
Feeling:	Sentiment	Analysis	on	Twitter	

Computer	Science	and	Engineering	

Bachelor’s	degree	Thesis	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Author:	Sinclert	Pérez	Castaño	

Directora:	Lara	Quijano	Sánchez	

Year:	2016	-	2017	

	 	

	

	
2	

Feeling:	Sentiment	Analysis	on	Twitter	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Special	thanks	to:	
	
Lara,	my	academic	tutor	for	having	patience	with	me	and	my	irregular	workflow.	
	
My	English-speaking	friends	for	correcting	my	not	very	academic	English	grammar	
while	being	abroad	in	California.	
	
My	parents,	for	supporting	me	every	single	moment.	The	completion	of	this	Bachelor’s	
degree	would	not	have	been	possible	without	them.	
	
	
	 	

	

	
3	

Feeling:	Sentiment	Analysis	on	Twitter	

GENERAL	INDEX:	

0.	 ABSTRACT	 8	

1.	 INTRODUCTION	 9	

1.1.	 GENERAL	OVERVIEW	 9	

1.2.	 PROJECT	DESCRIPTION	 10	

1.3.	 MEMORY	STRUCTURE	 11	

2.	 STATE	OF	THE	ART	 12	

2.1.	 SENTIMENT	ANALYSIS	 12	

2.1.1.	 TYPE	OF	PROBLEM	 12	

2.1.2.	 MAIN	CHALLENGES	 13	

2.1.3.	 ACCURACY	ISSUES	 13	

2.2.	 MACHINE	LEARNING	ALGORITHMS	 14	

2.2.1.	 LOGISTIC	REGRESSION	 14	

2.2.2.	 BERNOULLI	NAÏVE	BAYES	 15	

2.2.3.	 LINEAR	SUPPORT	VECTOR	MACHINE	 15	

2.2.4.	 RANDOM	FOREST	 17	

2.3.	 RELATED	PAPERS,	BOOKS	AND	TUTORIALS	 18	

2.4.	 POSSIBLE	TOOLS	 20	

2.4.1.	 ACCESSING	TWITTER	API	 20	

2.4.2.	 ANALYZING	DATA	 20	

2.4.3.	 LEARNING	ML	MODELS	 20	

2.4.4.	 WEB	FRAMEWORKS	 21	

2.4.5.	 FINAL	DECISION	 21	

3.	 PROJECT	OVERVIEW	 22	

3.1.	 MAIN	OBJECTIVES	 22	

3.2.	 CLASSIFICATION	DESCRIPTION	 23	

3.3.	 CLASSIFICATION	SCHEME	 24	

	

	
4	

Feeling:	Sentiment	Analysis	on	Twitter	

4.	 DEVELOPED	WORK	 26	

4.1.	 INTRODUCTION	 26	

4.2.	 APPLICATION	ARCHITECTURE	 27	

4.2.1.	 MASTER	BRANCH	 27	

4.2.2.	 SERVER	BRANCH	 28	

4.3.	 KNOWLEDGE	MODEL	 29	

4.3.1.	 MASTER	BRANCH	 29	

4.3.2.	 SERVER	BRANCH	 32	

4.4.	 EXECUTION	DYNAMICS	 34	

4.4.1.	 TRAIN	FUNCTIONALITY	 34	

4.4.2.	 SEARCH	FUNCTIONALITY	 35	

4.4.3.	 CLASSIFY	FUNCTIONALITY	 36	

4.4.4.	 STREAMING	FUNCTIONALITY	 37	

4.5.	 USERS	GUIDE	 38	

4.6.	 DEVELOPER	GUIDE	 40	

4.6.1.	 EXECUTION	COMMANDS	 40	

4.6.2.	 REQUIREMENTS	 42	

4.7.	 ESTIMATIONS	AND	PLANNING	 43	

4.7.1.	 ESTIMATION	OF	COSTS	 43	

4.7.2.	 POSSIBLE	RISKS	 44	

4.7.3.	 PROJECT	PLANNING	 45	

5.	 RESULTS	 46	

5.1.	 EVALUATION	PROCEDURE	 46	

5.2.	 EVALUATION	METRICS	 47	

5.3.	 FEATURE	ANALYSIS	 48	

5.3.1.	 POLARITY	COMPARISON	 48	

5.3.2.	 SENTIMENT	COMPARISON	 51	

5.3.3.	 COMPARISONS	CONCLUSIONS	 53	

5.4.	 ALGORITHMS	ANALYSIS	 54	

6.	 CONCLUSIONS	 55	

	

	
5	

Feeling:	Sentiment	Analysis	on	Twitter	

7.	 FUTURE	WORK	 57	

7.1.	 BACK-END	IMPROVEMENTS	 57	

7.2.	 FRONT-END	IMPROVEMENTS	 58	

8.	 REFERENCES	 59	

	 	

	

	
6	

Feeling:	Sentiment	Analysis	on	Twitter	

INDEX	OF	FIGURES	
FIGURE	2.1:	SENTIMENT	ANALYSIS	APPROACHES	...	12	

FIGURE	2.2:	LOGISTIC	REGRESSION	...	14	

FIGURE	2.3:	EXAMPLES	DISTRIBUTED	OVER	SPACE	..	16	

FIGURE	2.4:	SVM	KERNEL	TRICK	..	16	

FIGURE	3.1:	HIERARCHICAL	CLASSIFICATION	..	23	

FIGURE	3.2:	CLASSIFICATION	SCHEME	..	25	

FIGURE	4.1:	MAIN	BRANCH	STRUCTURE	...	27	

FIGURE	4.2:	SERVER	BRANCH	STRUCTURE	...	28	

FIGURE	4.3:	WEB	APP	INTERFACE	...	38	

FIGURE	4.4:	ACCOUNT	ANALYSIS	INTERFACE	...	39	

FIGURE	4.5:	STREAM	ANALYSIS	INTERFACE	...	39	

FIGURE	5.1:	POLARITY	MODEL	WITH	1%	UNIGRAMS	...	48	

FIGURE	5.2:	POLARITY	MODEL	WITH	2%	UNIGRAMS	...	49	

FIGURE	5.3:	POLARITY	MODEL	WITH	3%	UNIGRAMS	...	49	

FIGURE	5.4:	POLARITY	MODEL	WITH	4%	UNIGRAMS	...	50	

FIGURE	5.5:	POLARITY	MODEL	WITH	5%	UNIGRAMS	...	50	

FIGURE	5.6:	SENTIMENT	MODEL	WITH	1%	UNIGRAMS	..	51	

FIGURE	5.7:	SENTIMENT	MODEL	WITH	2%	UNIGRAMS	..	51	

FIGURE	5.8:	SENTIMENT	MODEL	WITH	3%	UNIGRAMS	..	52	

FIGURE	5.9:	SENTIMENT	MODEL	WITH	4%	UNIGRAMS	..	52	

FIGURE	5.10:	SENTIMENT	MODEL	WITH	5%	UNIGRAMS	..	53	

	 	

	

	
7	

Feeling:	Sentiment	Analysis	on	Twitter	

Index	of	Equations	
EQUATION	2.1:	LOGISTIC	REGRESSION	..	14	

EQUATION	2.2:	BAYES	RULE	..	15	

EQUATION	2.3:	SVM	(A)	...	16	

EQUATION	2.4:	SVM	(B)	...	16	

EQUATION	2.5:	GINI	INDEX	...	17	

EQUATION	2.6:	ENTROPY	...	17	

EQUATION	2.7:	ERROR	RATE	...	17	

EQUATION	5.1:	F1	SCORE	..	47	

	 	

	

	
8	

Feeling:	Sentiment	Analysis	on	Twitter	

0. Abstract	
Nowadays,	social	networks	contain	information	that	can	be	used	to	extract	knowledge	

from	it,	however,	the	insights	from	that	information	are	usually	accessible	to	companies	

but	not	to	individuals.	The	aim	of	this	project	is	to	provide	an	accessible	web	application	

that	makes	use	of	Machine	Learning	algorithms	together	with	Twitter	official’s	API	to	

perform	Sentiment	Analysis	over	a	set	of	tweets.	Different	natural	language	and	feature	

engineering	 techniques	 have	 been	 applied	 to	 generate	 a	 range	 of	 trained	 models,	

including	 Logistic	 Regression,	 Bernoulli	 Naïve	 Bayes,	 Support	 Vector	 Machines	 and	

Random	Forest.	Finally,	these	models	have	been	compared	to	one	another	and	several	

conclusions	were	drawn:	Bernoulli	Naïve	Bayes	and	SVM	performed	the	best,	even	 if	

resulting	in	a	F-score	larger	than	0.9,	without	suffering	overfitting,	is	extremely	difficult.	

	

	

Actualmente,	 las	 redes	 sociales	 contienen	 información	 que	 puede	 ser	 utilizada	 para	

extraer	 conocimiento,	 sin	 embargo,	 las	 conclusiones	 de	 esa	 información	 son	

normalmente	accesibles	solo	a	las	empresas,	y	no	a	los	individuos.	El	objetivo	de	este	

proyecto	es	presentar	una	aplicación	web	que	haga	uso	de	algoritmos	de	Aprendizaje	

Automático	 junto	 a	 la	API	 oficial	 de	 Twitter	 para	 realizar	 análisis	 de	 sentimiento	 en	

conjuntos	 de	 tweets.	 Diferentes	 técnicas	 de	 lenguaje	 natural	 y	 de	 ingeniería	 de	

características	 han	 sido	 aplicadas	 para	 obtener	 un	 conjunto	 de	modelos,	 incluyendo	

Logistic	Regression,	Bernoulli	Naïve	Bayes,	Support	Vector	Machines	y	Random	Forest.	

