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Abstract

A mathematical model of a kite connected to the ground by two straight
tethers of varying lengths is presented and used to study the traction force
generated by kites flying in cross-wind conditions. The equations of motion are
obtained by using a Lagrangian formulation, which yields a low-order system
of ordinary differential equations free of constraint forces. Two parameters
are chosen for the analysis. The first parameter is the wind velocity. The
second parameter is one of the stability derivatives of the aerodynamic model:
the roll response to the sideslip angle, known also as effective dihedral. This
parameter affects significantly the lateral dynamics of the kite. It has been
found that when the effective dihedral is below a certain threshold, the kite
follows stable periodic trajectories, and naturally flies in cross-wind conditions
while generating a high tension along both tethers. This result indicates that
kite-based propulsion systems could operate without controlling tether lengths
if kite design, including the dihedral and sweep angles, is done appropriately. If
both tether lengths are varied out-of-phase and periodically, then kite dynamics
can be very complex. The trajectories are chaotic and intermittent for values of
the effective dihedral below a certain negative threshold. It is found that tether
tensions can be very similar with and without tether length modulation if the
parameters of the model are well-chosen. The use of the model for pure traction
applications of kites is discussed.

Keywords: Kite Modeling, Lagrangian Systems, Kite Control

1. Introduction

Kites have been used for recreational purposes since antiquity and, recently,
they have been the subject of intensive research for engineering applications.
Several kite scenarios require reaching high tether tensions by flying the kite
in cross-wind conditions. One of them is the pulling of cargo ships [1, 2]. An-
other one is airborne wind energy generation, in which tethered flying devices
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are employed to extract the kinetic energy of wind at higher altitudes than
conventional wind turbines can reach. A main advantage of the technology is
the lower material consumption and smaller environmental footprint. Further-
more, the capacity factor can be significantly larger than that of tower-based
turbines because of the stronger and more persistent wind at higher altitude
and the adaptability of the tethered energy harvesting system to the wind re-
source [3, 4, 5]. The two pursued concepts are ground-based energy conversion,
in which the traction power of the flying device is converted into electricity by
a generator on the ground, and airborne energy conversion by wind turbines
mounted on the flying device [6, 7]. Most of the implemented concepts are
based on a tethered wing as aerodynamic lifting device. The wing is the equiv-
alent of the wind turbine rotor blade with the crucial difference that the blade
is constrained to a rotational motion around the turbine hub while the wing is
flown on a certain path required by the specific conversion concept. Most of the
implemented airborne wind energy concepts are based on pumping cycles com-
prising a power-generating reel-out phase and a power-consuming reel-in phase
[8]. A low power consumption throughout the reel-in phase needs a depowered
kite, i.e., angle of attack control to decrease the aerodynamic force.

To analyze the performance of the kite during reel-out and reel-in phases
and to assess the flight dynamic feasibility of a certain trajectory a variety
of different modeling approaches have been developed in the past. The type of
wing varies from highly flexible membrane wings, without any rigid components,
to rigid wings. Flexible membrane wings are controlled by actuation of bridle
lines which allows rotation and deformation of the entire wing, while rigid wings
are generally steered like aircraft using aerodynamic control surfaces [5]. For
an accurate simulation of the kite behavior the complex interaction phenomena
between airflow and tensile membrane structure have to be taken into account.
Breukels [9] has presented a multibody model of a Leading Edge Inflatable
tube kite and its bridle line system in combination with a correlation-based
aerodynamic load model to predict aeroelastic phenomena during flight. On
the other hand, Bosch et al. [10] has used a finite element model of this kite
with the same aerodynamic load model. To avoid the complexity of modeling
wing deformation de Groot et al. [11] has combined state reduction with a
model identification approach. A different approach has been chosen by Fechner
et al. [12] who model the structural behavior of kite, bridle lines and main
tether by a particle system interconnected by elastic springs and dampers. The
aerodynamic loading is discretized by either a single or three different panels,
representing two different levels of detail to the problem of kite aerodynamics.

This work constructs a mathematical model of a kite linked to the ground
with two tethers of variable lengths. Two-line kite simulators are specially
relevant because they can be applied to airborne wind energy generation with a
generator on the ground and also they can be employed for traction applications
like pulling cargo ships. Regarding the former, a two-line kite can be steered
by varying the line lengths and depowered by entirely releasing one line and
retracting the wing in a flagged state using the other line [14]. Two-line kites
with movable tip attachment points, as the one shown in Fig. 1, can also be
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Figure 1: Two-line kite with rack-and-pinion system to move tip attachments of lines [13]

depowered [13]. Two-line kite models for static [15] and dynamic [16] studies
have been reported in the literature. In the latter, the kite was taken as a single
point and tether lengths were assumed to be directly related with a lateral angle
appearing in the aerodynamic forces. Our dynamic model considers the kite as
a rigid body and incorporates self-consistently in the equations the variations
of the tether lengths, as discussed below.

