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Abstract: Today, medical equipment or general-purpose devices such as smart-watches or
smart-textiles can acquire a person’s vital signs. Regardless of the type of device and its purpose,
they are all equipped with one or more sensors and often have wireless connectivity. Due to the
transmission of sensitive data through the insecure radio channel and the need to ensure exclusive
access to authorised entities, security mechanisms and cryptographic primitives must be incorporated
onboard these devices. Random number generators are one such necessary cryptographic primitive.
Motivated by this, we propose a True Random Number Generator (TRNG) that makes use of the
GSR signal measured by a sensor on the body. After an exhaustive analysis of both the entropy
source and the randomness of the output, we can conclude that the output generated by the proposed
TRNG behaves as that produced by a random variable. Besides, and in comparison with the previous
proposals, the performance offered is much higher than that of the earlier works.

Keywords: Galvanic Skin Response (GSR); entropy; randomness; Random Number Generators
(RNG); Hilbert transform

1. Introduction

The proliferation of wearable sensors has meant that medical environments are not the only
ones in which the acquisition of vital signs can occur [1]. For instance, there are a large number of
smart-watches (or sports watches) that monitor several of our physiological signs throughout our
daily lives, and even smart-textiles that have one or more integrated sensors have appeared on the
market [2]. Concerning the measured signal, there is a wide variety ranging from signals related to the
brain (e.g., Electroencephalogram (ECG)) through signals linked to the heart (e.g., Electrocardiogram
(ECG) or Photoplethysmogram (PPG)) to signals related to emotions (e.g., Galvanic skin response
(GSR)). Sensors do not usually work in isolation but form a network. When we refer to sensors that are
in (e.g., a pacemaker or a neurostimulator) or around (e.g., an insulin pump or a sport-watch) the body,
this type of network is named Wireless Body Area Network (WBAN) [3,4]. Body Sensor Network (BSN)
or Medical Body Area Network (MBAN) are other names given to these networks [5,6]. Apart from
the sensors, there is a central element called the gateway—a smart-phone usually implements the
latter. Currently, the sensors do not communicate directly with each other (shortly this may happen),
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but all connections pass through the gateway. It is also the gateway that provides connectivity to the
Internet [7].

1.1. Related Work

In the context of cybersecurity, vital signs have proved to be very useful in recent years. Biometrics
solutions based on ECG [8,9] or EEG signals [10,11] have been proposed for authentication purposes.
Some authors have even studied its feasibility (ECG [12,13] or EEG [14,15]) in the context of continuous
authentication—the verifier validates the credentials at regular intervals, ideally at every instant.
The key distribution problem between two devices (e.g., two ECG sensors [16]) has also attracted the
attention of some researchers. In detail, in these solutions, each sensor derives the shared key from the
acquired physiological signal, preventing the sensors from sharing any information beforehand [17,18].
In addition, the extraction of randomness from physiological signals has been recently scrutinised
(e.g., ECG [19,20], EEG [21,22] and EMG [23]).

Regarding MBAN, the security of Implantable Medical Devices (IMDs) has attracted the attention
of many researchers [24,25]. Even the FDA has alerted users of some vulnerabilities in commercial
IMDs [26]. The proposed solutions to increase the security level of these critical devices are very
diverse [27]. Some authors propose the usage of logs for auditing purposes [28] or the use of an
external device that filters the messages sent to the implant [29]. The use of biometrics solutions,
such as those based on fingerprints or iris, has been recently proposed [30,31]. Classical approaches
based on symmetric [32,33], asymmetric [34,35] or hybrid ones [36] have been also suggested. Some
authors have found interesting the combination of authentication schemes and distance bounding
protocols [37]. Besides, some new research work focuses on the key distribution problem [16,38] and
how to extract randomness from the signal acquired by the implant (mainly cardiac implants) [39–41].