Finalmente,	 estos	 modelos	 han	 sido	 comparados	 entre	 ellos	 y	 varias	 conclusiones	

fueron	obtenidas:	Bernoulli	Naïve	Bayes	y	SVM	son	los	modelos	que	mejor	funcionan,	

considerando	 que	 obtener	 una	 F-Score	 superior	 a	 0.9,	 sin	 sufrir	 sobreajuste,	 es	

extremadamente	difícil.	

	 	

	

	
9	

Feeling:	Sentiment	Analysis	on	Twitter	

1. Introduction	
1.1. General	overview	

In	the	world	we	live,	social	networks	are	one	of	the	main	sources	of	personal	information	
and	 interests	 across	 our	 daily	 lives.	 This	 is	 the	 reason	why	 new	 sciences	 like	 “Social	
Network	 Analysis”	 and	 “Sentiment	 analysis”	 have	 become	 main	 fields	 of	 study	 and	
interest	not	only	for	the	individual	users	but	also	for	companies	and	governments.	

To	get	an	idea	of	the	amount	of	the	data	social	networks,	such	as	Twitter,	store	every	
day,	 it	 is	 enough	 to	 consider	 that	 each	 second	 around	 6,000	 tweets	 are	 generated	
(according	to	“Internet	Live	Stats”	[1]),	which	give	us	around	500	million	tweets	per	day.	
All	 these	 data	 contain	 information	 about	 very	 different	 topics	 and	 nature,	 so	
differentiating	or	analyzing	very	specific	pieces	of	 information	across	all	 the	available	
resources	is	a	powerful	tool.	

Sentiment	analysis	is	a	technique	that	is	widely	used	in	areas	of	social	analysis	research	
such	as	marketing,	social	networking	development,	reviews	and	survey	responses,	and	
especially	in	customer	service.	It	uses	natural	language	processing	and	text	analysis	to	
determine	how	an	individual	or	group	of	people	feel	towards	a	specific	situation.	

It	 can	 be	 also	 used	 to	 perform	 geolocation	 analysis	 such	 as	 political	 feelings	 (which	
political	 leader	has	better	acceptance),	marketing	preferences	(competitor’s	products	
opinion	 over	 population)	 or,	 in	 general,	 any	 statistical	 analysis	 within	 the	 specified	
parameter.	

Some	real-world	examples	could	be	the	analysis	of	the	Brexit	sentiment	specified	U.K.	
cities,	 or	 the	 acceptance	 of	 the	 new	 president	 of	 the	 United	 States	 throughout	 the	
different	states.	

This	 type	 of	 analysis	 can	 be	 used	 in	 respect	 to	 the	 social	 network	 Twitter	 and	 its	
“Application	Programming	Interface”	(API).	Twitter’s	API	is	unique	in	the	sense	that	it	is	
easy	to	use,	so	anyone	with	basic	programming	knowledge	can	access	large	amounts	of	
data	in	the	form	of	tweets.	Additionally,	because	of	how	people	generally	structure	their	
tweets,	 most	 of	 them	 are	 solely	 comprised	 of	 plain	 text	 (unlike	 other	 social	 media	
platforms	where	users	tend	to	include	other	media	formats	such	as	photos	or	videos),	
making	them	easier	to	analyze.	

	 	

	

	
10	

Feeling:	Sentiment	Analysis	on	Twitter	

1.2. Project	description	

The	main	goal	of	this	project	is	to	provide	a	simple	sentiment	analysis	tool	that	can	be	
used	jointly	with	the	Twitter	API	to	classify	tweets	as	“positive”,	“negative”	or	“neutral”.		

The	main	differentiator	factor	with	respect	other	Sentiment	Analysis	web	application	is	
that	it	is	integrated	with	Twitter	API,	so	automatic	analysis	over	a	certain	account	or	a	
certain	stream	can	be	performed.	Additionally,	it	is	open	to	every	individual	user,	not	
only	to	companies.	

Although	 it	 was	 created	 relying	 on	 the	 previous	 introduced	 concepts,	 the	 project	
contains	another	important	actor:	Machine	Learning	(ML).	ML	includes	a	wide	range	of	
techniques	 that	provides	 computers	with	 the	ability	 to	 learn	without	being	explicitly	
programmed.	 Its	 use	 is	 not	 strictly	 necessary	 to	 perform	 a	 sentiment	 analysis	 task,	
because	 it	could	be	done	by	simple	human	review,	but	 for	complex	applications	and	
tools	 in	 which	 large	 amounts	 of	 data	 are	 processed,	 it	 becomes	 the	most	 common	
practice.	

Machine	learning	plays	a	significant	role	in	the	data	analysis	processes	because	it	helps	
to	automate	and	generate	a	quicker	response	than	the	case	of	processing	each	piece	of	
information	(or	tweet)	individually	by	a	person.	In	this	project,	ML	techniques	are	used	
to	 classify	 tweets	 obtained	 through	 the	 Twitter	 API	with	 one	 of	 the	 possible	 labels:	
positive,	negative	or	neutral.	

Obviously,	the	application	of	ML	algorithms	does	not	guarantee	an	error	reduction	with	
respect	 to	 the	 individual	 processing	 case,	 however,	 the	 advantages	 due	 to	 the	 time	
performance	and	effort	improvements	make	it	worth.	In	this	project,	several	algorithms	
will	be	tested	and	compared	with	each	other	to	understand	why	some	models	perform	
better	 than	 others	 and	 which	 features	 are	 the	 best	 ones	 to	 consider	 (“feature	
engineering”).	Testing	them	will	be	one	of	 the	core	sections	of	 this	memory	because	
improving	the	ML	predictions	on	unclassified	data	will	suppose	a	general	improvement	
in	the	behavior	of	the	application.	

Finally,	as	a	way	of	making	this	project	more	accessible	in	case	of	using	a	web	domain	
to	host	it,	the	project	contains	a	web-application	structure	so	it	can	be	used	thought	any	
internet	browser.	

In	conclusion,	this	bachelor’s	thesis	consists	of	a	web	application	that	uses	trained	ML	
models	to	perform	a	sentiment	analysis	over	a	set	of	Twitter	data	specified	by	the	user.	
The	trained	models	need	to	be	generated	before	the	classification	task,	using	a	series	of	
data	sets	obtained	from	a	Python	package	called	Natural	Language	Toolkit	(NLTK).	 	

	

	
11	

Feeling:	Sentiment	Analysis	on	Twitter	

1.3. Memory	structure	

The	memory	document	is	structured	as	follows:	

• Information	 about	 sentiment	 analysis	 papers	 and	 tutorials,	 why	 they	 are	
relevant,	and	some	useful	tools	and	ideas	to	apply	in	a	project	like	this	(point	2).	

• A	big	overview	of	the	main	objective	of	the	application	(point	3).	

• A	 detailed	 explanation	 about	 the	 component	 and	 technologies	 behind	 the	
application,	why	I	have	chosen	those	and	how	do	they	work	(point	4).	

• Testing	 and	 comparison	 of	 the	 different	 ML	 algorithm	 and	 cases	 with	 the	
obtained	conclusions	(points	5	and	6).	

• A	brief	specification	of	the	possible	future	work	in	case	the	work	on	this	project	
is	continued	(point	7).	

	 	

	

	
12	

Feeling:	Sentiment	Analysis	on	Twitter	

2. State	of	the	Art	
2.1. Sentiment	Analysis	

Sentiment	analysis	is	a	technique	that	determines	the	attitude	of	a	person	or	group	of	
people	towards	a	certain	product,	situation	or	event.	The	premise	is	that	all	opinions	
can	be	classified	in	different	groups	(“positive”,	“negative”,	“neutral”	…),	each	of	them	
grouping	several	mood	states.	For	example:	sadness	and	anger	belong	to	negative.	

2.1.1. Type	of	problem	

The	main	goal	is	to	correctly	classify	the	units	of	information	(tweets)	into	one	of	the	
three	 aforementioned	 groups.	 It	 is	 considered	 a	 classification	 problem	 that	 can	 be	
approached	using	different	methodologies,	as	this	graph	[2]	shows:	

	
Figure	2.1:	Sentiment	Analysis	approaches	

This	project	focuses	on	the	ML	branch	because	it	is	the	most	commonly	used	and	the	
most	popular	because	of	nowadays	trend.	Some	of	the	most	relevant	ones	are	the	Naïve	
Bayes	 (NB)	and	 the	Support	Vector	Machine	 (SVM)	 classifiers,	under	 the	 “Supervised	
Learning”	category,	which	will	be	explained	and	analyze	later	on.	

This	 classification	 problem	may	 also	 be	 included	 under	 the	 “Unsupervised	 Learning”	
category	if	there	is	no	labeled	data	available.	However,	due	to	the	amount	of	data	not	
only	in	Twitter,	but	also	in	other	social	networks	and	web	pages	such	as	Amazon	or	eBay,	
it	is	not	difficult	to	obtain	datasets	labeled	with	the	Likert	scale	those	e-commerce	pages	
use.	They	can	be	found,	for	instance,	in	Kaggle.com.	

	

	
13	

Feeling:	Sentiment	Analysis	on	Twitter	

The	 training	 data	 have	 been	 obtained	 from	 the	 NLTK	 corpus,	 where	 there	 are	 files	
containing	 neutral-polarized	 and	 negative-positive	 sentences.	 The	 downloaded	 files	
from	the	corpus	are:	sentence_polarity	 (containing	5,331	negative	and	5,331	positive	
examples)	 and	 subjectivity	 (containing	 5,000	 neutral	 and	 4,985	 polarized	 examples).	
These	 examples	 are	 just	 sentences	 of	 different	 lengths	 that	 have	 been	 previously	
identified	by	their	sentiment.	

