L,R, ρ) ≥

[
1 +

Q−1(ϵ̃L)
3ψ′′′

ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

+O
(
1

L

)]

×

[
ϵ̃L +

1√
2π

(
2−Q−1(ϵ̃L)

2
)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

e−
Q−1(ϵ̃L)2

2 +O
(
1

L

)]

+

[
e−

Q−1(ϵ̃L)2

2

(
1 +O

(
1√
L

))]
×

[(
1√
2π

(
Q−1(ϵ̃L)

2 − 1
)
− ϵ̃LQ

−1(ϵ̃L)
3e

Q−1(ϵ̃L)

2

)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
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+ o

(
1√
L

)]
− eL(I(ρ)−ψ

′
ρ,1(τL)−TR)

= ϵ̃L +
ϵ̃LQ

−1(ϵ̃L)
3ψ′′′

ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

+
1√
2π

(
2−Q−1(ϵ̃L)

2
)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

e−
Q−1(ϵ̃L)2

2

+ e−
Q−1(ϵ̃L)2

2

[
1√
2π

(
Q−1(ϵ̃L)

2 − 1
)
− ϵ̃LQ

−1(ϵ̃L)
3e

Q−1(ϵ̃L)

2

]
×

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

− eL(I(ρ)−ψ
′
ρ,1(τL)−TR) + o

(
1√
L

)

= ϵ̃L +
e−

Q−1(ϵ̃L)2

2

√
2π

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

− eL(I(ρ)−ψ
′
ρ,1(τL)−TR) + o

(
1√
L

)
(6.78)

where the first equality follows by keeping the terms up to order 1/
√
L and collecting

the terms that vanish faster than 1/
√
L in the o(1/

√
L) term, and the second equality

follows by simple algebra. To prove the inequality in (6.78), we use that, analogously

to (6.71), for our choice of τL in (6.73) we have

eL[ψρ,1(τL)−τLψ
′
ρ,1(τL)] = e−

Q−1(ϵ̃L)2

2

(
1 +O

(
1√
L

))
(6.79a)

eL[ψρ,1(τL)−τLψ
′
ρ,1(τL)+

τ2L
2 ψ′′

ρ,1(τL)] = 1 +
Q−1(ϵ̃L)

3ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

+O
(
1

L

)
(6.79b)

Q
(
τL

√
Lψ′′

ρ,1(τL)
)
= ϵ̃L +

1√
2π

(
2−Q−1(ϵ̃L)

2
)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

e−
Q−1(ϵ̃L)2

2

+O
(
1

L

)
(6.79c)

where it can be shown that the O(1/
√
L) and O(1/L) terms are uniform in ρ by

following similar steps as the ones used to analyze the error term in (6.60). Thus,

substituting the identities in (6.79) into (6.75), we obtain the inequality in (6.78).

We next show that

R∗(L, ρ, ϵ) ≤ I(ρ)

T
−
ψ′
ρ,1(τL)

T

− 1

LT
log

(
kρ√
L

+ e−
Q−1(ϵ)2

2
1√
2π

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

+ o

(
1√
L

))
. (6.80)
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Indeed, a Taylor series expansion of Q−1(ϵ̃L) around ϵ yields

Q−1

(
ϵ+

kρ√
L

)
= Q−1(ϵ) +

kρ
√
2π√
L

e
Q−1(ϵ)2

2 +O
(
1

L

)
(6.81)

where the O(1/L) term is uniform in ρ because kρ is uniform in ρ. Using (6.81), we

can expand e−
Q−1(ϵ̃L)2

2 as

e−
Q−1(ϵ̃L)2

2 = e−
Q−1(ϵ)2

2 − 2Q−1(ϵ)
kρ
√
2π√
L

+O
(
1

L

)
(6.82)

where the O(1/L) term is uniform in ρ again because kρ is uniform in ρ. Hence,

using (6.81) and (6.82) in (6.78), collecting the terms that vanish faster than 1/
√
L

in the o(1/
√
L) term, and solving (6.78) for R, we obtain (6.80).

We finally show that

R∗(L, ϵ, ρ) ≤ I(ρ)

T
−

√
ψ′′
ρ,1(0)

LT2
Q−1(ϵ) +

1

2T

logL

L

−

√
2πψ′′

ρ,1(0)

LT
e
Q−1(ϵ)2

2 −
(
1−Q−1(ϵ)2

)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)LT

+O
(

1

L3/2

)
. (6.83)

Since ψ′′
ρ,1(0) = V (ρ), and since Vs(ρ) is bounded away from zero for every ρ ≥ ρ0

and s ≥ s0 (for arbitrary ρ0 > 0 and s0 > 0), it can then be shown that (6.83)

coincides with (6.53) upon collecting terms of order logL/L.

To show (6.83), we expand the last term in (6.80) as

log

(
kρ√
L

+ e−
Q−1(ϵ)2

2
1√
2π

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

+ o

(
1√
L

))

= log

(
kρ√
L

+ e−
Q−1(ϵ)2

2
1√
2π

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
√
L

)
+ o

(
1√
L

)
. (6.84)

(This expansion holds because the first two terms inside the logarithm on the LHS

are positive.) We then choose

kρ = 1− e−
Q−1(ϵ)2

2
1√
2π

ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)

3/2
(6.85)

which is independent of L and uniform in ρ because Vs(ρ) is bounded away from zero

for every ρ ≥ ρ0 and s ≥ s0 (for arbitrary ρ0 > 0 and s0 > 0) and ψ′′′
ρ,1(0) is bounded
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in ρ by Part 1) of Lemma 4.2 and because mρ,s(τ) ≥ 1 (see also Remark 6.1). It

follows that (6.80) can be written as

R∗(L, ρ, ϵ) ≤ I(ρ)

T
−
ψ′
ρ,1(τL)

T
+

1

2T

logL

L
+O

(
1

L3/2

)
. (6.86)

By using (6.70b) with τL defined in (6.73), it follows that

ψ′
ρ,1(τL)

T
=

√
ψ′′
ρ,1(0)

LT2
Q−1(ϵ̃L) +

(
1 +Q−1(ϵ̃L)

2
)
ψ′′′
ρ,1(0)

3ψ′′
ρ,1(0)LT

−
Q−1(ϵ̃L)

2ψ′′′
ρ,1(0)

2ψ′′
ρ,1(0)LT

+O
(

1

L3/2

)
(6.87)

where it can be shown that the O(1/L3/2) term is uniform in ρ by following similar

steps as the ones used to analyze the error term in (6.60). Using (6.81) and (6.85),

we can write (6.87) as

ψ′
ρ,1(τL)

T
=

√
ψ′′
ρ,1(0)

LT2
Q−1(ϵ) +

kρ
√

2πψ′′
ρ,1(0)

LT
e
Q−1(ϵ)2

2

+

(
2−Q−1(ϵ)2

)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)LT

+O
(

1

L3/2

)

=

√
ψ′′
ρ,1(0)

LT2
Q−1(ϵ) +

√
2πψ′′

ρ,1(0)

LT
e
Q−1(ϵ)2

2

−
ψ′′′
ρ,1(0)

6LTψ′′
ρ,1(0)

+

(
2−Q−1(ϵ)2

)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)LT

+O
(

1

L3/2

)

=

√
ψ′′
ρ,1(0)

LT2
Q−1(ϵ) +

√
2πψ′′

ρ,1(0)

LT
e
Q−1(ϵ)2

2

+

(
1−Q−1(ϵ)2

)
ψ′′′
ρ,1(0)

6ψ′′
ρ,1(0)LT

+O
(

1

L3/2

)
. (6.88)

Using (6.88) in (6.86), the upper bound (6.83) follows.

6.3.3 High-SNR Normal Approximation

Since the O(logL/L) term in (6.53) is uniform in ρ, it is also possible to recover from

(6.53) the high-SNR normal approximation presented in Theorem 5.1 (Chapter 5).
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To do so, we use (4.39a) and (4.39b) to write

I(ρ) = (T− 1) log(Tρ)− log Γ(T)

− (T− 1)

[
log(1 + Tρ) +

Tρ

1 + Tρ
− ψ(T− 1)

]
+ 2F1

(
1,T− 1;T;

Tρ

1 + Tρ

)
+ oρ(1) (6.89)

V (ρ) = (T− 1)2
π2

6
+ (T− 1) + oρ(1) (6.90)

where oρ(1) comprises terms that are uniform in L and vanish as ρ→ ∞. The desired

result follows directly by substituting (6.89) and (6.90) into (6.53).

6.4 Error Exponent Analysis

The expansions (6.49b) and (6.52) can be written as an exponential term times a

subexponential factor. As we show next, the exponential terms of both expansions

coincide for rates Rcr
1/2(ρ) < R < I(ρ), so they characterize the reliability function

Er(R, ρ) ≜ lim
L→∞

− 1

L
log ϵ∗(L,R, ρ). (6.91)

Theorem 6.6 Let ρ0 ≤ ρ ≤ ρmax and τ < τ < τ̄ for some arbitrary 0 < ρ0 <

ρmax <∞ and 0 < τ < τ̄ < 1. Set sτ ≜ 1/(1 + τ). Then, the coding rate R and the

minimum error probability ϵ∗ can be parametrized by τ ∈ (τ , τ̄) as

R(τ) =
1

T

(
Isτ (ρ)− ψ′

ρ,sτ (τ)
)

(6.92a)

Aρ(τ) ≤ ϵ∗(L,R, ρ)e−L[ψρ,sτ (τ)−τψ
′
ρ,sτ

(τ)] ≤ Aρ(τ) (6.92b)

where

Aρ(τ) ≜
1√

2πLτ2ψ′′
ρ,sτ (τ)

+
|K̂ρ,sτ (τ)|√

L
+

1√
2πL(1− τ)2ψ′′

ρ,sτ (τ)
+ o

(
1√
L

)
(6.93a)

Aρ(τ) ≜
1

τ(1 + τ)(1+τ)
(
2πLψ′′

ρ,sτ (τ)
) 1

2sτ

+ o

(
1

L
1

2sτ

)
. (6.93b)
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The little-o term in (6.93a) is uniform in ρ and τ . The little-o term in (6.93b) is

uniform in ρ (for every given τ).1

Proof: The proof is divided into direct and converse parts. The direct part is

given in Section 6.4.1, the converse part in Section 6.4.2.

Remark 6.4 For sτ = 1/(1 + τ) with τ ∈ (0, 1), the identity (6.92a) characterizes

all rates R between the critical rate given in (6.50) particularized for s = 1/2, namely,

Rcr
1/2(ρ) =

1

T

(
I1/2(ρ)− ψ′

ρ,1/2(1)
)

(6.94)

and I(ρ). Solving (6.92a) for τ , we obtain approximations of upper and lower

bounds on the minimum probability of error ϵ∗(L,R, ρ) as a function of the rate

R ∈ (Rcr
1/2(ρ) , I(ρ)).

The first three terms of Aρ(τ) are positive and dominate the o(1/
√
L) term.

Similarly, the first term of Aρ(τ) is positive and of order L− 1+τ
2 . It thus follows from

Theorem 6.6 that the reliability function Er(R, ρ) can be parametrized by τ ∈ (0, 1)

as

Er(R, ρ) = τψ′
ρ, 1

1+τ
(τ)− ψρ, 1

1+τ
(τ) (6.95a)

R =
1

T

(
I 1

1+τ
(ρ)− ψ′

ρ, 1
1+τ

(τ)
)
. (6.95b)

6.4.1 Direct Part

We first note that (τ, ρ, sτ ), as specified in Theorem 6.6, are in the set S characterized

by (4.46). It thus follows from Theorem 6.4 that

R(τ, sτ ) =
1

T
(Isτ (ρ)− ψ′

ρ,sτ (τ)) (6.96a)

ϵ∗(L,R, ρ) ≤ eL[ψρ,sτ (τ)−τψ
′
ρ,sτ

(τ)]

×

[
fρ,sτ (τ, τ) + fρ,sτ (1− τ, τ) +

K̂ρ,sτ (τ)√
L

+ o

(
1√
L

)]
. (6.96b)

Recall that fρ,s(u, τ) can be upper-bounded as (cf. (6.65) and (6.66))

fρ,s(u, τ) ≤
1

√
2πu

√
Lψ′′

ρ,s(τ)
. (6.97)

1Since τ may depend on ρ, the little-o term in (6.93b) may depend on ρ via τ .
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Hence, using (6.97), and upper-bounding K̂ρ,sτ (τ)/
√
L by its absolute value, we can

upper-bound the RHS of (6.96b) as

ϵ∗(L,R, ρ) ≤ eL[ψρ,sτ (τ)−τψ
′
ρ,sτ

(τ)]

[
1√

2πτ2Lψ′′
ρ,sτ (τ)

+
1√

2π(1− τ)2Lψ′′
ρ,sτ (τ)

+

⏐⏐⏐⏐⏐K̂ρ,sτ (τ)√
L

⏐⏐⏐⏐⏐+ o

(
1√
L

)]
. (6.98)

We thus obtain the right-most inequality in (6.92b) upon choosing τ to satisfy (6.92a).

6.4.2 Converse Part

Again, (τ, ρ, sτ ) as specified in Theorem 6.6 are in the set S characterized by (4.46).

It thus follows from Theorem 6.5 that

ϵ∗(L,R, ρ) ≥ eL[ψρ,sτ (τ)−τψ
′
ρ,sτ

(τ)]
[
fρ,sτ (τ, τ) +

Kρ,sτ (τ, L)√
L

+ o

(
1√
L

)]
− e

L

[
Jsτ (ρ)−

ψ′
ρ,sτ

(τ)

sτ
−TR

]
. (6.99)

In Appendix B.7, we show that the constant Kρ,s(τ, L) defined in (6.52) is of order

O(1/L) uniformly in (τ, s, ρ). Consequently, (6.99) can be written as

ϵ∗(L,R, ρ) ≥ eL[ψρ,sτ (τ)−τψ
′
ρ,sτ

(τ)]
[
fρ,sτ (τ, τ) + o

(
1√
L

)]
−eL[Jsτ (ρ)−

1
sτ
ψ′
ρ,sτ

(τ)−TR].

(6.100)

In principle, we would like to choose τ such that the two exponents in (6.100)

are equal. This can be achieved by the τ satisfying (6.92a). Indeed, recall that, by

(4.26),

Jsτ (ρ) = logµ(sτ ) + (1 + τ)Isτ (ρ). (6.101)

It follows that

logµ(sτ ) = log

∫
E
[
pYℓ|Xℓ

(Yℓ|Xℓ)
sτ
] 1
sτ
dy

= ψρ,sτ (τ)− τIsτ (ρ) (6.102)

which together with (6.92a) yields that

Jsτ (ρ)− (1 + τ)ψ′
ρ,sτ (τ)− TR = ψρ,sτ (τ)− τψ′

ρ,sτ (τ). (6.103)

85



CHAPTER 6. SADDLEPOINT APPROXIMATIONS

While this choice of τ yields the correct exponent, alas, it yields a negative subex-

ponential factor. Indeed, it can be checked that, for such τ , fρ,sτ (τ, τ)− 1 becomes

negative for sufficiently large L. Fortunately, we can sidestep this problem by choosing

τ as a function of L.

Before we describe our choice of τ , we first need to introduce some notation. The

Gallager E0-function [20, Eq. (5.6.14)] is defined as

E0,ρ(τ, s) ≜ − log E
[
e−τiℓ,s(ρ)

]
. (6.104)

Some simple algebra shows that

ψρ,s(τ) = τIs(ρ)− E0,ρ(τ, s) (6.105a)

ψ′
ρ,s(τ) = Is(ρ)− E′

0,ρ(τ, s) (6.105b)

where E′
0,ρ(τ, s) denotes the first derivative of E0,ρ(τ, s) with respect to τ . We next

define

Ψρ,s(τ) ≜ τ2ψ′′
ρ,s(τ). (6.106)

Note that, by Part 2) of Lemma 4.2, we have for every 0 < ρ0 < ρmax, 0 < b < 1,

and 0 < s0 < smax

sup
ρ0≤ρ≤ρmax

sup
|τ |<b,

s∈(s0,smax]

⏐⏐Ψ(k)
ρ,s(τ)

⏐⏐ <∞, k ∈ Z+
0 . (6.107)

We further have

inf
ρ≥ρ0

inf
τ<τ<τ̄,

s∈(s0,smax]

⏐⏐Ψρ,s(τ)⏐⏐ > 0. (6.108)

Indeed, using Lemma B.3 together with the observation that ψ′′
ρ,s(0) = Vs(ρ) is

bounded away from zero for every ρ ≥ ρ0 and s ≥ s0 (for arbitrary ρ0 > 0 and

s0 > 0), it follows that

inf
ρ≥ρ0

inf
τ<τ<τ̄,

s∈(s0,smax]

⏐⏐ψ′′
ρ,s(τ)

⏐⏐ > 0. (6.109)

Furthermore, for τ > τ > 0, (6.108) and (6.109) are equivalent, so the claim follows.

To shorten notation, in the following we shall write Ψρ(τ) for Ψρ,sτ (τ) and E0,ρ(τ)

for E0,ρ(τ, sτ ). We denote the first, second and third derivatives of τ ↦→ E0,ρ(τ) with

respect to τ by E′
0,ρ(τ), E

′′
0,ρ(τ), E

′′′
0,ρ(τ), respectively. In general, we denote

E
(k)
0,ρ (τ) =

∂kE0,ρ(τ,
1

1+τ )

∂τk
, k = 1, 2, . . . (6.110)
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While for k = 1 it can be shown that E′
0,ρ(τ) = E′

0,ρ(τ, s) |s= 1
1+τ

(where τ ↦→ E′
0,ρ(τ, s)

denotes the derivative of τ ↦→ E0,ρ(τ, s) with respect to τ when s is held fixed), for

higher-order derivatives this is no longer true, i.e.,

E
(k)
0,ρ (τ) ̸=

∂kE0,ρ(τ, s)

∂τk

⏐⏐⏐
s= 1

1+τ

, k = 2, 3, . . . (6.111)

Let the sequence {τL} be given by

τL = τ +
log
(
A
√
2πLΨρ(τ)

)
−LE′′

0,ρ(τ)
(6.112)

where A > 0 is a free parameter that will be optimized later and τ satisfies (6.92a).

Observe that τL → τ as L→ ∞.

Setting sL = 1/(1 + τL) in (6.100), and analyzing the resulting expression as

L→ ∞, we will obtain not only the correct exponential behavior, but we will also

obtain a positive subexponential term. To this end, we first evaluate (6.100) with τ

replaced by τL to obtain

ϵ∗(L,R, ρ) ≥ e−L[E0,ρ(τL)−τLE′
0,ρ(τL)]

[
fρ, 1

1+τL

(τL, τL) + o

(
1√
L

)
− e−L[TR−E′

0,ρ(τL)]
]

(6.113)

where we have used (6.101), (6.102), and (6.105b) together with the observation that

E′
0,ρ(τ) = E′

0,ρ(τ, s) |s= 1
1+τ

. We next show that

ϵ∗(L,R, ρ) ≥ e−L[E0,ρ(τL)−τLE′
0,ρ(τL)]

[
1√

2πLΨρ(τ)
+ o

(
1√
L

)
− e−L[TR−E′

0,ρ(τL)]

]
.

(6.114)

Indeed, by using the bound Q(x) ≥ (
√
2πx)−1(1− x−2), x > 0, we obtain that

fρ, 1
1+τL

(τL, τL)

≥ 1√
2πLΨρ(τL)

(
1− 1

LΨρ(τL)

)
=

1√
2πL

(
Ψρ(τ) + (τL − τ)Ψ′

ρ(τ̂0)
) − 1

√
2π
(
L
(
Ψρ(τ) + (τL − τ)Ψ′

ρ(τ̂0)
))3/2

=
1√

2πLΨρ(τ)
− 1

2
√
2πL

(τL − τ)Ψ′
ρ(τ̂0)(

Ψρ(τ) + (τ̃ − τ)Ψ′
ρ(τ̂0)

)3/2
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− 1
√
2π
(
L
(
Ψρ(τ) + (τL − τ)Ψ′

ρ(τ̂0)
))3/2 (6.115)

where the second step follows by performing a Taylor series expansion of τL ↦→ Ψρ(τL)

around τ , and the third step follows by performing a Taylor series expansion over

the first term. We next show that

fρ, 1
1+τL

(τL, τL) ≥
1√

2πLΨρ(τ)
+O

(
logL

L3/2

)
(6.116)

for some τ̂0 ∈ (τ, τL), where the O(logL/L3/2) term is uniform in ρ. Indeed, by

(6.107) and Lemma B.4 (Appendix B.8), the difference τL − τ is of order logL/L

(uniformly in ρ). Furthermore, by (6.107) and (6.108), we have that τ ↦→ Ψρ(τ) is

bounded away from zero and bounded (in ρ), and τ ↦→ Ψ′
ρ(τ) is bounded in ρ. It

follows that the second term on the RHS of (6.115) is of order logL/L3/2, and the

third term is of order 1/L3/2. We thus obtain (6.114) by using (6.116) in (6.113) and

combining the O(logL/L3/2) term with the o(1/
√
L) term.

We finally show that (6.114) can be written as

ϵ∗(L,R, ρ)

≥ e−L[E0,ρ(τ)−τE′
0,ρ(τ)]

[
1

Aτ (2πLΨρ(τ))
τ/2

+O
(

log2 L

L(1+τ/2)

)]

×

[
1√

2πLΨρ(τ)
− 1

A
√
2πLΨρ(τ)

+ o

(
1√
L

)]

= e−L[E0,ρ(τ)−τE′
0,ρ(τ)]

[
1

(2πLΨρ(τ))
1+τ
2

(
1

Aτ
− 1

A1+τ

)
+ o

(
1

L
1+τ
2

)]
(6.117)

where A was introduced in (6.112). By following along similar lines as the ones

used to show (6.116), it can be shown that the big-O term and the small-o terms

are uniform in ρ. The value of A that yields the tightest lower bound on ϵ∗(L,R, ρ)

corresponds to the maximizing argument of the function

fτ (A) =
1

Aτ
− 1

A1+τ
(6.118)

which is given by A∗ = (1 + τ)/τ . Using this value in (6.117), and applying (6.105),

we obtain the left-most inequality in (6.92b).
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To show (6.117), we start by performing a Taylor series expansion of τL ↦→ E0,ρ(τL)

and τL ↦→ E′
0,ρ(τL) around τ to obtain

E0,ρ(τL) = E0,ρ(τ) + (τL − τ)E′
0,ρ(τ) +

(τL − τ)2

2
E′′

0,ρ(τ̂1) (6.119a)

E′
0,ρ(τL) = E′

0,ρ(τ) + (τL − τ)E′′
0,ρ(τ) +

(τL − τ)2

2
E′′′

0,ρ(τ̂2) (6.119b)

for some τ̂1, τ̂2 ∈ (τ, τL).

By (6.92a) and (6.105b), we have that TR = E′
0,ρ(τ). Consequently,

e−L[TR−E′
0,ρ(τL)] = e

L

[
(τL−τ)E′′

0,ρ(τ)+
(τL−τ)2

2 E′′′
0,ρ(τ̂1)

]

= e
L

[
log(A

√
2πLΨρ(τ))

−LE′′
0,ρ(τ)

E′′
0,ρ(τ)+O

(
(logL)2

L2

)]

=
1

A
√
2πLΨρ(τ)

e
O
(

(logL)2

L

)

=
1

A
√
2πLΨρ(τ)

+O
(
log2 L

L3/2

)
(6.120)

where the first step follows by (6.119b); the second step follows by (6.112), (6.107),

and by Lemma B.4 (Appendix B.8); and the fourth step follows by using that

e
O
(

log2 L
L

)
= 1 +O

(
log2 L

L

)
. (6.121)

By following along similar lines as the ones used to show (6.116), it can be shown

that the O(·) terms in (6.120) are uniform in ρ.

We next use (6.119) to write

E0,ρ(τL)− τLE
′
0,ρ(τL) = E0,ρ(τ)− τE′

0,ρ(τ)− τL(τL − τ)E′′
0,ρ(τ)

+
(τL − τ)2

2

(
E′′

0,ρ(τ̂0)− τLE
′′′
0,ρ(τ̂1)

)
= E0,ρ(τ)− τE′

0,ρ(τ)− τ(τL − τ)E′′
0,ρ(τ)

+
(τL − τ)2

2

(
E′′

0,ρ(τ̂0)− τLE
′′′
0,ρ(τ̂1)− 2E′′

0,ρ(τ)
)
.

(6.122)

By substituting (6.112) in (6.122), we obtain

E0,ρ(τL)− τLE
′
0,ρ(τL) = E0,ρ(τ)− τE′

0,ρ(τ) +
τ

L
log

(
A
√
2πLΨρ(τ)

)
+O

(
log2 L

L2

)
(6.123)
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where the O
(
log2 L/L2

)
term is uniform in ρ by (6.107) and Lemma B.4 (Ap-

pendix B.8).

Using (6.121) and (6.123), we conclude that

e−L[E0,ρ(τL)−τLE′
0,ρ(τL)] = e−L[E0,ρ(τ)−τE′

0,ρ(τ)]

(
1

Aτ (2πLΨρ(τ))
τ/2

+O
(

log2 L

L(1+τ/2)

))
(6.124)

where the big-O term is uniform in ρ. Finally, substituting (6.120) and (6.124) into

(6.114), we obtain (6.117), which was the last step required to prove the left-most

inequality in (6.92b).

6.5 High-SNR Approximations

The approximations presented in Theorems 6.4 and 6.5 are functions of the CGF

ψρ,s(τ) and its derivatives, which typically need to be evaluated numerically. However,

if (τ, ρ, sτ ) are in the set S characterized by (4.45) (Lemma 4.2) then, at high SNR,

these functions can be approximated accurately. Let

ψ̄ρ,s(τ) ≜ τ

(
− sTρ

1 + Tρ
E[Z2] + (T− 1)E

[
log

(
Z1 +

Z2

1 + Tρ

)])
+ log

(
E

[
exp

{
−τ
(
− sTρZ2

1 + Tρ
+ (T− 1) log

(
Z1 +

Z2

1 + Tρ

))}])

= τ

(
−(T− 1)

[
log(1 + Tρ) +

sTρ

1 + Tρ
− ψ(T− 1)

]
+ 2F1

(
1,T− 1;T;

Tρ

1 + Tρ

))
+ log

(
η
ν(τ)
ρ Γ(T− 1 + ν(τ))

Γ(T)(ηρ + λρ(τ))T−1+ν(τ) 2
F1

(
1,T− 1 + ν(τ);T;

λρ(τ)

ηρ + λρ(τ)

))
(6.125)

where ηρ = 1
1+Tρ , ν(τ) = −τ(T − 1) + 1, and λρ(τ) =

Tρ
1+Tρ (1 − τs). The second

expected value has been solved using [28, Sec. 4.337-1] to integrate with respect to

Z1, and [28, Sec. 4.352-1], [28, Sec. 3.381-4], and [28, Sec. 6.228-2] to integrate with

respect to Z2. The third expected value has been solved using [28, Sec. 3.381-3.8] to

integrate with respect to Z1, and [28, Sec. 6.455-1] to integrate with respect to Z2.