The use of reliable Random Number Generators (RNGs) is crucial in security systems.
Even well-known modern cryptographic solutions, such as the RSA private keys of HTTPS hosts,
may have been compromised due to failures in the generation of nonces on networked devices [42].
When computational algorithms are used to generate random numbers, they are called Pseudorandom
Number Generators (PRNGs). PRNGs depend on an initial value, called seed or key, and the outputted
bitstream behaves as a random variable [43,44]. Alternatively, we can use physical phenomena with
high entropy (e.g., atmospheric noise or decay of a radioactive source) as a source of randomness.
This type of generators is called True Random Number Generators (TRNGs) [45,46].

In this article, we propose the design of a TRNG based on the GSR signal. As explained below,
the parasympathetic nervous system controls the GSR signal. Therefore, instead of a physical
phenomenon, we exploit a physiological signal that we carry with us—each user is the bearer of
her or his random number generator. Besides, the GSR signal cannot be self-controlled, which prevents
an attacker (or the carrier) from causing misbehaviour in the signal. As far as we know, Tuncer and
Kaya [23] reported the only work close to our proposal that analyses the use of various biosignals,
including the GSR signal, as a source for a random number generator. Unfortunately, in relation to the
GSR signal, the proposal has been validated with only 12 subjects (much lower than 86 in our case;
see Section 2.1) and the throughput (64 bits per second in the best case) is far from that offered by our
proposal (1024 bits/s), as shown in the next sections.

1.2. Galvanic Skin Response

The electrical conductivity of our skin undergoes subtle alterations every time we are emotionally
aroused. The Galvanic Skin Response (GSR)—also known as Electrodermal Activity (EDA) or Skin
Conductivity (SC)—is often used, because of its sensitivity, to measure these variations. Therefore,
the GSR measures the changes in the electrical characteristics of the skin. Humans have between two
and five million sweat glands; men and women have the same number of glands, but male glands
secrete five times more in size and volume [47]. Likewise, sweating is triggered when we are exposed
to emotional stimulation. Perspiration through skin pores makes changes in the balance of positive
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and negative ions in the secreted fluid. As a result, we can observe changes in skin conductance. Note
that an increase in skin conductivity means a decrease in skin resistance.

The Autonomic Nervous System (ANS), which forms with the Somatic Nervous System (SNS) the
Peripheral Nervous System (PNS), controls the functioning of many organs, muscles, and glands [48].
In detail, this regulation (proper behaviour of our body) is achieved by impulses from the brain (and/or
spinal cord) and generated by autonomous neurons. Sweet glands are part of the glands mentioned
above. In detail, sweating is driven and balanced by the ANS, and we cannot consciously control
it. The ANS consists of the parasympathetic and the sympathetic nervous system [49]. The former
is responsible for “rest and digest”. Decreased heart rate, decreased sweating, or decreased blood
pressure are some effects of its activation. The latter is responsible for the body’s “fight or flight”
reaction. That is, it helps to protect the body and is involved in functions such as pupils dilatation,
increased heart rate or sweating [50]. Therefore, both systems are complementary to each other.

The recording of the GSR signal is non-invasive, and we only need two electrodes for its
acquisition. Three are the most common placements: (1) index and middle fingers; (2) left and
right side of palm; and (3) foot. In the market, we can find low-cost hardware platforms (e.g., BITalino
or Libelium e-Health platform [51]) for the acquisition of biosignals. In Figure 1, we show an example of
the electrode placement using the Bitalino platform for the signal acquisition. In detail, the exosomatic
method with a small constant voltage is the most common approach to measure the GSR signal.
The skin conductance (1/resistance) values are determined by measuring the changes in the current
flow between the two electrodes, as the voltage is constant [52].

Figure 1. Electrodes placement for GSR acquisition.