2.1.2. Main	challenges	

Probably	the	most	difficult	part	of	the	classification	process	is	to	differentiate	between	
subjective	 tweets,	which	 can	 be	 classify	 as	positive	 or	negative,	 and	 objective	 ones,	
which	are	considered	as	neutral.	The	subjectivity	usually	depends	on	the	context	so	the	
units	 of	 information	 should	 be	 understood	 in	 the	 context	 of	 a	 conversation	 or	 in	 a	
sequence	of	them	if	the	talk	about	the	same	topic.	

On	 top	 of	 that,	 the	 utilization	 of	 sarcasm	while	 writing	 an	 opinion	make	 extremely	
difficult	 for	 the	 classifiers	 to	 detect	 it.	 This	 would	 not	 be	 that	 important	 if	 the	
percentages	of	comments	using	sarcasm	remain	low,	however,	due	to	the	Twitter	length	
limitation	to	140	characters,	users	usually	write	 in	more	creative	ways	than	in	others	
social	networks,	increasing	the	use	of	it.	

2.1.3. Accuracy	issues	

Due	to	the	difficulties	stated	in	the	previous	part,	reaching	an	accuracy	close	to	100%	is	
practically	impossible.	Even	more,	according	to	this	sentiment	analysis	article	[3],	human	
judgement	accuracy	 is	around	79%.	Because	of	 this,	 if	 a	 specific	 software	were	 right	
100%	of	the	times	and	we	review	the	classified	examples,	we	will	still	disagree	with	the	
program	around	20%	of	the	time.	

These	facts	imply	2	things:	

1. If	a	model,	using	any	of	the	techniques	of	the	Figure	2.1,	achieve	an	accuracy	
rate	higher	than	79%,	we	could	state	that	 it	 is	better	 than	an	average	person	
trying	to	classify	tweets	into	the	polarity	labels.	
	

2. The	 complexity	 of	 achieving	 a	 high	 accuracy	 rate	 is	 extremely	 high,	 so	 the	
conclusions	 extracted	 from	 a	 sentiment	 analysis	 over	 a	 certain	 entity	 should	
always	consider	a	margin	of	error.	

	 	

	

	
14	

Feeling:	Sentiment	Analysis	on	Twitter	

2.2. Machine	Learning	algorithms	

The	algorithms	used	during	the	development	of	this	project	have	been	chosen	due	to	
their	flexibility.	These	algorithms	are:	

1. Logistic	Regression.	
2. Bernoulli	Naïve	Bayes.	
3. Linear	Support	Vector	Machine.	
4. Random	Forest.	

2.2.1. Logistic	Regression	

The	idea	behind	this	machine	learning	approach	is	to	use	a	vector	of	weights	called	“θ”	
as	long	as	the	number	of	features.	It	could	be	described	as	a	linear	regression	vector	of	
weights,	applying	 them	 into	classification.	Although	this	discriminative	algorithm	was	
designed	to	classification	problems	in	which	the	number	of	possible	classes	is	two,	there	
exist	an	alternative	for	the	multiclass	problem	(Soft-Max)	[4][5].	

The	labels	or	classes	are	separated	from	each	other	using	a	hyperplane,	which	express	
the	area	of	the	features	space	with	maximum	confusion.	

In	order	to	obtain	a	classification	result	from	the	set	of	classes	given	a	numeric	result	
(multiplying	the	weights	vector	and	each	vector	of	features	values),	a	Logistic	sigmoid	
function	is	applied.	This	function	computes	the	probability	of	a	particular	instance	to	be	
considered	as	one	or	the	other	class.	

	
Figure	2.2:	Logistic	Regression	

	
Equation	2.1:	Logistic	Regression	 	

	

	
15	

Feeling:	Sentiment	Analysis	on	Twitter	

2.2.2. Bernoulli	Naïve	Bayes	

There	exist	a	group	of	ML	algorithms	that	rely	on	probabilities.	All	of	them	are	possible	
thanks	to	the	“Bayes	Rule”	(explained	later),	in	which	knowledge	can	be	obtain	from	a	
set	of	available	labeled	instances.	

Inside	 the	 family	 of	 pure	 probabilistic	 approaches,	 there	 are	 two	main	models:	 the	
Gaussian	and	the	Bernoulli.	The	different	between	both	of	them	is	that	the	first	one	is	
considered	a	generative	model,	predicting	a	specific	feature	value	(Xi)	from	the	class	that	
example	belongs	to	(y);	and	the	second	one	is	a	discriminative	model,	in	which	the	class	
is	predicted	using	the	vector	of	features	[4][5].	

Considering	 the	 type	of	 classification	 task	 in	which	 the	project	 is	 based	on,	 the	only	
useful	approach	is	the	discriminative	one	(Bernoulli),	because	we	will	try	to	predict	the	
sentiment	feeling	(class)	of	a	text.	

The	Bernoulli	Naïve	Bayes,	as	its	own	name	indicates,	makes	the	naïve	assumption	of	
supposing	that	each	feature	is	independent	to	the	rest.	Additionally,	it	uses	Bayes	rule	
to	compute	the	probability	of	each	class:	

𝑃 𝑦 𝑥 = 	
𝑃 𝑥 𝑦 ∗ 	𝑃(𝑦)

𝑃(𝑥) 	

Equation	2.2:	Bayes	rule	

Where:	
• P(y|x)	=	the	probability	of	belonging	to	class	“y”	giving	the	features	“x”.	
• P(x|y)	=	the	probability	of	features	“x”	given	“y”.	
• P(y)	=	the	total	probability	of	the	class	“y”.	
• P(x)	=	the	probability	of	the	vector	”x”	(ignorable	because	is	a	global	constant).	

2.2.3. Linear	Support	Vector	Machine	

The	Support	Vector	Machines	(SVM)	are	one	of	the	most	powerful	ML	algorithms	due	
to	 their	 flexibility	 and	 good	 optimization.	 Additionally,	 thanks	 to	 the	 “kernel	 trick”	
technique	in	which	more	features	are	created	almost	free	to	expand	the	feature	space,	
the	classification	errors	are	often	reduced	[4].	

The	basic	idea	is	to	create	a	linear	boundary	between	examples	belonging	to	different	
classes	with	the	biggest	possible	gap	(δ)	between	the	closest	examples	to	that	line	
(quadratic	problem).	Those	points	are	called	“support	vectors”	and	they	give	the	name	
to	the	model.
	 	

	

	
16	

Feeling:	Sentiment	Analysis	on	Twitter	

As	Logistic	Regression,	it	also	uses	a	vector	of	weights	(“w”),	following	these	formulas	in	
the	case	of	binary	classification:	

A) When	the	class	is	1:															𝑤 ∗ 𝑥* + 𝑏 ≥	δ	
Equation	2.3:	SVM	(A)	

B) When	the	class	is	-1:														𝑤 ∗ 𝑥* + 𝑏 ≤	-δ	
Equation	2.4:	SVM	(B)	

Due	to	some	mathematical	optimizations,	it	is	possible	to	define	that	vector	of	weights	
as	a	weighted	sum	of	support	vectors.	In	conclusion,	the	linear	boundary	only	depends	
on	the	closest	examples	to	the	itself,	which	are	the	ones	defining	the	supporting	vectors.	

Finally,	the	“Linear”	nature	of	the	SVM	that	I	am	describing	is	not	because	of	the	linear	
boundary,	but	because	of	how	the	“kernel	trick”	function	is	defined.	This	function	is	just	
a	way	of	creating	new	features	with	the	ones	we	already	have	and	expand	the	features	
space	so	the	boundary	can	easily	differentiate	among	the	classes	[6].	

Example:	we	want	to	classify	the	following	examples:	

	
Figure	2.3:	Examples	distributed	over	space	

However,	there	is	no	clear	linear	boundary,	so	a	“kernel	trick”	should	be	used	to	
add	1	more	dimension	to	the	features:	

	
Figure	2.4:	SVM	kernel	trick	

Due	to	the	new	feature	space,	a	linear	boundary	can	be	easily	found.	 	

	

	
17	

Feeling:	Sentiment	Analysis	on	Twitter	

2.2.4. Random	Forest	

The	last	considered	ML	algorithm	in	this	project	is	based	on	decision	trees.	These	trees	
are	just	connected	nodes	in	which	one	of	the	features	is	evaluated,	and	depending	on	
the	result,	different	branches	are	taken.	At	the	very	end	of	the	tree	there	are	leaves,	
which	are	nodes	containing	the	designated	class	[4][5].	

The	criteria	to	create	the	tree	depends	on	the	defined	impurity	function,	which	is	going	
to	determine	when	a	specific	node	must	be	split	into	different	ones	and	when	that	node	
is	a	leave.	There	exist	several	impurity	functions	for	the	binary	classification	problem:	

Given	(𝑝 = 	𝑛1 𝑛),	and	(𝑞 = 	𝑛3 𝑛),	where	“+”	and	“-“	are	the	two	classes:	

• Gini	index:		 	 	 				2 · 𝑝 · 𝑞	
Equation	2.5:	Gini	index	

• Entropy:	 	 	 −𝑝 · 𝑙𝑜𝑔 𝑝 − (𝑞 · 𝑙𝑜𝑔 𝑞)	
Equation	2.6:	Entropy	

• Error	rate:	 	 	 1	 − max[𝑝, 𝑞]	
Equation	2.7:	Error	rate	

The	main	problem	with	decision	trees	is	that,	if	no	additional	technique	is	applied	when	
creating	them,	they	tend	to	overfit.	That	is	why	popular	approaches	as	pruning	and	trees	
combinations	(Random	Forest)	started	appearing.	