The first goal of this work is the development of a mathematical model
that can be combined with other tools like periodic orbit and nonlinear optimal
control solvers [17]. For these cases, very detailed simulators – as the one cited in
the previous paragraph – can be too demanding from a computational point of
view. Compact, efficient, and robust models are more convenient for preliminary
design phases, which typically require extensive parametric analysis. The second
goal is the analysis of kite dynamics in cross-wind conditions that, as shown by
the model, can be driven by passive (kite aerodynamic design) and active (tether
length modulation) means.

Keeping low the complexity of the simulator requires inevitably to substitute
the flexible tethers by inextensible and straight bars. This is a valid approxi-
mation if the tether is short enough. However, this approach introduces some
difficulties because the kite should satisfy at any instant the constraints imposed
by the rigid tethers. If a classical-mechanics formulation is used, then one finds
a set of ordinary differential equations, coming from kite dynamics, coupled
with a nonlinear set of algebraic equations due to the constraints. Their self-
consistent solutions typically involve the implementation of a Newton-Raphson
algorithm at each time step during the integration. For these reasons, many
kite simulators derived the equations of motion using analytical mechanics (La-
grange formulation)[18, 19, 20, 21, 22]. For ideal constraints, this technique
yields a compact and robust set of ordinary differential equations.
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The work is organized as follows. Section 2 describes in detail the hypothesis
of the model, the coordinate and frames of references used, and the Lagrange
equations of a two-line kite. Section 3 shows that, even with constant tether
lengths (no control law is implemented), the kite can naturally fly in cross-wind
conditions and generate a high tension at the tethers. Section 4 explores kite
dynamics and high tensions generation by implementing a periodic control law.
The suitability of the model with periodic orbit solvers is shown. Section 5
summarizes the main results and discusses some applications and future works.

2. The kite system model

2.1. Hypotheses and notation

This section presents a compact dynamical model of a kite with two control
lines. For convenience, we will make an extensive use of dimensionless variables
and some shortenings to improve the legibility of the work. In particular, we
will denote with a dot the derivative of any variable, say a, with respect to
the dimensionless time τ = t

√
g/L0, ȧ = da/dτ . Here g is the gravitational

acceleration and L0 the initial length of one of the tethers. For brevity, the sine
and cosine of an angle α will be written as sα and cα. Most of the lower case
and capital letters denote variables without and with dimensions, respectively.
The unit vectors that define a frame of reference are denoted as iα, jα and
kα, with α a subscript that identifies the reference frame. We will also make
extensive use of rotation matrices that relate the vector components in different
basis. For instance, the components of a vector a = xEiE + yEjE + zEkE =
x1i1 + y1j1 + z1k1 are related by x1

y1
z1

 = R1E

 xE
yE
zE

 , (1)

where R1E is the rotation matrix that relates the components in the frames 1
and E to be defined below.

The model considers a rigid (flexibility effects are ignored) power kite of mass
m, surface S, chord c, wingspan b. For convenience we introduce a reference
frame, named the body frame SB , linked to the kite and with origin at its center
of mass G. The SB axes coincide with the principal axes of inertia of the kite
at G. Therefore, the moment of inertia tensor of the kite about point G in the
body frame is a diagonal matrix. We write it as IG = mL2

0ιG, with ιG the
dimensionless matrix

ιG =

 ιx 0 0
0 ιy 0
0 0 ιz

 . (2)

The second hypothesis of the model is related to the physical properties of
the tethers. Their inertial, flexibility and elastic effects are ignored. The tethers,
taken as rigid massless bars, connect the ground fixed point OE with the kite
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attachment points A+ and A− (see Fig. 2). The position vectors of these points
with respect to the body frame are

GA± = L0 (xAiB ± yAjB + zAkB) , (3)

with xA, yA and zA three dimensionless constants. Unlike the kite shown in Fig.
1, the distances between the center of mass of the kite and the attachment points
A+ and A− are constant in our model and these points are also symmetric with
respect to the plane of symmetry of the kite.

Extending our model to kites with rack-and-pinion control system which
move the tip attachments of the bridle lines (see Fig. 1) just requires minor
modifications like writing Eq. (3) as GA± = L0 (xA±iB + yA±jB + zA±kB)
and including six additional functions in the control vector (xA±, yA± and
xA±). Such modifications are beyond the scope of this work that is focused on
the generation of high tensions for pulling purposes and does not involve any
depowered phase. The complex dynamic interaction between the kite-tether
system and the system that is pulled, such as a ship or a mobile ground station,
may also be considered. For example, when pulling a ship the motion of the
ship caused by the waves affects also the flight dynamics of the kite. This is
of particular relevance during launching and landing of the kite on the ship,
when the deployed tether is short, the kite is close to the ship and the risk of
collision is thus high. Such analysis would require the coupling between the
present model and the dynamics of the pulled object, a topic that is left for
future works.

Our third and last hypothesis involves the wind velocity, whose intensity
and direction is constant. This property is used to introduce an inertial frame
of reference, named the Earth frame SE , with origin at point OE , where the
two control lines of the kite meet. The plane spanned by the OExE and OEyE
axes coincides with the (flat) ground and the OEzE axis points downwards to
the Earth’s center. The OxE axis is opposed to the wind velocity vector, which
can thus be resolved in the reference frame SE as

Vw = −
√
gL0vwiE , (4)

with vw a given dimensionless and positive quantity that gauges the strength
of the wind. Time-dependent wind velocities, ignored in our work, can be
incorporated to the model by just giving a law vw(τ).