Note that the third term on the RHS of (6.125) is unbounded in ρ if τ ≥ 1/(T − 1).
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Lemma 6.7 Assume that (τ, ρ, s) are in the set S characterized by (4.45)

(Lemma 4.2), i.e., −1 ≤ τ ≤ a, ρ ≥ ρ0, and s0 ≤ s ≤ 1, for some arbitrary

ρ0 > 0, s0 > 0, and 0 < a < 1/(T− 1) independent of (L, ρ, s, τ). Then, the CGF

ψρ,s(τ) given in (4.42), and its respective first, second and third derivatives, can be

approximated as

ψρ,s(τ) = ψ̄ρ,s(τ) + oρ(1) (6.126a)

ψ′
ρ,s(τ) = ψ̄′

ρ,s(τ) + oρ(1) (6.126b)

ψ′′
ρ,s(τ) = ψ̄′′

ρ,s(τ) + oρ(1) (6.126c)

ψ′′′
ρ,s(τ) = ψ̄′′′

ρ,s(τ) + oρ(1) (6.126d)

where ψ̄′
ρ,s, ψ̄

′′
ρ,s and ψ̄

′′′
ρ,s denote the first, second and third derivatives of τ ↦→ ψ̄ρ,s(τ),

respectively, and oρ(1) collects terms that vanish as ρ→ ∞ and are uniform in L, τ

and s.

Proof: See Appendix B.6.

By inserting ψ̄ρ,s(τ) and its corresponding derivatives into (6.49b) and (6.52), we

obtain high-SNR saddlepoint approximations that can be evaluated in closed form.

6.6 Numerical Results and Discussion

In Fig. 6.1, we study R∗(L, ϵ, ρ) as a function of L for n = LT = 168 (hence T

is inversely proportional to L), ϵ = 10−5, and the SNR values 0 dB and 10 dB.

We plot approximations of the RCUs bound in red and approximations of the MC

bound in blue by disregarding the o(1/
√
L) terms. Straight lines (“saddlepoint”)

depict the saddlepoint approximations (6.49b) and (6.52), dashed lines (“pref+EE”)

depict (6.92b). We further plot the nonasymptotic bounds (6.48) and (6.51) with

dots. For 10 dB we also plot with circles the high-SNR versions of (6.49b) and

(6.52) that are obtained by replacing ψρ,s(·) and its derivatives by their high-SNR

approximations presented in Section 6.5. Note that these approximations require

that 0 ≤ τ < 1/(T− 1), cf. Lemma 6.7. It turns out that, for such τ values, accurate

high-SNR saddlepoint approximations can only be computed up to T = 8, since

for larger values of T the range of τ becomes too restricted. Finally, we plot the

normal approximation (6.53) (“NA”), the high-SNR normal approximation given
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Figure6.1:BoundsonR∗(L,ϵ,ρ)forn=168,ϵ=10−5,andSNRvaluesρ=0dBand

ρ=10dB.

inTheorem5.1.1(“high-SNR-NA”),aswellastheerrorexponentapproximation

thatfollowsbysolvingϵ∗(L,R,ρ)≈exp{−LEr(R,ρ)}forR(“EEA”).Observethat

theapproximations(6.49b),(6.52),and(6.92b)arealmostindistinguishablefrom

thenonasymptoticbounds.Furtherobservethatthenormalapproximation“NA”is

accuratefor10dBandL>10,butisloosefor0dB.Incontrast,theerrorexponent

approximation“EEA”isloosefor10dB,butisaccuratefor0dB.Thehigh-SNR

saddlepointapproximationsarepessimistic,butareremarkablyaccurateforanSNR

valueassmallas10dB.

InFig.6.2,westudyR∗(L,ϵ,ρ)asafunctionofϵforn=168,T=12,andthe

SNRvalues6dBand0dB. WeplotapproximationsoftheRCUsboundinredand

approximationsoftheMCboundingreen(fors=1)orinblue(whensisnumerically

optimized).Straightlines(“saddlepoint”)depictthesaddlepointapproximations

(6.49b)and(6.52),dashedlines(“pref+EE”)showtheapproximations(6.92b). We

furtherplotthenonasymptoticbounds(6.48)and(6.51)withdots.Forρ=0dB,we

alsoshowthecriticalrateRcr1/2(0). Weinallyplotthenormalapproximation(6.53)

92



CHAPTER6.SADDLEPOINTAPPROXIMATIONS

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

0.2

0.4

0.6

0.8

1

1.2

NA

NA

EEA EEA

Rcr
1/2

(0)

MC-qY ,1
(y )

MC-qY ,s
(y )

RCUs

nonasymptotic

saddlepoint

pref+EE

ρ= 6dB

ρ=0dB

probabilityoferror(logscale)

bi
ts

/c
ha

nn
el

us
e

Figure6.2: BoundsonR∗(L,ϵ,ρ)forn=168, T=12,andSNRvalues ρ=0dBand

ρ=6dB.

(“NA”)andtheerrorexponentapproximationthatfollowsbysolvingϵ∗(L,R,ρ)≈

exp{−LEr(R,ρ)}forR(“EEA”). Observethattheapproximations(6.49b),(6.52),

and(6.92b)arealmostindistinguishablefromthenonasymptoticbounds.Further

observehowthenormalapproximation“NA”becomesaccurateforlargeerror

probabilities,whereastheerrorexponentapproximation“EEA”becomesaccurate

forsmallerrorprobabilities.Finallynotethatthesaddlepointapproximationscan

beevaluatedforerrorprobabilitieslessthan10−8,wherethenonasymptoticbounds

cannotbeevaluatedduetotheircomputationalcomplexity.

InFig.6.3,westudyR∗(L,ϵ,ρ)asafunctionoftheSNRρforn=168(T=12,

andL =14)and ϵ=10−5. Weplotapproximationsofthe RCUs boundin

redandapproximationsofthe MCboundinblue(withsnumericallyoptimized).

Straightlines(“saddlepoint”)depictthesaddlepointapproximations(6.49b)and

(6.52),dashedlines(“pref+EE”)showtheapproximations(6.92b). Wefurther

plotthenonasymptoticbounds(6.48)and(6.51)withdots. Weinallyplotthe

normalapproximation(6.53)(“NA”)andtheerrorexponentapproximationthat

followsbysolvingϵ∗(L,R,ρ)≈exp{−LEr(R,ρ)}forR(“EEA”). Observethatthe

approximations(6.49b),(6.52),and(6.92b)arealmostindistinguishablefromthe
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Figure6.3:BoundsonR∗(L,ϵ,ρ)forn=168,T=12,L=14andaprobabilityoferrorof

10−5.

nonasymptoticbounds.Observealsohowthenormalapproximation“NA”becomes

accurateasweincreasetheSNR.Notethattheerrorexponentapproximation“EEA”

isaccurateonlyforsmallSNRvalues.

InFigs.6.4and6.5,westudyϵ∗(L,R,ρ)asafunctionoftheSNRρ.Speciically,

inFig.6.4weshowϵ∗(L,R,ρ)forn=168(T=24,andL=7)andR=0.48,

andinFig.6.5weshowϵ∗(L,R,ρ)forn=500(T=20,andL=25)andR=4.

WeplotapproximationsoftheRCUsboundinredandapproximationsofthe

MCboundinblue(withsnumericallyoptimized).Straightlines(“saddlepoint”)

depictthesaddlepointapproximations(6.49b)and(6.52),dashedlines(“pref+EE”)

showtheapproximations(6.92b). Wefurtherplotthenonasymptoticbounds(6.48)

and(6.51)withdots. Weplotthenormalapproximation(6.53)(“NA”)andthe

errorexponentapproximationthatfollowsbysolvingϵ∗(L,R,ρ)≈exp{−LEr(R,ρ)}

forR(“EEA”).InFig.6.5,wefurtherplotwithcirclesthehigh-SNRversions

of(6.49b)and(6.52)thatareobtainedbyreplacingψρ,s(·)anditsderivativesby

theirhigh-SNRapproximationspresentedinSection6.5.Inaddition,weshowthe
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Figure6.4:BoundsonR∗(L,ϵ,ρ)forn=168,T=24,L=7andR=0.

14 16 18 20 22 24 26
10−6

10−5

10−4

10−3

10−2

10−1

NA

high-SNR-NA

EEA

ARJALDPCcode64-APSK

nonasymptotic

saddlepoint

pref+EE

saddlepointhigh-SNR

MC-qY ,s
(y)

RCUs

SNRρ(dB)

pr
ob
ab
il
it
y
of
er
ro
r

48.

Figure6.5:BoundsonR∗(L,ϵ,ρ)forn=500,T=20,L=25andR=4.
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performance of an accumulate-repeat-jagged-accumulate (ARJA) low density parity

check (LDPC) (3000,2000)-code combined with 64-APSK modulation, pilot-assisted

transmission (2 pilot symbols per coherence block), and maximum likelihood channel

estimation followed by mismatched nearest-neighbor decoding at the receiver (“ARJA

LDPC code 64-APSK”) [36, Figure 3(b)] (see [37]). Observe that the approximations

(6.49b), (6.52), (6.92b), and the high-SNR approximations of (6.49b) and (6.52) are

almost indistinguishable from the nonasymptotic bounds. Observe also how, for

this setting, the normal approximation “NA” is much more accurate as the error

exponent approximation “EEA”. Finally, the gap between the presented real code

and the rest of the curves is substantial. This suggests that more sophisticated joint

channel-estimation decoding procedures together with shaping techniques need to be

adopted to close the gap; see e.g., [37].
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7
Cooperative OWC: A Case Study

OWC has gained great attention during the last years due to its capability to support

high data rates in indoor environments, where it can reach several hundreds of

megahertz [5]. By its nature, this technology presents advantages in terms of security

and cost savings [41, 42, 43]. VLC is a type of OWC that uses the visible light

spectrum. VLC can provide illumination and data transmission at the same time, so it

is interesting for indoor environments [5]. Furthermore, it cannot propagate through

opaque objects, so it avoids common radio-frequency interference impairments. Last

but not least, since the components in VLC are low-cost and off-the-shelf, from a

consumer point of view, this technology is cheap and hence appealing.

Current research targets a model composed of optical atto-cells where each user is

always served by the best access point and a seamless communication is guaranteed.

However, if the same frequency resources are used in neighboring cells, co-channel

interference appears, leading to a decrease of the signal-to-interference-plus-noise

ratio (SINR). There is a great variety of alternatives in the literature to overcome this
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Figure 7.1: View of the VLC indoor scenario with 5 access points.

problem, such as static resource partitioning [44], the employment of soft frequency

reuse [45], or the adaptation of radio-frequency techniques as joint transmission

in optical atto-cell networks [46]. Some of them use direct-current-biased optical

orthogonal frequency-division multiplexing (DCO-OFDM) [47], which is a promising

technique to achieve high speed transmissions in VLC. Other challenges for VLC

include interference between lighting sources, flickering, and shadowing. Among the

aforementioned aspects, the most relevant is shadowing. There exist few though

complex solutions to deal with this effect in the literature, such as adaptive link

scheduling [48], and position diversity obtained by the independent transmission

from different access points of I and Q signals [49]. To overcome the problem

of shadowing, we propose and evaluate a cooperative multipoint transmission and

reception scheme where different VLC access points cooperate between them providing

spatial diversity to the receivers, which in turn implies gains of more than 3 dB

compared to noncooperative schemes.

7.1 Scenario and Model

We consider the scenario depicted in Fig. 7.1, which is a common indoor scenario

where users have access to the network by means of several optical overlapped access
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points. The scheme can be straightforwardly adapted to other environments. Our

specific scenario consists of five cells. As it can be seen, each user can receive data

from at most three neighboring access points. We denote the cell with minimum

distance between access point and user as the main serving cell for that specific user.

The neighboring cells are defined as the closest cells surrounding the main serving

cell.

Throughout this chapter, we use the following optical channel model [50]:

H =

{
(m+1)A
2πD2

d
cosm(ϕ)Gfg(ψ) cos(ψ), 0 ≤ ψ ≤ Ψc

0, ψ > Ψ
(7.1)

where Dd denotes the distance between transmitter and receiver, A denotes the area

of the photodetector, Gf denotes the spectral filter gain, ϕ denotes the angle of

irradiance, ψ denotes the angle of incidence, and g(ψ) denotes the optical concentrator,

which is defined as

g(ψ) ≜

⎧⎨⎩
n2

sin2 Ψc
, 0 ≤ ψ ≤ Ψc

0, ψ ≥ Ψc

. (7.2)

Here, n denotes the refrective index of the lens. Furthermore, m stands for the

Lambertian emission, which can be computed as

m = − log 2

log(cosϕ1/2)
(7.3)

where ϕ1/2 denotes the semi-angle at half irradiance of the light-emitting diode

(LED). The received optical power Pr is given by

Pr = H · Pt (7.4)

where Pt denotes the transmitted optical power. Finally, we use the following

approximation for the received SNR:

SNR ≈ γ2P 2
r

σ2
shot + σ2

thermal + γ2P 2
rISI

(7.5)

where γ denotes detector’s responsivity, σ2
shot denotes the shot noise variance, σ

2
thermal

denotes the thermal noise variance, and PrISI denotes the received intersymbol

interference power. These quantities are given by

σ2
shot = 2qγ(Pr + PrISI)Rb + 2qIbgI2Rb (7.6)
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Table 7.1: System parameters of the VLC indoor case study.

Parameter Variable Value Unit

Transmit Power Pt 72 Watt

Number of LEDs - 3600 -

Data Rate Rb 100 Mbps

ISI received Power (Rb = 100 Mbps) PrISI 10−8 A2

Background current Ibg 5100 µA

Absolute temperature Tk 298 K

Open-loop voltage gain G 10 -

FET transconductance gm 30 mS

FET channel noise factor Γ 1.5 -

Fixed capacitance η 112 pF/cm2

Semi-angle at half illuminance of the LED Φ1/2 70 deg.

Field of View (FOV) at a receiver Ψc 60 deg.

Detector physical area of the Photodiode (PD) A 1.0 cm2

Optical filter gain Gf 1.0 -

Refractive index of the lens at PD n 1.5 -

Detector’s responsivity γ 0.54 A/W

Probability of obstruction Pobs 0 - 1

Percentage of light when obstruction θ 30 %

Main lobe amplitude level ρ 0.56 -

σ2
thermal =

8πkTk
G

ηAI2R
2
b +

16π2kTkΓ

gm
η2A2I3R

3
b (7.7)

where q denotes the electronic charge, k denotes Boltzmann’s constant, and I2 =

0.562 and I3 = 0.0868 denote the noise bandwidth factors. The values of the

parameters involved in the system model are summarized in Table 7.1. Note that,

in this practical case study, we treat the dispersion as inter-symbol interference

(ISI) [51].

7.2 Cooperative VLC Scheme

There are two main challenges in VLC: the obstacles, and the limited transmit

power due to safety reasons. In order to deal with both, we propose a cooperative

transmission scheme. This scheme is valid for indoor scenarios, although it can
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be easily extended to outdoor deployments [52]. The use of on-off keying (OOK)

modulation in VLC access points is a simple way to transmit data to receivers. In

scenarios where users receive data from several transmitters, generally, each atto-

cell operates at different wavelengths to avoid inter-cell interference [5]. However,

this kind of schemes increase complexity at the receiver, which needs to be able

to detect different wavelengths by using an array of photodetectors with several

wavelength sensitivities and filters. Besides, the signal processing in the handover

process becomes harder.

In contrast,we propose a single-wavelength scheme that can be optimized for

the specific environmental light conditions. In order to avoid inter-cell interference,

pulse-position division multiplexing (PPDM) is used at the access points, i.e., each

neighboring cell transmits its pulses in a different position within a period T (see

Fig. 7.2 and Fig. 7.3, where T = 10 ns). This has several advantages. Firstly,

the receivers are simple since only one wavelength has to be detected. Secondly,

since the receivers are tuned to the wavelength, they can detect signals from the

other neighboring cells, allowing for cooperative transmission and reception schemes.

Specifically, by using the backhaul feedback link at each cell, each access point is aware

of the data to be transmitted by itself and also by the other neighboring cells. Hence,

the cooperating access points will use different time intervals in each period T and

will help the others by transmitting data to users in neighboring cells (see Fig. 7.3).

Thus, the receiver is served by the main serving access point plus the cooperating

neighboring cells. Note that cooperating pulses have less amplitude to make a fair

comparison and reduce interference. Since the light arrives at the receiver through

different paths, this scheme achieves spatial diversity, thereby reducing the probability

of obstruction. In addition, spatial diversity yields further performance improvements,

which would allow us to decrease the transmit power while maintaining a target

bit error rate (BER). For the sake of clarity, an example of the above-described

transmission scheme is shown in Fig. 7.3 where the main serving cell is the access

point in cell 3 (using position P3 within the frame). This implies that the neighboring

access points 2 and 4 (using positions P2 and P1, respectively) are the cooperating

cells. In this example, cell 3 transmits {0, 1, 1} and the neighboring cells 2 and 4

transmit {1, 1, 1} and {1, 1, 0}, respectively. In Fig. 7.2 we show the noncooperative

scheme where each cell transmits its data in different time intervals.

The optical power received by user 1, located in cell 3 (see Fig. 7.1), in the
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Figure 7.2: OOK PPDM without cooperation.
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Figure 7.3: OOK PPDM with cooperation.

102



CHAPTER 7. COOPERATIVE OWC: A CASE STUDY

cooperative scheme is given by

Pruser1 =
1− ρ

2
Pt2H2 + ρPt3H3 +

1− ρ

2
Pt4H4 (7.8)

where Pti and Hi denote the transmit power and channel corresponding to the cell i,

respectively, and ρ denotes the main lobe amplitude level (see Table 7.1). Note that

even if a user experiences obstruction with respect to its main serving cell, which

implies that its channel Hi approaches 0, the receiver may decode the data by using

the information received from its cooperating neighboring cells.

7.3 Results and Discussion

In this section we compare the cooperative and noncooperative schemes by means

of numerical examples. In order to compute the SNR given in (7.5), we used the

parameter values indicated in Table 7.1. The access points are placed at the ceiling

(3.5 m high) and we assume that all the receivers are at a height of 1 m. For a fair

comparison, the transmitted energy from the two schemes is such that the overall

transmitted power is the same in both cooperative and noncoopertive cases.

In this numerical example, we fix the main lobe amplitude ρ = 0.56, and the

percentage of light arrived from the main cell in case of obstruction to θ = 30%.

Clearly, the smaller θ, the larger the gain of the cooperative scheme compared to the

noncooperative scheme.

In Fig. 7.4 we plot the cooperative scheme considering that all users are obstructed.

In Fig. 7.5 we plot the noncooperative scheme considering again that all users are

obstructed. We observe a clear improvement in SNR for the cooperative case. We

further observe that the area of strong signal reception (high SNRs) in the cooperative

case corresponds to the cell edges, where the cooperation between cells becomes more

relevant. A maximum gain of 3.32 dB (around 3 dB in the highlighted point) and

a minimum gain of 0.41 dB are obtained for the simulation parameters specified in

Table 7.1.

7.4 Conclusions

In this chapter, we proposed and evaluated a cooperative yet simple scheme for VLC

in large indoor scenarios. Gains larger than 3 dB in SNR are easily obtained for
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Figure 7.4: Received SNR for the cooperative scheme when all users are obstructed.
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Figure 7.5: Received SNR for the noncooperative scheme when all users are obstructed.
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crowded scenarios, i.e, when users are obstructed. Furthermore, since our proposed

scheme uses only a single wavelength, hence it can be implemented with cheap and

already developed receivers.

Since this work presents a single wavelength solution by using OOK and PPDM,

and most of the literature is based on multicarrier solutions applied to atto-cells, a

limited comparison was presented. In any case, this is a closer-to-reality proposal

and sets foundations for future more advanced cooperative schemes in VLC.
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8
Summary and Conclusion

In this thesis, we studied the maximum coding rate at which data can be transmit-

ted over noncoherent, single-antenna, Rayleigh block-fading channels using error-

correcting codes that span L coherence intervals and have a block-error probability

no larger than ϵ. For this specific channel model, only nonasymptotic bounds were

available in the literature. We presented different asymptotic expansions of the

nonasymptotic bounds leading to expressions that are analytically tractable, and

whose computational cost is considerably reduced with respect to the nonasymptotic

bounds. Finally, in Chapter 7, we presented a practical case study where a coopera-

tive multipoint transmission and reception scheme is evaluated for VLC in an indoor

scenario.

Specifically, in Chapter 5, we presented a high-SNR normal approximation

of the maximum coding rate R∗(L, ϵ, ρ) which can be evaluated in closed form.

While we demonstrated that the approximation error vanishes as the number of

coherence intervals and the SNR tend to infinity, by means of numerical examples we
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showed that it is accurate already at SNR values of 15 dB, for 10 coherence intervals

or more, and probabilities of error no smaller than 10−3. The obtained normal

approximation complements the nonasymptotic bounds provided in Chapter 3, and

it allows for a mathematical analysis of R∗(L, ϵ, ρ). For example, we showed that

the high-SNR normal approximation is roughly equal to the normal approximation

one obtains by transmitting one pilot symbol per coherence block to estimate the

fading coefficient, and by then transmitting T− 1 symbols per coherence block over

a coherent fading channel. This suggests that, at high SNR, one pilot symbol per

coherence block suffices to achieve both the capacity and the channel dispersion. We

finally showed an example where the normal approximation can be used to analyze a

simple slotted-ALOHA protocol.

In Chapter 6, we applied the saddlepoint method to derive approximations of the

nonasymptotic MC and the RCUs bounds on the maximum coding rate R∗(L, ϵ, ρ) (or

minimum probability of error ϵ∗(L,R, ρ)) provided in Chapter 3. While these approx-

imations must be evaluated numerically, the computational complexity is independent

of the number of diversity branches L. This is in contrast to the nonasymptotic MC

and RCUs bounds, whose evaluation has a computational complexity that grows

linearly in L. Numerical evidence suggests that the saddlepoint approximations are

accurate for probabilities of error as small as 10−10, and although developed under

the assumption of large L, are accurate even for L = 1 if the SNR is greater than or

equal to 0 dB. Furthermore, we showed that the proposed approximations recover the

normal approximation and the reliability function of the channel, thus providing a

unifying tool for the two regimes, which traditionally have been considered separately

in the literature.

Observe that the range of the parameters (L, ϵ, ρ) for which the saddlepoint ap-

proximations derived in Chapter 6 are accurate is bigger than the range of parameters

for which the high-SNR normal approximation derived in Chapter 5 is accurate.

Specifically, while the high-SNR normal approximation is accurate for SNR values

larger than or equal to 15 dB, 10 coherence intervals or more, and probabilities of

error larger than or equal to 10−3, the saddlepoint approximations are accurate for

probabilities of error as small as 10−10 and for L ≥ 1 if the SNR is larger than or

equal to 0 dB. However, the high-SNR normal approximation was derived under the

assumption of a more general power contraint than the saddlepoint approximations

(compare (2.6a) and 2.6b). Furthermore, the high-SNR normal approximation can
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be evaluated in closed form and does not require any numerical evaluation.

In Chapter 7, we presented and evaluated a single-wavelength cooperative

multipoint transmission and reception scheme for VLC. The cooperation between the

VLC access points provides spatial diversity to the receivers, which in turn implies

gains of more than 3 dB compared to noncooperative schemes. The cooperative

scheme was shown to provide larger gains when there is NLOS between the main

serving cell and the users, and when the users are located near the cell edges. Since

most of the literature is based on multicarrier solutions applied to atto-cells, this

work is a much simpler and closer-to-reality proposal that sets foundations for future

more advanced cooperative schemes in VLC.
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A
Appendix to Chapter 5

A.1 Proof of Lemma 4.1

The left-most inequality in (4.5) follows because the regularized lower incomplete

gamma function is no larger than 1. For the right-most inequality in (4.5), consider

the following bound by Alzer [53, Th. 1] (see also [54, Eq. (5.4)])

γ̃(a, x) >
(
1− e−sax

)a
, (x ≥ 0, a > 0, a ̸= 1) (A.1)

where

sa =

{
1, if 0 < a < 1

Γ(a+ 1)−
1
a , if a > 1.

(A.2)

In order to obtain the right-most inequality in (4.5), we first lower-bound γ̃(·, ·)
using (A.1)

log
1

γ̃(T− 1, x)
≤ (T− 1) log

(
1

1− e−xΓ(T)
− 1

T−1

)
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= (T− 1) log

(
1 +

1

exΓ(T)
− 1

T−1 − 1

)
(A.3)

where the second step follows by simple algebraic manipulations. Since ez ≥ 1 + z,

this can be further upper-bounded as

log
1

γ̃(T− 1, x)
≤ (T− 1) log

(
1 +

Γ(T)
1

T−1

x

)
. (A.4)

This proves Lemma 4.1.