2. Methods and Materials

2.1. Dataset Description

The randomness test batteries (e.g., DIEHARD [53] and NIST [54]) commonly used to verify the
randomness quality of a random number generator require files of several tens of megabytes. For this
reason, the GSR signals used in this study come from three well-known datasets:

1. The Affective Pacman (AffPac) dataset [55]. Twelve healthy users (aged 27 ± 3.9; 25% female)
participated in the experiment. Several physiological signals were recorded simultaneously,
including EEG, EOG and GSR signals.
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2. DEAP dataset [56]. Thirty-two healthy participants (aged 28 ± 9; 50% female) volunteered
for the experiment. The subjects watched several music videos while the physiological signals
(e.g., EEG and GSR) were acquired.

3. AMIGOS dataset [57]. Forty healthy users participated in the experiment (aged 30.5 ± 9.5;
32.5% female). The participants watched short (16) and long (4) emotional videos. Three
neuro-physiological signals (i.e., EEG, ECG and GSR signals) were recorded using wearable
sensors. In our experiments, we discarded three files (subjects) because of their short length.

Note that we discarded the acquisition of our own GSR signals (e.g., using the Bitlanino platform)
because, for our experimentation, we needed signals from many subjects and at the same time
very extensive in time. As mentioned, in our experiments, we used signals from three datasets
forming a total of 82 individuals (aged 28.5 ± 7.5; 35.8% female). Since no individuals present any
severe pathology, we can then discard any bias in the output bits generated by the proposed TRNG.
Furthermore, the signal acquisition process guaranteed that the GSR signals of the subjects in the
dataset are statistically independent.

2.2. Methods

In our experiments, we focused exclusively on the GSR signal. We aimed to validate the
hypothesis we can extract randomness from this vital signal. The proposed procedure is summarised
in Algorithm 1 and explained below. First, for the GSR signal pre-processing, we followed a similar
approach with all three datasets. As a first step, the data were down-sampled to 128 Hz. Then,
a low-pass filter with 60 Hz cut-off frequency was applied. As an illustrative example, Figure 2 shows
three minutes of a GSR signal.

Algorithm 1 GSR-TRNG.

1: procedure Pre-processing(GSRraw)
2: Down-sampling to 128 Hz
3: Low-pass filter ([0− 60Hz])

4: procedure GETENTROPY(GSRcleaned)
5: Split GSRcleaned into N-seconds GSR-windows (N=4 in our experiments)
6: for each GSR-window(x(j)(t)) do
7: Hilbert Transform: y(j)(t) = h(t) ∗ x(j)(t)
8: Entropy Extraction: g(j)(t)(0,...,7) = uint8((uint32(abs(y(j)(t) ∗ 102))) >> 24)

Figure 2. GSR signal.
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After cleaning the GSR signal, we needed to extract randomness numbers from it. For this, we
divided the GSR signal into windows of N = 4 seconds to be able to capture some variability in the
signal—we fixed the size of the window by experimenting after analysing an extensive set of possible
values. Secondly, we computed the Hilbert transform for each window. Hilbert transform can be
interpreted as an all-pass filter in which all positive/negative frequencies are sifted −90/90 degrees,
respectively. Mathematically, the Hilbert transform of a real, continuous-time signal is given by:

y(t) = h(t) ∗ x(t) (1)

where h(t) represents the Hilbert transform kernel (h(t) = 1
πt , t ∈ (−∞, ∞)).

Finally, we extracted random bits from the Hilbert transform values. Mainly, we used an entropy
extraction algorithm for this purpose. More precisely, using an accuracy of six decimal places, each
value was converted to a 32-bit unsigned integer value, and then a byte was extracted from the Least
Significant Bits (LSBs). It means that the proposed TRNG can generate 8× f s bits per second, with f s
being the sampling rate used. The use of the LSBs is motivated by the fact that it is in these positions
where there is more variability (randomness, formally stated) as confirmed by the results presented in
the following sections. Mathematically, the extraction of random bits can be expressed as:

g(t)(0,...,7) = uint8((uint32(abs(y(t) ∗ 102))) >> 24) (2)

Once we specified the randomness extraction algorithm, we needed to assess the quality of
the random numbers generated. For this purpose, we used the datasets introduced in Section 2.1.
The reader can consult the following section for an in-depth security analysis of the proposed TRNG.