A	Random	Forest	 is	 just	a	combination	of	decision	trees,	 in	which	for	each	of	them	a	
small	random	features	subset	is	used.	Then	the	outputs	of	all	these	trees	are	combined	
to	select	the	most	popular	class,	a	technique	known	as	bagging.	

	 	

	

	
18	

Feeling:	Sentiment	Analysis	on	Twitter	

2.3. Related	papers,	books	and	tutorials	

From	the	set	of	public	papers,	books	and	sentiment	analysis	tutorials	available	on	the	
subject,	 the	 ones	 that	 proved	 to	 be	 the	most	 useful	 throughout	 the	 project	 are	 the	
following:	

• Twitter	Developer	Documentation	[7]:	
This	 is	 the	 official	 Twitter	 documentation	 about	 how	 their	 Application	
Programming	Interfaces	(APIs)	work.	There	is	information	not	only	about	how	to	
make	requests,	but	possible	obtained	data	after	each	type	of	request.	

Some	of	the	most	important	data	fields	composing	each	tweet	are:	

• Coordinates	
• Creation	date.	
• Entities	(hashtags,	URLs	and	user	mentions).	
• Favorite	counter.	
• Retweet	counter.	
• ID.	
• Language.	
• Place.	
• Possible	sensitivity.	
• Text.	
• User.	

However,	 there	 exist	 some	 statistics	 that	 can	 be	 obtained	 using	 the	 Twitter	
interface	which	cannot	be	obtained	using	its	API:	the	number	of	views,	and	the	
number	 of	 engagements.	 Both	 would	 have	 been	 helpful	 to	 determine	 the	
importance	of	the	retrieved	tweets.	

• Twitter	Sentiment	Analysis:	A	Review	[3]:	
This	paper	contains	a	general	overview	about	the	use	of	sentiment	analysis	with	
Twitter	 using	 ML	 algorithms	 to	 predict	 the	 labels.	 It	 also	 contains	 a	 brief	
explanation	of	the	feature	selection	process:	case	normalization,	tokenize,	stop	
words	(those	without	any	important	significance),	stemming…	
	

• Sentiment	Analysis	of	Twitter	Data	[8]:	
This	one	contains	information	about	another	sentiment	analysis	study	in	which	
they	compare	the	use	of	different	features	and	different	algorithms	to	compare	
the	 results	 and	 extract	 conclusions.	 It	 is	 relevant	 because	 the	 use	 of	 Part	 of	
Speech	(POS)	tags	is	well	explained.	 	

	

	
19	

Feeling:	Sentiment	Analysis	on	Twitter	

• The	Importance	of	Neutral	Examples	for	Learning	Sentiment	[9]:	
Paper	that	contains	a	detailed	explanation	about	why	the	neutral	class	cannot	
be	ignored	when	doing	a	sentiment	analysis.	
	

• Machine	learning	and	Text	Mining	slides	[5]:	
Slides	that	contains	information	about	ML	algorithms	and	how	they	work,	along	
with	concepts	descriptions.	In	terms	of	Text	Mining,	explanations	and	examples.	
	

• Sentiment	Analysis	in	Python	[10]:	
Online	tutorial	that	describe	the	process	of	training	a	ML	model	in	the	Python	
programming	language,	along	with	example	of	feature	selection.	It	also	contains	
some	links	to	other	resources	and	tutorials	in	which	this	one	is	based	on,	that	
were	useful	during	the	development	of	the	project.	
	

• Twitter	Sentiment	Analysis	with	NLTK	[11]:	
Online	tutorial	that	explains	in	a	series	of	videos	with	supporting	code	examples	
the	different	possibilities	of	NLTK	and	the	learning	algorithms	available	inside	the	
NLTK	package.	Although	none	of	the	NLTK	algorithms	were	used	in	this	project,	
the	videos	were	helpful	to	understand	some	of	the	package	capabilities.	

	 	

	

	
20	

Feeling:	Sentiment	Analysis	on	Twitter	

2.4. Possible	tools	

There	exist	a	large	list	of	possible	tools	and	technologies	that	are	publicly	available	to	
perform	 a	ML	 approach	 into	 the	 sentiment	 analysis	 of	 Twitter	 data.	 	 Each	 of	 these	
classification	process	stages	is	going	to	be	considered	independently	in	order	to	explain	
the	different	options	in	each	of	the	cases.	

2.4.1. Accessing	Twitter	API	

In	this	case,	there	are	not	a	lot	of	options	because	there	exist	only	one	official	Twitter	
API.	However,	there	exist	several	libraries	and	packages	across	different	programming	
languages	to	make	our	communication	with	the	API	easier.	

There	exist	libraries	for	several	programming	languages	such	as	Java,	Python,	Objective-
C,	C++,	Go,	PHP	and	Ruby,	although	only	Java	and	Python	were	considered	at	the	end.	
The	 full	 list	 can	 be	 consulted	 in	 the	 Twitter	 developer’s	 documentation,	 under	 the	
Twitter	libraries	category	[12].	

These	libraries	allow	developers	to	access	a	wide	list	of	information	fields	associated	to	
each	 individual	 tweet,	making	 possible	 to	 create	 statistic	 analytical	 tools	 as	 the	 one	
described	here.	Some	of	the	information	fields	are:	coordinates,	creation	date,	entities,	
number	of	favorites,	number	of	retweets,	language,	place,	possible	sensitive,	user…	

2.4.2. Analyzing	data	

The	 following	 pieces	 of	 software	 can	 help	 on	 two	 different	 processes:	 cleaning	 the	
tweets	 obtained	 from	 the	 API,	 and	 processing	 the	 training	 examples	 using	 Natural	
Language	Processing	(NLP)	techniques	to	select	the	most	informative	features	that	the	
ML	models	will	use	to	learn	later.	

• Python	Natural	Language	Toolkit	(NLTK)	package.	
• Java	Stanford	CoreNLP	library.	

2.4.3. Learning	ML	models	

After	 the	data	analysis,	a	model	must	be	trained	to	predict	 the	classification	 label	of	
future	tweets.	There	is	a	big	range	of	options,	because	even	the	NLTK	contains	its	own	
classification	module,	but	there	exist	more	specialized	libraries	such	as:	

• Java	Weka	library.	
• Java	General	Architecture	for	Text	Engineering	(GATE)	library.	
• Python	Scikit-learn	package.	
• Software	Rapid-Miner.	 	

	

	
21	

Feeling:	Sentiment	Analysis	on	Twitter	

2.4.4. Web	frameworks	

Finally,	with	the	aim	of	providing	web	characteristics,	a	framework	to	connect	the	Back-
end	consisting	on	the	trained	model	and	the	Front-end	was	required.	The	libraries	listed	
below	were	considered	for	their	simplicity	since	the	project’s	web	behaviors	does	not	
required	complex	functionalities.	They	are	all	Python	frameworks:	

• Python	Django	
• Python	Web2py	
• Python	Flask	

2.4.5. Final	decision	

Due	to	the	extended	documentation	of	“Tweepy”	(3.5	version),	“NLTK”	(3.2	version)	and	
“Scikit-learn”	(0.18	version)	packages,	the	Python	programming	language	was	used	to	
implement	the	project	combining	the	functionalities	of	these	packages.	Moreover,	they	
have	open	source	licenses	so	they	can	be	used	to	academic	projects	but	not	commercial	
software.	

Additionally,	 “Flask”	 (0.12	 version)	 micro	 framework	 was	 used	 to	 create	 the	 web	
infrastructure.	This	framework	is	preferable	over	Django	or	Web2Py	because	it	provides	
more	direct	control	over	the	project	structure	and	communication.	

All	these	packages	provide	already	implemented	functions	that	make	the	development	
process	easier,	because	they	provide	a	solid	base	in	which	start	building	the	logic	that	
will	shape	the	functionality	of	the	software.	Moreover,	there	are	some	of	the	Scikit-learn	
algorithms	that	have	been	incredibly	optimized	using	C	code,	and	a	possible	pure	Python	
implementation	will	almost	certainly	be	slower.	

During	 the	 development	 process	 PyCharm,	 which	 is	 a	 very	 complete	 development	
environment,	was	used	along	with	a	GitHub	repository,	where	all	the	changes	have	been	
submitted.	Thanks	to	the	version	control	in	this	last	platform,	the	code	can	be	diverged	
in	different	work	flows	called	“branches”,	that	will	be	necessary	in	the	future	(further	
explanation	in	section	4.1).	

	 	

	

	
22	

Feeling:	Sentiment	Analysis	on	Twitter	

3. Project	overview	
This	 overview	 contains	 explanations	 about	 the	 project	 goals,	 how	 the	 project	
classification	challenge	has	been	approached	and	its	general	steps.	There	is	a	need	for	
explaining	the	chosen	approach	because	it	does	not	follow	the	standard	classification	
procedure.	

3.1. Main	objectives	

The	main	objective	is	to	build	a	software	tool	which	performs	sentiment	analysis	over	
pieces	 of	 information	 in	 the	 shape	 of	 tweets,	 and	 that	 it	 is	 accessible	 to	 everyone.	
Accessible	meaning	a	 free,	 and	easy	 to	use	and	web	application	 (once	 the	project	 is	
hosted)	that	any	individual	can	use	without	previous	knowledge.	

A	good	example	of	its	usage	is	to	determine	the	feeling	of	citizens	in	a	certain	city	over	
a	specific	political	party,	brand,	law…	

In	 order	 to	 achieve	 that	 functionality,	 a	 Twitter	 API	 text	mining	 implementation	 for	
tweets	 extraction	 is	 required.	 The	 retrieved	 data	 can	 be	 used	 either	 to	 perform	 the	
analysis	specified	by	the	user	or	to	expand	the	datasets	used	in	the	feature	engineering	
process	and	in	the	ML	models	training.	