A.2 Proof of Lemma 5.2

For every ρ(1− δ) ≤ α ≤ ρ,

V̄ρ(α) = E

[(
− Tρ− Tα

1 + Tρ
(Z1 − 1)− Tρ

1 + Tρ
(Z2 − (T− 1))

+ (T− 1) log
(
(1 + Tα)Z1 + Z2 + β(ρ)

)
− (T− 1)E

[
log
(
(1 + Tα)Z1 + Z2 + β(ρ)

)])2
]

≥ E

[(
Tρ− Tα

1 + Tρ
(Z1 − 1) +

Tρ

1 + Tρ
(Z2 − (T− 1))

)2]

− 2E

[(
Tρ− Tα

1 + Tρ
(Z1 − 1) +

Tρ

1 + Tρ
(Z2 − (T− 1))

)
×
(
(T− 1) log

(
(1 + Tα)Z1 + Z2

)
− (T− 1)E

[
log
(
(1 + Tα)Z1 + Z2

)]
+ (T− 1) log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)
− (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)])]

≥
(
Tρ− Tα

1 + Tρ

)2

+

(
Tρ

1 + Tρ

)2

(T− 1)

− 2(T− 1)
Tρ− Tα

1 + Tρ
E

[
(Z1 − 1) log

(
Z1 +

Z2

1 + Tα

)]
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− 2(T− 1)
Tρ

1 + Tρ

{
E

[
(Z2 − (T− 1)) log

(
Z1 +

Z2

1 + Tρ

)]

− E

[(
Z2 − (T− 1)

)
log

(
(1 + Tρ)Z1 + Z2

(1 + Tα)Z1 + Z2

)]}
(A.5)

where the second inequality follows because Z1 has mean and variance 1, Z2 has

mean and variance T− 1, and

E

[
(Z1 − 1) log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)]
≤ 0 (A.6a)

E

[
(Z2 − (T− 1)) log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)]
≤ 0. (A.6b)

The inequalities (A.6a) and (A.6b) follow because

(Z1 − 1) log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)
≤ (Z1 − 1) log

(
1 +

β(ρ)

(1 + Tα) + Z2

)
(A.7a)

(Z2 − (T− 1)) log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)
≤ (Z2 − (T− 1)) log

(
1 +

β(ρ)

(1 + Tα)Z1 + (T− 1)

)
(A.7b)

and

E

[
(Z1 − 1) log

(
1 +

β(ρ)

(1 + Tα) + Z2

)]
= E

[(
Z2 − (T− 1)

)
log

(
1 +

β(ρ)

(1 + Tα)Z1 + (T− 1)

)]
= 0. (A.7c)

The first term on the RHS of (A.5) is nonnegative, so discarding it yields a

lower bound. Furthermore, the third term in (A.5) can be lower-bounded by upper-

bounding for ρ(1− δ) ≤ α ≤ ρ

2(T− 1)
Tρ− Tα

1 + Tρ
E

[
(Z1 − 1) log

(
Z1 +

Z2

1 + Tα

)]
≤ 2(T− 1)

Tρ− Tα

1 + Tρ

√
E
[
(Z1 − 1)2

]
E

[
log2

(
Z1 +

Z2

1 + Tα

)]

≤ 2(T− 1)δ

√(
π2

6
+ γ2 + ψ2(T) + ζ(2,T)

)
. (A.8)
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Here, the first inequality follows from the Cauchy-Schwarz inequality, and the last

inequality follows because E
[
(Z1 − 1)2

]
= 1 and

E

[
log2

(
Z1 +

Z2

1 + Tα

)]
≤ E

[
log2

(
Z1 + Z2

)
+ log2(Z1)

]
=
π2

6
+ γ2 + ζ(2,T) + ψ2(T) (A.9)

where we have evaluated the expected values using [28, Sec. 4.335-1] and [28,

Sec. 4.358-2], respectively. The first inequality in (A.9) follows by treating the

cases Z1 + Z2/(1 + Tρ) ≤ 1 and Z1 + Z2/(1 + Tρ) > 1 separately, and by lower-

bounding in the former case Z1 + Z2/(1 + Tρ) by Z1 and upper-bounding in the

latter case Z1 + Z2/(1 + Tρ) by Z1 + Z2. Hence

log2
(
Z1 +

Z2

1 + Tρ

)
≤ log2(Z1)

≤ log2(Z1) + log2(Z1 + Z2), if Z1 +
Z2

1 + Tρ
≤ 1 (A.10a)

log2
(
Z1 +

Z2

1 + Tρ

)
≤ log2(Z1 + Z2)

≤ log2(Z1) + log2(Z1 + Z2), if Z1 +
Z2

1 + Tρ
> 1 (A.10b)

which yields the desired bound.

Finally, the fifth term on the RHS (A.5) can be lower-bounded by upper-bounding

for ρ(1− δ) ≤ α ≤ ρ⏐⏐⏐⏐E[(Z2 − (T− 1)) log

(
(1 + Tρ)Z1 + Z2

(1 + Tα)Z1 + Z2

)]⏐⏐⏐⏐
≤ E

[⏐⏐Z2 − (T− 1)
⏐⏐ log( (1 + Tρ)Z1 + Z2

(1 + Tα)Z1 + Z2

)]
≤ E

[
|Z2 − (T− 1)|

]
log
( ρ
α

)
≤ E

[
|Z2 − (T− 1)|

]
log

(
1

1− δ

)
. (A.11)

Combining (A.8)–(A.11) with (A.5), we obtain the lower bound

V̄ρ(α) ≥
(

Tρ

1 + Tρ

)2

(T− 1)− 2(T− 1)δ

√(
π2

6
+ γ2 + ψ2(T) + ζ(2,T)

)
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− 2(T− 1)
Tρ

1 + Tρ

{
E

[(
Z2 − (T− 1)

)
log

(
Z1 +

Z2

1 + Tρ

)]

+ E
[
|Z2 − (T− 1)|

]
log

(
1

1− δ

)}
. (A.12)

Only the second and fourth term on the RHS of (A.12) depend on δ. The former

term is linear in δ, the latter term can be upper-bounded by a linear term by using

that, for 0 ≤ δ ≤ 1/2,

log

(
1

1− δ

)
≤ δ

1− δ
≤ 2δ. (A.13)

Hence, there exists a positive constant Ξ that only depends on T such that

V̄ρ(α) ≥
(

Tρ

1 + Tρ

)2

(T− 1)− Ξδ

− 2(T− 1)
Tρ

1 + Tρ
E

[(
Z2 − (T− 1)

)
log

(
Z1 +

Z2

1 + Tρ

)]
. (A.14)

We conclude the proof of Lemma 5.2 by demonstrating that

E

[
(Z2 − (T− 1)) log

(
Z1 +

Z2

1 + Tρ

)]
= oρ(1). (A.15)

This is a direct consequence of the dominated convergence theorem [55, Section 1.26],

which can be applied because⏐⏐⏐⏐(Z2 − (T− 1)) log

(
Z1 +

Z2

1 + Tρ

)⏐⏐⏐⏐
≤
⏐⏐Z2 − (T− 1)

⏐⏐⏐⏐⏐⏐log(Z1 +
Z2

1 + Tρ

)⏐⏐⏐⏐
≤
⏐⏐(Z2 − (T− 1))

⏐⏐√log2(Z1) + log2(Z1 + Z2) (A.16)

where the second inequality follows from the same steps as the first inequality in

(A.9). Using the Cauchy-Schwarz inequality, the expected value of the RHS of (A.16)

can be upper-bounded as

E
[⏐⏐(Z2 − (T− 1))

⏐⏐√log2(Z1) + log2(Z1 + Z2)
]

≤
√
E
[
(Z2 − (T− 1))2

]
E
[
log2(Z1) + log2(Z1 + Z2)

]
(A.17)

which is finite by (A.11).
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A.3 Proof of Lemma 5.3

We shall first prove (5.28a). Using the definitions of j̄ℓ(α) and J̄(α) in (4.20) and

(4.33), respectively, we upper-bound V̄ρ(α) ≜ E
[(
j̄ℓ(α)− J̄(α)

)2]
as

V̄ρ(α) = E

[(
Tρ− Tα

1 + Tρ
(1− Z1) +

Tρ

1 + Tρ
(T− 1− Z2)

+ (T− 1) log

(
Z1 +

Z2

1 + Tα

)
− (T− 1)E

[
log

(
Z1 +

Z2

1 + Tα

)]
+ (T− 1) log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)
− (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)])2]

≤ c4,2

((
Tρ− Tα

1 + Tρ

)2

E
[
(Z1 − 1)2

]
+

(
Tρ

1 + Tρ

)2

E
[
(Z2 − T+ 1)2

]
+ 2(T− 1)2E

[
log2

(
Z1 +

Z2

1 + Tα

)]
+ 2(T− 1)2E

[
log2

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)])

where we have used that

|a1 + · · ·+ aη|ν ≤ cη,ν(|a1|ν + · · ·+ |aη|ν), η, ν ∈ Z+ (A.18)

for some positive constant cη,ν that only depends on η and ν, and that E
[
(X −

E[X])2
]
≤ E

[
X2
]
for every real-valued random variable X.

We next show that each term on the RHS of (A.18) is bounded in (ρ, α). Indeed,

we have E
[
(Z1 − 1)2

]
= 1 and E

[
(Z2 − (T − 1))2

]
= (T − 1). Furthermore, since

0 ≤ (Tρ− Tα)/(1 + Tρ) ≤ 1 and 0 ≤ Tρ/(1 + Tρ) ≤ 1, the first two terms on the

RHS of (A.18) are bounded in ρ and α. The third term on the RHS of (A.18) can

be upper-bounded by (see (A.9))

(T− 1)2E

[
log2

(
Z1 +

Z2

1 + Tα

)]
≤ (T− 1)2E

[
log2(Z1 + Z2)

]
+ (T− 1)2E

[
log2(Z1)

]
<∞. (A.19)
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Finally, for every ρ0 > 0 and ρ ≥ ρ0, the fourth term on the RHS of (A.18) can be

upper-bounded by

E

[
(T− 1)2 log2

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)]
≤ (T− 1)2E

[
log2

(
1 +

β(ρ)

Z1 + Z2

)]
≤ (T− 1)2E

[
log2

(
1 +

β(ρ0)

Z1 + Z2

)]
<∞ (A.20)

where the last step follows because ρ ↦→ β(ρ) is monotonically decreasing in ρ. This

proves (5.28a).

The proof of (5.28b) follows along similar lines. Indeed, using the definitions

of iℓ(ρ) and I(ρ) for s = 1 in (4.12) and (4.27), respectively, we can upper-bound

V (ρ) ≜ E
[(
iℓ(ρ)− I(ρ)

)2]
as

V (ρ) = E

[(
Tρ

1 + Tρ
(T− 1− Z2) + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− (T− 1)E

[
log

(
Z1 +

Z2

1 + Tρ

)]
− log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
+ E

[
log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)])2]

≤ c5,2

((
Tρ

1 + Tρ

)2

E
[
(Z2 − T+ 1)2

]
+ 2(T− 1)2E

[
log2

(
Z1 +

Z2

1 + Tρ

)]

+ 2E

[
log2 γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)])
. (A.21)

We next show that each summand is bounded in ρ. Indeed, as shown before, the

first and the second term on the RHS of (A.21) are bounded in ρ. To bound the

third term on the RHS of (A.21), we use Lemma 4.1 and obtain

E

[
log2 γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
≤ (T− 1)2E

[
log2

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]
. (A.22)

117



APPENDIX A. APPENDIX TO CHAPTER 5

By the monotonicity of ρ ↦→ β(ρ), it follows that for every ρ0 > 0 and ρ ≥ ρ0, the

third term on the RHS of (A.21) is upper-bounded by

E

[
log2 γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
≤ (T− 1)2E

[
log2

(
1 +

β(ρ0)

Z1 + Z2

)]
<∞.

(A.23)

Combining the above steps with (A.21) we establish (5.28b).

A.4 Proof of Lemma 5.4

We shall first prove (5.29a). Using the definitions of j̄ℓ(α) and J̄(α) in (4.20) and

(4.33), respectively, we can upper-bound E
[⏐⏐j̄ℓ(α)− J̄(α)

⏐⏐3] as
E
[⏐⏐j̄ℓ(α)− J̄(α)

⏐⏐3] = E

[⏐⏐⏐⏐Tρ− Tα

1 + Tρ
(1− Z1) +

Tρ

1 + Tρ
(T− 1− Z2)

+ (T− 1) log

(
Z1 +

Z2

1 + Tα

)
− (T− 1)E

[
log

(
Z1 +

Z2

1 + Tα

)]
− log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)
+ E

[
log

(
1 +

β(ρ)

(1 + Tα)Z1 + Z2

)]⏐⏐⏐⏐3
]

≤ c6,3

(⏐⏐⏐⏐Tρ− Tα

1 + Tρ

⏐⏐⏐⏐3E[|Z1 − 1|3
]
+

⏐⏐⏐⏐ Tρ

1 + Tρ

⏐⏐⏐⏐3E[|Z2 − T+ 1|3
]

+ 2(T− 1)3E

[⏐⏐⏐⏐log(Z1 +
Z2

1 + Tα

)⏐⏐⏐⏐3
]

+ 2(T− 1)3E

[⏐⏐⏐⏐log(1 + β(ρ)

(1 + Tα)Z1 + Z2

)⏐⏐⏐⏐3
])

(A.24)

where we have used (A.18) and that E[|X|3] ≥ |E[X]|3 for every random variable X.

We next show that each term on the RHS of (A.24) is bounded in ρ and α.

Indeed, the first two terms on the RHS of (A.24) are bounded because the third

central moments of the Gamma-distributed random variables Z1 and Z2 are bounded,
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and because 0 ≤ (Tρ− Tα)/(1 + Tρ) ≤ 1 and 0 ≤ Tρ/(1 + Tρ) ≤ 1. The third term

on the RHS of (A.24) can be upper-bounded by using that⏐⏐⏐⏐log(Z1 +
Z2

1 + Tα

)⏐⏐⏐⏐ ≤ | logZ1|+ | log(Z1 + Z2)| (A.25)

which follows from similar steps as the first inequality in (A.9). Hence,

E

[⏐⏐⏐⏐log(Z1 +
Z2

1 + Tα

)⏐⏐⏐⏐3
]
≤ c2,3

(
E
[
| logZ1|3

]
+ E

[
| log(Z1 + Z2)|3

])
<∞ (A.26)

where the first inequality follows by (A.18). Finally, the fourth term on the RHS of

(A.24) can be upper-bounded as

(T− 1)3E

[⏐⏐⏐⏐log(1 + β(ρ)

(1 + Tα)Z1 + Z2

)⏐⏐⏐⏐3
]
≤ (T− 1)3E

[⏐⏐⏐⏐log(1 + β(ρ)

Z1 + Z2

)⏐⏐⏐⏐3
]
.

(A.27)

By the monotonicity of ρ ↦→ β(ρ), we thus have that for every ρ0 > 0 and ρ ≥ ρ0,

(T−1)3E

[⏐⏐⏐⏐log(1+ β(ρ)

(1 + Tα)Z1 + Z2

)⏐⏐⏐⏐3
]
≤ (T−1)3E

[⏐⏐⏐⏐log(1+ β(ρ0)

Z1 + Z2

)⏐⏐⏐⏐3
]
<∞.

(A.28)

Combining the above steps with (A.24) we prove (5.29a).

We establish (5.29b) along similar lines. Using the definitions of iℓ(ρ) and I(ρ)

for s = 1 in (4.12) and (4.27), respectively, we can upper-bound E
[
|iℓ(ρ)− I(ρ)|3

]
as

E
[⏐⏐iℓ(ρ)− I(ρ)

⏐⏐3]
= E

[⏐⏐⏐⏐ Tρ

1 + Tρ
(T− 1− Z2) + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− (T− 1)E

[
log

(
Z1 +

Z2

1 + Tρ

)]
− log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
+ E

[
log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]⏐⏐⏐⏐3
]

≤ c5,3

(⏐⏐⏐⏐ Tρ

1 + Tρ

⏐⏐⏐⏐3E[|Z2 − T+ 1|3
]
+ 2(T− 1)3E

[⏐⏐⏐⏐log(Z1 +
Z2

1 + Tρ

)⏐⏐⏐⏐3
]

+ 2(T− 1)3E

[⏐⏐⏐⏐log γ̃(T− 1,
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐3
])

(A.29)
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where the inequality follows by (A.18) and because E[|X|3] ≥ |E[X]|3 for every

random variable X.

As shown before, the first two terms on the RHS of (A.29) are bounded in ρ.

With respect to the third term, we first use Lemma 4.1 to obtain

E

[⏐⏐⏐⏐log γ̃(T− 1,
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐3
]

≤ (T− 1)3E

[
log3

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]
. (A.30)

By the monotonicity of ρ ↦→ β(ρ), it follows that for every ρ0 > 0 and ρ ≥ ρ0, the

third term on the RHS of (A.29) is upper-bounded by

E

[⏐⏐⏐⏐log γ̃(T− 1,
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐3
]

≤ (T− 1)3E

[
log3

(
1 +

β(ρ0)

(1 + Tρ)Z1 + Z2

)]
<∞. (A.31)

Combining the above steps with (A.29) we establish (5.29b).

A.5 Proof of Lemma 5.5

Consider the upper bound (5.35), namely,

R∗(L, ϵ, ρ) ≤ sup
α∈[0,ρ]L

log

(
1

β(α, q
(U)

YL)

)
. (A.32)

In the following, we show that, for sufficiently large L and ρ, we can assume without

loss of optimality that α ∈ Aρ,δ. To this end, we demonstrate that for all α /∈ Aρ,δ

and sufficiently large L and ρ, we can find a lower bound on R∗(L, ϵ, ρ) that exceeds

an upper bound on (A.32). Hence, such α cannot be optimal.

A lower bound on R∗(L, ϵ, ρ) follows from (5.22), and by bounding I(ρ) ≥ I(ρ)

and V (ρ) ≤ VUB(ρ0), ρ ≥ ρ0, using (4.32) and (5.32), i.e.,

R∗(L, ϵ, ρ) ≥ I(ρ)

T
−
√
VUB(ρ0)

LT2
Q−1(τ) ≜

RLB(ρ)

T
, ρ ≥ ρ0 (A.33)
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with τ defined in (5.25). Recall that, by the assumption 0 < ϵ < 1
2 , we have

Q−1(τ) > 0 for L sufficiently large.

It follows from (3.18) and (4.21) that the RHS of (A.32) can be upper-bounded

as

sup
α∈[0,ρ]L

log

(
1

β(α, q
(U)

YL)

)

≤ sup
α∈[0,ρ]L

⎧⎨⎩ log ξ(α)

LT
−

log
(
1− ϵ− P

[∑L
ℓ=1 j̄ℓ(αℓ) ≥ log ξ(α)

])
LT

⎫⎬⎭ (A.34)

for every ξ : [0, ρ]L → (0,∞). By Lemma 5.3, for every ρ0 > 0 there exists a V̄UB(ρ0)

that is independent of α and ρ and that satisfies

V̄ρ(α) ≤ V̄UB(ρ0), α ≥ 0, ρ ≥ ρ0. (A.35)

Let

log ξ(α) =

L∑
ℓ=1

J̄(αℓ) +

√
LV̄UB(ρ0)

(1− ϵ)− 1√
L

. (A.36)

By Chebyshev’s inequality [23, Ch. V.7] and (A.35), we obtain

P

[
L∑
ℓ=1

j̄ℓ(αℓ) ≥ log ξ(α)

]
≤

L∑
ℓ=1

V̄ρ(αℓ)

LV̄UB(ρ0)

(
1−ϵ− 1√

L

)
≤ 1−ϵ− 1√

L
, ρ ≥ ρ0. (A.37)

Combining (A.37) with (A.34), we obtain

R∗(L, ϵ, ρ) ≤ sup
α∈[0,ρ]L

∑L
ℓ=1 J̄(αℓ)

LT
+

√
V̄UB(ρ0)

LT2(1− ϵ)− T2
√
L

+
logL

2LT

≜ sup
α∈[0,ρ]L

1

L

L∑
ℓ=1

RUB(αℓ)

T
, ρ ≥ ρ0. (A.38)

The α’s for which 1
L

∑L
ℓ=1RUB(αℓ)/T is smaller than (A.33) can be discarded without

loss of optimality, since the upper bound can never be smaller than the lower bound.

We next use this argument to show that the fraction of αℓ’s in α that satisfy

αℓ ≥ ρ(1 − δ) tends to 1 as L and ρ tend to infinity. Specifically, we consider the
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difference

1

L

L∑
ℓ=1

[
RLB(ρ)−RUB(αℓ)

]
=

1

L

L∑
ℓ=1

[
Tρ− Tαℓ
1 + Tρ

+ log
1 + Tαℓ
1 + Tρ

+ (T− 1)E

[
log

(1 + Tρ)Z1,ℓ + Z2,ℓ + β(ρ)

(1 + Tαℓ)Z1,ℓ + Z2,ℓ + β(ρ)

]
− (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1,ℓ + Z2,ℓ

)]
−
√
VUB(ρ0)

L
Q−1(τ)−

√
V̄UB(ρ0)

L(1− ϵ)−
√
L

− logL

2L

]
(A.39)

where we have evaluated RLB(ρ) and RUB(αℓ) using (4.31a) and (4.33). We next

fix a sufficiently large ρ0 and assume ρ ≥ ρ0. Since ρ ↦→ β(ρ) is decreasing in ρ, we

can lower-bound the third-term on the RHS of (A.39) by replacing β(ρ) by β(ρ0).

We can further lower-bound (A.39) by omitting the first term on the RHS of (A.39),

which is nonnegative since αℓ ≤ ρ. This yields

1

L

L∑
ℓ=1

[
RLB(ρ)−RUB(αℓ)

]
≥ 1

L

L∑
ℓ=1

[
log

1 + Tαℓ
1 + Tρ

+ (T− 1)E

[
log

(1 + Tρ)Z1,ℓ + T− 1 + β(ρ0)

(1 + Tαℓ)Z1,ℓ + T− 1 + β(ρ0)

]
− (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1,ℓ + Z2,ℓ

)]
−
√
VUB(ρ0)

L
Q−1(τ)−

√
V̄UB(ρ0)

L(1− ϵ)−
√
L

− logL

2L

]

≜
1

L

L∑
ℓ=1

∆L,ρ(αℓ), ρ ≥ ρ0.

In the following, we analyze the behaviour of the function αℓ ↦→ ∆L,ρ(αℓ). Let

gρ(αℓ) ≜ log
1 + Tαℓ
1 + Tρ

+ (T− 1)E

[
log

(1 + Tρ)Z1,ℓ + T− 1 + β(ρ0)

(1 + Tαℓ)Z1,ℓ + T− 1 + β(ρ0)

]
(A.40)

and
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ωL,ρ ≜ (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]
+

√
VUB(ρ0)

L
Q−1(τ) +

√
V̄UB(ρ0)

L(1− ϵ)−
√
L

+
logL

2L
. (A.41)

Thus, ∆L,ρ(αℓ) = gρ(αℓ) − ωL,ρ. Note that ∂
∂αℓ

gρ(αℓ) = ∂
∂αℓ

∆L,ρ(αℓ), since ωL,ρ

does not depend on αℓ. Further note that

lim
L→∞,
ρ→∞

ωL,ρ = lim
ρ→∞

(T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]

+ lim
L→∞

(√
VUB(ρ0)

L
Q−1(τ) +

√
V̄UB(ρ0)

L(1− ϵ)−
√
L

+
logL

2L

)
= 0 (A.42)

where the first term in (A.42) vanishes by the dominated convergence theorem. The

following lemma discusses the behavior of the function αℓ ↦→ gρ(αℓ).

Lemma A.1 The function α ↦→ gρ(α) has the following properties:

1. The derivative of α ↦→ gρ(α) is either strictly positive, strictly negative, or

changes its sign once from positive to negative. This implies that gρ(α), 0 ≤
α ≤ ρ is minimized at the boundary of [0, ρ], and it has a unique maximizer.

2. The derivative of α ↦→ gρ(α) does not depend on ρ.

3. We have gρ(ρ) = 0. Furthermore, limρ→∞ gρ(0) = ∞ for T > 2.

4. Let α∗ denote the unique maximizer of α ↦→ gρ(α). For T > 2 and every

α′ > α∗, we have

sup
ρ≥α′

sup
α′≤α≤ρ

ρg′ρ(α) < 0. (A.43)

Proof: See Appendix A.7.

We next study those α’s for which
∑L
ℓ=1 ∆L,ρ(αℓ) ≥ 0, since they can be discarded

without loss of optimality. Let

Lδ(α) ≜ {ℓ = 1, . . . , L : αℓ ≥ ρ(1− δ)} (A.44)

and let Lδ(α) denote the number of αℓ’s in α that satisfy ρ(1 − δ) ≤ αℓ ≤ ρ, i.e.,

Lδ(α) is the cardinality of Lδ(α). Further let

∆∗
L,ρ(δ) ≜ inf

0≤α≤ρ(1−δ)
∆L,ρ(α). (A.45)
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We can express (A.40) as

L∑
ℓ=1

∆L,ρ(αℓ) =
∑

Lδ(α)

∆L,ρ(αℓ) +
∑

L c
δ(α)

∆L,ρ(αℓ). (A.46)

By Parts 1) and 3) of Lemma A.1,

∆L,ρ(αℓ) ≥ −ωL,ρ, 0 ≤ αℓ ≤ ρ (A.47)

for ρ sufficiently large. Thus, we can lower-bound the first sum on the RHS of (A.46)

by −Lδ(α)ωL,ρ and the second sum on the RHS of (A.46) by (L− Lδ(α))∆
∗
L,ρ(δ),

which yields
L∑
ℓ=1

∆L,ρ(αℓ) ≥ (L− Lδ(α))∆∗
L,ρ(δ)− Lδ(α)ωL,ρ. (A.48)

This implies that we can discard without loss of optimality every α for which

L∆∗
L,ρ(δ) ≥ Lδ(α)(ωL,ρ +∆∗

L,ρ(δ)) (A.49)

since for such α’s we also have that the RHS of (A.48) is nonnegative. Hence, an α

maximizing (A.32) must satisfy

Lδ(α)

L
> 1− ωL,ρ

ωL,ρ +∆∗
L,ρ(δ)

. (A.50)

As we shall show below, for every 0 < δ < 1 we have

ωL,ρ +∆∗
L,ρ(δ) ≥ −δ sup

ρ≥α′
sup

α′≤α≤ρ
ρg′ρ(α) (A.51)

for some 0 < α′ < ρ(1− δ) that is independent of ρ. We further show that the RHS

of (A.51) is independent of L and ρ and strictly positive. It follows that

Lδ(α)

L
> 1− ωL,ρ

−δ supρ≥α′ supα′≤α≤ρ ρg
′
ρ(α)

(A.52)

which, by (A.42), tends to one as ρ and L tend to infinity. Thus, for every 0 < δ < 1,

there exist sufficiently large L0 and ρ0 such that

Lδ(α) ≥ L/2, L ≥ L0, ρ ≥ ρ0. (A.53)
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This proves Lemma 5.5.