3. Results

We analysed the proposal from two perspectives. Firstly, the quality of the entropy source was
studied, using the NIST SP 800-90B recommendation [58]. Secondly, the randomness of the random
numbers generated was examined using well-known batteries of tests, such as DIEHARDER [53] and
NIST [54].

3.1. Source Entropy Analysis

A cryptographic Random Bit Generator (RBG) is composed of three components: (1) an entropy
source; (2) an algorithm responsible of storing and providing bits to the target application, and (3) the
procedure for combining the two first components. In a nutshell, the entropy source model consists
of an analogue noise source (in our case, the GSR signal, which is first cleaned with the procedure
Pre-Processing in Algorithm 1) and a digitisation algorithm (procedure GetEntropy specified in
Algorithm 1 and defined by Equations (1) and (2)).

For testing the entropy of RBGs, the NIST SP 800-90B recommendation proposes ten estimators,
including the Markov and LZ78Y estimate among others for calculating the min-entropy [58]. The final
estimation is the minimum value of all these tests. A file of 25 million 1s and 0s was generated using the
third dataset to evaluate the entropy quality of the GSR signal. In most tests (see Table 1), the entropy
value was close to the optimal (1) and even for the worst case remained very high (0.935). In this
particular case, the t-tuple test sets the min-entropy value. This test evaluates the frequency of pairs,
triples, and so on, and estimates the entropy per sample based on these frequencies [58]. From all
the above, fortunately, we can conclude that the GSR signal together with the proposed digitisation
algorithm seemed appropriate for cryptographic solutions.
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Table 1. Min-entropy results (NIST SP 800-90B Suite).

Method Min-Entropy

Most Common Value Estimate 0.99876
Collision Estimate 0.966577
Markov Estimate 0.999052

Compression Estimate 1
t-Tuple Estimate 0.935861

LRS Estimate 0.965143
MultiMCW Prediction Estimate: 0.999605

Lag Prediction Estimate 0.999152
MultiMMC Prediction Estimate 0.998977

LZ78Y Prediction Estimate 0.998780
Overall estimation 0.935861

In some occasions, the estimation of the entropy calculated on a very long sequence can produce
an overestimation of the entropy—correlated sequences might be generated after a restart. If this is
the case, the attacker could cause multiple restarts of the entropy source to generate an advantageous
situation for her/him. The “restart” test is defined in the NIST SP 800-90B specification to evaluate
this issue. As for generating data for this test, the GSR source was restarted 103 times, and then we
recorded 103 consecutive values. In our case, we used the third dataset, in which the subjects were
shown 20 different videos. Therefore, in our experiments, the reset of the physiological signal was
simulated by exposing the subject to a different stimulation (video). Furthermore, to be even more
confident, we repeated the test five times (i.e., from File-1 to File-5). As shown in Table 2, the five tests
were passed successfully and confirmed that 0.94 was not an overestimate for the min-entropy.

Table 2. Restart tests (NIST SP 800-90B Suite).

File ID Result

File-1 Pass
File-2 Pass
File-3 Pass
File-4 Pass
File-5 Pass

Final min-entropy estimation 0.94

3.2. Randomness Analysis

In Algorithm 1, we included an entropy distillation process (Procedure GetEntropy) to produce
randomness. After the entropy analysis, we needed to assess the randomness quality of the bits
generated by the GSR-TRNG. For a first visual inspection in Figure 3, we show an 8-bit grey scale
image (512 × 512) of values generated by our TRNG. No anomalous patterns were detected, and the
image behaves as the one generated by any other strong cryptographic random number generator.
Several test batteries are commonly used (ENT [59], DIEHARDER [53] and NIST [54]) to analyse the
randomness in depth. These tests require an input file of several hundred million bits. In our particular
case, we generated a file of 30 MBytes by joining the GSR signals (signals of 84 subjects in total) of the
three datasets introduced in Section 2.1.
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Figure 3. Random numbers generated by the proposed GSR-RNG.