2.2. State and control vectors

In the absence of the constraints, six coordinates are required to describe
the motion of a rigid kite, which is kinematically equivalent to the motion of SB
with respect to SE . However, the two attachment points A+ and A− are linked
with point OE by tethers of given lengths LA+

(t) and LA−(t), respectively.
Therefore, due to the constraints, the system has 6− 2 = 4 degrees of freedom.
The choice of these four coordinates is very important because it affects to the
complexity of the resulting set of equations. Figures 2 and 3 provide sketches of
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Figure 2: Sketch that shows the position of the kite with respect to the SE reference frame,
the auxiliary reference frames S1 and S2 and the definition of the state angles ϕ and γ and of
the control angle δ. The Π plane which is defined by the points OE , A+ and A− is highlighted
in red.

the model, including the various reference frames employed and the state and
control angles to be defined below.

A key geometrical element of the system is plane Π, defined by the three
points OE , A+ and A− (see Fig. 2). For convenience, we introduce an auxiliary
reference frame S1 with origin at OE ≡ O1 and axes O1y1 and O1z1 spanning
the Π plane. The precise orientation of frames S1 with respect to SE is given
by two consecutive rotations. The first one is a rotation of value ϕ(τ) about
kE and the second is a rotation of value γ(τ) about j1. Therefore, the rotation
matrix R1E that transforms vector components from SE to S1 is

R1E =

 cγcϕ cγsϕ −sγ
−sϕ cϕ 0
sγcϕ sγsϕ cγ

 (5)

and the angular velocity of S1 with respect to SE reads Ω1E =
√
g/L0 (ϕ̇kE + γ̇j1).
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Figure 3: a) Sketch of the Π plane including the definition of the state angle η and the control
angle δ. b) Sketch showing the definition of the state angle θ that relates the intermediate
reference frame S2 and the body reference frame SB .

Points OE , A+ and A− are the vertices of a triangle. Since its three sides
(LA+

(t), LA−(t) and the constant distance, 2L0yA between points A+ and A−)
are known, and one of its vertex coincides with OE = O1, just one coordinate is
needed to place the triangle within Π. For convenience we introduce a reference
frame S2 that moves linked to the triangle (see Figs. 2 and 3a). Its origin, O2,
is at the midpoint of the segment A+A−, the O2y2 axis is pointing from A− to
A+, the O2z2 axis is contained in the Π plane, and O2x2 axis is normal to Π.
The relative position of S2 with respect to S1 is given by the angle η(τ) between
O1y1 and O2y2. The rotation matrix R21, that transforms vector components
from S1 to S2, is

R21 =

 1 0 0
0 cη sη
0 −sη cη

 (6)

and the angular velocity of S2 with respect to S1 is Ω21 =
√
g/L0η̇i2.

The location of the kite (frame SB) with respect to S2 just requires a last
additional coordinate. Since the attachment points A+ and A− are symmetric
with respect to the symmetry plane of the kite, O2y2 and OByB are also parallel
and the orientation of S2 with respect to SB is fully determined by the angle
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θ(τ) between O2xB and O2x2 (see Fig. 3b). The rotation matrix RB2 reads

RB2 =

 cθ 0 −sθ
0 1 0
sθ 0 cθ

 (7)

and the angular velocity is ΩB2 =
√
g/L0θ̇jB .

The four angles defined above, that correspond to the four degrees of freedom
of the two-line kite system, are gathered in the state vector

xs(τ) = [ϕ γ η θ]T . (8)

Regarding the control vector, a possible choice would be the tether lengths
LA+

and LA− . However, later calculations will show that the distance between
points OE and O2 and the angle δ between the O2Z2 axis and the median of the
triangle with vertices OE , A+ and A− (see Fig. 3a) will appear naturally in the
model. We write the former as |OEO2| = L0`(τ), where `(τ) is the dimensionless
function

`(τ) =

√
1

2

(
`2A+

+ `2A−
− 2y2A

)
, (9)

with `A+
= LA+

/L0 and `A− = LA−/L0. Angle δ(τ) is found by applying the
law of cosines to the triangle with vertices O1, O2 and A−

δ(τ) = arcsin

[
`2A+
− `2A−

4`yA

]
. (10)

Note that in the particular instant sketched in Fig. 3a, `A− > `A+
leading to

δ < 0 according to Eq. (10). Both `(τ) and δ(τ) are therefore functions of the
normalized tether lengths `A+(τ) and `A−(τ) and are gathered in the control
vector

xc(τ) = [` δ]T . (11)

2.3. Lagrangian function and generalized forces

Once the kite state and control vectors are defined, we can write relevant
kinematics quantities like the position of the center of mass of the kite with
respect to SE

RG ≡ OEG = OEO2+O2G = L0 {` [s (η + δ) j1 − c (η + δ)k1]− (xAiB + zAkB)} .
(12)