It remains to show (A.51). Let αmin = ρ(1 − δ). By Part 1) of Lemma A.1,

α ↦→ gρ(α) has exactly one maximizer, which we shall denote by α∗. Since ωL,ρ does

not depend on α, it follows that α∗ also maximizes α ↦→ ∆L,ρ(α). Furthermore, the

infimum of ∆L,ρ(α) over 0 ≤ α ≤ αmin is either achieved at α = 0 or at αmin.

By Part 3) of Lemma A.1 and by (A.42), we have

lim
L→∞,
ρ→∞

∆L,ρ(0) = ∞. (A.54)

We next show that

∆L,ρ(αmin) + ωL,ρ ≥ −δ sup
ρ≥α′

sup
α′≤α≤ρ

ρg′ρ(α). (A.55)

If αmin ≤ α∗, then this is clearly satisfied, since in this case ∆L,ρ(αmin) ≥ ∆L,ρ(0)

and ∆L,ρ(0) tends to infinity as L→ ∞ and ρ→ ∞. However, in general this case

does not occur for large ρ and L, since αmin tends to infinity as ρ → ∞ and, by

Part 2) of Lemma A.1, α∗ is not a function of ρ, which implies that αmin > α∗ for ρ

sufficiently large. We thus focus on the case where αmin > α∗. Note that

∆L,ρ(ρ)−∆L,ρ(αmin) = −ωL,ρ −∆L,ρ(αmin) (A.56)

since gρ(ρ) = 0. Thus, by the mean value theorem [56, Th. 5.10], there exists an

x0 ∈ [αmin, ρ] such that

− ωL,ρ −∆L,ρ(αmin) =

∫ ρ

αmin

∆′
L,ρ(α)dα = ρδ∆′

L,ρ(x0) (A.57)

where ∆′
L,ρ(·) denotes the derivative of α ↦→ ∆L,ρ(α). We can therefore lower-bound

∆L,ρ(αmin) + ωL,ρ ≥ −δ sup
αmin≤α≤ρ

ρ∆′
L,ρ(α)

≥ −δ sup
ρ≥α′

sup
α′≤α≤ρ

ρg′ρ(α) (A.58)

for every α′ ∈ (α∗, αmin), where the second inequality follows by noting that

∆′
L,ρ(x) = g′ρ(x) and by further optimizing over ρ.1 It remains to show that the RHS

1Since α∗ is independent of ρ and αmin → ∞ as ρ → ∞, it follows that we can find an

α′ ∈ (α∗, αmin) that is independent of ρ and that satisfies (A.58).
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of (A.58) is independent of L and ρ and strictly positive. To this end, we first note

that α ↦→ gρ(α) is independent of L. Furthermore, by optimizing over ρ ≥ α′, the

RHS of (A.58) becomes also independent of ρ and, by Part 4) of Lemma A.1,

sup
ρ≥α′

sup
α′≤α≤ρ

ρg′ρ(α) < 0, T > 2, ρ ≥ α′ (A.59)

for every α′ ∈ (α∗, αmin). Thus, the claim (A.51) follows, which concludes the proof

of Lemma 5.5.

A.6 Proof of Lemma 5.6

A.6.0.1 Part 1)

The difference between J̄(α) and J̄(ρ) can be lower-bounded by

J̄(ρ)− J̄(α) ≥ gρ(α). (A.60)

where the function α ↦→ gρ(α) was defined in (A.40). By Parts 1) and 3) of Lemma A.1

(Appendix A.5), gρ(·) is nonnegative for sufficiently large ρ. It follows that, for such

ρ,

sup
0≤α≤ρ

J̄(α) = J̄(ρ). (A.61)

This proves Part 1) of Lemma 5.6.

A.6.0.2 Part 2)

To study

sup
0≤α≤ρ

{
J̄(α)

T
−
√
V̄ρ(α)

LT2
Q−1(ϵ)

}
(A.62)

we consider the difference

J̄(ρ)−
√
V̄ (ρ)

L
Q−1(ϵ)− J̄(α) +

√
V̄ρ(α)

L
Q−1(ϵ)

≥ gρ(α)−
√
V̄ (ρ)

L
Q−1(ϵ) +

√
V̄ρ(α)

L
Q−1(ϵ). (A.63)
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Clearly, every α for which the RHS of (A.63) is nonnegative is suboptimal and can

be discarded without loss of optimality. We continue by lower-bounding V̄ρ(α) ≥ 0

and by using that V̄ (ρ) ≤ V̄UB(ρ0), ρ ≥ ρ0 for sufficiently large ρ0 and for some

constant V̄UB(ρ0) that is independent of ρ (Lemma 5.3, Appendix A.3). Since by the

assumption 0 < ϵ < 1
2 we have Q−1(ϵ) > 0, this yields

gρ(α)−
√
V̄ (ρ)

L
Q−1(ϵ) +

√
V̄ρ(α)

L
Q−1(ϵ)

≥ gρ(α)−
√
V̄UB(ρ0)

L
Q−1(ϵ)

≜ fL,ρ(α). (A.64)

Again, the values of α for which fL,ρ(α) ≥ 0 are suboptimal and can be discarded

without loss of optimality.

Let us write fL,ρ(α) as fL,ρ(α) ≜ gρ(α)− ωL, where

ωL ≜

√
V̄UB(ρ0)

L
Q−1(ϵ). (A.65)

Note that ∆L,ρ(α) defined in (A.40) and fL,ρ(α) only differ in terms that do not

depend on α (namely, ωL,ρ and ωL), so they have the same behavior with respect

to α as summarized in Lemma A.1. Let δL ≜ 1− α0/ρ, where α0 is the unique real

root of α ↦→ fL,ρ(α). Indeed, we know that α ↦→ fL,ρ(α) has only one root because

ωL ≥ 0 and ωL → 0 as L → ∞, so fL,ρ(ρ) = −ωL ≤ 0 and fL,ρ(0) > 0 for L and ρ

sufficiently large. Furthermore, we have f ′L,ρ(α) = g′ρ(α) and g
′
ρ(α) is either strictly

positive, strictly negative, or changes its sign once from positive to negative (Part

1) of Lemma A.1). Consequently, fL,ρ(α), 0 ≤ α ≤ ρ is minimized at an endpoint

of [0, ρ] and it has a unique maximizer, so the claim follows. By the same line of

arguments, we also conclude that all α’s between 0 and ρ(1− δL) can be discarded

without loss of optimality, since for such α’s the function fL,ρ(α) is nonnegative.

To study the behavior of δL, we next note that ωL = −(fL,ρ(ρ)− fL,ρ(α0)). It

follows then by similar steps as in (A.57)–(A.58) that

ωL ≥ − δL sup
α0≤α≤ρ

ρf ′L,ρ(α). (A.66)

Let α∗ denote the unique maximizer of α ↦→ fL,ρ(α). Recall that α
∗ does not depend

on ρ, since by Part 2) of Lemma A.1, the derivative of α ↦→ gρ(α) does not depend on
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ρ. We next show that we can find an α̃ independent of L and ρ such that α∗ < α̃ < α0.

Indeed, by Lemma A.1, we have that gρ(α
∗) > 0 for sufficiently large ρ. This in turn

implies that

lim
L→∞,
ρ→∞

fL,ρ(α
∗) > 0 (A.67)

since limL→∞ ωL = 0. We next note that

lim
L→∞,
ρ→∞

fL,ρ(α̃) ≥ lim
L→∞,
ρ→∞

fL,ρ(α
∗)−

⏐⏐fL,ρ(α̃)− fL,ρ(α
∗)
⏐⏐ (A.68)

where the difference

fL,ρ(α̃)− fL,ρ(α
∗) = gρ(α̃)− gρ(α

∗)

= log
1 + Tα̃

1 + Tα∗ + (T− 1)E

[
log

(1 + Tα∗)Z1 + T− 1 + β(ρ0)

(1 + Tα̃)Z1 + T− 1 + β(ρ0)

]
(A.69)

is independent of L and ρ. By the continuity of α ↦→ gρ(α), it follows from (A.67)–

(A.69) that there exists an α̃ ∈ (α∗, ρ] that is independent of L and ρ such that

lim
L→∞,
ρ→∞

fL,ρ(α̃) > 0. (A.70)

In other words, if L and ρ are sufficiently large, then we can find an α̃ ∈ (α∗, α0)

that is independent of L and ρ. Thus, in this case the RHS of (A.66) can be further

lower-bounded by

ωL ≥ −δL sup
α̃≤α≤ρ

ρf ′L,ρ(α)

≥ −δL sup
ρ≥α̃

sup
α̃≤α≤ρ

ρf ′L,ρ(α). (A.71)

We next argue that the constant

F ≜ − sup
ρ≥α̃

sup
α̃≤α≤ρ

ρf ′L,ρ(α) (A.72)

is independent of L and ρ and strictly positive. Indeed, we have that f ′L,ρ(x) = g′ρ(x),

which is independent of L. Furthermore, by optimizing over ρ ≥ α̃, the RHS of (A.72)
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becomes independent of ρ. Finally, setting α′ = α̃ in (A.43) (Part 4) of Lemma A.1)

yields

sup
ρ≥α̃

sup
α̃≤α≤ρ

ρg′ρ(α) < 0, ρ ≥ α̃. (A.73)

Hence, the claim follows. Consequently, we obtain from (A.71) and the definition of

ωL and F that, for sufficiently large L0 and ρ0,

δL ≤
√
V̄UB(ρ0)Q

−1(ϵ)

F

1√
L
, ρ ≥ ρ0, L ≥ L0. (A.74)

We next tighten this bound on δL. Indeed, using that without loss of optimality

we can assume ρ(1 − δL) ≤ α ≤ ρ, we can derive a tighter lower bound on (A.63)

by lower-bounding V̄ρ(α) using the lower bound given in Appendix A.8 instead of

lower-bounding it by zero. Specifically, by (A.90) in Appendix A.8,√
V̄ρ(α)

L
≥
√
V̄ (ρ)−ΥδL

L
≥
√
V̄ (ρ)

L
−
√

ΥδL
L

, ρ(1− δL) ≤ α ≤ ρ. (A.75)

We can thus lower-bound (A.63) as

J̄(ρ)−
√
V̄ (ρ)

L
Q−1(ϵ)− J̄(α) +

√
V̄ρ(α)

L
Q−1(ϵ)

≥ gρ(α)−
√

ΥδL
L

Q−1(ϵ)

≜ f̃L,ρ(α), ρ(1− δL) ≤ α ≤ ρ. (A.76)

Again, the values of α for which f̃L,ρ(α) ≥ 0 are suboptimal and can be discarded

without loss of optimality.

Let us write f̃L,ρ(α) = gρ(α)− ω̃L, where

ω̃L ≜

√
ΥδL
L

Q−1(ϵ). (A.77)

Further let δ̃L ≜ 1− α̃0/ρ, where α̃0 is the unique real root of α ↦→ f̃L,ρ(α). As above,

it can be shown that all α’s between 0 and ρ(1− δ̃L) can be discarded without loss

of optimality, since for such α’s the function f̃L,ρ(α) is nonnegative. By repeating

the steps (A.66)–(A.74) with ωL replaced by ω̃L, we obtain for sufficiently large L0
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and ρ0

δ̃L ≤ 1

F

√
ΥδL
L

Q−1(ϵ)

≤
(
Q−1(ϵ)

F

)3/2
√
Υ
√
V̄UB(ρ0)

1

L3/4
(A.78)

where the last inequality follows by upper-bounding δL using (A.74).

If we perform the above steps N times, then we obtain that, without loss of

optimality,

α ≥ ρ
(
1− δ

(N)
L

)
(A.79)

where δ
(N)
L satisfies

0 ≤ δ
(N)
L ≤

(
Q−1(ϵ)

√
Υ

F

)2−2−N+1(
V̄UB(ρ0)

Υ

)2−N
1

L1−2−N
. (A.80)

Thus, by letting N tend to infinity, we conclude that we can assume without loss of

optimality that

α ≥ ρ
(
1− δ

(∞)
L

)
(A.81)

where δ(∞) satisfies

0 ≤ δ(∞) ≤

(
Q−1(ϵ)

√
Υ

F

)2
L

. (A.82)

This concludes the proof of Part 2) of Lemma 5.6.

A.7 Proof of Lemma A.1

The derivative of α ↦→ gρ(α) can be expressed as

g′ρ(α) =
T

1 + Tα
− (T− 1)E

[
TZ1

(1 + Tα)Z1 + (T− 1) + β(ρ0)

]
= T

[
1

1 + Tα
− T− 1

1 + Tα

+
T− 1

1 + Tα

T− 1 + β(ρ0)

1 + Tα
e

T−1+β(ρ0)
1+Tα E1

(
T− 1 + β(ρ0)

1 + Tα

)]
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=
T

1 + Tα

[
−(T− 2)

+ (T− 1)
T− 1 + β(ρ0)

1 + Tα
e

T−1+β(ρ0)
1+Tα E1

(
T− 1 + β(ρ0)

1 + Tα

)]
. (A.83)

The first equality follows because, by [57, App. A.9], we can swap derivative and

expected value; the second equality follows by solving the expected value using [28,

Sec. 3.353-5.7]. Note that the RHS of (A.83) does not depend on ρ. Hence Part 2)

of Lemma A.1 follows immediately.

We next prove Part 1) of Lemma A.1. Because T/(1+Tα) in (A.83) is nonnegative,

the sign of α ↦→ g′ρ(α) is determined by the terms inside the square brackets. Let

ϑ ≜ 1+Tα
T−1+β(ρ0)

. Note that ϑ ↦→ 1
ϑ exp

(
1
ϑ

)
E1

(
1
ϑ

)
is strictly decreasing since, by [28,

Sec. 3.353-3],

1

ϑ
e

1
ϑE1

(
1

ϑ

)
= 1−

∫ 1

0

e−
t

(1−t)ϑ dt (A.84)

and ϑ ↦→ e−
t

(1−t)ϑ is strictly positive and strictly increasing in ϑ. Hence, the function

inside the squared brackets, defined as

Ξ(α) ≜ −(T− 2) + (T− 1)
T− 1 + β(ρ0)

1 + Tα
e

T−1+β(ρ0)
1+Tα E1

(
T− 1 + β(ρ0)

1 + Tα

)
(A.85)

is strictly decreasing. This implies that α ↦→ g′ρ(α) is either strictly positive, strictly

negative, or changes its sign once from positive to negative.

We next prove Part 3) of Lemma A.1 by showing that limρ→∞ gρ(0) = ∞ for

T > 2. To this end, we express gρ(0) as

gρ(0) = (T− 2)E

[
log

(
1 +

TρZ1

Z1 + (T− 1) + β(ρ0)

)]
+ E

[
log

(
Z1 +

T− 1 + β(ρ0)

1 + Tρ

)]
− E

[
log
(
Z1 + T− 1 + β(ρ0)

)]
. (A.86)

The first expected value on the RHS of (A.86) tends to infinity as ρ→ ∞, whereas

the other expected values are bounded in ρ. For T > 2, it follows that the RHS of

(A.86) tends to infinity as ρ→ ∞. Hence the claim follows.

We finally prove Part 4) of Lemma A.1 by analyzing ρg′ρ(α). It follows from
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(A.83) that

ρg′ρ(α) =
Tρ

1 + Tα

{
2− T+ (T− 1)

T− 1 + β(ρ0)

1 + Tα
e

T−1+β(ρ0)
1+Tα E1

(
T− 1 + β(ρ0)

1 + Tα

)}
.

(A.87)

As argued above, the function α ↦→ Ξ(α) inside the curly brackets (cf. (A.85)) is

independent of L and ρ and is strictly decreasing in α. Hence, its supremum over

α′ ≤ α ≤ ρ is achieved for α = α′. Further note that Ξ(α′) is strictly negative for

T > 2 and α′ > α∗. As for the term outside the curly brackets, we have for every

α′ > α∗

inf
ρ≥α′

inf
α′≤α≤ρ

Tρ

1 + Tα
=

Tα′

1 + Tα′ > 0. (A.88)

Combining these two results, we conclude that

sup
ρ≥α′

sup
α′≤α≤ρ

ρg′ρ(α) < 0, T > 2, α′ > α∗. (A.89)

This proves Part 4) of Lemma A.1 and concludes the proof of Lemma A.1.

A.8 Lower Bound on V̄ρ(α)

We show that for all ρ(1− δ) ≤ α ≤ ρ, 0 ≤ δ ≤ 1/2, and ρ ≥ ρ0, we have

V̄ρ(α) ≥ V̄ (ρ)−Υδ (A.90)

where Υ is a positive constant that only depends on T. Let Ω(α) ≜ j̄ℓ(α)− J̄(α), i.e.,

Ω(α) = −Tρ− Tα

1 + Tρ
(Z1 − 1)− Tρ

1 + Tρ
(Z2 − (T− 1))

+ (T− 1) log
(
(1 + Tα)Z1 + Z2 + β(ρ)

)
− (T− 1)E

[
log
(
(1 + Tα)Z1 + Z2 + β(ρ)

)]
. (A.91)

It follows that V̄ρ(α) = E[Ω2(α)]. We next analyze the difference

V̄ (ρ)− V̄ρ(α) = E
[(
Ω(ρ)− Ω(α)

)(
Ω(ρ) + Ω(α)

)]
≤
√
E
[
(Ω(ρ)− Ω(α))2

]
E
[
(Ω(ρ) + Ω(α))2

]
(A.92)
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where the inequality follows from the Cauchy-Schwarz inequality. On the one hand,

using (A.18), we have for every ρ0 > 0,

sup
α>0,
ρ≥ρ0

E
[(
Ω(ρ) + Ω(α)

)2] ≤ c2,2 sup
ρ≥ρ0

E
[
Ω2(ρ)

]
+ c2,2 sup

α≥0,
ρ≥ρ0

E
[
Ω2(α)

]
= c2,2 sup

ρ≥ρ0
V̄ (ρ) + c2,2 sup

α≥0,
ρ≥ρ0

V̄ρ(α) (A.93)

which, by Lemma 5.3, is bounded. On the other hand, using (A.18) and that

E[X2] ≥ E[X]2 for every random variable X, we obtain

E
[(
Ω(ρ)− Ω(α)

)2]
= E

[(
Tρ− Tα

1 + Tρ
(Z1 − 1)

+ (T− 1) log

(
(1 + Tρ)Z1 + Z2 + β(ρ)

(1 + Tα)Z1 + Z2 + β(ρ)

)
− (T− 1)E

[
log

(
(1 + Tρ)Z1 + Z2 + β(ρ)

(1 + Tα)Z1 + Z2 + β(ρ)

)])2
]

≤ c3,2

(
Tρ− Tα

1 + Tρ

)2

+ 2c2,3(T− 1)2E

[
log2

(
(1 + Tρ)Z1 + Z2 + β(ρ)

(1 + Tα)Z1 + Z2 + β(ρ)

)]
. (A.94)

When ρ(1− δ) ≤ α ≤ ρ, this can be further upper-bounded as

E
[(
Ω(ρ)− Ω(α)

)2] ≤ c3,2δ
2 + 2c3,2(T− 1)2 log2

(
1 +

δ

1− δ

)
≤
(
c3,2 + 8c3,2(T− 1)2

)
δ2 (A.95)

where the last inequality follows because, by assumption, δ ≤ 1/2, hence δ2

(1−δ)2 ≤ 4δ2.

Combining (A.93) and (A.95) with (A.92) we establish (A.90).

A.9 High-SNR Approximations of Information

Rates

Lemma A.2 The quantities J̄(ρ), I(ρ) and I(ρ) can be approximated as

J̄(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)(1 + γ) + oρ(1) (A.96a)
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I(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)(1 + γ) + oρ(1) (A.96b)

I(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)(1 + γ) + oρ(1). (A.96c)

Proof: We can express J̄(ρ), I(ρ) and I(ρ) as (see (4.33), (4.12) and (4.31a))

J̄(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)
Tρ

1 + Tρ

+ (T− 1)E

[
log

(
Z1 +

Z2

(1 + Tρ)

)]
+ (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]
(A.97a)

I(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)
Tρ

1 + Tρ

+ (T− 1)E

[
log

(
Z1 +

Z2

(1 + Tρ)

)]
− E

[
log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
(A.97b)

I(ρ) = (T− 1) log(Tρ)− log Γ(T)− (T− 1)
Tρ

1 + Tρ

+ (T− 1)E

[
log

(
Z1 +

Z2

(1 + Tρ)

)]
. (A.97c)

Note that these expressions differ only in terms that vanish as ρ→ ∞. Indeed, we

have

(T− 1)E

[
log

(
Z1 +

Z2

(1 + Tρ)

)]
= −(T− 1)γ + oρ(1) (A.98)

(T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]
= oρ(1) (A.99)

E

[
log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
= oρ(1). (A.100)

Here, (A.98) follows because, by the dominated convergence theorem,

lim
ρ→∞

E

[
log

(
Z1 +

Z2

(1 + Tρ)

)]
= E

[
lim
ρ→∞

log

(
Z1 +

Z2

(1 + Tρ)

)]
(A.101)

and because E[logZ1] = −γ. The dominated convergence theorem can be applied

since (see (A.25))⏐⏐⏐⏐log(Z1 +
Z2

1 + Tρ

)⏐⏐⏐⏐ ≤ ⏐⏐log(Z1 + Z2)
⏐⏐+ ⏐⏐log(Z1)

⏐⏐ (A.102)
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and E
[⏐⏐log(Z1 + Z2)

⏐⏐+ ⏐⏐log(Z1)
⏐⏐] <∞.

Similarly, (A.99) and (A.100) follow by the dominated convergence theorem and

by noting that the terms inside the expected values on the LHS of (A.99) and (A.100)

vanish as ρ→ ∞. The dominated convergence theorem can be applied because for

every ρ0 > 0 and ρ ≥ ρ0⏐⏐⏐⏐log γ̃(T− 1,
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐ ≤ (T− 1) log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)
≤ (T− 1) log

(
1 +

β(ρ0)

Z1 + Z2

)
(A.103)

and because the expected value of the RHS of (A.103) is finite. Here, the first step

follows from Lemma 4.1, and the last follows because ρ ↦→ β(ρ) is monotonically

decreasing in ρ.

Finally, (T− 1) Tρ
1+Tρ in (A.97a)–(A.97c) can be expressed as

(T− 1)
Tρ

1 + Tρ
= (T− 1) + oρ(1). (A.104)

This establishes (A.96a)–(A.96c).

A.10 High-SNR Approximations of Dispersions

Lemma A.3 The quantities V̄ (ρ) and V (ρ) defined in (4.39d) and (4.39b), respec-

tively, can be approximated as

V̄ (ρ) = (T− 1)2
π2

6
+ (T− 1) + oρ(1) (A.105a)

V (ρ) = (T− 1)2
π2

6
+ (T− 1) + oρ(1). (A.105b)

Proof: We prove (A.105a) by analyzing V̄ (ρ) ≜ E
[(
j̄ℓ(ρ)− J̄(ρ)

)2]
in the limit

as ρ→ ∞. To this end, we first note that

j̄ℓ(ρ)− J̄(ρ) =
Tρ

1 + Tρ
(T− 1− Z2) + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− (T− 1)E

[
log

(
Z1 +

Z2

1 + Tρ

)]
+ (T− 1) log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)
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− (T− 1)E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]
tends to

T− 1− Z2 + (T− 1) log(Z1)− (T− 1)E[logZ1] (A.106)

as ρ→ ∞. (To obtain E[logZ1], we interchange limit and expectation, which can be

justified by the dominated convergence theorem.) Since Z1 and Z2 are independent,

we have that

E
[(
T− 1− Z2 + (T− 1) log(Z1)− (T− 1)E[logZ1]

)2]
= E

[
(T− 1− Z2)

2
]
+ (T− 1)2

(
E
[
log2(Z1)

]
− E

[
logZ1

]2)
= (T− 1) + (T− 1)2

π2

6
. (A.107)

It remains to show that we can swap limit (as ρ→ ∞) and expectation. To this end,

we next argue that the dominated convergence theorem applies. Indeed, proceeding

similarly as in Appendix A.3, we conclude that for every ρ0 > 0 and ρ ≥ ρ0

(
j̄ℓ(ρ)− J̄(ρ)

)2 ≤ c5,2

((
Tρ

1 + Tρ

)2

(Z2 − T+ 1)2

+ (T− 1)2 log2
(
Z1 +

Z2

1 + Tρ

)
+ (T− 1)2E

[
log

(
Z1 +

Z2

1 + Tρ

)]2
+ (T− 1)2 log2

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)
+ (T− 1)2E

[
log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)]2)

≤ c5,2

(
(Z2 − T+ 1)2 + (T− 1)2

(
log2(Z1 + Z2) + log2(Z1)

)
+ (T− 1)2E

[⏐⏐log(Z1 + Z2)
⏐⏐+ ⏐⏐log(Z1)

⏐⏐]2
+ (T− 1)2 log2

(
1 +

β(ρ0)

Z1 + Z2

)
+ (T− 1)2E

[
log

(
1 +

β(ρ0)

Z1 + Z2

)]2)
.
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To obtain the second inequality, we upper-bound the second term using that

(see (A.9))

log2
(
Z1 +

Z2

1 + Tρ

)
≤ log2(Z1 + Z2) + log2(Z1), (A.108)

the third term using that (see (A.25))⏐⏐⏐⏐log(Z1 +
Z2

1 + Tρ

)⏐⏐⏐⏐ ≤ ⏐⏐log(Z1 + Z2)
⏐⏐+ ⏐⏐log(Z1)

⏐⏐, (A.109)

the fourth term using that, for every ρ0 > 0 and ρ ≥ ρ0

log2
(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)
≤ log2

(
1 +

β(ρ)

Z1 + Z2

)
≤ log2

(
1 +

β(ρ0)

Z1 + Z2

)
, (A.110)

and the fifth term using that, for every ρ0 > 0 and ρ ≥ ρ0,

log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)
≤ log

(
1 +

β(ρ0)

Z1 + Z2

)
. (A.111)

Since the expected value of the RHS of (A.108) is finite, the dominated convergence

theorem applies and (A.105a) follows.