ENT suite [59], which is not intended for cryptographic applications, is one of the test batteries
usually used first to discard weak or faulty generators without the need for additional testing. Table 3
shows the results after analysing the 30 MByte file mentioned above. The entropy and compression
results indicate that the file was extremely dense in terms of information (randomness). As for the
chi-square test, which is very sensitive to detect weak generators, the results show no g suspicion
of being not random. The arithmetic mean value confirmed that the proportion of ones and zeros
were equal (i.e., there was no bias in the output). The serial correlation coefficient showed the
high unpredictability of the bitstream—there was a low dependence between a particular bit and
its predecessors.

Table 3. ENT results.

Entropy 7.999994
Optimum compression 0%

Chi square 235.33 (80.64%)
Arithmetic mean value 127.4990
Monte Carlo π value 3.143071846 (error 0.05%)

Serial correlation coefficient −0.000129

To analyse whether there were no biases in the behaviour of each subject’s signals, we performed
an additional experiment by analysing them separately. Using the signal of the 37 subjects of the
AMIGOS dataset, we generated a binary file of 800 KB for each of the subjects. Each of these files
was analysed with the ENT suite. Figure 4 shows the result of the chi-square test. As shown in
the figure, most values were within the optimal value (256) and ± the standard deviation. We can,
therefore, conclude that the different subjects behaved similarly. In other words, there were no
significant differences between the bitstreams generated from the different GSR signals corresponding
to each subject.
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Figure 4. Bias analysis.

DIEHARDER [53] (a modern version of the Diehard battery), and NIST [54] are much more
demanding test batteries than ENT. NIST has been designed to test RNGs that are devoted to
cybersecurity solutions. DIEHARD consists of 15 test and the results obtained are summarised
with a p-value in Table 4a. In detail, all tests were within the interval [0.025–0.975]—note that, due to a
large number of p-values calculated, it would not be uncommon for some of them to be outside this
range. Apart from being distributed within the interval mentioned above (0.05 of significance level),
the critical point to consider the file under analysis random is that these p-values must follow a uniform
distribution. We tested this hypothesis using a Kolgomorov–Smirnov test, which returned a decision
that the p-values come from a uniform distribution at the 5% of the significance level. Therefore,
we can conclude (95% of confidence) that there were no bad behaviours in the analysed bitstream
(30 MByte file) and that all the DIEHARD tests were successfully passed. As mentioned above, NIST is
often used in the context of cybersecurity and for formal verification of RNG designs. The NIST suite
is made up of 15 tests, which examine bits, m-bit blocks or m-bit parts. Regarding the interpretation
of the results, the first value corresponds with the p-value calculated for uniformity testing with the
p-values obtained with a given test; the values in brackets represent the proportion of tests passing
the corresponding test. The following equation gives the minimum number of tests (except for the
random excursion test) that must be passed for each test:

mpr = (1− α)− 3 ∗ sqrt(
α ∗ (1− α)

k
) (3)

being (1− α) the significance level and K the number of sequences tested. In our particular case,
α = 0.01 and K = 100, thus the minimum pass rate was 96. From the results in Table 4b, all the tests
passed the uniformity test (p-values in the interval 0.01–0.99; α = 0.01) and the proportion test was
above the mentioned threshold (mpr = 96). Furthermore, the Kolgomorov–Smirnov confirmed the
uniformity of all p-values (15 tests) with 1% of significance level. From all this, we can conclude that
the bits generated by the TRNG based on GSR signals behaved as a random variable.
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Table 4. DIEHARD and NIST Results.