The absolute velocity of the center of mass is given by the time rate of change
of Eq. (12), VG = dRG/dt ≡

√
gL0vG. After some algebra, the components of

vG in the body frame can be written as

vG = Υsẋs + Υcẋc, (13)
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with matrices Υs(xs,xc) and Υc(xs,xc) given by

Υs =

 ` [sδsγsθ − cγs(η + δ)cθ]− zAcγsη −`c(η + δ)cθ − zAcη −`sδsθ -zA
sγ (xAsθ − zAcθ − `cδ)− cγcη (xAcθ + zAsθ) sη(xAcθ + zAsθ) `cδ − xAsθ + zAcθ 0

−` [sδsγcθ + cγs(η + δ)sθ] + xAcγsη −`c(η + δ)sθ + xAcη `sδcθ xA

 ,

(14)

Υc =

 cδsθ −`sδsθ
sδ `cδ
−cδcθ `sδcθ

 . (15)

The absolute angular velocity of the kite is ΩBE = ΩB2 + Ω21 + Ω1E =√
g/L0

(
ϕ̇kE + γ̇j1 + η̇i2 + θ̇jB

)
. Its components in the body frame are ΩBE =

P iB +QjB +RkB ≡
√
g/L0ω with

ω =

 −cγcηsθ − sγcθ sηsθ cθ 0
cγsη cη 0 1

cγcηcθ − sγsθ −sηcθ sθ 0

 ẋs ≡ Φẋs. (16)

The dimensionless Lagrangian of the kite,

L =

(
1

2
m|VG|2 +

1

2
ΩBE · IG ·ΩBE +mgRG · kE

)
/mgL0 ≡ ek − up,

involves the normalized kinetic and potential energies of the kite. The former
is given by ek = (v2G + 1

2ω
T · ιG · ω)/2 or, using Eqs. (13) and (16),

ek(xs,xc, ẋs, ẋc) =
1

2

(
ẋTs ·M (s) · ẋs + 2ẋTs ·M sc · ẋc + ẋTc ·M (c) · ẋc

)
,

(17)
with M (s) ≡ ΥT

s ·Υs + ΦT · ιG · Φ, M (sc) ≡ ΥT
s ·Υc and M (c) ≡ ΥT

c ·Υc.
Matrix M (c) takes the very simple form

M (c) =

(
1 0
0 `2

)
. (18)

and does not depend on the kite state vector xs. Regarding the potential energy,
up(xs,xc) = −rG · kE , one finds

up(xs,xc) = `cγc (η + δ)− xA [sγcθ + cγsθcη]− zA [sγsθ − cγcθcη] . (19)

The aerodynamic force, FA ≡ mgfA, and its torque about point G, MA ≡
mgL0mA, are non-conservative and they should be incorporated to the La-
grange equations through the generalized forces

Qi = fA ·
∂vG
∂ẋsi

+mA ·
∂ω

∂ẋsi
, i = 1, . . . , 4. (20)

These generalized forces depend on the aerodynamic velocity of the kite vA =
vG − vw, which involves the wind velocity vw and the kite velocity vG. Since
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vw and vG are projected in the Earth and the body frames in Eqs. (4) and (13),
it is necessary to make a coordinate transformation with the rotation matrix
RBE to make the substraction. The aerodynamic force and torque in Eq. (20)
are here computed with the following model[23]

fA =µv2A [(Cx0 + Cxαα) iB + CyββjB + (Cz0 + Czαα)kB ] , (21)

mA =µv2A [εb (Clββ + Clpp) iB + εc (Cm0 + Cmαα+ Cmqq) jB + εb (Cnββ + Cnrr)kB ] ,
(22)

where µ ≡ ρSL0/2m, εb = b/L0, εc = c/L0, p = Pb/2VT , q = Qc/VT , r =
Rb/2VT , ρ the air density, and VT a reference velocity that is needed for a
proper determination of Clp, Cmq and Cnr. For the present aerodynamic model
this reference velocity is VT = 7m/s. The attack and sideslip angles in Eqs.
(21) and (22) are given by

α = arctan

(
vA · kB
vA · iB

)
, β = arcsin

(
vA · jB
|vA|

)
. (23)

The aerodynamic model provides unrealistic forces for large values of the angle
of attack, α and the sideslip angle, β. Therefore, the model is only valid when
α is below the stall angle (α < αs) and β is below a given threshold angle
(|β| < βmax). This model constitutes a first aerodynamic model aimed at a
basic investigation of kite dynamics. A more sophisticated description, which is
beyond the scope of this work, could be incorporated easily to our simulator by
just substituting Eqs. (21)-(22) by empirical or numerical aerodynamic models.