To prove (A.105b) we proceed similarly. Indeed, by Lemma 4.1,

iℓ(ρ)− I(ρ) =
Tρ

1 + Tρ
(T− 1− Z2) + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− (T− 1)E

[
log

(
Z1 +

Z2

1 + Tρ

)]
− log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
+ E

[
log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
tends to (A.106) as ρ tends to infinity. It remains to show that limit (as ρ → ∞)

and expectation can be swapped. We next argue that this follows from dominated

convergence theorem. Indeed, using (A.18), we obtain for every ρ0 > 0 and ρ ≥ ρ0
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that

(
iℓ(ρ)− I(ρ)

)2 ≤ c5,2

((
Tρ

1 + Tρ

)2

(Z2 − T+ 1)2 + (T− 1)2 log2
(
Z1 +

Z2

1 + Tρ

)
+ (T− 1)2E

[
log

(
Z1 +

Z2

1 + Tρ

)]2
+ log2 γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
+ E

[
log γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]2)

≤ c5,2

(
(Z2 − T+ 1)2 + (T− 1)2

(
log2(Z1 + Z2) + log2(Z1)

)
+ (T− 1)2E

[⏐⏐log(Z1 + Z2)
⏐⏐+ ⏐⏐log(Z1)

⏐⏐]2
+ (T− 1)2 log2

(
1 +

β(ρ0)

Z1 + Z2

)
+ (T− 1)2E

[
log

(
1 +

β(ρ0)

Z1 + Z2

)]2)
. (A.112)

Here, we upper-bound the first three terms as in (A.108), and the fourth term using

Lemma 4.1 and the monotonicity of ρ ↦→ β(ρ) which yield

log2 γ̃

(
T− 1,

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
≤ (T− 1)2 log2

(
1 +

β(ρ0)

Z1 + Z2

)
(A.113)

for every ρ0 > 0 and ρ ≥ ρ0. Furthermore, the last term is upper-bounded using

Lemma 4.1 and the monotonicity of ρ ↦→ β(ρ):⏐⏐⏐⏐log γ̃(T− 1,
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐ ≤ (T− 1) log

(
1 +

β(ρ0)

Z1 + Z2

)
. (A.114)

Since the expected value of the RHS of (A.112) is finite, the dominated convergence

theorem applies and (A.105b) follows.
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Appendix to Chapter 6

B.1 Proof of Lemma 6.3

The proof follows along similar lines as the proof of [23, Ch. XVI.4, Theorem 1]. The

main particularity of our result is that it holds uniformly in the parameter θ of the

distribution F̃θ, which makes the conditions of our lemma slightly more restrictive

in the sense that we require the first four moments of F̃θ to exist, whereas in the

original theorem this is required only up to the third moment. In any case, the steps

are almost analogous, and we will focus on explaining in detail those steps which

require special treatment.

Let us denote the characteristic function of the distribution F̃θ by

φθ(ζ) ≜ E
[
eiζX̃k

]
, ζ ∈ R (B.1)
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where X̃k ∼ F̃θ, and define

Gθ(x) ≜ N(x)− µ3,θ

6σ3
θ

√
n
(x2 − 1)n(x), x ∈ R. (B.2)

Note that (6.30) implies that

sup
θ∈Θ

|µ3,θ| <∞ (B.3)

since if the fourth moment is finite, then the absolute value of the third moment

is finite, too. Using (B.3) and (6.31), one can show that the derivative of Gθ(x) is

bounded in θ ∈ Θ, namely,

sup
θ∈Θ,
x∈R

|G′
θ(x)| = sup

θ∈Θ,
x∈R

⏐⏐⏐⏐n(x)− µ3,θ

6σ3
θ

√
n

(
2xn(x)− (x2 − 1)n′(x)

)⏐⏐⏐⏐
≤ sup

x∈R
n(x) +

sup
θ∈Θ

|µ3,θ|

6 inf
θ∈Θ

σ3
θ

√
n
sup
x∈R

⏐⏐2xn(x)− (x2 − 1)n′(x)
⏐⏐ <∞. (B.4)

The characteristic function of Gθ is given by

γθ(ζ) = e−
1
2 ζ

2

[
1 +

µ3,θ

6σ3
θ

√
n
(iζ)3

]
. (B.5)

From (B.4) and (B.5), it follows that Gθ satisfies the conditions of [23, Ch. XVI.3,

Lemma 2], namely, that for some positive constant m,

sup
θ∈Θ,
x∈R

⏐⏐G′
θ(x)

⏐⏐ ≤ m <∞ (B.6)

and that Gθ has a continuously-differentiable characteristic function γθ(ζ) satisfying

γθ(0) = 1 and γ′θ(0) = 0. Then, the inequality [23, Ch. XVI.3, Eq. (3.13)]

|F̃n,θ(x)−G(x)| ≤ 1

π

∫ T

−T

⏐⏐⏐⏐⏐φ
n
θ

(
ζ

σθ
√
n

)
− γθ(ζ)

ζ

⏐⏐⏐⏐⏐dζ + 24m

πT
(B.7)

and holds for all x and T > 0.

Using (B.7) with T = a
√
n, where the constant a is chosen sufficiently large such

that 24m
π < ϵa for some ϵ independent of x and θ, we can write

|F̃n,θ(x)−G(x)| ≤ 1

π

∫ a
√
n

−a
√
n

⏐⏐⏐⏐⏐φ
n
θ

(
ζ

σθ
√
n

)
− γθ(ζ)

ζ

⏐⏐⏐⏐⏐dζ + ϵ√
n
. (B.8)
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Choose some δ > 0 independent of x and θ. By assumption, the family of distribu-

tions F̃θ (parametrized by θ) is nonlattice, so supθ∈Θ |φθ(ζ)| is strictly smaller than

1 for every |ζ| ≥ δ. Furthermore, (6.30) implies that the function ζ ↦→ supθ∈Θ φθ(ζ)

is continuous. Consequently, there exists a number qδ,ζ̄ < 1 (independent of θ) such

that

sup
θ∈Θ

|φθ(ζ)| ≤ qδ,ζ̄ , δ ≤ |ζ| ≤ ζ̄ (B.9)

for some arbitrary ζ̄ ≥ a supθ∈Θ σθ.

To prove that ζ ↦→ supθ∈Θ φθ(ζ) is continuous, note that, by [23, Ch. XV.4,

Lemma 2],

sup
θ∈Θ

|φ′
θ(ζ)| ≤ sup

θ∈Θ
E
[
|X̃k|

]
, ζ ∈ R (B.10)

which by (6.30) is finite. Moreover, for every ζ1, ζ2 ∈ R,⏐⏐⏐⏐sup
θ∈Θ

φθ(ζ1)− sup
θ∈Θ

φθ(ζ2)

⏐⏐⏐⏐ ≤ sup
θ∈Θ

|φθ(ζ1)− φθ(ζ2)|

≤ sup
θ∈Θ

E
[
|X̃k|

]
|ζ1 − ζ2| (B.11)

where the second step follows by expanding ζ1 ↦→ φθ(ζ1) as

φθ(ζ1) = φθ(ζ2) + φ′
θ

(
ζ̃
)
(ζ1 − ζ2) (B.12)

for some ζ̃ ∈ (ζ1, ζ2) and by (B.10). Since supθ∈Θ E
[
|X̃k|

]
is finite by (B.10), it

follows that for every ϵ > 0 there exists a δ > 0 such that

|ζ1 − ζ2| ≤ δ =⇒
⏐⏐⏐⏐sup
θ∈Θ

φθ(ζ1)− sup
θ∈Θ

φθ(ζ2)

⏐⏐⏐⏐ ≤ ϵ. (B.13)

Thus, ζ ↦→ supθ∈Θ φθ(ζ) is continuous.

Using (B.9), the contribution of the intervals |ζ| > δσθ
√
n to the integral in (B.8)

can be bounded as

2

π
(a
√
n− δσθ

√
n)qnδ,ζ̄ +

1

π

∫
δσθ

√
n<|ζ|<a

√
n

⏐⏐⏐⏐γθ(ζ)ζ

⏐⏐⏐⏐dζ
≤ 2a

√
nqnδ,ζ̄ +

∫
|ζ|>δσθ

√
n

⏐⏐⏐⏐γθ(ζ)ζ

⏐⏐⏐⏐dζ
≤ 2a

√
nqnδ,ζ̄ +

∫
|ζ|>δ

√
n infθ∈Θ σθ

e−
1
2 ζ

2

[
1 +

sup
θ∈Θ

µ3,θ

6 inf
θ∈Θ

σ3
θ

√
n
ζ3
]

ζ
dζ (B.14)
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where the last step follows from the definition of γθ in (B.5) and by lower-bounding

σθ by infθ∈Θ σθ. The RHS of (B.14) tends to zero faster than any power of 1/n

uniformly in θ.

We next define

κθ(ζ) ≜ logφθ(ζ) +
1

2
σ2
θζ

2. (B.15)

Using (B.14) and (B.15), we can write the RHS of (B.8) as

1

π

∫
|ζ|<δσθ

√
n

e−
1
2 ζ

2

⏐⏐⏐⏐⏐⏐⏐
exp
(
nκθ

(
ζ

σθ
√
n

))
− 1− nµ3,θ

6

(
iζ

σθ
√
n

)3
ζ

⏐⏐⏐⏐⏐⏐⏐ dζ + o

(
1

n

)
. (B.16)

To estimate the integral in (B.16), we will use that

⏐⏐eα − 1− β
⏐⏐ = ⏐⏐(eα − eβ

)
+
(
eβ − 1− β

)⏐⏐ ≤ (|α− β|+ 1

2
β2

)
eγ (B.17)

for any γ ≥ max(|α|, |β|).
Recall that, by assumption (6.30), the fourth moment µ4,θ of the distribution F̃θ

satisfies

sup
θ∈Θ

µ4,θ <∞. (B.18)

This implies that

sup
θ∈Θ

∫ ∞

−∞
|x|ℓdF̃θ(x) <∞, ℓ = 1, 2, 3 (B.19)

since the existence of the k-th absolute moment implies the existence of all the

absolute and ordinary moments of order smaller than k. Then, given an ϵ > 0

independent of θ and ζ, it is possible to choose δ̃ (again, independent of θ and ζ)

such that, for |ζ| < δ̃, ⏐⏐⏐κθ(ζ)− 1

6
µ3,θ(iζ)

3
⏐⏐⏐ < ϵ|ζ|3 (B.20)

and

|κθ(ζ)| <
1

4
σ2
θζ

2,
⏐⏐⏐1
6
µ3,θ(iζ)

3
⏐⏐⏐ ≤ 1

4
σ2
θζ

2. (B.21)

Indeed, after a Taylor series expansion of ζ ↦→ κθ(ζ) around ζ = 0, and noting that

κθ(0) = κ′θ(0) = κ′′θ (0), the LHS of (B.20) becomes⏐⏐⏐κθ(ζ)− 1

6
µ3,θ(iζ)

3
⏐⏐⏐ = ⏐⏐⏐1

6
κ′′′θ (ζ̃)ζ

3 − 1

6
µ3,θ(iζ)

3
⏐⏐⏐ (B.22)
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for some ζ̃ ∈ (0, ζ). Equation (B.19) implies that φ′′′
θ (0) exists and [23, Ch. XV.4,

Lemma 2]

φ′′′
θ (0) = κ′′′θ (0) = i3µ3,θ. (B.23)

Furthermore, (B.18) implies that, for every ϵ > 0, there exists a ξ > 0 such that

sup
θ∈Θ,
|ζ|<ξ

⏐⏐⏐φ(k)
θ (ζ)− φ

(k)
θ (0)

⏐⏐⏐ ≤ ϵ, k = 0, 1, 2, 3. (B.24)

For k = 0, this follows from (B.11) and (B.19). In general, following the steps

(B.10)–(B.11), it can be shown that

sup
θ∈Θ,
|ζ|<ξ

⏐⏐⏐φ(k)
θ (ζ)− φ

(k)
θ (0)

⏐⏐⏐ ≤ sup
θ∈Θ

E
[
|X̃k|k

]
ξ, k = 0, 1, 2, 3 (B.25)

from which (B.24) follows because supθ∈Θ E
[
|X̃k|k

]
is, by (B.18), finite. By the

definition of κθ(ζ) in (B.15), the k-th derivative κ
(k)
θ (ζ) is given by the ratio between

a linear combination of derivatives of φθ(ζ) up to order k in the numerator, and

φθ(ζ)
k in the denominator. Since φθ(0) = 1, it follows that (B.24) implies that, for

every ϵ, there exists a δ̃ > 0 satisfying

sup
θ∈Θ,

|ζ|<δ̃

⏐⏐⏐κ′′′θ (ζ)− κ′′′θ (0)
⏐⏐⏐ ≤ 6ϵ. (B.26)

Combining (B.26) with (B.23), (B.22) can be bounded as⏐⏐⏐1
6
κ′′′θ (ζ̃)ζ

3 − 1

6
µ3,θ(iζ)

3
⏐⏐⏐ = 1

6
|ζ|3
⏐⏐⏐κ′′′θ (ζ̃)− i3µ3,θ

⏐⏐⏐ ≤ ϵ|ζ|3, |ζ| < δ̃. (B.27)

This proves (B.20). The inequalities in (B.21) follow along similar lines.

Finally, using (B.17) together with (B.20) and (B.21), and replacing ζ by ζ
nσθ

,

we obtain that the integrand in (B.16) is upper-bounded by

e−
1
4 ζ

2

|ζ|

(
ϵ

σ3
θ

√
n
|ζ|3 +

µ2
3,θ

72n
ζ6

)
= e−

1
4 ζ

2

(
ϵ

σ3
θ

√
n
ζ2 +

µ2
3,θ

72n
|ζ|5
)

≤ e−
1
4 ζ

2

⎛⎝ ϵ

inf
θ∈Θ

σ3
θ

√
n
ζ2 +

sup
θ∈Θ

µ2
3,θ

72n
|ζ|5
⎞⎠ , |ζ| < δσθ

√
n.

(B.28)

Integrating over ζ, this yields that (B.16) decays faster than 1/
√
n uniformly in x

and θ. This concludes the proof of Lemma 6.3.
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B.2 Lattice Distributions and Exponential Tilting

Let φθ(λ) be the characteristic function of the random variable Xθ with distribution

Fθ, and φ̃θ(λ) the characteristic function of the exponentially-tilted random variable

Vθ with distribution ϑθ,τ (see (6.18)).

Lemma B.1 Assume the family of distributions Fθ (parametrized by θ) is nonlattice,

i.e., for every δ > 0

sup
θ∈Θ

|φθ(ζ)| < 1, |ζ| ≥ δ. (B.29)

Then, the family of tilted distributions ϑθ,τ (parametrized by θ) is nonlattice, too, i.e.,

for every δ > 0

sup
θ∈Θ

|φ̃θ(ζ)| < 1, |ζ| ≥ δ. (B.30)

Proof: The characteristic function of the tilted random variable Vθ can be

written as

φ̃θ(ζ) ≜
∫ ∞

−∞
eiζxdϑθ,τ (x)

=

∫ ∞

−∞
eiζxe−ψθ(τ)+τγ̃eτxdFθ(x)

= e−ψθ(τ)+τγ̃
∫ ∞

−∞
e(iζ+τ)xdFθ(x)

= E
[
e(iζ+τ)(Xθ−γ̃)

]
e−ψθ(τ)+τγ̃

= E
[
e(iζ+τ)Xθ

]
e−iζγ̃e−ψθ(τ)

= E
[
e(iζ+τ)Xθ

]
e−iζγ̃

1

mθ(τ)
(B.31)

where mθ(τ) denotes the MGF of Xθ. It then follows that

|φ̃θ(ζ)| =
⏐⏐⏐E[e(iζ+τ)Xθ]⏐⏐⏐ 1

mθ(τ)
. (B.32)

Let α ∈ C satisfy |α| = 1 and

|φθ(ζ)| = αE
[
eiζXθ

]
. (B.33)
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Hence, if we write α = eiϕ for some phase ϕ,⏐⏐E[eiζXθ]⏐⏐ = E
[
αeiζXθ

]
= E[cos(ζXθ + ϕ)] + iE[sin(ζXθ + ϕ)]

= E[cos(ζXθ + ϕ)] (B.34)

where E[sin(ζXθ + ϕ)] = 0 because the absolute value of E
[
eiζXθ

]
is real-valued.

Likewise, for the tilted random variable Vθ, there exists an α̃ ∈ C satisfying |α̃| = 1

and

|φ̃θ(ζ)| = α̃
E
[
e(iζ+τ)Xθ

]
mθ(τ)

. (B.35)

Writing α̃ = eiϕ̃ for some phase ϕ̃, we thus obtain⏐⏐⏐⏐⏐E
[
e(iζ+τ)Xθ

]
mθ(τ)

⏐⏐⏐⏐⏐ = E
[
α̃e(iζ+τ)Xθ

]
mθ(τ)

=
E
[
eτXθ

(
cos
(
ζXθ + ϕ̃

)
+ i sin

(
ζXθ + ϕ̃

))]
mθ(τ)

=
E
[
eτXθ cos

(
ζXθ + ϕ̃

)]
mθ(τ)

(B.36)

where again E
[
eτXθ sin(ζXθ + ϕ)

]
= 0 because the absolute value of E

[
e(iζ+τ)Xθ

]
is

real-valued. It further follows that

E
[
cos
(
ζXθ + ϕ̃

)]2
≤ E

[
cos
(
ζXθ + ϕ̃

)]2
+ E

[
sin
(
ζXθ + ϕ̃

)]2
=
⏐⏐⏐E[ei(ζXθ+ϕ̃)]⏐⏐⏐2

=
⏐⏐⏐eiϕ̃E[e(iζXθ)]⏐⏐⏐2

=
⏐⏐⏐E[e(iζXθ)]⏐⏐⏐2

= E[cos(ζXθ + ϕ)]
2

(B.37)

where the last step is due to (B.34). Clearly,
⏐⏐E[eiζXθ]⏐⏐ = E[cos(ζXθ + ϕ)] ≥ 0. Thus,

we have that

E
[
cos
(
ζXθ + ϕ̃

)]
≤ E[cos(ζXθ + ϕ)] . (B.38)

Let now

f(Xθ) ≜ 1− cos(ζXθ + ϕ) (B.39)
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and

f̃(Xθ) ≜ 1− cos
(
ζXθ + ϕ̃

)
. (B.40)

Note that (B.29) is equivalent to

inf
θ∈Θ

E[f(Xθ)] > 0. (B.41)

Similarly, (B.30) is implied by

inf
θ∈Θ

E
[
eτXθ f̃(Xθ)

]
> 0 (B.42)

because

1− sup
θ∈Θ

E
[
eτXθ cos

(
ζXθ + ϕ̃

)]
mθ(τ)

= inf
θ∈Θ

⎧⎨⎩E
[
eτXθ

]
− E

[
eτXθ cos

(
ζXθ + ϕ̃

)]
mθ(τ)

⎫⎬⎭
=

infθ∈Θ

{
E
[
eτXθ f̃(Xθ)

]}
supθ∈Θmθ(τ)

(B.43)

and supθ∈Θmθ(τ) <∞ by assumption (6.6).

We next show that

inf
θ∈Θ

E
[
eτXθ f̃(Xθ)

]
= 0 =⇒ inf

θ∈Θ
E
[
f̃(Xθ)

]
= 0. (B.44)

Further note that, by (B.38),

E
[
f̃(Xθ)

]
= E

[
1− cos

(
ζXθ + ϕ̃

)]
≥ E[1− cos(λXθ + ϕ)] = E[f(Xθ)] . (B.45)

Since f(·) is nonnegative, infθ∈Θ E
[
f̃(Xθ)

]
= 0 implies that infθ∈Θ E[f(Xθ)] = 0.

Hence, by reverse logic,

inf
θ∈Θ

E[f(Xθ)] > 0 =⇒ inf
θ∈Θ

E
[
eτXθ f̃(Xθ)

]
> 0 (B.46)

which concludes the proof of (B.30).

To prove (B.44), we first note that, for every arbitrary δ > 0,

E
[
eτXθ f̃(Xθ)

]
= E

[
eτXθ f̃(Xθ)I{|Xθ| ≤ δ}

]
+ E

[
eτXθ f̃(Xθ)I{|Xθ| > δ}

]
≥ E

[
eτXθ f̃(Xθ)I{|Xθ| ≤ δ}

]
≥ E

[
f̃(Xθ)I{|Xθ| ≤ δ}

]
e−τδ. (B.47)
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Next note that

E
[
f̃(Xθ)

]
= E

[
f̃(Xθ)I{|Xθ| ≤ δ}

]
+ E

[
f̃(Xθ)I{|Xθ| > δ}

]
≤ E

[
f̃(Xθ)I{|Xθ| ≤ δ}

]
+ 2

supθ∈Θ E
[
|Xθ|2

]
δ2

(B.48)

where the inequality follows because f̃(Xθ) is bounded by 2 and by Chebyshev’s

inequality. By assumption (6.6), we have that supθ∈Θ E
[
X2
θ

]
<∞. Using (B.47) and

(B.48), it follows that

inf
θ∈Θ

E
[
f̃(Xθ)

]
≤ inf
θ∈Θ

E
[
f̃(Xθ)I{|Xθ| ≤ δ}

]
+ 2

supθ∈Θ E
[
|Xθ|2

]
δ2

≤ eτδ inf
θ∈Θ

E
[
eτXθ f̃(Xθ)

]
+ 2

supθ∈Θ E
[
|Xθ|2

]
δ2

. (B.49)

If infθ∈Θ E
[
eτXθ f̃(Xθ)

]
= 0 then, for every arbitrary δ > 0,

inf
θ∈Θ

E
[
f̃(Xθ)

]
≤ 2

supθ∈Θ E
[
|Xθ|2

]
δ2

. (B.50)

Thus, by letting δ → ∞, we obtain that infθ∈Θ E
[
f̃(Xθ)

]
≤ 0. Since f̃(·) is nonnega-

tive, we conclude that infθ∈Θ E
[
f̃(Xθ)

]
= 0, hence (B.44) follows.

B.3 Is(ρ)− is,ℓ(ρ) Is Nonlattice

Consider Is(ρ) defined in (4.27) and is,ℓ(ρ) defined in (4.12), and let

φρ,s(τ) ≜ E
[
eiτ(Is(ρ)−is,ℓ(ρ))

]
. (B.51)

We have the following result.

Lemma B.2 For every ρ0 > 0, 0 < s0 < smax, and δ > 0, we have

sup
ρ≥ρ0,

s∈[s0,smax]

|φρ,s(τ)| < 1, |τ | ≥ δ. (B.52)

Proof: We prove (B.52) in two steps. We first show that, for every ρmax, we

have

sup
ρ0≤ρ≤ρmax

sup
s∈[s0,smax]

|φρ,s(τ)| < 1, |τ | ≥ δ. (B.53)
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We then show that

lim
ρ→∞

sup
s∈[s0,smax]

|φρ,s(τ)| < 1, |τ | ≥ δ. (B.54)

To prove (B.53), we note that Is(ρ) − is,ℓ(ρ) is a continuous function of the

gamma-distributed random variables Z1 and Z2. Consequently, Is(ρ) − is,ℓ(ρ) is

nonlattice, so |φρ,s(τ)| < 1, |τ | ≥ δ for every δ > 0. Since τ ↦→ φρ,s(τ) is continuous

and the suprema in (B.53) are over the bounded intervals [ρ0, ρmax] and [s0, smax],

the claim (B.53) follows.

We next prove (B.54). Define

Bρ ≜ (T− 1) log(sTρ)− log Γ(T) (B.55)

and note that

|φρ,s(τ)| =
⏐⏐⏐eiτ(Is(ρ)−Bρ)E[e−iτ(is,ℓ(ρ)−Bρ)]⏐⏐⏐ = ⏐⏐⏐E[e−iτ(is,ℓ(ρ)−Bρ)]⏐⏐⏐ . (B.56)

Let

Λs,τ (Z1, Z2) ≜ −τ(−sZ2 + (T− 1) log(Z1)) (B.57a)

Πρ,s,τ (Z1, Z2) ≜ −τ
(
sZ2

(
1− Tρ

1 + Tρ

)
− (T− 1) log(Z1) + log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))
. (B.57b)

Using (B.57a) and (B.57b), we can write the RHS of (B.56) as⏐⏐⏐E[e−iτ(is,ℓ(ρ)−Bρ)]⏐⏐⏐ = ⏐⏐⏐E[eiΛs,τ (Z1,Z2)eiΠρ,s,τ (Z1,Z2)
]⏐⏐⏐ . (B.58)

We next show that

lim
ρ→∞

sup
s∈[s0,smax]

⏐⏐⏐⏐⏐⏐E[eiΛs,τ (Z1,Z2)eiΠρ,s,τ (Z1,Z2)
]⏐⏐⏐− ⏐⏐⏐E[eiΛs,τ (Z1,Z2)

]⏐⏐⏐⏐⏐⏐ = 0. (B.59)

It then follows that

lim
ρ→∞

sup
s∈[s0,smax]

⏐⏐⏐E[e−iτ(is,ℓ(ρ)−Bρ)]⏐⏐⏐ = sup
s∈[s0,smax]

⏐⏐⏐E[eiΛs,τ (Z1,Z2)
]⏐⏐⏐

= sup
s∈[s0,smax]

|Γ(1− iτ(T− 1))|
|(1− iτs)T−1|

< 1, |τ | ≥ δ (B.60)
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where the second equality follows because

E
[
eiΛs,τ (Z1,Z2)

]
= E

[
eiτsZ2e−iτ(T−1) logZ1

]
=

Γ(1− iτ(T− 1))

(1− iτs)T−1
(B.61)

and the inequality follows because

|Γ(1− iτ(T− 1))| ≤ Γ(1) = 1 (B.62a)

and

inf
s∈[s0,smax]

⏐⏐(1− iτs)T−1
⏐⏐ = (1 + τ2s20

) T−1
2 > 1, |τ | ≥ δ. (B.62b)

This concludes the proof of (B.54).

It remains to prove (B.59). In the following, we shorten the notation of Λs,τ (Z1, Z2)

and Πρ,s,τ (Z1, Z2) by omitting the arguments (Z1, Z2) and the subindexes (ρ, s, τ).