After	the	data	has	been	retrieved,	the	goal	was	to	build	a	feature	engineering	function	
to	get	the	most	relevant	features	of	each	piece	of	information.	This	is	a	crucial	step	in	
the	project	because	feature	selection	has	a	big	effect	in	the	final	score	of	ML	classifiers.	

Additionally,	 obtaining	 an	 insight	 in	 the	 algorithms	 performance	 in	 the	 case	 of	 text	
classification	was	one	of	the	goals.	It	is	possible	thanks	to	the	use	of	ML	algorithms	such	
as	Logistic	Regression,	Naïve	Bayes,	Support	Vector	Machines,	and	Random	Forest	as	
well	as	the	manual	modification	of	their	parameters.	

In	terms	of	software,	the	project	was	designed	to	embody	the	following	characteristics:	

• Accessible:	any	individual	with	internet	connection	can	use	it.	
• Effective:	as	much	as	possible	due	to	the	M.L.	classification	errors.	
• Fast:	it	needed	to	be	fast	enough	to	later	be	transformed	into	a	web	application.	
• Easy	to	use:	no	previous	knowledge	required.	
• Scalable:	if	user	authentication	is	implemented,	API	limitations	can	be	avoided.	 	

	

	
23	

Feeling:	Sentiment	Analysis	on	Twitter	

3.2. Classification	description	

When	 considering	 classification	 problems,	 the	 most	 popular	 technique	 to	 approach	
them	is	by	discriminative	models.	These	models	predict	the	class	(y)	of	a	new	instance	
(x).	Some	of	the	models	use	a	probabilistic	approach	(Naïve	Bayes)	and	some	others	just	
a	linear	boundary	(Logistic	Regression	or	Support	Vector	Machines),	both	of	them	have	
the	same	goal:	to	predict	the	correct	class	(or	label).	

In	Sentiment	Analysis,	three	possible	classes	exist:	“neutral”,	“negative”	and	“positive”,	
however,	not	all	of	them	have	the	same	relationship	among	each	other.	Although	the	
labels	 “negative”	 and	 “positive”	 have	 an	 intrinsic	 relationship	 in	 which	 one	 is	 the	
opposite	 of	 the	 other,	 that	 is	 not	 the	 case	 with	 “neutral”.	 When	 discussing	 text	
classification,	the	opposite	to	“neutral”	is	“polarized”.	

Due	to	the	unbalanced	relationship	among	the	possible	classes,	the	method	to	classify	
the	tweets	is	not	going	to	be	a	common	classification	over	three	labels.	Instead,	it	will	
be	a	hierarchical	classification	over	two	possible	labels	(“neutral”	and	“polarized”),	and	
depending	on	the	outcome,	between	the	other	pair	of	them.	

Therefore,	the	classification	process	is	as	follows:	

	
Figure	3.1:	Hierarchical	classification	

This	 way,	 each	 label	 shares	 the	 same	 hierarchical	 level	 as	 its	 opposite	 and	 the	
classification	process	is	more	balanced.	The	main	problem	when	including	a	hierarchical	
structure	is	that	the	errors	from	the	first	classifier	affect	the	second	one.	
	 	

	

	
24	

Feeling:	Sentiment	Analysis	on	Twitter	

3.3. Classification	scheme	

In	order	to	have	a	global	overview	of	the	classification	scheme,	the	taken	sequence	of	
steps	are	shown:	

1. Open	 the	data	 files	 containing	 the	 raw	 sentences	expressing	 sentiment.	 They	
have	been	obtained	using	the	NLTK	corpus,	and	the	sentences	are	organized	in	
4	different	text	files:	Neutral,	Polarized,	Negative	and	Positive.	
	

Neutral	example:		 “There	has	been	an	attack	in	London,	according	to	CNN”	
Polarized	example:		 “I	believe	they	can	win	the	next	championship”	
Negative	example:		 “Cleveland	could	have	done	more!	so	sad”	
Positive	example:			 “Morning!	today	is	a	nice	day	in	the	bay!”	
	

2. Clear	 the	 sentences:	 tokenize	 them,	 converting	 all	 the	 words	 to	 lower	 case;	
remove	the	stop	words	(list	of	non-informative	words	obtained	from	the	NLTK	
corpus	to	filter	the	sentences);	and	lemmatize	the	remaining	ones.	After	doing	
this,	we	can	obtain	a	list	of	words	and	a	list	of	bigrams	(sequences	of	2	words).	
	

Clean	neutral:			 [“there”,	“attack”,	“London”,	“according”,	“CNN”]	
Clean	polarized:	 [“believe”,	“win”,	“championship”]	
Clean	negative:	 [“Cleveland,	“more”,	“sad”]	
Clean	positive:		 [“morning”,	“nice”,	“day”,	“bay”,	“nice	day”]	
	

3. Feature	selection	using	NLTK	functionalities.	The	best	results	have	been	obtained	
using	the	Chi-Square	distribution	to	get	the	scores	of	words	and	bigrams,	and	
selecting	the	best	of	them.	
	

Informative	words		 […		,	“there”,	“according”,	“believe”,	“sad”,	“nice”,	...]	
Informative	bigram:	 [...	,	“nice	day”,	...]	
	

4. Transform	the	dictionary	of	features	into	a	vector	using	Scikit-learn	modules.	
	

Neutral	features:		 {…	,	“there”:	1,	“according”:	1	,	…]		
Polarized	features:	 {...	,	“believe”:	1,	...	}	
Negative	features:	 {...	,	“sad”:	1,	...	}	
Positive	features:	 {...	,	“nice”:	1,	“nice	day”:	1,	...	}	
	

	

	
25	

Feeling:	Sentiment	Analysis	on	Twitter	

5. Train	the	different	models	with	pairs	of	 training	examples:	Neutral	–	Polarize,	
and	Negative	–	Positive.	After	comparing	the	results	(in	section	5.4),	the	model	
with	higher	combined	accuracy	is	selected	and	stored	in	the	Models	folder.	
	

6. On	the	web	part,	tweets	are	obtained	using	the	Twitter	API,	and	they	are	cleaned	
and	vectorized,	just	as	the	data	files	sentences.	
	

7. Finally,	the	best	models	are	loaded	into	memory	and	the	tweets	are	classified,	
both	in	the	case	of	a	user	account	and	the	streaming	tweets.	

	
Figure	3.2:	Classification	scheme	

	 	

	

	
26	

Feeling:	Sentiment	Analysis	on	Twitter	

4. Developed	work	
4.1. Introduction	

The	project	was	started	as	a	local	Python	program	in	order	to	test	the	viability	of	the	
initial	idea.	Later,	the	code	was	separated	into	two	different	branches	using	GitHub	to	
improve	version	control.	

The	first	branch	has	a	local	scope,	in	the	sense	that	it	is	thought	to	be	executed	in	the	
local	machine	of	the	user	that	wants	to	operate	with	it,	instead	of	using	the	software	
through	the	browser	as	a	web	application.	The	possible	functionalities	that	are	available	
in	this	branch	are	the	following:	

• Train	models:	L.R.	/	Bernoulli	N.B.	/	Linear	S.V.M.	/	R.F.	
• Search	for	tweets	to	increase	the	size	of	the	training	datasets.	
• Classify	tweets	of	a	user	filtered	by	a	word	as	neutral,	positive	or	negative.	
• Visualize	a	stream	of	tweets	filtered	by	word	and	coordinates.	

The	second	branch	 is	a	modification	of	 the	 first	one,	 in	which	other	 files	such	as	 the	
HTML,	CSS	and	JavaScript	have	been	included.	Once	the	program	is	executed	simulating	
a	hosted	web	app,	the	functionalities	are	reduced	to	the	following	two:	

• Classify	tweets	of	a	user	filtered	by	a	word	as	neutral,	positive	or	negative.	
• Visualize	a	stream	of	tweets	filtered	by	word	and	location.	

The	reason	why	the	first	branch	is	relevant	to	the	project	and	it	has	been	kept	instead	
of	having	just	the	second	branch,	is	because	it	can	be	used	to	generate	the	models	that	
can	be	moved	to	the	second	branch	folder	structure	and	use	them.	Additionally,	almost	
all	 the	 debugging	 over	 the	 text	 processing,	 features	 selection,	 and	model’s	 accuracy	
comparison,	have	been	done	with	that	code.	

From	the	final	user	perspective,	only	the	second	branch	is	useful	once	the	best	possible	
model	 has	 been	 selected	 and	 generated,	 because	 is	 the	 one	 containing	 the	 web	
functionalities,	however	both	are	important.	

The	project	can	be	found	in	this	GitHub	URL:	https://github.com/Sinclert/SentimentAI		

	 	

	

	
27	

Feeling:	Sentiment	Analysis	on	Twitter	

4.2. Application	architecture	

4.2.1. Master	branch	

The	main	branch	is	structured	into	the	following	files	and	folders:	

A) Files:	
• Classifier:	contains	a	class	with	the	functions	to	train,	obtain	the	features	of	

a	text,	save	and	load	the	models.	
• DataMiner:	 contains	 the	 class	with	 the	 functions	 to	 obtain	 tweets	 from	a	

specified	user	or	in	general,	filtering	with	some	parameters.	
• GraphAnimator:	contains	a	function	to	display	the	results	of	the	stream.	
• Keys:	contains	the	app	and	administrator	(me)	keys	to	access	the	API.	
• Parser:	contains	the	functions	to	parse	the	user	arguments	and	execute	the	

indicated	functionality.	
• TwitterListener:	 contains	 a	 class	with	 the	methods	 to	 initiate	 the	 stream,	

handle	the	obtained	tweets	and	close	the	stream.	
• Utilities:	 contains	 several	 functions	 that	 are	 useful	 across	 different	

functionalities	and	files.	
	