(a) DIEHARD Results

Birthdays 0.1079
OPERM5 0.1265

32x32 Binary Rank 0.5070
6x8 Binary Rank 0.6194

Bitstream 0.1318
OPSO 0.0386
OQSO 0.1792
DNA 0.1792

Count the 1s (stream) 0.9853
Count the 1s Test (byte) 0.2096

Parking Lot 0.0667
Minimum Distance 0.5923

(2d Circle)
3d Sphere 0.9626

(Minimum Distance)
Squeeze Test 0.8645

Sum Test 0.0340
Runs 0.2381 (up)

0.6902 (down)
Craps 0.5847 (wins)

0.3163 (throws)

(b) NIST Results

Frequency 0.7792 (98/100)
Block Frequency 0.6787 (99/100)

Cumulative Sums 0.2974 (2/2)
(99/100)

Runs 0.2368 (98/100)
Longest Run 0.7197 (100/100)

Rank 0.3345 (98/100)
FFT 0.8831 (99/100)

Non-Overlapping 0.5181 (148/149)
Template (>99/100)

Overlapping Template 0.5749 (100/100)
Universal 0.3838 (99/100)

Approximate Entropy 0.0909 (100/100)
Random Excursions 0.6781 (8/8)

(>61/62)
Random Excursions 0.5799 (18/18)

Variant (>36/37)
Serial 0.8188 (2/2)

(>99/100)
Linear Complexity 0.1296 (100/100)

As an additional experiment, we analysed whether there was any relationship between the
random numbers generated by each user (GSR signal). If this were the case, it would be very
advantageous for an attacker, since s/he could exploit the knowledge of a GSR signal (e.g., User-A)
and predict the values of another signal (e.g., User-B). To assess this, using the 38 users of Dataset 3,
we created a file of 800 KB. Next, we grouped the data of each file in words of different sizes
(m = {8, 16, 32, 64}). For each of these word sizes, we computed the hamming distance between
all the dataset pair combinations (C38,2). We show the results obtained in Figure 5.

If there is no relation between the users (GSR signals), the calculated Hamming distance should
follow a binomial distribution (p(X = k) = (m

k )pk(1− p)n−k; E(X) = m ∗ p and σ2 = n ∗ p ∗ (1− p))
being m the size of the words and p = 1/2 as the zeros and the ones are equally likely). In our
experiments (see Figure 5), as expected, the experimental values were almost identical to the theoretical
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ones (i.e., a hamming distance of 4, 8, 16 and 32, respectively). Therefore, the advantage of an adversary
of predicting the values of a user using the knowledge of other users’ signals was zero.

Figure 5. Hamming distance distribution.

Apart from the randomness tests, and as a final test, we analysed the TRNG as if it were used as a
generator of a ciphering sequence (s) to encrypt a plain-text (m): c = E(s, m) = s⊕m. In particular,
using this approach, five different images (256 × 256 grayscale images), chosen randomly from the
Internet, were used as inputs for the experiment. As for the ciphering sequence, bits were grouped in
bytes and then regrouped into a matrix of the same size as the inputs images. As a first glance, Figure 6
shows the histogram of one of the tested images and its histogram after encryption. As expected,
the encryption made the histogram uniform. Note that, if s (image with random values) follows a
uniform distribution, and s and m are chosen independently of each other, the resulting value is
uniformly distributed, since we combine them with the bitwise operation. This uniform distribution at
the output makes it impossible for an attacker to extract any information from the original plaintext
(image from the Internet in our example). Nowadays, NPCR and UACI tests are used to evaluate
the strength of an image encryption technique against differential attacks [60]. In short, the first
assesses the number of changing pixels and the second evaluates the changes in intensity, in both
cases, between two encrypted images when the two plain images differ by one bit. In Table 5, we
summarise the results of these test for the five examined images. Considering the thresholds given
in [61], NPCR and UACI tests passed successfully at 0.05 significance level (i.e., NPRC0.05 ≥ 99.5693%
and 33.284% ≤ UACI0.005 ≤ 33.6447%).
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Figure 6. Original and encrypted statistical histograms.

Table 5. NPCR and UACI randomness tests.