The LHS of (B.59) can be upper-bounded as

lim
ρ→∞

sup
s∈[s0,smax]

⏐⏐⏐⏐E[eiΛeiΠ]⏐⏐− ⏐⏐E[eiΛ]⏐⏐⏐⏐
≤ lim
ρ→∞

sup
s∈[s0,smax]

⏐⏐E[eiΛeiΠ]− E
[
eiΛ
]⏐⏐

= lim
ρ→∞

sup
s∈[s0,smax]

|E[cos(Λ + Π)− cos(Λ)] + iE[sin(Λ + Π)− sin(Λ)]| (B.63)

where the inequality follows by the triangle inequality. Evaluating the absolute value,

the RHS of (B.63) can be upper-bounded as

lim
ρ→∞

sup
s∈[s0,smax]

|E[cos(Λ + Π)− cos(Λ)] + iE[sin(Λ + Π)− sin(Λ)]|

= lim
ρ→∞

sup
s∈[s0,smax]

√
|E[cos(Λ + Π)− cos(Λ)]|2 + |E[sin(Λ + Π)− sin(Λ)]|2

≤ lim
ρ→∞

sup
s∈[s0,smax]

√
E2[|cos(Λ + Π)− cos(Λ)|] + E2[|sin(Λ + Π)− sin(Λ)|] (B.64)

where the last step follows by the triangle inequality. We next perform Taylor series

expansions to express cos(Λ + Π) and sin(Λ + Π) as

cos(Λ + Π) = cos(Λ)−Πsin(θ1) (B.65a)

sin(Λ + Π) = sin(Λ) + Πcos(θ2) (B.65b)
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for some θ1, θ2 ∈ (0,Π). Substituting (B.65) into the RHS of (B.64) we obtain that

lim
ρ→∞

sup
s∈[s0,smax]

√
E2[|cos(Λ + Π)− cos(Λ)|] + E2[|sin(Λ + Π)− sin(Λ)|]

= lim
ρ→∞

sup
s∈[s0,smax]

√
E2[|Πsin(θ1)|] + E2[|Πcos(θ2)|]

≤ lim
ρ→∞

sup
s∈[s0,smax]

√
2E[|Π|] (B.66)

where the last step follows because | sin(·)| ≤ 1 and | cos(·)| ≤ 1. We next show that

lim
ρ→∞

sup
s∈[s0,smax]

E[|Πρ,s,τ (Z1, Z2)|] = 0 (B.67)

which then together with (B.63)–(B.66) yields (B.59). To show (B.67), we first note

that

E[|Πρ,s,τ (Z1, Z2)|] = τ

{
s(T− 1)

(
1− Tρ

1 + Tρ

)
+ E

[
log

(
Z1 +

Z2

1 + Tρ

)]
− E[log(Z1)] + E

[
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]}
(B.68)

since

log

(
Z1 +

Z2

(1 + Tρ)

)
− log(Z1) ≥ 0 (B.69a)

− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
≥ 0. (B.69b)

Thus, by the monotonicity of the regularized lower incomplete gamma function,

sup
s∈[s0,smax]

E[|Πρ,s,τ (Z1, Z2)|]

≤ τ

{
smax(T− 1)

(
1− Tρ

1 + Tρ

)
+ E

[
log

(
Z1 +

Z2

1 + Tρ

)]
− E[log(Z1)]

+ E

[
− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]}
. (B.70)

We next use that

lim
ρ→∞

smax(T− 1)

(
1− Tρ

1 + Tρ

)
= 0. (B.71)
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Furthermore, by the dominated convergence theorem,

lim
ρ→∞

E

[
log

(
Z1 +

Z2

1 + Tρ

)]
= E

[
lim
ρ→∞

log

(
Z1 +

Z2

1 + Tρ

)]
= E[log(Z1)] (B.72)

and

lim
ρ→∞

E

[
− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
= E

[
lim
ρ→∞

− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
= 0. (B.73)

Indeed, the dominated convergence theorem can be applied in (B.72) because⏐⏐⏐⏐log(Z1 +
Z2

1 + Tρ

)⏐⏐⏐⏐ ≤ |log(Z1 + Z2)|+ |log(Z1)| (B.74)

and E[|log(Z1 + Z2)|+ |log(Z1)|] <∞. Likewise, the dominated convergence theorem

can be applied in (B.73) because⏐⏐⏐⏐log γ̃(T− 1,
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐ ≤ (T− 1) log

(
1 +

β(ρ)

(1 + Tρ)Z1 + Z2

)
≤ (T− 1) log

(
1 +

β(ρ0)

Z1 + Z2

)
, ρ ≥ ρ0 (B.75)

and because the expected value of the RHS of (B.75) is finite. (In (B.75), we define

β(ρ) ≜ Γ(T)
1

T−1
1+Tρ
Tρ .) Combining (B.71)–(B.73) with (B.70) yields (B.67).

B.4 Second Derivative of CGF

Bounded Away from Zero

Let Xθ be a zero-mean random variable parametrized by θ, whose MGF and CGF

are defined in (6.1) and (6.2), respectively. We have the following result.

Lemma B.3 Assume that there exists a ζ0 > 0 such that

sup
θ∈Θ,
|ζ|<ζ0

⏐⏐⏐m(k)
θ (ζ)

⏐⏐⏐ <∞, k = 0, 1, 2, 3, 4 (B.76)
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and that

inf
θ∈Θ

ψ′′
θ (0) > 0. (B.77)

Then

inf
θ∈Θ,
|ζ|<ζ0

ψ′′
θ (ζ) > 0. (B.78)

Proof: The LHS of (B.78) can be lower-bounded as

inf
θ∈Θ,
|ζ|<ζ0

|ψ′′
θ (ζ)| = inf

θ∈Θ,
|ζ|<ζ0

1

mθ(ζ)2

{
E
[
X2
θ e
ζXθ
]
E
[
eζXθ

]
− E

[
Xθe

ζXθ
]2}

≥ 1

sup
θ∈Θ,
|ζ|<ζ0

mθ(ζ)2
inf
θ∈Θ,
|ζ|<ζ0

{
E
[
X2
θ e
ζXθ
]
E
[
eζXθ

]
− E

[
Xθe

ζXθ
]2}

. (B.79)

By (B.76), the first term in (B.79) is bounded away from zero. Thus, in order to

show (B.78), it suffices to show that

inf
θ∈Θ,
|ζ|<ζ0

{
E
[
X2
θ e
ζXθ
]
E
[
eζXθ

]
− E

[
Xθe

ζXθ
]2}

> 0. (B.80)

To shorten notation, we next define

A ≜ Xθe
ζ
2Xθ (B.81a)

B ≜ e
ζ
2Xθ (B.81b)

as well as σ2
A ≜ E

[
A2
]
and σ2

B ≜ E
[
B2
]
. Hence, (B.80) can be written as

inf
θ∈Θ,
|τ |<ζ

{
σ2
Aσ

2
B − E[AB]

2

}
> 0. (B.82)

By following the proof of the Cauchy-Schwarz inequality [58, Th. 3.3.1], it can be

shown that

E[AB] ≤ σAσB

⎛⎝1− 1

2
inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
− B

σB

)2
]⎞⎠+

(B.83a)

E[AB] ≥ −σAσB

⎛⎝1− 1

2
inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
+

B

σB

)2
]⎞⎠+

. (B.83b)
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Consequently,

|E[AB]| ≤ σAσB max

⎧⎨⎩
⎛⎝1− 1

2
inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
− B

σB

)2
]⎞⎠+

,

⎛⎝1− 1

2
inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
+

B

σB

)2
]⎞⎠+⎫⎬⎭ . (B.84)

Using (B.84), we can lower-bound the LHS of (B.82) as

inf
θ∈Θ,
|ζ|<ζ0

{
σ2
Aσ

2
B − E[AB]

2

}
≥ inf
θ∈Θ,
|ζ|<ζ0

E
[
A2
]

inf
θ∈Θ,
|ζ|<ζ0

E
[
B2
]

×

⎛⎜⎝1−max

⎧⎪⎨⎪⎩
⎡⎣⎛⎝1− 1

2
inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
− B

σB

)2
]⎞⎠+⎤⎦2

,

⎡⎣⎛⎝1− 1

2
inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
+

B

σB

)2
]⎞⎠+⎤⎦2

⎫⎪⎬⎪⎭
⎞⎟⎠ . (B.85)

Thus, in order to show (B.82), it suffices to prove that

inf
θ∈Θ,
|ζ|<ζ0

E
[
A2
]
> 0 (B.86a)

inf
θ∈Θ,
|ζ|<ζ0

E
[
B2
]
> 0 (B.86b)

inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
− B

σB

)2
]
> 0 (B.86c)

inf
θ∈Θ,
|ζ|<ζ0

E

[(
A

σA
+

B

σB

)2
]
> 0. (B.86d)

To prove (B.86a), recall that, by (B.81a),

inf
θ∈Θ,
|ζ|<ζ0

E
[
A2
]
= inf
θ∈Θ,
|ζ|<ζ0

E
[
X2
θ e
ζXθ
]
. (B.87)

We next show that

inf
θ∈Θ,
|ζ|<ζ0

E
[
X2
θ e
ζXθ
]
= 0 =⇒ inf

θ∈Θ
E
[
X2
θ

]
= 0. (B.88)

153



APPENDIX B. APPENDIX TO CHAPTER 6

Since E
[
X2
θ

]
= ψ′′

θ (0), it follows by assumption (B.77) that infθ∈Θ E
[
X2
θ

]
> 0. Hence,

by reverse logic, (B.88) implies that infθ∈Θ,
|ζ|<ζ0

E
[
X2
θ e
ζXθ
]
> 0, which is (B.86a).

To prove (B.88), we first note that, for every arbitrary δ > 0,

E
[
X2
θ e
ζXθ
]
= E

[
X2
θ e
ζXθ I{|Xθ| ≤ δ}

]
+ E

[
X2
θ e
ζXθ I{|Xθ| > δ}

]
≥ E

[
X2
θ I{|Xθ| ≤ δ}

]
e−ζδ. (B.89)

We further have that

E
[
X2
θ

]
= E

[
X2
θ I{|Xθ| ≤ δ}

]
+ E

[
X2
θ I{|Xθ| > δ}

]
≤ E

[
X2
θ I{|Xθ| ≤ δ}

]
+

√
supθ∈Θ E[X4

θ ] supθ∈Θ E[X2
θ ]

δ
(B.90)

by the Cauchy-Schwarz and the Chebyshev inequality. Using (B.89) and (B.90), it

follows that

inf
θ∈Θ

E
[
X2
θ

]
≤ inf
θ∈Θ

E
[
X2
θ I{|Xθ| ≤ δ}

]
+

√
supθ∈Θ E[X4

θ ] supθ∈Θ E[X2
θ ]

δ

≤ eζδ inf
θ∈Θ,
|ζ|<ζ0

E
[
X2
θ e
ζXθ
]
+

√
supθ∈Θ E[X4

θ ] supθ∈Θ E[X2
θ ]

δ
. (B.91)

Thus, if infθ∈Θ,
|ζ|<ζ

E
[
X2
θ e
ζXθ
]
= 0 then, for every arbitrary δ > 0,

inf
θ∈Θ

E
[
X2
θ

]
≤
√
supθ∈Θ E[X4

θ ] supθ∈Θ E[X2
θ ]

δ
. (B.92)

Since the suprema on the RHS of (B.92) are bounded by assumption, we obtain that

infθ∈Θ E
[
X2
θ

]
≤ 0 upon letting δ → ∞. Since X2

θ is nonnegative, the claim (B.88)

follows.

To prove (B.86b), recall that E[B] = E
[
eζXθ

]
. Since Xθ is zero-mean by assump-

tion, it follows by Jensen’s inequality that

E
[
eζXθ

]
≥ 1. (B.93)

Hence, the claim follows.

We next show (B.86c). Using (B.81a) and (B.81b), we can lower-bound the LHS

of (B.86c) by

1

supθ∈Θ,
|ζ|<ζ0

E[X2
θ e
ζXθ ]

inf
θ∈Θ,
|ζ|<ζ0

E

⎡⎣eζXθ(Xθ −

√
E[X2

θ e
ζXθ ]

E[eζXθ ]

)2⎤⎦ . (B.94)
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The first term is bounded away from zero by assumption (B.76). We next show that

inf
θ∈Θ,
|ζ|<ζ0

E

⎡⎣eζXθ(Xθ −

√
E[X2

θ e
ζXθ ]

E[eζXθ ]

)2⎤⎦ > 0. (B.95)

To this end, we follow along the steps (B.88)–(B.92) used to show (B.86a), but

replacing X2
θ by

(Xθ − ηθ,ζ)
2

(B.96)

where

ηθ,ζ ≜

√
E[X2

θ e
ζXθ ]

E[eζXθ ]
. (B.97)

Specifically, we shall show that

inf
θ∈Θ,
|ζ|<ζ0

E
[
(Xθ − ηθ,ζ)

2
eζXθ

]
= 0 =⇒ inf

θ∈Θ,
|ζ|<ζ0

E
[
(Xθ − ηθ,ζ)

2
]
= 0. (B.98)

Since Xθ is zero mean, we have that E
[
(Xθ − ηθ,ζ)

2
]

≥ E
[
X2
θ

]
, so if

infθ∈Θ,
|ζ|<ζ0

E
[
(Xθ − ηθ,ζ)

2
]
= 0, then infθ∈Θ E

[
X2
θ

]
= 0, too. Furthermore, by as-

sumption (B.77), infθ∈Θ E
[
X2
θ

]
> 0. Hence, by reverse logic, (B.98) implies that

infθ∈Θ,
|ζ|<ζ0

E
[
(Xθ − ηθ,ζ)

2
eζXθ

]
> 0, which is (B.86c).

It remains to prove (B.98). Indeed, following the steps (B.89)–(B.92) but with X2
θ

replaced by (Xθ − ηθ,ζ)
2
, we obtain that, if infθ∈Θ,

|ζ|<ζ0
E
[
(Xθ − ηθ,ζ)

2
eζXθ

]
= 0, then

inf
θ∈Θ,
|ζ|<ζ0

E
[
(Xθ − ηθ,ζ)

2
]
≤

√
supθ∈Θ,

|ζ|<ζ0
E
[
(Xθ − ηθ,ζ)

4
]
supθ∈Θ,

|ζ|<ζ0
E
[
(Xθ − ηθ,ζ)

2
]

δ
.

(B.99)

The suprema in (B.99) are bounded. Indeed, using that

|a1 + · · ·+ aη|ν ≤ cη,ν(|a1|ν + · · ·+ |aη|ν), η, ν ∈ Z+ <∞ (B.100)

for some positive constant cη,ν that only depends on η and ν, we can upper-bound

(Xθ − ηθ,ζ)
k
, k = {2, 4} as

(Xθ − ηθ,ζ)
k ≤ c2,kX

k
θ + c2,k

(
E
[
X2
θ e
ζXθ
]

E[eζXθ ]

)k
, k = {2, 4} (B.101)
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where c2,k is a positive constant that only depends on k. Hence, the claim follows by

(B.76) and (B.93). We thus obtain (B.98) from (B.99) upon letting δ tend to infinity.

Finally, (B.86d) follows by the same steps as the ones used to show (B.86c), but

with ηθ,ζ replaced by −ηθ,ζ .

B.5 Proof of Lemma 4.2

By [57, App. A.9], proving Parts 1) and 2) of Lemma 4.2 is equivalent to proving

that, for 0 < s0 < 1, ρ0 > 0, and 0 < a < 1/(T− 1)

sup
−a(T−1)≤τ≤a,

s∈[s0,1],
ρ≥ρ0

E
[
(Is(ρ)− iℓ,s(ρ))

keτ(iℓ,s(ρ)−Is(ρ))
]
<∞, k ∈ Z+

0 (B.102)

and that for 0 < s0 < smax, 0 < ρ0 < ρmax, 0 < a < 1, and 0 < b <

min
{

T
T−1 ,

1+Tρmax

Tρmaxsmax

}
sup

−a≤τ≤b,
s∈[s0,smax],
ρ∈[ρ0,ρmax]

E
[
(Is(ρ)− iℓ,s(ρ))

keτ(iℓ,s(ρ)−Is(ρ))
]
<∞, k ∈ Z+

0 . (B.103)

B.5.1 Proof of Part 1)

To prove Part 1) of Lemma 4.2, we need to show that (B.102) holds. By Hölder’s

inequality, for any arbitrary δ ∈ (0, 1 − a(T − 1)) such that k/δ is an integer, the

LHS of (B.102) can be upper-bounded as

sup
s∈[s0,1],
ρ≥ρ0

E
[
(Is(ρ)− iℓ,s(ρ))

k/δ
]δ

sup
−a(T−1)≤τ≤a,

s∈[s0,1],
ρ≥ρ0

E
[
e

τ
1−δ (Is(ρ)−iℓ,s(ρ))

]1−δ
, k ∈ Z+

0 .

(B.104)

By following along similar lines as in the proof of Lemma B.9 (Appendix B.9), it can

be shown that the first supremum in (B.104) is bounded. We next show that the

second supremum in (B.104) is bounded by proving that, for every 0 < ξ < 1,

sup
s∈[s0,1],
ρ≥ρ0

E
[
e−ξ(Is(ρ)−iℓ,s(ρ))

]
<∞ (B.105)
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and that, for every 0 < ξ < 1/(T− 1),

sup
s∈[s0,1],
ρ≥ρ0

E
[
eξ(Is(ρ)−iℓ,s(ρ))

]
<∞. (B.106)

Part 1) of Lemma 4.2 follows then by the convexity of the MGF [59, Lemma 2.2.5].

The LHS of (B.105) can be written as

E
[
eξ(iℓ,s(ρ)−Is(ρ))]

= E

[
exp

{
ξ

(
−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}]
× exp

{
−ξ
(
−s Tρ

1 + Tρ
(T− 1) + (T− 1)E

[
log
(
Z1 +

Z2

1 + Tρ

)]
−E

[
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)])}
. (B.107)

We next upper-bound the first expected value on the RHS of (B.107) as follows.

Define βρ,s ≜ Γ(T)
1

T−1
1+Tρ
sTρ . For every Z1 ≥ 0 and Z2 ≥ 0, the exponent inside this

expected value can be upper-bounded as

−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
≤ (T− 1) log(Z1 + Z2) + (T− 1) log

(
1 +

βs0,ρ0
Z1 + Z2

)
= (T− 1) log

(βs0,ρ0 + Z1 + Z2

Z1 + Z2

)
(B.108)

where we have used (4.1) to bound the regularized lower incomplete gamma function.

Hence, we obtain

E

[
exp

{
ξ

(
−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}]
≤ E

[
exp

{
ξ(T− 1) log

(βs0,ρ0 + Z1 + Z2

Z1 + Z2

)}]
= E

[(
1 +

βs0,ρ0
Z1,2

)ξ(T−1)]
(B.109)
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where the last equality follows by defining Z1,2 ≜ Z1+Z2, which is Gamma-distributed

with parameters (T, 1). We next show that

E

[(
1 +

βs0,ρ0
Z1,2

)ξ(T−1)]
<∞. (B.110)

To this end, we first use (B.100) to establish the upper bound(
1 +

βs0,ρ0
Z1,2

)ξ(T−1)

≤ c2,⌈ξ(T−1)⌉

(
1 +

(
βs0,ρ0
Z1,2

)⌈ξ(T−1)⌉)
(B.111)

where c2,⌈ξ(T−1)⌉ is a positive constant that only depends on ⌈ξ(T−1)⌉. The expected
value of the RHS of (B.111) can be evaluated as

c2,⌈ξ(T−1)⌉ + c2,⌈ξ(T−1)⌉E

[(
βs0,ρ0
Z1,2

)⌈ξ(T−1)⌉]
= c2,⌈ξ(T−1)⌉ +

c2,⌈ξ(T−1)⌉β
⌈ξ(T−1)⌉
s0,ρ0

Γ(T)

∫ ∞

0

z(T−1)−⌈ξ(T−1)⌉e−zdz

= c2,⌈ξ(T−1)⌉ +
c2,⌈ξ(T−1)⌉β

⌈ξ(T−1)⌉
s0,ρ0 Γ(T− ⌈ξ(T− 1)⌉)

Γ(T)
(B.112)

where to solve the integral we have used [28, Sec. 3.381-4].

The remaining terms in (B.107) can be bounded for every Z1 ≥ 0 and Z2 ≥ 0 as

follows:

ξ
sTρ

1 + Tρ
(T− 1) ≤ ξsmax(T− 1), s ≤ smax (B.113a)

−ξ(T− 1)E

[
log
(
Z1 +

Z2

1 + Tρ

)]
≤ −ξ(T− 1)E

[
log(Z1)

]
= ξ(T− 1)γ

(B.113b)

ξE

[
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
≤ 0. (B.113c)

Applying (B.113a)–(B.113c) to the remaining terms in (B.107) yields

exp

{
−ξ
(
−s Tρ

1 + Tρ
(T− 1) + (T− 1)E

[
log
(
Z1 +

Z2

1 + Tρ

)]
− E

[
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)])}
≤ eξ(T−1)(smax+γ). (B.114)
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Using (B.114) with smax = 1 and (B.112), it follows that (B.107) is bounded in

s ∈ (s0, 1] and ρ ≥ ρ0 for every 0 < ξ < 1. This proves (B.105).

To prove (B.106), we follow along similar lines. We have

E
[
eξ(Is(ρ)−iℓ,s(ρ))

]
= E

[
exp

{
−ξ
(
−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}]
× exp

{
ξ

(
−s Tρ

1 + Tρ
(T− 1) + (T− 1)E

[
log
(
Z1 +

Z2

1 + Tρ

)]
− E

[
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)])}
. (B.115)

By applying similar bounds as in (B.113), for every Z1 ≥ 0 and Z2 ≥ 0, the first

expected value on the RHS of (B.115) can be upper-bounded as

E

[
exp

{
−ξ
(
−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}]
≤ E

[
exp
{
−ξ
(
−Z2 + (T− 1) log(Z1)

)}]
= E

[
eξZ2Z

−ξ(T−1)
1

]
=

Γ(1− ξ(T− 1))

(1− ξ)
(T−1)

(B.116)

where the last expected value in (B.116) has been solved using [28, Sec. 3.381-4].

We next focus on the remaining terms in (B.115). We solve each expected value

separately by using the following bounds:

E

[
log
(
Z1 +

Z2

1 + Tρ

)]
≤ log E

[(
Z1 +

Z2

1 + Tρ

)]
≤ (T− 1) (B.117a)

E

[
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
≤ E

[
− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
≤ (T− 1)E

[
log

(
1 +

βρ0,s0
Z1 + Z2

)]
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≤ (T− 1)E

[
βρ0,s0
Z1 + Z2

]
= βρ0,s0 , s > s0, ρ ≥ ρ0 (B.117b)

−sTρ
1 + Tρ

≤ −s0Tρ0
1 + Tρ0

, s > s0, ρ ≥ ρ0. (B.117c)

In (B.117b), we define βρ,s = Γ(T)
1

T−1
1+Tρ
sTρ . Combining (B.117) with (B.116), we

can upper-bound (B.115) as

E
[
e−ξ(iℓ,s(ρ)−Is(ρ))

]
≤ exp

{
ξ
(
− s0Tρ0
1 + Tρ0

(T− 1) + (T− 1) + βρ0,s0

)}Γ(1− ξ(T− 1))

(1− ξ)
(T−1)

(B.118)

which is bounded in ρ ≥ ρ0 and s ∈ [s0, 1] for every 0 < ξ < 1/(T − 1). This

proves (B.106).

B.5.2 Proof of Part 2)

The proof follows along similar lines as the proof of Part 1). Again, by Hölder’s

inequality, for any arbitrary δ ∈ (0, 1) satisfying

1− δ > max

⎧⎨⎩a, b

min
{

T
T−1 ,

1+Tρ
Tρs

}
⎫⎬⎭ (B.119)

such that k/δ is an integer, the LHS of (B.103) can be upper-bounded as

sup
s∈[s0,smax],
ρ∈[ρ0,ρmax]

E
[
(Is(ρ)− iℓ,s(ρ))

k/δ
]δ

sup
−a≤τ≤b,
s∈[s0,smax],
ρ∈[ρ0,ρmax]

E
[
e

τ
1−δ (Is(ρ)−iℓ,s(ρ))

]1−δ
, k ∈ Z+

0 .

(B.120)

As in Part 1), it can be shown that the first supremum in (B.120) is bounded. It

thus suffices to prove that, for every 0 < ξ < 1,

sup
s∈[s0,smax],
ρ∈[ρ0,ρmax]

E
[
e−ξ(Is(ρ)−iℓ,s(ρ))

]
<∞ (B.121)

and that, for every 0 < ξ < min
{

T
T−1 ,

1+Tρ
Tρs

}
,

sup
s∈[s0,smax],
ρ∈[ρ0,ρmax]

E
[
eξ(Is(ρ)−iℓ,s(ρ))

]
<∞. (B.122)
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The claim (B.121) follows from (B.107)–(B.114). It remains to prove (B.122). This

follows analogously to (B.115)–(B.118), with the only difference that (B.116) needs

to be adapted in order to account for the different region of (τ, ρ, s).

Indeed, using that the logarithm of the regularized lower incomplete gamma

function is smaller than or equal to zero, the LHS of (B.116) can be upper-bounded

as

E

[
exp

{
−ξ
(
−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}]
≤ E

[
exp
{
−ξ
(
− sTρZ2

1 + Tρ
+ (T− 1) log

(
Z1 +

Z2

1 + Tρ

)}]
=

η
ν(ξ)
ρ Γ(T− 1 + ν(ξ))

Γ(T)(ηρ + λρ,s(ξ))T−1+ν(ξ) 2
F1

(
1,T− 1 + ν(ξ);T;

λρ,s(ξ)

ηρ + λρ,s(ξ)

)
(B.123)

where ηρ =
1

1+Tρ , ν(ξ) = −ξ(T− 1) + 1, and λρ,s(ξ) =
Tρ

1+Tρ (1− ξs). The expected

value has been solved using [28, Sec. 3.381-3.8] to integrate with respect to Z1, and

[28, Sec. 6.455-1] to integrate with respect to Z2. Note that the RHS of (B.123) is

well-defined and finite for 0 < ξ < T/(T− 1) and 0 < ξ < 1+Tρ
Tρs .

It thus follows from (B.115), (B.117), and (B.123) that

E
[
e−ξ(iℓ,s(ρ)−Is(ρ))

]
≤ exp

{
ξ
(
− s0Tρ0
1 + Tρ0

(T− 1) + (T− 1) + βρ0,s0

)}
× η

ν(ξ)
ρ Γ(T− 1 + ν(ξ))

Γ(T)(ηρ + λρ,s(ξ))T−1+ν(ξ) 2
F1

(
1,T− 1 + ν(ξ);T;

λρ,s(ξ)

ηρ + λρ,s(ξ)

)
(B.124)

which is a continuous function of (ρ, s), hence it is bounded in ρ0 ≤ ρ ≤ ρmax and

s0 ≤ s ≤ smax. This proves (B.122).