B) Folders:	
• Datasets:	contains	the	data	files	used	to	train	the	models.	
• Models:	is	the	folder	where	the	trained	models	are	going	to	be	stored.	
• Stopwords:	contains	the	files	with	the	stop	words	in	different	languages.	

	
Figure	4.1:	Main	branch	structure	

	

	
28	

Feeling:	Sentiment	Analysis	on	Twitter	

4.2.2. Server	branch	

The	server	branch	is	structured	into	the	following	files	and	folders:	

A) Files:	
• Classifier:	contains	a	class	with	the	functions	to	train,	obtain	the	features	of	

a	text,	save	and	load	the	models.	
• DataMiner:	 contains	 the	 class	with	 the	 functions	 to	 obtain	 tweets	 from	a	

specified	user	or	in	general,	filtering	with	some	parameters.	
• Keys:	contains	the	app	and	administrator	(me)	keys	to	access	the	API.	
• Parser:	contains	the	functions	to	parse	the	user	arguments	and	execute	the	

indicated	functionality.	
• Server:	contains	the	associated	functions	to	web	directions.	
• TwitterListener:	 contains	 a	 class	with	 the	methods	 to	 initiate	 the	 stream,	

handle	the	obtained	tweets	and	close	the	stream.	
• Utilities:	 contains	 several	 functions	 that	 are	 useful	 across	 different	

functionalities	and	files.	
	

B) Folders:	
• Datasets:	contains	the	data	files	used	to	train	the	models.	
• Models:	is	the	folder	where	the	trained	models	are	going	to	be	stored.	
• Stopwords:	contains	the	files	with	the	stop	words	in	different	languages.	
• Static:	contains	the	static	web	files	such	as	CSS,	JavaScript,	images…	
• Templates:	contains	the	HTML	files.	

	
Figure	4.2:	Server	branch	structure	

	

	
29	

Feeling:	Sentiment	Analysis	on	Twitter	

4.3. Knowledge	model	

In	this	section,	every	function	in	the	code	is	described.	However,	those	that	belong	to	a	
specific	class	are	going	to	be	covered	under	their	class	definition.	

4.3.1. Master	branch	

CLASSIFIER	

Type:	 Python	-	Class	

Description:	 Represents	a	classification	model.	

Parameters:	 • Tokenizer:	object	that	separate	words	in	a	text.	
• Vectorizer:	object	that	transform	features	into	a	vector.	
• Lemmatizer:	object	that	obtain	words	lemma	(root).	
• Stopwords:	list	of	stop	words	of	the	given	language.	
• Model:	object	containing	the	trained	model.	
• Best_words:	list	of	most	informative	words.	
• Best_bigrams:	list	of	most	informative	bigrams.	

Functions:	 • getWords:	obtains	a	list	of	filtered	words	in	a	sentence.	
• getWordsAndBigrams:	obtains	a	list	of	all	filtered	words	

and	bigrams	in	the	specified	file.	
• getFeatures:	obtains	a	dict.	of	features	given	a	sentence.	
• performTraining:	trains	the	model	and	prints	its	accuracy.	
• train:	obtain	the	training	data	after	several	function	calls.	
• classify:	classify	a	sentence	after	obtaining	its	features.	
• saveModel:	save	the	model	in	a	pickle	file	
• loadModel:	load	a	model	from	a	pickle	file	

	

DATA	MINER	

Type:	 Python	-	Class	

Description:	 Mining	object	that	extract	data	from	Twitter	API.	

Parameters:	 • API:	object	that	contains	the	API	connection	to	Twitter.	

Functions:	 • getUserTweets:	gets	user	tweets,	optionally	filtered.	
• searchTweets:	stores	in	a	text	file	the	tweets	that	fulfill	

the	specified	query	conditions.	

	

	
30	

Feeling:	Sentiment	Analysis	on	Twitter	

	

GRAPH	ANIMATOR	–	ANIMATE	PIE	CHART	

Type:	 Python	-	Function	

Description:	 Graph	generator	to	visualize	the	results	from	the	Twitter	listener	
streaming,	using	Matplotlib.	

	

PARSER	

Type:	 Python	-	Executable	file	

Description:	 Executable	 containing	 the	 argument	 parser	 for	 the	 different	
project	functionalities.	

Parameters	 • Dataset	folder:	folder	name	where	the	data	is	stored.	
• Models	folder:	folder	name	where	the	models	are	stored.	
• Labels:	labels	among	which	classification	is	performed.	

Functionalities:	 After	parsing	the	received	argument,	select	one	of	the	following:	

• Train:	trains	and	saves	a	model.	
• Classify:	prints	 the	classifications	 results	after	 loading	a	

trained	model.	
• Search:	extracts	tweets	and	stores	them	into	a	text	file.	
• Stream:	starts	a	streaming	sharing	a	data	structure	with	

the	GraphAnimator	function.	

	

TWITTER	LISTENER	

Type:	 Python	-	Class	

Description:	 Object	taking	control	of	each	Twitter	streaming	API.	

Parameters:	 • API:	object	that	contains	the	API	connection	to	Twitter.	

Functions:	 • updateBuffers:	 updates	 a	 circular	 buffer	 that	 store	 the	
last	“n”	classifications	results.	

• initStream:	initiates	the	stream	with	the	provided	args.	
• closeStream:	closest	the	stream.	
• on_status:	process	each	received	tweet	(overrides).	
• on_error:	handles	any	error	during	execution	(overrides).	

	

	
31	

Feeling:	Sentiment	Analysis	on	Twitter	

	

UTILITIES	–	GET	STOP	WORDS	

Type:	 Python	-	Function	

Description:	 It	gets	all	the	stop	words	defined	in	the	specified	language	text	
file	inside	the	“Stopwords”	folder,	and	return	them	as	a	list.	

	
	

UTILITIES	–	GET	BEST	ELEMENTS	

Type:	 Python	-	Function	

Description:	 It	performs	a	statistical	distribution	analysis	using	the	Chi-square	
test	 to	 select	 the	most	 informative	 features	 given	 two	 sets	 of	
features	in	the	form	of	Counters.	

	
	

UTILITIES	–	GET	CLEAN	TWEET	

Type:	 Python	-	Function	

Description:	 It	obtains	the	text	from	a	tweet	object,	without	all	the	entities	
that	are	not	considered	text	(user	names,	hashtags,	links…)	

	
	

UTILITIES	–	GET	SENTENCES	

Type:	 Python	-	Function	

Description:	 It	split	a	given	text	into	sentences	returning	them	as	a	list.	

	
	

UTILITIES	–	STORE	TWEETS	

Type:	 Python	-	Function	

Description:	 It	stores	the	list	of	tweets	received	as	argument	in	the	specified	
text	file.	

	
	 	

	

	
32	

Feeling:	Sentiment	Analysis	on	Twitter	

4.3.2. Server	branch	

This	section	contains	the	description	of	the	new	functions	introduced	in	this	branch	of	
the	code.	Some	of	them	are	not	included	because	they	are	exactly	the	same	as	the	ones	
in	the	main	branch.	

All	 the	Back-End	functionalities	are	 inside	the	Server	 file.	Additionally,	 there	 is	a	web	
structure	composed	by	a	HTML,	a	CSS	and	a	JavaScript	(JS)	file.	
	

GRAPH.JS	

Type:	 JavaScript	

Description:	 Contains	 the	 JS	 functions	 used	 to	 animate	 the	web	 page	 and	
communicate	with	the	Python	Back-end.	

Parameters:	 None.	

Functions:	 • ready:	links	JS	functions	to	web	page	buttons.	
• toogleAccount:	 hides	 the	 “stream”	 lateral	 bar	 section,	

showing	the	“account”	one.	
• toogleStream:	 hides	 the	 “account”	 lateral	 bar	 section,	

showing	the	“stream”	one.	
• showAbout:	 shows	 a	 section	 in	 the	middle	 of	 the	web	

page	containing	information	about	the	author.	
• hideAbout:	hides	the	section	in	the	middle	of	the	page.	
• accountRequest:	performs	a	HTTP	request	to	Back-End,	

showing	a	loading	wheel	while	waiting.	
• streamRequest:	performs	a	HTTP	request	to	Back-End	to	

initiate	the	stream,	and	then	one	each	750	ms.	
• showLoading:	shows	the	loading	wheel.	
• hideLoading:	hides	the	loading	wheel.	
• getCoordinates:	gets	coordinates	of	the	location	the	user	

has	specified	using	Google	geocode	API.	
• finishStream:	stops	the	stream	sending	a	HTTP	request.	
• accountHandler:	updates	the	pie	with	the	response.	
• streamHandler:	updates	the	pie	graph	with	the	response.	
• updatePie:	updates	the	pie	graph	with	the	new	counters.	
• createPie:	create	a	pie	graph	in	case	of	not	having	one.	
• showError:	shows	and	error	in	the	center	of	the	screen.	
• getSum:	returns	the	sum	of	a	number	array.	

	

	
33	

Feeling:	Sentiment	Analysis	on	Twitter	

	

SERVER	

Type:	 Python	–	Back	end	

Description:	 Contains	the	different	Flask	functions	callable	from	the	front	end	
(through	HTTP	requests).	

Parameters:	 None.	

Functions:	 • index:	loads	the	classifiers	and	renders	the	index.html.	
• classifyAccount:	 classifies	 the	 tweets	 contained	 the	

filtering	 word	 of	 the	 specified	 user,	 returning	 the	
counters	as	a	json.	