NPCR UACI

File-1 99.6139% 33.6028%
File-2 99.6185% 33.6315%
File-3 99.5911% 33.2750%
File-4 99.6124% 33.4287%
File-5 99.6139% 33.4694%

Optimal value (256 × 256) [61]
NPCR0.05 ≥ 99.5693% 33.2824% ≤ UACI0.005 ≤ 33.6447%
NPCR0.01 ≥ 99.5527% 33.2255% ≤ UACI0.01 ≤ 33.7016%
NPCR0.001 ≥ 99.5341% 33.1594% ≤ UACI0.001 ≤ 33.7677%

4. Discussion and Conclusions

Today, there are many devices that monitor vital signs. These devices can be medical devices
such as pacemakers or insulin pumps or general purpose devices such as sports watches or smart
clothing with sensors. In any case, we have devices equipped with one or several sensors that transmit
the acquired information (in most cases, wirelessly) to a central device. Although no one doubts the
benefits of constant monitoring of our physiological parameters, access to these data only to authorised
entities and their protection when transmitted through an insecure channel (mainly the radio channel)
should be guaranteed from the design phase. Random number generators play a critical role in the
design of cryptographic solutions for this purpose. Motivated by this fact, in this article, we have
proposed a TRNG that benefits from a vital signal that is already being monitored by a sensor on
the body. In particular, we have studied how to design a random number generator based on the
GSR signal. Both the entropy source and the output randomness analysis confirm that the generated
bitstreams behave as a random variable.

As shown in Algorithm 1, for the extraction of the randomness (Procedure GetEntropy), the Hilbert
transform is used, which is usually used to construct the Analytic signal. Mathematically, given a
signal x(t) and its Hilbert transform y(t), it is defined by xA(t) = x(t) + jy(t). In our particular
case, we use only the imaginary part of the analytic signal that corresponds to the Hilbert transform
itself. The reader may be tempted to think that the extraction of the entropy could be done from the
signal itself (without any transformation). However, this was the first approach that we tested, and,
although the output is entropic, a simple test such as the chi-square (ENT suite) clearly shows how the
bits generated are non-random. Therefore, the use of Hilbert’s transform is justified. Note that the
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procedure for extracting random bits (see Equation (2) in Section 2.2) also plays a crucial role in our
proposed TRNG.

In general terms, three elements are the main components of a TRNG: (1) noise source (GSR signal
in our case); (2) digitisation algorithm; and (3) post-processing procedure (optional). In our case, we
only have the first two elements since we consider that post-processing is not necessary. Among the
most common post-processing techniques are bitwise XOR operations, Von Neumann algorithm or
even the use of a hash function [62,63]. The use of these techniques is mandatory when the quality
(randomness) of the output is not yet the desired. As shown in the in-depth analysis of the randomness
(see Section 3.2), our generator successfully passes all the test batteries, and that is why our proposal
dispenses with this stage.

A key parameter about any primitive cryptography is its performance. In the case of random
number generators, high or moderately high throughput may be necessary for many applications.
The proposed TRNG can generate 1024 bits per second (i.e., 8× f s = 8× 128). This performance is
far superior to that achieved by other random number generators using biosignals. In this context,
the cardiac signal is the most studied physiological signal for this purpose. Solutions based on
Interpulse Interval (IPI) values can generate between 2 and 14 bits per second [38,64], which is far
below our performance. Even modern solutions based on the wavelet transform offer a through three
times lower [19]. Concerning the GSR signal and the recently proposed TRNG [23], its throughput is
16 times lower at best than that of our approach. We can conclude from all this that our proposal offers
excellent performance to be used in cybersecurity solutions.

As shown in this article, a new generation of TRNGs based on our vital signs can be designed.
Apart from the GSR signal, and cardiac signals, other signals, such a the electrical activity of the brain
(e.g., electroencephalogram) or the skeletal muscles (e.g., electromyogram) could be employed. Even
for highly demanding applications, the combined use of various signals could give excellent results.
As a conclusion, we can state that just as we still have much to learn from the human body within
medicine, the use of the body is even less explored for cybersecurity tasks. In addition, it is worth
mentioning that the use of sensors, integrated into a wide variety of devices, plays a critical role in the
acquisition of the signal at stake.
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