B.6 Proof of Lemma 6.7

Throughout the proof, we shall assume that 0 ≤ τ < a, ρ ≥ ρ0, and s0 ≤ s ≤ 1 for

some arbitrary a < 1/(T − 1), s0 > 0, and ρ0 > 0 independent of (L, ρ, s, τ). To

prove (6.126a), we shall first show that,

E
[
eτ(Is(ρ)−iℓ,s(ρ))

]
= E

[
eτ(Is(ρ)−iℓ,s(ρ))

]
+ oρ(1) (B.125)
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where (cf. (4.15))

iℓ,s(ρ) ≜ (T− 1) log(sTρ)− log Γ(T)− sTρZ2,ℓ

1 + Tρ
+ (T− 1) log

(
(1 + Tρ)Z1 + Z2

1 + Tρ

)
(B.126)

and (cf. (4.31a))

Is(ρ) ≜ (T−1) log(sTρ)−log Γ(T)− (T− 1)sTρ

1 + Tρ
+(T−1)E

[
log

(
(1 + Tρ)Z1 + Z2

1 + Tρ

)]
.

(B.127)

We further consider Bρ defined in (B.55).

To show (B.125), we perform the following steps:

ψρ,s(τ) = τ(Is(ρ)−Bρ) + log
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

])
= τ(Is(ρ)−Bρ) + log

(
E

[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1)

)
+ oρ(1). (B.128)

Indeed, the difference between Is(ρ) given in (4.27) and Is(ρ) given in (B.127) is

E

[
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
. (B.129)

By the monotonicity of the regularized lower incomplete gamma function, it thus

follows that

sup
τ∈[0,a),
s∈(s0,1]

E

[
−τ log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]

≤ E

[
−a log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)]
(B.130)

which vanishes as ρ → ∞ by (A.100). Furthermore, we show in Corollary B.7

(Appendix B.9) that

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[e−τ(iℓ,s(ρ)−Bρ)]− E
[
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐ = oρ(1) . (B.131)

Hence, (B.128) follows. By applying a Taylor series expansion of the logarithm
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function, (B.128) can be written as

τ(Is(ρ)−Bρ) + log

(
E

[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1)

)
+ oρ(1)

= τ(Is(ρ)−Bρ) + log

(
E

[
e−τ(iℓ,s(ρ)−Bρ)

])
+ oρ(1). (B.132)

By Lemma B.8 (Appendix B.9), the expected value inside the logarithm in (B.128)

is bounded away from zero in (ρ, τ, s). It follows that the oρ(1) term in (B.132) is

uniform in (τ, s). We conclude the proof of (6.126a) by noting that

ψ̄ρ,s(τ) = τ(Is(ρ)−Bρ) + log

(
E

[
e−τ(iℓ,s(ρ)−Bρ)

])
. (B.133)

We next prove (6.126b) by analyzing ψ′
ρ,s(τ) in the limit as ρ→ ∞. To this end,

we take the derivative of τ ↦→ ψρ,s(τ) to obtain

ψ′
s(τ) =

∂

∂τ
log E

[
eτ(Is(ρ)−iℓ,s(ρ))

]
=

E
[
(Is(ρ)− iℓ,s(ρ))e

τ(Is(ρ)−iℓ,s(ρ)
]

E
[
eτ(Is(ρ)−iℓ,s(ρ)

]
= Is(ρ)−

E
[
iℓ,s(ρ)e

−τiℓ,s(ρ)
]

E
[
e−τiℓ,s(ρ)

]
= (Is(ρ)−Bρ)−

E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

] (B.134)

where the second step follows by swapping derivative and expected value, which can

be justified by using [57, App. A.9] together with Lemma B.6 (Appendix B.9). We

show in Corollary B.7 (Appendix B.9) that the denominator in (B.134) satisfies

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
= E

[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1). (B.135)

Furthermore, Corollary B.10 (Appendix B.9) particularized for b = 1 yields that

E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ))
]
= E

[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
+ oρ(1). (B.136)
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Consequently,

ψ′
s(τ) = (I(ρ)−Bρ) + oρ(1)−

E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
+ oρ(1)

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1)

= (I(ρ)−Bρ)−
E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

] + oρ(1). (B.137)

where in the first step we used that I(ρ) = I(ρ) + oρ(1) (cf. (4.39a)), and in the

second step we performed a Taylor series expansion of the fraction which is well

defined because by, Lemma B.8 (Appendix B.9),

inf
τ∈[0,a),
s∈(s0,1]

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
> 0.

The proof of (6.126b) is concluded by noting that

ψ̄′
ρ,s(τ) = (I(ρ)−Bρ)−

E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

] . (B.138)

To prove (6.126c), we follow along similar lines. Indeed, by swapping derivative

and expected value, we obtain

ψ′′
s (τ) =

∂

∂τ

⎧⎨⎩(Is(ρ)−Bρ)−
E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
⎫⎬⎭

=
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

] −
E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]2

E
[
e−τ(iℓ,s(ρ)−Bρ)

]2 .

(B.139)

We show in Corollary B.10 (Appendix B.9) that the numerator of the first term on

the RHS of (B.139) satisfies

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)
2e−τ(iℓ,s(ρ)−Bρ)

]

− E
[(
iℓ,s(ρ)−Bρ

)2
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐ = oρ(1). (B.140)
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We next show that the numerator of the second term on the RHS of (B.139) satisfies

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ) e
−τ(iℓ,s(ρ)−Bρ)

]2

− E
[(
iℓ,s(ρ)−Bρ

)
e−τ(iℓ,s(ρ)−Bρ)

]2⏐⏐⏐⏐⏐ = oρ(1). (B.141)

Indeed, the LHS of (B.141) can be upper-bounded by

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
(iℓ,s(ρ)−Bρ) e

−τ(iℓ,s(ρ)−Bρ)
]
+ E

[(
iℓ,s(ρ)−Bρ

)
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐
× sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
(iℓ,s(ρ)−Bρ) e

−τ(iℓ,s(ρ)−Bρ)
]
− E

[(
iℓ,s(ρ)−Bρ

)
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐.
(B.142)

Using Hölder’s inequality, we can upper-bound the first supremum by

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐E[(iℓ,s(ρ)−Bρ)
1
δ

]⏐⏐⏐δ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐E[e− τ
1−δ (iℓ,s(ρ)−Aρ)

]⏐⏐⏐1−δ
+ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐E[(iℓ,s(ρ)−Bρ
) 1
δ

]⏐⏐⏐δ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐E[e− τ
1−δ (iℓ,s(ρ)−Aρ)

]⏐⏐⏐1−δ (B.143)

for any arbitrary δ ∈ (0, 1−a(T − 1)) such that 1/δ is integer. Applying Lemmas B.6

and B.9 (both Appendix B.9), we conclude that the first supremum in (B.142) is

bounded in ρ. Furthermore, Corollary B.10 (Appendix B.9) shows that the second

supremum in (B.142) is oρ(1). Thus, (B.141) follows.

Back to (B.139), by Corollary B.7 (Appendix B.9), the denominator of the first

term on the RHS of (B.139) can be written as

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
= E

[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1). (B.144)

We next show that the denominator of the second term on the RHS of (B.139)

satisifes

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[e−τ(iℓ,s(ρ)−Bρ)]2 − E
[
e−τ(iℓ,s(ρ)−Bρ)

]2⏐⏐⏐⏐⏐ = oρ(1). (B.145)
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To this end, we upper-bound the LHS of (B.145) by

≤ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

]
+ E

[
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐
× sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

]
− E

[
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐. (B.146)

The first supremum is bounded by Corollary B.6 (Appendix B.9). The remaining

terms are oρ(1) by Lemma B.7 (Appendix B.9). Hence, (B.145) follows.

Combining (B.139) with (B.140), (B.141), (B.144), and (B.145), we obtain that

ψ′′
s (τ) =

E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]
+ oρ(1)

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1)

−
E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]2

+ oρ(1)

E
[
e−τ(iℓ,s(ρ)−Bρ)

]2
+ oρ(1)

=
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
−

E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]2

E
[
e−τ(iℓ,s(ρ)−Bρ)

]2 + oρ(1) (B.147)

where the last equality can be justified by using Taylor series expansions analogously

as it was done in (B.137). Identifying the first two terms as ψ̄′′
ρ,s(τ), (6.126c) follows.

The last result (6.126d) follows again along similar lines as (6.126b) and (6.126c).

Indeed, by swapping derivative and expected value, we obtain

ψ′′′
ρ,s(τ) =

∂3

∂τ3

{
log E

[
eτ(Is(ρ)−iℓ,s(ρ))

]}
= −

E
[
(iℓ,s(ρ)−Bρ)

3e−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

] −
2E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]3

E
[
e−τ(iℓ,s(ρ)−Bρ)

]3
+

3E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

]2 . (B.148)
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The denominators of the first and third term on the RHS of (B.148) have been

expanded in (B.144) and (B.145), respectively. We next show that the denominator

of the second term on the RHS of (B.148) satisfies

sup
τ∈[0,τ∗),
s∈(s∗,1]

⏐⏐⏐⏐⏐E[e−τ(iℓ,s(ρ)−Bρ)]3 − E
[
e−τ(iℓ,s(ρ)−Bρ)

]3⏐⏐⏐⏐⏐ = oρ(1). (B.149)

To this end, we upper-bound the LHS of (B.149) by

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

]
+ E

[
e−τ(iℓ,s(ρ)−Bρ)

])2

×
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

]
− E

[
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐
≤ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐2
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

]2
+ E

[
e−τ(iℓ,s(ρ)−Bρ)

]2)⏐⏐⏐⏐⏐
× sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
e−τ(iℓ,s(ρ)−Bρ)

]
− E

[
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐ (B.150)

where we have used that (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R. The first supremum

is bounded in ρ by Lemma B.6 (Appendix B.9). The second supremum is oρ(1) by

Corollary B.7 (Appendix B.9). Thus, (B.149) follows.

We continue by noting that, by Corollary B.10 (Appendix B.9), the numerator of

the first term on the RHS of (B.148) satisfies

sup
τ∈[0,τ∗),
s∈(s∗,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)
3
e−τ(iℓ,s(ρ)−Bρ)

]

− E
[(
iℓ,s(ρ)−Bρ

)3
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐ = oρ(1). (B.151)

Similarly, the numerator of the second term on the RHS of (B.148) satisfies

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ) e
−τ(iℓ,s(ρ)−Bρ)

]3
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− E
[(
iℓ,s(ρ)−Bρ

)
e−τ(iℓ,s(ρ)−Bρ)

]3⏐⏐⏐⏐⏐ = oρ(1). (B.152)

Indeed, the LHS of (B.152) can be upper-bounded as

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐2
(
E
[
(iℓ,s(ρ)−Bρ) e

−τ(iℓ,s(ρ)−Bρ)
]2

+ E
[(
iℓ,s(ρ)−Bρ

)
e−τ(iℓ,s(ρ)−Bρ)

]2)⏐⏐⏐⏐⏐
× sup

τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
(iℓ,s(ρ)−Bρ) e

−τ(iℓ,s(ρ)−Bρ)
]
− E

[(
iℓ,s(ρ)−Bρ

)
e−τ(iℓ,s(ρ)−Bρ)

])⏐⏐⏐⏐⏐.
(B.153)

Using Hölder’s inequality together with Lemmas B.6 and B.9 (both Appendix B.9),

the first supremum is bounded in ρ. Furthermore, Corollary B.10 (Appendix B.9)

shows that the second supremum is oρ(1). Thus, (B.152) follows.

As for the numerator of the third term on the RHS of (B.148), we next show that

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)e
−τ(iℓ,s(ρ)−Bρ)

]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

− E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐ = oρ(1).(B.154)

To this end, we first show that

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)e
−τ(iℓ,s(ρ)−Bρ)

]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

− E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐ = oρ(1) (B.155)

and then that

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)e
−τ(iℓ,s(ρ)−Bρ)

]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

− E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐ = oρ(1).(B.156)
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The identity (B.154) follows then from the triangle inequality.

To prove (B.155), we note that its LHS can be upper-bounded as

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)e
−τ(iℓ,s(ρ)−Bρ)

]
− E

[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐

× sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)
2e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐. (B.157)

The first supremum in (B.157) is oρ(1) by Corollary B.10 (Appendix B.9). The

second supremum in (B.157) is finite by Hölder’s inequality and Lemmas B.6 and B.9

(Appendix B.9). Hence, (B.155) follows.

To prove (B.156), we note that its LHS can be upper-bounded as

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)e
−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐
× sup

τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[(iℓ,s(ρ)−Bρ)
2e−τ(iℓ,s(ρ)−Bρ)

]
− E

[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐.

(B.158)

The first supremum in (B.158) is finite by Hölder’s inequality and Lemmas B.6 and B.9

(both Appendix B.9). The second supremum in (B.158) is oρ(1) by Corollary B.10

(Appendix B.9). This proves (B.156).

Back to (B.148), combining (B.144), (B.145), (B.149), (B.151), (B.152), and

(B.154) with (B.148) yields

ψ′′′
ρ,s(τ) = −

E
[
(iℓ,s(ρ)−Bρ)

3e−τ(iℓ,s(ρ)−Bρ)
]
+ oρ(1)

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
+ oρ(1)

−
2E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]3

+ oρ(1)

E
[
e−τ(iℓ,s(ρ)−Bρ)

]3
+ oρ(1)

+
3E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]
+ oρ(1)

E
[
e−τ(iℓ,s(ρ)−Bρ)

]2
+ oρ(1)
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= −
E
[
(iℓ,s(ρ)−Bρ)

3e−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

] −
2E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]3

E
[
e−τ(iℓ,s(ρ)−Bρ)

]3
+

3E
[
(iℓ,s(ρ)−Bρ)e

−τ(iℓ,s(ρ)−Bρ)
]
E
[
(iℓ,s(ρ)−Bρ)

2e−τ(iℓ,s(ρ)−Bρ)
]

E
[
e−τ(iℓ,s(ρ)−Bρ)

]2 + oρ(1)

(B.159)

where the last equality follows by Taylor series expansions analogously as it was done

for the first and second derivatives of τ ↦→ ψρ,s(τ). Identifying the first three terms

as ψ̄′′′
ρ,s(τ), we obtain (6.126d). This concludes the proof of Lemma 6.7.

B.7 Analysis of Kρ,s(τ, L)

Recall that Kρ,s(τ, L) was defined in (6.9b) as

Kρ,s(τ, L) ≜
ψ′′′
ρ,s(τ)

6ψ′′
ρ,s(τ)

3/2

(
− 1√

2π
+
τ2ψ′′

ρ,s(τ)L√
2π

− τ3ψ′′
ρ,s(τ)

3/2L3/2fρ,s(τ, τ)

)
.

(B.160)

Further recall the definition of Ψρ,s(τ) in (6.106)

Ψρ,s(τ) ≜ τ2ψ′′
ρ,s(τ). (B.161)

Using that

fρ,s(τ, τ) = eL
Ψρ,s(τ)

2 Q

(√
LΨρ,s(τ)

)
≤ 1√

2πLΨρ,s(τ)

(
1− 1

LΨρ,s(τ)
+

3

(LΨρ,s(τ))
2

)
(B.162)

together with (B.161), we can lower-bound the bracketed term in (B.160) by

− 1√
2π

+
Ψρ,s(τ)L√

2π
− Ψρ,s(τ)L√

2π

(
1− 1

LΨρ,s(τ)
+

3

(LΨρ,s(τ))
2

)
= − 3√

2πLΨρ,s(τ)
. (B.163)
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Likewise, using that

fρ,s(τ, τ) ≥
1√

2πLΨρ,s(τ)

(
1− 1

LΨρ,s(τ)
+

3

(LΨρ,s(τ))
2 − 15

(LΨρ,s(τ))3

)
(B.164)

we can upper-bound the bracketed term in (B.160) by

− 1√
2π

+
Ψρ,s(τ)L√

2π
− Ψρ,s(τ)L√

2π

(
1− 1

LΨρ,s(τ)
+

3

(LΨρ,s(τ))
2 − 15

(LΨρ,s(τ))3

)

= − 3√
2πLΨρ,s(τ)

(
1− 5

LΨρ,s(τ)

)
. (B.165)

It follows that

|Kρ,s(τ, L)| ≤
|ψ′′′
ρ,s(τ)|

6ψ′′
ρ,s(τ)

3/2

3√
2πLΨρ,s(τ)

(
1 +

5

LΨρ,s(τ)

)
. (B.166)

By Part 2) of Lemma 4.2, we have that τ ↦→
⏐⏐ψ′′′
ρ,s(τ)

⏐⏐ is bounded in τ < τ < τ̄ , s0 <

s < smax, and ρ0 < ρ < ρmax for some arbitrary 0 < τ < τ̄ < 1, 0 < s0 < smax <∞
and 0 < ρ0 < ρmax < ∞. Furthermore, by (6.108) and (6.109), both τ ↦→ ψ′′

ρ,s(τ)

and τ ↦→ Ψρ,s(τ) are bounded away from zero in (τ, s, ρ). We thus conclude that

sup
ρ0≤ρ≤ρmax

sup
τ<τ<τ̄,

s∈(s0,smax]

|ψ′′′
ρ,s(τ)|

6ψ′′
ρ,s(τ)

3/2

3√
2πLΨρ,s(τ)

(
1 +

5

LΨρ,s(τ)

)
= O

(
1

L

)
. (B.167)

B.8 Derivatives E0,ρ-function

Let

ψρ(τ) = log E
[
exp
{
τ
(
I 1

1+τ
(ρ)− iℓ, 1

1+τ
(ρ)
)}]

(B.168)

and

E0,ρ(τ) = − log E
[
exp
{
−τiℓ, 1

1+τ
(ρ)
}]

(B.169)

where iℓ, 1
1+τ

(ρ) and I 1
1+τ

(ρ) are given in (4.12) and (4.27), respectively. Using (B.168)

and (B.169), it follows that

E0,ρ(τ) = τI 1
1+τ

(ρ)− ψρ(τ) (B.170a)

E′
0,ρ(τ) = I 1

1+τ
(ρ) + τI ′ 1

1+τ
(ρ)− ψ′

ρ(τ) (B.170b)

E′′
0,ρ(τ) = 2I ′ 1

1+τ
(ρ) + τI ′′1

1+τ
(ρ)− ψ′′

ρ (τ) (B.170c)

E′′′
0,ρ(τ) = 3I ′′1

1+τ
(ρ) + τI ′′′1

1+τ
(ρ)− ψ′′′

ρ (τ) (B.170d)

171



APPENDIX B. APPENDIX TO CHAPTER 6

where we slightly abuse notation and write I ′ 1
1+τ

(ρ), I ′′1
1+τ

(ρ) and I ′′′1
1+τ

(ρ) to denote

the first three derivatives of I 1
1+τ

(ρ) with respect to τ . The following lemma shows

that the second and third derivatives of E0,ρ(τ) are bounded in ρ0 ≤ ρ ≤ ρmax for

every 0 < ρ0 < ρmax and τ ∈ (0, 1).

Lemma B.4 For every 0 < ρ0 < ρmax, and τ ∈ (0, 1), we have

sup
ρ0≤ρ≤ρmax

⏐⏐E′′
0,ρ(τ)

⏐⏐ <∞ (B.171a)

sup
ρ0≤ρ≤ρmax

⏐⏐E′′′
0,ρ(τ)

⏐⏐ <∞. (B.171b)

Proof: In view of (B.170c) and (B.170d), in order to prove (B.171a) and

(B.171b), it suffices to show that, for every 0 < ρ0 < ρmax and τ ∈ (0, 1),

sup
ρ0≤ρ≤ρmax

⏐⏐ψ′′
ρ (τ)

⏐⏐ <∞ (B.172a)

sup
ρ0≤ρ≤ρmax

⏐⏐ψ′′′
ρ (τ)

⏐⏐ <∞ (B.172b)

and that

sup
ρ0≤ρ≤ρmax

⏐⏐⏐I ′ 1
1+τ

(ρ)
⏐⏐⏐ <∞ (B.173a)

sup
ρ0≤ρ≤ρmax

⏐⏐⏐I ′′1
1+τ

(ρ)
⏐⏐⏐ <∞ (B.173b)

sup
ρ0≤ρ≤ρmax

⏐⏐⏐I ′′′1
1+τ

(ρ)
⏐⏐⏐ <∞. (B.173c)

We start by analyzing ψ′′
ρ (τ) and ψ

′′′
ρ (τ). To this end, we define

gρ(τ) ≜ I 1
1+τ

(ρ)− iℓ, 1
1+τ

(ρ). (B.174)

Hence, we can write

ψρ(τ) = log E
[
eτgρ(τ)

]
. (B.175)

Using [57, App. A.9], we can swap derivative and expected value, so the following

identities follow:

ψ′
ρ(τ) =

E
[
gρ(τ)e

τgρ(τ)
]
+ E

[
τg′ρ(τ)e

τgρ(τ)
]

E
[
eτgρ(τ)

] (B.176a)
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ψ′′
ρ (τ) =

1

E
[
eτgρ(τ)

]2{(E[gρ(τ)2eτgρ(τ)]+ 2E
[
g′ρ(τ)e

τgρ(τ)
]

+ 2E
[
τgρ(τ)g

′
ρ(τ)e

τgρ(τ)
]
+ E

[
τ2g′ρ(τ)

2eτgρ(τ)
]

+ E
[
τg′′ρ (τ)e

τgρ(τ)
])

E
[
eτgρ(τ)

]
− E

[
gρ(τ)e

τgρ(τ)
]2

− E
[
τg′ρ(τ)e

τgρ(τ)
]2

− 2E
[
gρ(τ)e

τgρ(τ)
]
E
[
τg′ρ(τ)e

τgρ(τ)
]}

(B.176b)

ψ′′′
ρ (τ) =

1

E
[
eτgρ(τ)

]3{(E[gρ(τ)3eτgρ(τ)]+ 6E
[
gρ(τ)g

′
ρ(τ)e

τgρ(τ)
]

+ 3E
[
τgρ(τ)

2g′ρ(τ)e
τgρ(τ)

]
+ 6E

[
τg′ρ(τ)

2eτgρ(τ)
]

+ 3E
[
g′′ρ (τ)e

τgρ(τ)
]
+ 3E

[
τ2gρ(τ)g

′
ρ(τ)

2eτgρ(τ)
]

+ 3E
[
τgρ(τ)g

′′
ρ (τ)e

τgρ(τ)
]
+ 3E

[
τ2g′ρ(τ)g

′′
ρ (τ)e

τgρ(τ)
]

+ E
[
τ2g′ρ(τ)

3eτgρ(τ)
]
+ E

[
τg′′′ρ (τ)eτgρ(τ)

])
E
[
eτgρ(τ)

]2
− 3E

[
eτgρ(τ)

](
E
[
gρ(τ)e

τgρ(τ)
]
+ E

[
τg′ρ(τ)e

τgρ(τ)
])

×
(
E
[
gρ(τ)

2eτgρ(τ)
]
+ 2E

[
g′ρ(τ)e

τgρ(τ)
]

+ 2E
[
τgρ(τ)g

′
ρ(τ)e

τgρ(τ)
]

+ E
[
τ2g′ρ(τ)

2eτgρ(τ)
]
+ E

[
τg′′ρ (τ)e

τgρ(τ)
])

+ 2

(
E
[
gρ(τ)e

τgρ(τ)
]
+ E

[
τg′ρ(τ)e

τgρ(τ)
])3}

. (B.176c)

We can use Hölder’s inequality over all the expected values in (B.176b) and (B.176c),

similarly as we did, for instance, in (B.142)–(B.143). Then, (B.172a) and (B.172b)

follow by showing that, for any arbitrary δ ∈ (0, 1− τ)

sup
ρ0≤ρ≤ρmax

E
[
e

τ
1−δ gρ(τ)

]
<∞ (B.177a)

sup
ρ0≤ρ≤ρmax

E
[
|gρ(τ)|k

]
<∞, k ∈ Z+ (B.177b)
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sup
ρ0≤ρ≤ρmax

E
[⏐⏐g′ρ(τ)⏐⏐k] <∞, k ∈ Z+ (B.177c)

sup
ρ0≤ρ≤ρmax

E
[⏐⏐g′′ρ (τ)⏐⏐k] <∞, k ∈ Z+ (B.177d)

sup
ρ0≤ρ≤ρmax

E
[⏐⏐g′′′ρ (τ)

⏐⏐k] <∞, k ∈ Z+. (B.177e)

The first inequality (B.177a) follows by Part 2) of Lemma 4.2. The second inequality

(B.177b) can be obtained by following along similar lines as in Lemma B.9 (Appendix

B.9). We next prove (B.177c)–(B.177e).

We start with (B.177c). Let sτ = 1/(1 + τ), and let

g̃ρ(s) ≜ log γ̃

(
T− 1,

sTρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)
, s > 0. (B.178)

Using the definitions of iℓ,s(ρ) and Is(ρ) in (4.12) and (4.27), and applying (B.100),

one can show that

E
[⏐⏐g′ρ(τ)⏐⏐k]
= E

[⏐⏐⏐⏐s′τ(T− 1

sτ
− Tρ(T− 1)

1 + Tρ
− E

[
g̃′ρ(sτ )

]
− T− 1

sτ
+

TρZ2

1 + Tρ
+ g̃′ρ(sτ )

)⏐⏐⏐⏐k
]

≤ c4,k|s′τ |k
{(

Tρ

1 + Tρ

)k (
(T− 1)k + E

[
Zk2
])

+
⏐⏐E[g̃′ρ(sτ )]⏐⏐k + E

[⏐⏐g̃′ρ(sτ )⏐⏐k]
}

(B.179)

where s′τ denotes the derivative of τ ↦→ 1/(1+τ) evaluated at τ , i.e., s′τ = −1/(1+τ)2,

and g̃′ρ denotes the derivative of s ↦→ g̃ρ(s) with respect to s. By Lemma B.11

(Appendix B.10), the last two terms on the RHS of (B.179) are bounded in ρ. Since

the first two terms on the RHS of (B.179) are bounded in ρ, too, (B.177c) follows.