2.4. Equations of motion

Lagrangian formulation yields a very compact form for the equations of
motion of the kite. Since our system is holonomic, the constraint forces, i.e.,
the tensions at the two tethers, do not contribute to the generalized forces. The
Lagrangian equations then read

d

dτ

(
∂L
∂ẋsi

)
− ∂L
∂xsi

= Qi, i = 1, . . . , 4. (24)

Using Eqs. (13)-(23) in Eq. (24) yields

M
(s)
ij ẍsj +

[
∂Ms

ij

∂xsk
ẋsk +

∂Ms
ij

∂xck
ẋck

]
ẋsj +M

(sc)
ij ẍcj +

[
∂M

(sc)
ij

∂xsk
ẋsk +

∂M
(sc)
ij

∂xck
ẋck

]
ẋcj ,

−1

2

(
∂M

(s)
jk

∂xsi
ẋsj ẋsk + 2

∂M
(sc)
jk

∂xsi
ẋsj ẋck

)
+
∂up
∂xsi

= fAkΥski +mAkΦki,

(25)

where we used Einstein summation convention. Note that the term proportional
to ∂M c

jk/∂xsi is zero because, according to Eq. (18), matrix M c does not
depend on the state vector.
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For convenience, we introduce the extended state vector

u = [xs ẋs], (26)

and write Eq. (25) as a system of first order ordinary differential equations

du

dτ
= f (u, τ ;p) . (27)

In general, the system is non-autonomous because τ appears explicitly in the
right hand side of Eq. (27) due to the control law xc and its derivatives. Vector
p in Eq. (27) gathers all the dimensionless parameters of the model. A summary
of the values used in our simulations is given in Table 1. An example of physical
parameters yielding the values of Table 1 is ρ = 1.225kg/m3, g = 9.8m/s2,
m = 4kg, c = 1.5, b = 5.8m, S = 14.38m2. In the next two sections, these
parameters were used to provide some results with dimensions and ease the
physical understanding. However, the results can be applied directly to kites and
tethers of different sizes and lengths if the scaling preserves the dimensionless
parameters of Table 1. Note also that yA does not appear in p thanks to our
choice of the control variables δ(t) and `(t). However, this parameter is needed
if one wishes to recover the normalized tether lengths `A+

and `A− from δ(t)
and `(t).

Our model is valid for any rigid body towed to the ground by two teth-
ers. A large number of cases, like acrobatic kites, power kites, and aircraft-like
kites, could be simulated. The particular shape of the body enters in the model
through the value of the aerodynamic coefficients and through the values of the
normalized moments of inertia. As shown in Table 1, this work analyzes a power
kite and uses the same values of Ref. [22] (see references therein for more de-
tails). Parametric studies varying the wind velocity and the stability derivative
Clβ are presented in the following. The motivation behind the selection of this
particular stability derivative for the parametric study will become clear in Secs.
3 and 4. Clβ affects severely to the lateral dynamics of the system and, since
it is influenced by the dihedral and the sweep angles [23], it can be tuned by
making an appropriate design of the kite. While in aircraft aerodynamics the
stability derivatives are often well characterized, the data for kite aerodynamics
is scarce. Vortex-lattice method calculations applied to a surf kite provided a
value of Clβ = −0.49 [24]. Data for parafoils (which may behave similar as
kites) are also available, for example [25] reports Clβ = −0.037.

2.5. Limitations and verification of the model

Given a parameter vector p, control laws xc, ẋc and ẍc, and a set of initial
conditions u(τ = 0), Eq. (27) can be integrated numerically to find the kite
trajectory u(τ). However, although such an orbit is mathematically correct, it
should satisfy a set of conditions to be valid from a physical point of view. First,
the two tethers should be under traction at any instant. In order to check this
condition, tension forces applied to the kite at points A±, T±(τ) = mgt±u±
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Symbol Value Symbol Value

εc 0.0075 εb 0.029
xA 0.0037 ix 1.32× 10−4

yA 0.0145 iy 2.92× 10−5

zA 0.01 iz 1.12× 10−4

µ 440.4 βmax 15◦

αs 25◦ vw −
Cx0 −0.065 Cxα 0.176
Clβ − Clp −0.15
Cyβ −1.57 Cm0 0.1332
Cmα −0.7633 Cmq −0.165
Cz0 0.116 Czα −2.97
Cnβ −0.027 Cnr −0.002

Table 1: Dimensionless parametera used in the simulations. The stability derivative Clβ and
the normalized wind velocity vw are used as bifurcation parameters in the analysis.

with u± ≡ A±OE/|A±OE |, should be computed from the trajectory u(τ). The
dot products of the unit vectors u± and Newton’s Second Law

v̇G = kE + fA + t+u+ + t−u−, (28)

yield a couple of equations for the normalized tensions t±(τ). Note that v̇G is
found from the trajectory u(τ) by just taking the derivative of Eq. (13) and
using Eq. (25). A physically valid trajectory should verify t±(τ) > 0, ∀τ . In
addition, some quantities should be also within certain ranges. The aerodynamic
model given by Eqs. (21)-(22) is valid for angles of attack below stall, α(τ) < αs,
and the modulus of the sideslip angle below certain maximum, |β(τ)| < βmax.
Finally, the kite should be inside the wind window, RG ·iE < 0 and RG ·kE < 0
∀τ . The results presented in this paper satisfy all these conditions.