• initStreaming:	initiates	a	Twitter	streaming.	
• endStreaming:	finishes	the	Twitter	streaming.	
• streaming:	 returns	 as	 json	 the	 results	 of	 the	 Twitter	

streaming	buffer	(classification	counters).	
• getAPI:	generates	an	API	connection	with	Twitter.	It	can	

be	application	or	user	type.	

	 	

	

	
34	

Feeling:	Sentiment	Analysis	on	Twitter	

4.4. Execution	dynamics	

All	 the	 previously	 detailed	 functions	 need	 to	 work	 together	 to	 provide	 some	
functionalities.	All	the	following	ones	are	available	to	the	developer	behind	the	project,	
but	 only	 two	 of	 them	 (“classify”	 and	 “Streaming”)	 are	 accessible	 to	 the	 final	 users	
through	the	web	application.	

4.4.1. Train	functionality	

In	 this	 functionality,	 the	 input	 strings	 are	 parsed	 using	 the	Parser.py	 file,	 creating	 a	
Classifier	object,	and	calling:	

1. Method	train:	
• Inputs:	

- Classifier	name	(string).	
- First	dataset	name	(string).	
- Second	dataset	name	(string).	
- Percentage	of	words	to	use	as	features	(integer).	
- Percentage	of	bigrams	to	use	as	features	(integer).	

• Outputs:	-	
• Calls:	

1.1. Method	getWordsAndBigrams	(x2):	
• Inputs:	dataset	path	(string).	
• Outputs:	

-	 Dataset	sentences	(list	of	strings).	
-	 Dataset	words	(counter	of	strings).	
-	 Dataset	bigrams	(counter	of	strings).	

• Calls:	

1.1.1.			Method	getWords:	

• Inputs:	sentence	(string).	
• Outputs:	sentence	words	(list	of	strings).	

1.2. Method	getBestElements:	
• Inputs:	

-	 First	dataset	elements	(counter	of	strings).	
-	 Second	dataset	elements	(counter	of	strings).	
-	 Percentage	of	them	to	keep	(integer).	

• Outputs:	final	features	(set	of	strings).	

	 	

	

	
35	

Feeling:	Sentiment	Analysis	on	Twitter	

1.3. Method	getFeatures	(x2):	
• Inputs:	sentence	(string).	
• Outputs:	features	(dictionary	of	words	and	bigrams).	
• Calls:	

1.3.1. Method	getWords:	
• Inputs:	sentence	(string).	
• Outputs:	sentence	words	(list	of	strings).	

1.4. Method	performTraining:	
• Inputs:	

-	 Classifier	name	(string).	
-	 Features	(sparse	numpy	matrix).	
-	 Labels	(numpy	array).	

• Outputs:	-	

2. Method	saveModel:	
• Inputs:	

- Models	folder	name	(string).	
- Output	model	name	(string).	

• Outputs:	saved	“pickle”	file.	

4.4.2. Search	functionality	

In	 this	 functionality,	 the	 input	 strings	 are	 parsed	 using	 the	Parser.py	 file,	 creating	 a	
DataMiner	object,	and	calling:	

1. Method	searchTweets:	
• Inputs:	

-	 Filter	query	(string).	
-	 Language	(string).	
-	 Storing	file	path	(string).	
-	 Depth	(integer).	

• Outputs:	-	
• Calls:	

1.1. Method	getCleanTweet:	
• Inputs:	tweet	(object).	
• Outputs:	clean	tweet	text	(string).	

	
	 	

	

	
36	

Feeling:	Sentiment	Analysis	on	Twitter	

4.4.3. Classify	functionality	

In	 this	 functionality,	 the	 input	 strings	 are	 parsed	 using	 the	Parser.py	 file,	 creating	 a	
DataMiner	object,	and	calling:	

1. Method	getAPI	(only	in	Server	branch):	
• Inputs:	connection	type	(string).	
• Outputs:	Twitter	API	(object).	

2. Method	getUserTweets:	
• Inputs:	

- User	name	(string).	
- Filter	word	(string).	
- Depth	(integer).	

• Outputs:	tweets	(list	of	strings).	
• Calls:	

1.1. Method	getCleanTweet:	
• Inputs:	tweet	(object).	
• Outputs:	clean	tweet	text	(string).	

3. Method	getSentences:	
• Inputs:	

- Tweets	(list	of	strings).	
- Filter	word	(string).	

• Outputs:	sentences	(list	of	strings).	
• Calls:	getSentences	(recursive).	
	

4. Method	classify	(x2):	
• Inputs:	sentence	(string).	
• Outputs:	predicted	label	(string).	
• Calls:	

3.1. Method	getFeatures	(x2):	
• Inputs:	sentence	(string).	
• Outputs:	features	(dictionary	of	words	and	bigrams).	
• Calls:	

3.1.1. Method	getWords:		
• Inputs:	sentence	(string).	
• Outputs:	sentence	words	(list	of	strings).	

	 	

	

	
37	

Feeling:	Sentiment	Analysis	on	Twitter	

4.4.4. Streaming	functionality	

In	this	functionality,	the	input	strings	are	parsed	using	the	Parser.py	file,	creating	two	
Classifier	objects,	and	calling:	

1. Method	getAPI	(only	in	Server	branch):	
• Inputs:	connection	type	(string).	
• Outputs:	Twitter	API	(object).	

2. Method	loadModel	(x2):	
• Inputs:	

- Models	folder	(string).	
- Model	name	(string).	

• Outputs:	-	

3. Method	initStream:	
• Inputs:	

- Query	(string).	
- Language	(string).	
- Coordinates	(string	of	four	floats	separated	by	commas).	

• Outputs:	-	
• Set	listeners:	

2.1.			Method	on_status:	
• Inputs:	tweet	(object)	
• Outputs:	-	
• Calls:	

2.1.1.			Method	getCleanTweet:	
• Inputs:	tweet	(object).	
• Outputs:	clean	tweet	text	(string).	

2.1.2.			Method	updateBuffers:	
• Inputs:	label	(string).	
• Outputs:	-	

2.2.			Method	on_error:	
• Inputs:	tweet	(object).	
• Outputs:	-	

4. Method	animatePieChart	(only	in	Master	branch):	
• Inputs:	

-	 Labels	(list	of	strings).	
-	 Tracks	(string).	
-	 Shared	dictionary	(dictionary).	

• Outputs:	-	

	

	
38	

Feeling:	Sentiment	Analysis	on	Twitter	

4.5. Users	guide	

From	the	point	of	view	of	the	user,	the	interaction	with	the	project	is	going	to	be	through	
a	web	browser.	In	order	to	make	this	possible,	all	the	project	files	need	to	be	hosted	by	
a	 service	 such	as,	Google	Cloud	 or	Heroku.	 Even	 if	 the	 final	deployment	 in	a	hosting	
service	does	not	take	place,	this	guide	will	still	be	useful	once	the	project	is	deployed.	

The	main	and	single	page	of	the	web	application	is	like	this:	

	

Figure	4.3:	Web	app	interface	

The	interface	is	divided	in	the	following	sections:	

1. Header:	shows	information	about	the	tool.	The	title	and	a	brief	description	of	
what	the	application	does.	
	

2. Options:	a	pair	of	buttons	to	select	the	functionality	of	the	tool.	Each	of	them	
requires	different	input	fields	to	be	fulfilled	by	the	user.	

A) Account:	classify	the	tweets	from	an	account.	
B) Streaming:	classify	live	tweets	from	a	location.	

	

3. Input	fields:	contains	the	fields	the	user	needs	to	provide	to	start	the	analysis.	
They	change	depending	on	which	functionality	is	selected.	
	

4. Content:	shows	the	pie	chart	once	it	is	generated.	
	

5. About:	shows	contact	information.	 	

	

	
39	

Feeling:	Sentiment	Analysis	on	Twitter	

	
Figure	4.4:	Account	analysis	interface	

	
Figure	4.5:	Stream	analysis	interface	

Where:	

6. Account	field:	where	the	Twitter	account	is	specified	(without	the	“@”	symbol).	
	

7. Filter	field:	where	the	word	used	to	filter	the	tweets	is	specified.	
	

8. Graph:	it	contains	the	classification	categories	represented	as	a	pie	chart.	
	

9. Graph	legend:	interactive	legend	whose	labels	can	be	removed	or	added.	
	

10. Region	field:	where	the	city	or	region	to	filter	the	stream	of	tweets	is	specified.	
	

11. Filter	field:	where	the	word	used	to	filter	the	tweets	is	specified.	
	

12. Buffer	size:	where	the	number	of	most	recent	tweets	to	consider	is	specified.	

	

	
40	

Feeling:	Sentiment	Analysis	on	Twitter	

	

4.6. Developer	guide	

This	guide	is	designed	for	developers	working	with	this	project	in	the	future.	It	contains	
information	about	how	to	execute	both	branches	and	system	requirements.	

4.6.1. Execution	commands	

The	Master	branch	is	designed	to	be	executed	locally	to	refined	the	feature	selection	
and	 ML	 model.	 Additionally,	 it	 could	 be	 used	 to	 increase	 the	 training	 dataset	 by	
searching	 tweets,	 and	 check	 the	 functionalities	 of	 the	 web-application,	 which	 are:	
classify	account	tweets	and	classify	tweets	from	a	stream.	

The	way	to	execute	this	project	branch	is	with	the	“Parser.py”	file:	

	

Where	the	list	of	functionalities	with	their	group	of	arguments	are:	

1. Train	a	Machine	Learning	model:	
Functionality:	“Train”	
Arguments:	

A) Classifier:	 “Logistic-Regression”,	 “Naive-Bayes”,	 “Linear-SVM”	 or	
“Random-Forest”.	