We next show (B.177d) following along similar lines. Using (B.100) and the

definition of gρ in (B.174), we obtain the upper bound

E
[⏐⏐g′′ρ (τ)⏐⏐k]
= E

[⏐⏐⏐⏐s′′τ(−Tρ(T− 1)

1 + Tρ
− E

[
g̃′ρ(sτ )

]
+

TρZ2

1 + Tρ
+ g̃′ρ(sτ )

)

+ (s′τ )
2
(
−E
[
g̃′′ρ (sτ )

]
+ g̃′′ρ (sτ )

)⏐⏐⏐⏐k
]
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≤ c6,k|s′′τ |k
{(

Tρ

1 + Tρ

)k (
(T− 1)k + E

[
Zk2
])

+
⏐⏐E[g̃′ρ(sτ )]⏐⏐k + E

[⏐⏐g̃′ρ(sτ )⏐⏐k]
}

+ c6,k|s′τ |2k
{⏐⏐⏐E[g̃′′ρ(sτ )]⏐⏐⏐k + E

[⏐⏐g̃′′ρ (sτ )⏐⏐k]
}

(B.180)

where s′′τ denotes the second derivative of τ ↦→ 1/(1 + τ) evaluated at τ , i.e., s′′τ =

2/(1 + τ)3, and g̃′′ρ denotes the second derivative of s ↦→ g̃ρ(s) with respect to s. The

terms that are multiplying c6,k|s′′τ |k were shown to be bounded before, and the terms

that are multiplying c6,k|s′τ |2k are bounded in ρ by Lemma B.11 (Appendix B.10).

The claim (B.177d) thus follows.

We finally show (B.177e). Using (B.100) and the definition of gρ in (B.174), we

establish the upper bound

E
[⏐⏐g′′′ρ (τ)

⏐⏐k] = E

[⏐⏐⏐⏐⏐s′′′τ
(
−Tρ(T− 1)

1 + Tρ
− E

[
g̃′ρ(sτ )

]
+

TρZ2

1 + Tρ
+ g̃′ρ(sτ )

)
+ 3s′τs

′′
τ

(
−E
[
g̃′′ρ (sτ )

]
+ g̃′′ρ (sτ )

)
+ (s′τ )

3
(
−E
[
g̃′′′ρ (sτ )

]
+ g̃′′′ρ (sτ )

)⏐⏐⏐⏐⏐
k]

≤ c8,k|s′′′τ |k
{(

Tρ

1 + Tρ

)k (
(T− 1)k + E

[
Zk2
])

+
⏐⏐E[g̃′ρ(sτ )]⏐⏐k + E

[⏐⏐g̃′ρ(sτ )⏐⏐k]
}

+ 3c8,k|s′τs′′τ |k
{⏐⏐E[g̃′′ρ (sτ )]⏐⏐k + E

[⏐⏐g̃′′ρ (sτ )⏐⏐k]
}

+ c8,k|s′τ |3k
{⏐⏐E[g̃′′′ρ (sτ )

]⏐⏐k + E
[⏐⏐g̃′′′ρ (sτ )

⏐⏐k]} (B.181)

where s′′′τ denotes the third derivative of τ ↦→ 1/(1 + τ) evaluated at τ , i.e., s′′′τ =

−6/(1 + τ)4, and g̃′′′ρ denotes the third derivative of s ↦→ g̃ρ(s) with respect to s. By

the same arguments as above, we can conclude that the RHS of (B.181) is bounded

in ρ. The claim (B.177e) thus follows.

To prove (B.173), we first note that the derivatives I ′ 1
1+τ

(ρ), I ′′1
1+τ

(ρ) and I ′′′1
1+τ

(ρ)
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are given by

I ′ 1
1+τ

(ρ) = − 1

(1 + τ)2

{
T− 1

sτ
− Tρ(T− 1)

1 + Tρ
− E

[
g̃′ρ(sτ )

]}
(B.182a)

I ′′1
1+τ

(ρ) =
2

(1 + τ)3

{
T− 1

sτ
− Tρ(T− 1)

1 + Tρ
− E

[
g̃′ρ(sτ )

]}
− 1

(1 + τ)4

{
T− 1

s2τ
+ E

[
g̃′′ρ (sτ )

]}
(B.182b)

I ′′′1
1+τ

(ρ) = − 6

(1 + τ)4

{
T− 1

sτ
− Tρ(T− 1)

1 + Tρ
− E

[
g̃′ρ(sτ )

]}
+

6

(1 + τ)5

{
T− 1

s2τ
+ E

[
g̃′′ρ (sτ )

]}
− 1

(1 + τ)6

{
2(T− 1)

s3τ
− E

[
g̃′′′ρ (sτ )

]}
. (B.182c)

Note that the terms |(T− 1)/sτ |,
⏐⏐(T− 1)/s2τ

⏐⏐ and ⏐⏐(T− 1)/s3τ
⏐⏐ are bounded for

τ ∈ (0, 1). Furthermore, ⏐⏐⏐⏐Tρ(T− 1)

1 + Tρ

⏐⏐⏐⏐ ≤ (T− 1), ρ ≥ 0. (B.183)

Finally, the derivatives of the logarithm of the regularized lower incomplete gamma

function are bounded by Lemma B.11 (Appendix B.10). Thus, all the terms in

(B.182) are bounded in ρ, so (B.173) follows.

B.9 Auxiliary Results for MGF and CGF Analyses

In this appendix, we present auxiliary lemmas and corollaries that are used throughout

the proof of Lemma 6.7 (Appendix B.6), the proof of Lemma 4.2 (Appendix B.5),

and the proof of Lemma B.4 (Appendix B.8).

Lemma B.5 Let 0 ≤ a < 1/(T− 1), ρ0 > 0, and 0 < s0 ≤ 1. For every ρ ≥ ρ0 and

every δ ∈ (0, 1− a(T− 1)), we have

sup
τ∈[0,a),
s∈(s0,1]

E

[(
1− exp

{
−τ
(
− log γ̃

(
T− 1,

sTρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}) 1
δ
]
= O

(
1

ρ

)
.

(B.184)
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Proof: By(4.1),

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

1− exp

{
−τ
(
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}) 1
δ
]⏐⏐⏐⏐⏐

≤ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

1−
(
1− exp

{
−Γ(T)−

1
T−1

sTρ((1 + Tρ)Z1 + Z2)

1 + Tρ

})τ(T−1)) 1
δ
]⏐⏐⏐⏐⏐.

(B.185)

The function inside the expected value on the RHS of (B.185) can be upper-bounded

by replacing τ by 1 and s by s0. Hence, we obtain that

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

1−
(
1− exp

{
−Γ(T)−

1
T−1

sTρ((1 + Tρ)Z1 + Z2)

1 + Tρ

})τ(T−1)) 1
δ
]⏐⏐⏐⏐⏐

≤ E

[(
1−

(
1− exp

{
−Γ(T)−

1
T−1

s0Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

})T−1) 1
δ
]
. (B.186)

Let βρ,s ≜ Γ(T)−
1

T−1
1+Tρ
sTρ . Using that, for every x ≥ 0, (1− ex)(T−1) ≥ 1− (T− 1)ex,

and that βρ,s0 ≥ βρ0,s0 for every ρ ≥ ρ0 > 0, the RHS of (B.186) can be further

upper-bounded by

E

[
(T− 1)

1
δ exp

{
−βρ0,s0

δ
((1 + Tρ)Z1 + Z2)

}]
=

(T− 1)
1
δ(

1 +
βρ0,s0
δ (1 + Tρ)

)(
1 +

βρ0,s∗
δ

)T−1
. (B.187)

We conclude by noting that the RHS of (B.187) is of order 1/ρ.

Lemma B.6 Let 0 ≤ a < 1/(T− 1) and 0 < s0 ≤ 1. For every δ ∈ (0, 1− a(T− 1)),

we have

sup
ρ>0

sup
τ∈[0,a),
s∈(s0,1]

E
[
e−

τ
1−δ (iℓ,s(ρ)−Bρ)

]
<∞. (B.188a)

Since iℓ,s(ρ) ≤ iℓ,s(ρ), this implies that

sup
ρ>0

sup
τ∈[0,a),
s∈(s0,1]

E
[
e−

τ
1−δ (iℓ,s(ρ)−Bρ)

]
<∞. (B.188b)

177



APPENDIX B. APPENDIX TO CHAPTER 6

Proof: We first lower-bound iℓ,s(ρ) using that, for every Z1 ≥ 0 and every

Z2 ≥ 0,

(T− 1) log

(
Z1 +

Z2

1 + Tρ

)
≥ (T− 1) log(Z1) (B.189a)

−s Tρ

1 + Tρ
Z2 ≥ −Z2, s0 < s ≤ 1. (B.189b)

Hence, we can upper-bound the LHS of (B.188a) by

sup
τ∈[0,a)

⏐⏐⏐⏐E[e− τ
1−δ (−Z2+(T−1) logZ1)

]⏐⏐⏐⏐
= sup
τ∈[0,a)

⏐⏐⏐⏐ 1

Γ(T− 1)

∫ ∞

0

z
− τ(T−1)

1−δ
1 e−z1dz1

∫ ∞

0

zT−2
2 e−z2(1−τ/(1−δ))dz2

⏐⏐⏐⏐
= sup
τ∈[0,a)

⏐⏐⏐⏐⏐⏐
Γ
(
1− τ(T−1)

1−δ

)
(1− τ

1−δ )
T−1

⏐⏐⏐⏐⏐⏐ . (B.190)

Here, the integrals have been computed using [28, Sec. 3.381-4]. We next show that

the RHS of (B.190) is finite provided that a < 1−δ
T−1 . Indeed, we have

sup
τ∈[0,a)

Γ
(
1− τ(T−1)

1−δ

)
(1− τ

1−δ )
T−1

≤
Γ
(
1− a(T−1)

1−δ

)
(1− a

1−δ )
T−1

<∞ (B.191)

where the last step follows because x ↦→ Γ(x) is a continuous convex function in

x > 0.

Corollary B.7 Let 0 ≤ a < 1/(T− 1) and 0 < s0 ≤ 1. Then,

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E[e−τ(iℓ,s(ρ)−Bρ)]− E
[
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐ = oρ(1). (B.192)

Proof: The LHS of (B.192) can be written as

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[
e−τ(iℓ,s(ρ)−Bρ)

×
(
1− exp

{
−τ
(
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))})]⏐⏐⏐⏐⏐. (B.193)
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By Hölder’s inequality, for any δ ∈ (0, 1− a(T− 1)), this can be upper-bounded by

sup
τ∈[0,a),
s∈(s0,1]

E

[
e−

τ
1−δ (iℓ,s(ρ)−Bρ)

]1−δ

× sup
τ∈[0,a),
s∈(s0,1]

E

[(
1− exp

{
−τ
(
− log γ̃

(
T− 1,

sTρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))}) 1
δ
]δ
.

(B.194)

The first supremum in (B.194) is finite by Lemma B.6. The second supremum in

(B.194) is of order ρ−δ by Lemma B.5.

Lemma B.8 Let 0 ≤ a < 1/(T− 1) and 0 < s0 ≤ 1. Then

inf
τ∈[0,a),
s∈(s0,1]

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
≥ γ̃(T, 1) + (1− γ̃(T, 1))e−1. (B.195)

Proof: Note that, for every Z1 ≥ 0 and Z2 ≥ 0,

iℓ,s(ρ)−Bρ = −s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
≤ (T− 1) log(Z1 + Z2).

(B.196)

Consequently, we have that

E
[
e−τ(iℓ,s(ρ)−Bρ)

]
≥ E

[
e−τ(T−1) log(Z1+Z2)

]
, 0 ≤ τ < a, s0 < s ≤ 1. (B.197)

The RHS of (B.197) can be further lower-bounded as

E
[
e−τ(T−1) log(Z1+Z2)

]
= E

[
e−τ(T−1) log(Z1+Z2)

⏐⏐⏐Z1 + Z2 < 1
]
P
[
Z1 + Z2 < 1

]
+ E

[
e−τ(T−1) log(Z1+Z2)

⏐⏐⏐Z1 + Z2 ≥ 1
]
P
[
Z1 + Z2 ≥ 1

]
≥ γ̃(T, 1) + E

[
(Z1 + Z2)

−(T−1)
⏐⏐⏐Z1 + Z2 ≥ 1

]
P
[
Z1 + Z2 ≥ 1

]
= γ̃(T, 1) + (1− γ̃(T, 1))e−1. (B.198)

In (B.198), the inequality follows by substituting τ by 0 in the first expected value

and τ by 1 in the second expected value. To solve the remaining expectations

and probability terms, we have used that Z1 + Z2 is Gamma(T, 1)-distributed—so

P[Z1 + Z2 < 1] = γ̃(T, 1)—and [28, Eq. 3.381-3.8].
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Lemma B.9 For every b ∈ Z+, 0 < s0 < smax, and ρ0 > 0, we have

sup
ρ≥ρ0

sup
s∈(s0,smax]

E

[⏐⏐⏐⏐(iℓ,s(ρ)−Bρ)

⏐⏐⏐⏐b] <∞. (B.199)

Proof: For every s ∈ (s0, smax], we have that

E

[⏐⏐⏐⏐(iℓ,s(ρ)−Bρ)

⏐⏐⏐⏐b] = E

[⏐⏐⏐⏐(−s Tρ

1 + Tρ
Z2 + (T− 1) log

(
Z1 +

Z2

1 + Tρ

)
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))⏐⏐⏐⏐b]
≤ c3,b

(
E

[⏐⏐⏐⏐ sTρ

1 + Tρ
Z2

⏐⏐⏐⏐b]+ E

[⏐⏐⏐(T− 1) log
(
Z1 +

Z2

1 + Tρ

)⏐⏐⏐b]

+ E

[⏐⏐⏐⏐log γ̃(T− 1, s0
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐b]
)
(B.200)

where c3,b is a positive constant that only depends on k. Indeed, the inequality

follows by (B.100). The first term on the RHS of (B.200) can be upper-bounded as

E

[⏐⏐⏐⏐ sTρ

1 + Tρ
Z2

⏐⏐⏐⏐b
]
≤ sbmaxE

[
Zb2
]
, s0 < s ≤ smax. (B.201)

The second term on the RHS of (B.200) can be upper-bounded as

E

[⏐⏐⏐⏐(T− 1) log

(
Z1 +

Z2

1 + Tρ

)⏐⏐⏐⏐b
]
≤ c2,b

(
(T− 1)bE

[
|log(Z1)|b

]
+ (T− 1)bE

[
|log(Z1 + Z2)|b

])
<∞ (B.202)

where we have used (B.100) and that⏐⏐⏐⏐(T− 1) log

(
Z1 +

Z2

1 + Tρ

)⏐⏐⏐⏐ ≤ (T− 1)(|log(Z1)|+ |log(Z1 + Z2)|) . (B.203)

Finally, using (4.1), the third term on the RHS of (B.200) can be upper-bounded as

E

[⏐⏐⏐⏐log γ̃(T− 1, s0
Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)⏐⏐⏐⏐b
]
≤ (T− 1)bE

[
logb

(
1 +

βρ0,s0
Z1 + Z2

)]
<∞, ρ ≥ ρ0 (B.204)

where βρ,s ≜ Γ(T)
1

T−1
1+Tρ
sTρ .
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Corollary B.10 Let 0 ≤ a < 1/(T− 1) and 0 < s0 ≤ 1. For b ∈ {1, 2, 3},

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E
[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
]

− E
[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
])⏐⏐⏐⏐⏐ = oρ(1). (B.205)

Proof: To show (B.205), we proceed in two steps. We first show that

lim
ρ→∞

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E

[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
]

− E

[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
])⏐⏐⏐⏐⏐ = 0. (B.206)

We then show that

lim
ρ→∞

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐
(
E

[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
]

− E

[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
])⏐⏐⏐⏐⏐ = 0. (B.207)

Corollary B.10 follows then by the triangle inequality.

The LHS of (B.206) can be written as

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[
(iℓ,s(ρ)−Bρ)

be−τ(iℓ,s(ρ)−Bρ)
(
1− γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)τ)]⏐⏐⏐⏐⏐.
(B.208)

Applying Hölder’s inequality, this can be upper-bounded by

sup
s∈(s0,1]

E

[⏐⏐⏐⏐(iℓ,s(ρ)−Bρ)

⏐⏐⏐⏐ 2bδ ] δ2 sup
τ∈[0,a),
s∈(s0,1]

E

[
e−

τ
1−δ (iℓ,s(ρ)−Bρ)

]1−δ

× sup
τ∈[0,a),
s∈(s0,1]

E

[(
1− γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)τ) 2
δ
] δ

2

(B.209)
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for some arbitrary δ ∈ (0, 1 − a(T − 1)) such that 2/δ is an integer. The first

supremum on the RHS of (B.209) is bounded in ρ by Lemma B.9. The second

supremum is bounded in ρ by Lemma B.6. The third supremum is O(1/ρ) by

Lemma B.5. Consequently, (B.208) is oρ(1), which proves (B.206).

We next prove (B.207). Since b ∈ {1, 2, 3}, we first focus on the case b = 1, where

it suffices to show that

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

− log γ̃
(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐ = oρ(1).

(B.210)

By Hölder’s inequality, the LHS of (B.210) can be upper-bounded by

sup
s∈(s0,1]

E

[(
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)) 1
δ
]δ

× sup
τ∈[0,a),
s∈(s0,1]

E

[
e−

τ
1−δ (iℓ,s(ρ)−Bρ)

]1−δ
. (B.211)

for every δ ∈ (0, 1− a(T− 1)). By Lemma B.6, the second supremum on the RHS of

(B.211) is bounded in ρ. The first supremum is achieved at s = s0. It thus remains

to show that

E

[(
− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)) 1
δ
]
= oρ(1). (B.212)

To this end, we use that, by (A.100) and (A.103), we can apply the dominated

convergence theorem to obtain

lim
ρ→∞

E

[(
− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)) 1
δ

]δ

= E

[
lim
ρ→∞

(
− log γ̃

(
T− 1, s0

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)) 1
δ

]δ
. (B.213)

Since γ̃(T− 1, x) → 1 as x→ ∞, it follows that the term inside the expected value

on the RHS of (B.213) is zero almost surely, hence the RHS of (B.213) is zero. This

proves (B.212), which together with (B.211) proves (B.210).
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We next focus on the case b = 2, where it suffices to show

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

− log γ̃
(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))2

e−τ(iℓ,s(ρ)−Bρ)

]

+ E

[(
−2
(
iℓ,s(ρ)−Bρ

)
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐
= oρ(1). (B.214)

The LHS of (B.214) can be upper-bounded by

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

− log γ̃
(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))2

e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐
+ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

−2
(
iℓ,s(ρ)−Bρ

)
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))

×e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐. (B.215)

The first supremum is oρ(1) by following similar steps as the ones used to show

(B.210). For the second supremum, Hölder’s inequality yields for any arbitrary

δ ∈ (0, 1− a(T− 1)) such that 2/δ is an integer

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

−2
(
iℓ,s(ρ)−Bρ

)
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))

× e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐

≤ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[
e−

τ
1−δ (iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐
1−δ

sup
s∈(s0,1]

⏐⏐⏐E[(2(iℓ,s(ρ)−Bρ
)) 2

δ

]⏐⏐⏐ δ2

× sup
s∈(s0,1]

E

[(
− log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

)) 2
δ

] δ
2

. (B.216)

The first supremum on the RHS of (B.216) is bounded in ρ by Lemma B.6. The

second supremum on the RHS of (B.216) is bounded in ρ by Lemma B.9. The third
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supremum is oρ(1) by following similar steps as the ones used to prove (B.212). This

proves (B.214).

Finally, for the case b = 3, it suffices to show

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

− log γ̃
(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))3

e−τ(iℓ,s(ρ)−Bρ)

]

−E

[(
3
(
iℓ,s(ρ)−Bρ

)2
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))
e−τ(iℓ,s(ρ)−Bρ)

]
+E

[(
3
(
iℓ,s(ρ)−Bρ

)
log2 γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))
e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐
= oρ(1). (B.217)

The LHS of (B.217) can be upper-bounded by

sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

− log γ̃
(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))3

e−τ(iℓ,s(ρ)−Bρ)

]⏐⏐⏐⏐⏐
+ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[
−
(
3
(
iℓ,s(ρ)−Bρ

)2
log γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))

×e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐

+ sup
τ∈[0,a),
s∈(s0,1]

⏐⏐⏐⏐⏐E
[(

3
(
iℓ,s(ρ)−Bρ

)
log2 γ̃

(
T− 1, s

Tρ((1 + Tρ)Z1 + Z2)

1 + Tρ

))

×e−τ(iℓ,s(ρ)−Bρ)
]⏐⏐⏐⏐⏐. (B.218)

By following the same steps used to prove (B.210) and (B.214), it can be shown that

(B.218) is oρ(1). This concludes the proof of (B.207).
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B.10 Bounds on the Derivative of the Regularized

Lower Incomplete Gamma Function

Lemma B.11 Assume that a > 1, k ∈ Z+, and 1/2 < s ≤ 1. Then, for every x > 0,⏐⏐⏐⏐ ∂ℓ∂sℓ log γ̃(a, sx)
⏐⏐⏐⏐k ≤ c(a, k, s), k ∈ Z+, ℓ ∈ {1, 2, 3} (B.219)

where c(a, b, s) only depends on a, k and s, but not on x.

Proof: We start by showing (B.219) for the first derivative, namely,⏐⏐⏐⏐ γ̃′(a, sx)γ̃(a, sx)

⏐⏐⏐⏐k ≤ c(a, k, s), k ∈ Z+. (B.220)

Here,

γ̃′(a, sx) =
∂

∂s
γ̃(a, sx) =

1

Γ(a)
x(sx)a−1e−sx (B.221)

which is nonnegative since a > 1, x > 0 and 1/2 < s ≤ 1. Furthermore, we have [60,

Sec. 8.10]

γ̃(a, sx) ≥
(
1− e−dsx

)a
(B.222)

where

d ≜ Γ(a+ 1)−
1
a . (B.223)

The RHS of (B.222) is between 0 and 1 for x > 0. It then follows that⏐⏐⏐⏐ γ̃′(a, sx)γ̃(a, sx)

⏐⏐⏐⏐k ≤
(

1

Γ(a)

x(sx)a−1e−sx

(1− e−dsx)
a

)k
≤

(
1

Γ(a)

x(sx)a−1(
esx/a − 1

)a
)k

≤

(
1

Γ(a)

x(sx)a−1(
sx
a

)a
)k

=

(
aa

sΓ(a)

)k
(B.224)

where the second inequality follows because

1

d
= Γ(a+ 1)

1
a = (a!)

1
a ≤ a (B.225)
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and the third inequality in (B.224) follows because ex ≥ 1 + x. This proves (B.219)

for ℓ = 1.

While the proof of (B.219) for ℓ = 2 and ℓ = 3 follows along similar lines, it

requires a more careful analysis. The second and third derivatives of γ̃(a, sx) with

respect to s are given by the respective

γ̃′′(a, sx) =
1

Γ(a)
x2(sx)a−2e−sx(a− sx− 1) (B.226a)

γ̃′′′(a, sx) =
1

Γ(a)
x3(sx)a−3e−sx(a2 − a(2sx+ 3) + 2). (B.226b)

For simplicity, and since the steps involved to show (B.219) for ℓ = 2 and ℓ = 3

are analogous, we will only explain the case for ℓ = 2. First, note that the LHS of

(B.219) for ℓ = 2 can be upper-bounded as⏐⏐⏐⏐ ∂2∂s2 log γ̃(a, sx)

⏐⏐⏐⏐k ≤ c2,k

⏐⏐⏐⏐ γ̃′′(a, sx)γ̃(a, sx)

⏐⏐⏐⏐k + c2,k

⏐⏐⏐⏐ γ̃′(a, sx)γ̃(a, sx)

⏐⏐⏐⏐2k (B.227)

where the inequality follows by (B.100). The second term on the RHS of (B.227)

can be analyzed by following the same steps as in (B.224). For the first term on the

RHS of (B.227), it follows that

⏐⏐⏐⏐ γ̃′′(a, sx)γ̃(a, sx)

⏐⏐⏐⏐k ≤ c2,k

(
1

Γ(a)

x2(sx)a−2e−sx(a− 1)

γ̃(a, sx)

)k
+ c2,k

(
1

Γ(a)

x2(sx)a−2e−sx(sx)

γ̃(a, sx)

)k
(B.228)

where the inequality follows by using (B.226a) and (B.100). Note that both terms in

(B.228) are nonnegative. Thus, the first term on the RHS of (B.228) can be analyzed

following the same steps as in (B.224):

(
x2(sx)a−2e−sx(a− 1)

Γ(a)γ̃(a, sx)

)k
≤

(
x2(sx)a−2(a− 1)

Γ(a)
(
esx/a − 1

)a
)k

≤

(
x2(sx)a−2(a− 1)

Γ(a)
(
sx
a

)a
)k

=

(
aa(a− 1)

s2Γ(a)

)k
. (B.229)
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To analyze the second term on the RHS of (B.228), let x∗(a, s) be the maximizer of

the numerator, i.e.,

x∗(a, s) ≜ argmax
x≥0

{
xa+1sa−1e−sx

}
=
a+ 1

s
. (B.230)

For the case 0 < x < x∗(a, s), we obtain the upper bound(
x2(sx)a−2e−sx(sx)

Γ(a)γ̃(a, sx)

)k
≤

(
x2(sx)a−1

Γ(a)
(
sx
a

)a
)k

=

(
xaa

sΓ(a)

)k
≤
(
x∗(a, s)a

a

sΓ(a)

)k
(B.231)

where the result of the last inequality only depends on a, s, and k.

For x ≥ x∗(a, s), we have that(
1− e−dsx

)a ≥
(
1− e−dsx∗(a,s)

)a
. (B.232)

Then, using (B.222), (B.230) and (B.232), the second term on the RHS of (B.228)

can be upper-bounded as(
x2(sx)a−2e−sx(sx)

Γ(a)γ̃(a, sx)

)k
≤

(
x∗(a, s)

2(sx∗(a, s))
a−2e−sx∗(a,s)(sx∗(a, s))

Γ(a)
(
1− e−dsx∗(a,s)

)a
)k

(B.233)

which, again, only depends on a, s, and k.

Combining (B.231) and (B.233), we obtain that, for x > 0,(
1

Γ(a)

x2(sx)a−2e−sx(sx)

γ̃(a, sx)

)k
≤ max

⎧⎨⎩
(
x∗(a, s)a

a

sΓ(a)

)k
,

(
x∗(a, s)

2(sx∗(a, s))
a−2e−sx∗(a,s)(sx∗(a, s))

Γ(a)
(
1− e−dsx∗(a,s)

)a
)k⎫⎬⎭ (B.234)

which only depends on a, s, and k, but not on x. Combining (B.228), (B.229) and

(B.234) thus yields (B.219) for ℓ = 2.

187



APPENDIX B. APPENDIX TO CHAPTER 6

188



References

[1] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite
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