The correct implementation of the simulator has been checked by writing
a separate code that solves the differential-algebraic system of equations that
results from the classical Newton-Euler equations for the rigid body together
with the constraints of the tethers. We took several arbitrary initial conditions
and integrated the equations of motion by using the Lagrangian and the classical
codes. They provided the same trajectories up to the error of the numerical
integrators. However, the set of differential equations obtained by using the
Lagrangian formulation is more appropriate to make complex calculations like
the determination of periodic orbits and their stability, and, in addition, its
solution is computationally less demanding.

3. Dynamics of the kite with constant tethers lengths.

This section shows that a two-line kite can fly in cross-wind conditions in
a stable way without implementing any type of control strategy. Since such a
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configuration is very simple and robust, it is an interesting case with applica-
tions to wind power generation or pulling boats to save fuel. As shown below,
a deep understanding of the kite dynamics and the relevant kite design param-
eters requires first a discussion of the existence and stability of some families of
solutions.

3.1. Kite equilibrium

Under steady wind conditions (vw is constant) and steady symmetric control
laws (xc = [

√
1− y2A 0]T ), the system admits a symmetric equilibrium state,

i.e. a kite state, u(τ) = u∗ that makes f(u∗) = 0. Such a condition is verified
by a state vector of the form x∗

s = [0 γ∗ 0 θ∗] , where γ∗ and θ∗ are constants
(ẋs = 0). Substituting this state vector in Eq. (27), yields two coupled nonlinear
algebraic equations for γ∗ and θ∗. After some algebra, an equation for the
equilibrium angle of attack α∗ = γ∗ + θ∗ is found

Λ (xA cosα∗ + zA sinα∗)+εc (Cm0 + Cmαα
∗)−zA (Cx0 + Cxαα

∗)+xA (Cz0 + Czαα
∗) = 0,

(29)
where we introduced the parameter Λ ≡ 1

µv2w
= 2mg

ρSV 2
w

, which gauges the weight

of the kite and the strength of the aerodynamic force. Once α∗ is known, θ∗ is
found from

Λ sin(α∗ − θ∗)− cos θ∗ (Cx0 + Cxαα
∗)− sin θ∗ (Cz0 + Czαα

∗) = 0, (30)

and γ∗ is found from the relation γ∗ = α∗− θ∗. As shown by Eqs. (29)-(30) the
state vector of the symmetric equilibrium is not affected by lateral-directional
parameters like Clβ .

The stability of the equilibria, an important feature for kite applications, is
investigated by adding a small perturbation u1 to the steady state, substituting
u(τ) = u∗ + u1(τ) in Sys. (27), and dropping high order terms. One finds the
linear system du1/dτ = J |u∗ u1 with J |u∗ the Jacobian matrix of the flux f
evaluated at the equilibrium state. This linear system admits solutions of the
type u1(τ) ∝ eλτ , being the equilibrium state u∗ asymptotically stable if all the
eigenvalues of J |u∗ have negative real part.

Thanks to the selection of the coordinates and the aerodynamic model used
in our analysis, the motions of the longitudinal (γ1,θ1) and lateral-directional
(ϕ1, η1) perturbations close to the symmetric equilibrium state are decoupled, as
in conventional aircraft flight mechanics[23]. Despite the fact that the symmetric
equilibrium position does not depend on lateral-directional parameters, we have
observed that its stability does depend on lateral-directional parameters like Clβ .
A parametric survey (not shown in this work) varying the tether lengths, the
wind velocity and some of the stability derivatives revealed that the symmetric
equilibrium of the kite is longitudinally stable. However, it can develop an
interesting lateral-directional instability within certain domain of the Clβ −
vw plane that yields stable periodic orbits with interesting applications like
pulling cargo ships. For this reason we finally selected Clβ and vw as bifurcation
parameters in this work.
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Let us first discuss the behavior of the kite for wind velocity equal to 10m/s.
Figure 4 shows the altitude of the kite (top panel) and the side slip angle (bot-
tom panel) as a function of Clβ . We have identified a symmetric steady state
which does not depend on Clβ . However, as it will be shown below, its stability
does depend on Clβ , and the steady state is stable between two limiting values
(Clβ,min, Clβ,max). When Clβ is larger than Clβ,max we have identified a pair of
asymmetric steady states. As Clβ increases, the kite height for these asymmetric
steady states quickly decreases and for Clβ ∼ 0.126, the kite touches the ground.
Note that the sideslip angle is always small remaining below 1.5◦. When Clβ
is smaller than Clβ,min no additional steady state has been found. Instead, as
discussed below, periodic orbits are observed in this range. Note that since the
altitude and the sideslip angle of the kite depend on time for these periodic
orbits, we plotted their minimum and maximum values in Fig. 4. The existence
of an upper boundary, Clβ,max, is not unexpected. It is well-known from con-
ventional aircraft stability analysis that a stable spiral mode basically requires a
low enough Clβ [23]. Design means like wings with positive dihedral angles and
backward sweep angle are normally used to achieve this goal for aircraft. The
physical explanation of the lower stability boundary, Clβ,min, is more complex
because it involves the tension forces introduced by the two constraints. A kite
design with a very low Clβ does not yield a stable kite equilibrium, but periodic
orbits instead.
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In order to determine the stability of these steady state solutions, Figure 5
shows the three relevant lateral-directional eigenvalues of J |u∗ for wind velocity
equal to 10m/s. The fourth eigenvalue, which is real and negative in the full
studied Clβ-range, does not play any role on the bifurcation scenario. For Clβ >
Clβ,max the symmetric steady state is unstable because λ1 is real and positive.
At Clβ = Clβ,max its sign changes through a supercritical pitchfork bifurcation
leading to the pair of asymmetric stable equilibria. On the other hand, for
Clβ < Clβ,min, the symmetric equilibrium is unstable because the real part of
a pair of complex conjugate eigenvalues (λ2 and λ3) becomes positive. The
symmetric equilibrium goes through a Hopf bifurcation leading to the branch of
periodic orbits mentioned above for Clβ < Clβ,min. Numerical evidence in Sec.
3.2 shows that the Hopf bifurcation is supercritical and the family of periodic
orbits is stable (see Floquet multipliers in Fig. 8).

All the previous results correspond to a wind velocity equal to 10 m/s. The
same analysis varying this parameter allows to determine the various regimes
of operation of the kite in the Vw − Clβ plane (see Fig. 6). For wind velocity
below certain threshold, no equilibrium exists because the kite stalls. For higher
Vw, the kite performs a periodic motion if Clβ < Clβ,min, stays in a symmetric
steady state if Clβ,min < Clβ < Clβ,max, and stays in an asymmetric steady
state if Clβ > Clβ,max. As discussed before, the latter only occurs if Clβ is
higher but close to Clβ,max (otherwise the kite crashes). These results show
that lateral instabilities of kites, which have been already found for systems
with only one tether [19, 21], can also happen for two-line kites.
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3.2. Cross-wind flight with constant tether lengths

The family of periodic orbits found in Sec. 3.1 has a high interest for certain
applications. The top panel in Fig. 7 shows the evolution of the angles ϕ
and γ for periodic orbits with wind velocity equal to 10 m/s and several Clβ
values. The kite describes eight-like trajectories and, as Clβ decreases moving
apart from the Hopf bifurcation point, the amplitude of the lateral motions
increases and the period decreases (see bottom panel in Fig. 7). As a result,
the aerodynamic velocity and the tension force at the tether are enhanced as
Clβ decreases. This feature of the family of periodic orbits, which yields a kite
trajectory flying at cross-wind conditions, can be used to generate power or to
pull large boats to save fuel.

The periodic orbits presented in Fig. 7 were computed with a predictor-
corrector algorithm that also provides the eigenvalues ζj of the monodromy
matrix [26]. Floquet theory states that a periodic orbit is stable if all these
eigenvalues have moduli less or equal to one. Note that, since the system is
autonomous, there is an eigenvalue with value +1. The stability is studied by
plotting the eigenvalues in the complex plane and the unit circle. As shown by
Fig. 8 all the eigenvalues are within the circle and the family of periodic orbits
is stable (the Hopf bifurcation is supercritical). However, as Clβ decreases there
is a pair of complex conjugated eigenvalues that approaches to the stability
boundary. This could lead to a new family of solutions, probably quasi-periodic.
In any case, we did not explore such a limit regime because physically valid
periodic orbits do not exist for arbitrarily small Clβ . As shown in the top panel
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of Fig. 7, the minimum of the elevation γ goes to zero as Clβ decreases and, at
some point the kite leaves the wind window.

Figures 6 and 7 show that the kite can naturally fly in cross-wind conditions
within a wide range of wind conditions if it is designed with Clβ < Clβ,min. This
is interesting because, as it is well-known [6], the tether tension is much higher
in cross-wind conditions than in a steady state. In order to assess quantitatively
this tension gain we computed the modulus of the normalized average tension
in one kite loop

〈t〉 =
1

τ0

∫ τ0

0

(|t+|+ |t−|) dτ. (31)

Figure 9 shows that a kite following a periodic orbit can produce a tension
that is a factor 2.5 larger than the one reached in steady conditions. Since the
periodic orbits are stable and they do not involve any type of control (open or
closed), these kite trajectories are good candidates to produce high traction in
a robust way.

4. Dynamics of the kite with periodically-varying tethers lengths.

We now explore the dynamics when tether lengths are varied following a
simple control law. The control variable ` in Eq. (11) is kept constant and the
angle δ is varied according to

δ(τ) = δ0 sinωδτ, (32)
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where δ0 and ωδ are two constants. This control law reels in and out the right
and left tether periodically, thus driving a lateral motion of the kite. For this
special case, Sys. (25) is non-autonomous and one would expect, in principle,
the existence of periodic orbits with period equal to an integer multiple of 2π/ωδ.
However, as shown below and depending on the aerodynamic properties of the
kite, the dynamics can be much more complex than regular periodic motions.
Hereafter we set δ0 = π/20, ωδ = 10, and Vw = 10m/s. The results are
summarized in Fig. 10 that shows a bifurcation diagram of the extremes of ϕ
versus Clβ . For each value of Clβ , the trajectory was computed by integrating
Sys. (25) numerically and, after a sufficiently long transient time, the relative
extremes of ϕ (maxima and minima) were recorded.

For values of Clβ within the range −0.51 ≤ Clβ ≤ 0.17 the orbits are pe-
riodic and stable. In one period, the lateral angle ϕ reaches a maximum and
a minimum, which appear in the bifurcation diagram as a couple of branches
(see Fig. 10). An example is given in panel (a) of Fig. 11 that shows the kite
trajectory with Clβ = −0.3. For Clβ ≈ 0.17 and Clβ ≈ −0.51 the branch of pe-
riodic orbits becomes unstable. A detailed stability analysis reveals that a real
eigenvalue of the Monodromy matrix leaves the unit circle at Clβ ≈ 0.17 and,
at the bifurcation point Clβ ≈ −0.51, a pair of complex conjugate eigenvalues
also leave the unit circle. These two bifurcations limit the allowable Clβ-range
with stable periodic orbits.

For Clβ < −0.51 the behavior of the kite is more complex. As compared
with the typical eight-like orbit with Clβ = −0.3 in Panel (a) of Fig. 11,
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decreasing Clβ gives rise to lateral oscillations of much higher amplitude and a
kite flight at lower altitude (see trajectory in Panel (a) with Clβ = −0.54). At
Clβ = −0.55 the model predicts a crisis and the appearance of a chaotic attractor
for Clβ < −0.55. The bifurcation diagram in Fig. 10 and the orbit in Panel (b)
of Fig. 11 with Clβ = 0.6 also show intermittency. The kite spends most of the
time close to an unstable periodic orbit and makes excursions to higher altitudes
before being re-injected again to the neighborhood of the periodic orbit.

Figure 9 shows the normalized average tension for the solutions displayed in
Fig. 10. For the chaotic trajectories, the tensions were averaged during a time
20 × 2π/ωδ. The tensions at the tethers for the periodic orbits (Clβ > −0.51)
are low and close to the one provided by the kite in equilibrium if tether lengths
are kept constant. This is in agreement with the small amplitudes of the lateral
motions observed in panel (a) of Fig. 11. For low Clβ values, when the dynamics
is chaotic, the tensions are much higher and similar to the ones found for the
periodic orbits of Sec. 3. Therefore, a simple solution to achieve high tension
is: (i) keep both tethers with equal and constant lengths, and (ii) make a kite
design with a Clβ that yields natural periodic orbits.
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Figure 11: Kite trajectories in a vertical plane perpendicular to the wind direction for three
Clβ values. (a) Clβ = −0.3,−0.54. (b) Clβ = −0.6.
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5. Conclusions

Kite modeling and the implementation of efficient flight simulators are nec-
essary to investigate potential applications and the viability of this technology.
This work shows that Lagrange formulation, which allows to get rid of the con-
straint forces (tether tensions) in the equation of motions, is a good choice to
simulate kites linked to the Earth by two rigid tethers. Comparisons with an-
other in-house simulator based on a classical formulation, which has been used
to double-check all the results of this work, shows a noticeable gain in terms
of speed and robustness. The low dimension of the model, the state vector has
just dimension four, makes it suitable to be used in more complex scenarios
like in nonlinear optimal control problems or the periodic orbit solver used in
our analysis. A second feature of the model is its modularity. For example, if a
more accurate aerodynamic model is available from experimental measurements
or computational fluid dynamic simulations, it can be easily incorporated to the
current simulator by just changing accordingly the generalized forces.

The model shows that parameter Clβ should belong to a certain range, which
depends on the wind velocity, to make the steady and symmetric flight of the
kite stable. Even more interestingly, if Clβ is below a threshold, then the kite
naturally flies in cross-wind conditions periodically and produces a relatively
high tension force at the ground attachment point. Such a manouver, which is
simple and robust because it does not involve active control and it is naturally
stable, is an interesting operational state to be investigated further in the future.
If tether lengths are varied periodically in time, then kite dynamics is highly
affected by the value of Clβ . The model exhibits an interesting set of bifurcations
and solutions that, beyond its mathematical interest, have consequences for
kite system design. For small Clβ we found that the amplitude of the lateral
oscillations of the kite are high and the motion can be chaotic. The kite flies
in cross-wind conditions and the tensions generated in the tethers are highly
dependent on the choice of Clβ . Therefore, kite aerodynamic design is crucial
to achieve the desired conditions.

Besides giving insight of the flight mechanics of kites, the model can be
applied to the investigations of the reel-out phase in airborne wind energy gen-
eration scenarios and cargo ship pulling by power kites. The case of the reel-in
phase simulation would be more problematic because the model cannot simulate
a flagging manoeuver or a time dependent location of the attachment points.
The latter could be addressed without major modifications by just adding more
variables to the control vector while taken into account the time-dependence
of the coordinates of the attachments points. Another interesting extension
of the model is the simulation of kites with four lines, like the ones used in
kitesurf. Since adding two straight and inextensible tethers would make the
problem hyperstatic, elasticity effects should be included for the two additional
tethers. The model presented in this work could be kept as it is, but just adding
the contribution to Qi of the tension forces provided by the extensible tethers.
Further work in this direction is in progress.
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