B) File	1:	name	of	the	first	file	inside	“Datasets”	folder	used	to	train.	
C) File	2:	name	of	the	second	file	inside	“Datasets”	folder	used	to	train.	
D) Words	percentage:	percentage	of	total	words	used	as	features.	
E) Bigram	percentage:	percentage	of	total	bigrams	used	as	features.	
F) Output:	name	of	the	output	classifier	to	store	in	“Models”.	

Example:	

	

2. Search	for	Tweets:	
Functionality:	“Search”	
Arguments:	

A) Query:	sequence	of	words	to	filter	the	search.	
B) Language:	language	in	which	the	retrieved	tweets	are.	
C) Depth:	number	of	tweets	that	we	want	to	retrieve.	
D) Output:	name	of	the	output	dataset	to	store	in	“Datasets”.	

Example:	

	

$> python Parser.py <Functionality> <List of arguments>

$> … Train Logistic-Regression Positive.txt Negative.txt 5 1 Pos-Neg

$> … Search “#optimistic OR #happy” en 1000 PosTweets.txt

	

	
41	

Feeling:	Sentiment	Analysis	on	Twitter	

3. Classify	tweets	from	an	account:	
Functionality:	“Classify”	
Arguments:	

A) Polarity	 model:	 name	 of	 the	 model	 to	 differentiate	 neutral	 and	
polarized	sentences,	stored	in	“Models”	folder.	

B) Sentiment	model:	name	of	the	model	to	differentiate	Positive	and	
Negative	sentences,	stored	in	“Models”	folder.	

C) Account:	Twitter	account	whose	tweets	are	going	to	be	classified.	
D) Filter	word:	word	or	sequence	of	words	used	to	filter	the	tweets.	

Example:	

	
	

4. Classify	tweets	from	a	stream:	
Functionality:	“Stream”	
Arguments:	

A) Polarity	 model:	 name	 of	 the	 model	 to	 differentiate	 neutral	 and	
polarized	sentences,	stored	in	“Models”	folder.	

B) Sentiment	model:	name	of	the	model	to	differentiate	Positive	and	
Negative	sentences,	stored	in	“Models”	folder.	

C) Buffer	size:	number	of	most	recent	tweets	to	consider	in	the	chart.	
D) Filter	word:	word	or	sequence	of	words	used	to	filter	the	tweets.	
E) Language:	language	in	which	the	tweets	are	filtered.	
F) Coordinates:	 sequence	 of	 4	 float	 numbers	 separated	 by	 commas	

that	indicates	the	southwest	and	the	northeast	corners	of	the	region	
delimiting	where	the	tweets	are	retrieve.	

Example:	

	

Even	if	the	provided	implementation	does	not	use	all	the	possible	arguments	a	Twitter	
Stream	 can	 take,	 the	 whole	 list	 of	 them	 can	 be	 checked	 in	 the	 official	 Twitter	
documentation	[13].	

As	for	the	Server	branch,	the	python	file	to	run	is	called	“Server.py”	with	no	arguments.	
Note	that	it	may	take	a	few	seconds	before	the	server	is	operational.	

The	way	to	execute	this	project	branch	is	with	the	“Server.py”	file:	

	 	

$> … Classify Neu-Pol Pos-Neg David_Cameron Brexit

$> … Stream Neu-Pol Pos-Neg 500 Obama en -122,36,-121,38

$> python Server.py

	

	
42	

Feeling:	Sentiment	Analysis	on	Twitter	

4.6.2. Requirements	

The	 system	requirements	 in	 this	 section	are	 just	 software	 requirements.	 The	project	
requires	 a	 specific	 version	 of	 the	 Python	 interpreter	 alongside	 a	 series	 of	 Python	
packages	that	have	been	used	during	the	development.	

Any	package	dependencies	are	state	under	their	names:	

• Python	interpreter:	Python	3	(v3.4	or	superior)	

• Packages:	

o Tweepy	(v3.5	or	superior)	
§ Six	(v1.10	or	superior)	
§ Requests	(v2.14	or	superior)	
§ Requests-oauth	(v0.8	or	superior)	

o NLTK	(v3.2	or	superior)	
§ Six	(v1.10	or	superior)	

o Scikit-learn	(v0.18	or	superior)	

o Numpy	(v1.12	or	superior)	

o Flask	(v0.12	or	superior)	
§ Werkzeug	(v0.12	or	superior)	
§ Jinja2	(v2.9	or	superior)	
§ Click	(v6.7	or	superior)	
§ Itsdangerous	(v0.24	or	superior)	

	 	

	

	
43	

Feeling:	Sentiment	Analysis	on	Twitter	

4.7. Estimations	and	planning	

4.7.1. Estimation	of	costs	

In	this	section,	the	software	development	costs	of	this	Bachelor’s	degree	thesis	are	going	
to	 be	 estimated.	 Physical,	 indirect	 and	 human	 resources	 during	 the	 nine	months	 of	
development	are	going	to	be	detailed.	All	the	costs	have	been	calculated	without	taxes.	

• Physical	resources:	

The	physical	resources	associated	with	the	software	development	are	basically	technical	
because	of	the	nature	of	the	project.	The	cost	related	with	the	future	hosting	have	not	
been	included.	

Resource	 Quantity	 Cost	

MacBook	Pro	13’’	 1	 1,445	€	

PyCharm	license	 1	 159	€	

Microsoft	Office	365	license	 1	 70	€	

• Indirect	resources:	

All	the	costs	related	with	the	completion	of	the	project	but	that	cannot	be	considered	
key	project	development	tools	are	considered	indirect	costs.	

Resource	 Cost	per	month	 Months	 Cost	

Internet	 30	€	 9	 270	€	

Electricity	 40	€	 9	 360	€	

• Human	resources	

Given	that	the	development	has	been	done	by	one	person	and	supposing	a	salary	of	9€	
per	hour,	the	cost	of	human	resources	are	as	follows:	

Phase	 Salary	per	hour	 Hours	 Cost	

Software	project	 9	€	/	h	 350	 4,050	€	

Documentation	 9	€	/	h	 180	 1,620	€	

	

	
44	

Feeling:	Sentiment	Analysis	on	Twitter	

• Total	costs:	

Concept	 Cost	

Physical	resources	 1,675	€	

Indirect	resources	 630	€	

Human	resources	 5,670	€	

TOTAL	 7,975	€	

	

4.7.2. Possible	risks	

There	 exist	 some	 risks	 related	with	 the	 correct	 deployment	 and	 functionality	 of	 the	
software	 tool.	Most	of	 these	 risks	are	external	 circumstances	 to	 the	software	 that	 is	
provided	in	the	link	of	section	4.1.	

• Incompatibilities	among	the	different	used	packages:	
As	the	explained	software	project	use	several	Python	packages	to	provide	a	more	
complex	 functionality,	 the	 upgrade	 of	 those	 packages	 could	 produce	
incompatibilities	among	them,	leading	to	an	error	when	trying	to	execute	any	of	
the	 functionalities	 (train	 a	 model,	 search	 for	 tweets,	 classify	 tweets	 of	 an	
account,	classify	tweets	of	a	stream).	
	

• Web	application	hosting	server	down:	
In	case	of	hosting	the	web	application	in	a	hosting	service	such	as	Google	Cloud	
or	Heroku,	the	software	is	not	going	to	work	if	the	hosting	server	goes	down.	The	
only	recommendation	to	avoid	this	risk	is	to	select	a	good	hosting	service	that	
could	guarantee	a	certain	minimum	of	time	up.	
	

• Impossibility	of	increasing	the	datasets	with	new	examples:	
When	using	the	Search	functionality	to	try	to	increase	the	training	datasets,	it	is	
not	 always	 easy	 to	 find	 relevant	 and	 informative	 tweets	 for	 the	 desired	
sentiment.	Moreover,	as	the	project	uses	the	Twitter	official	API,	the	retrieved	
tweets	could	suffer	bias	depending	on	how	Twitter	retrieve	them	for	the	search	
queries.	The	search	 functionality	only	make	sense	 if	we	assume	there	 is	not	a	
bias	on	the	way	those	tweets	are	retrieved.	

	 	

	

	
45	

Feeling:	Sentiment	Analysis	on	Twitter	

4.7.3. Project	planning	

The	project	 can	be	 split	 into	 two	phases:	software	development	and	documentation,	
being	 the	 first	 one	 the	 one	 taking	 most	 of	 the	 time	 due	 to	 the	 complexity	 when	
integrating	multiple	Python	packages.	Both	phrases	can	be	split	into	smaller	sub-phrases	
that	are	going	to	be	explained	in	this	section.	

Project	phrase	 Project	sub-phase	 Time	Period	 Hours	

Software	
development	

Find	information	 08/2016	–	05/2017	 50	h.	

Python	packages	comparison	 08/2016	–	08/2016	 10	h.	

Master:	search	 08/2016	–	09/2016	 20	h.	

Master:	train	 08/2016	–	05/2017	 60	h.	

Master:	classify	account	 09/2016	–	04/2017	 40	h.	

Master:	classify	stream	 09/2016	–	05/2017	 60	h.	

Server	functionalities	 02/2017	–	05/2017	 70	h.	

Server:	web	 02/2017	–	05/2017	 40	h.	

Documentation	

Introduction	 02/2017	–	06/2017	 10	h.	

State	of	the	art	 03/2017	–	06/2017	 30	h.	

Project	overview	 03/2017	–	06/2017	 20	h.	

Developed	work	 03/2017	–	06/2017	 50	h.	

Results	 04/2017	–	06/2017	 35	h.	

Conclusions	 05/2017	–	06/2017	 10	h.	

Future	work	 05/2017	–	06/2017	 10	h.	

References	 06/2017–	06/2017	 15	h.	

	 	

	

	
46	

Feeling:	Sentiment	Analysis	on	Twitter	

5. Results	
5.1. Evaluation	procedure	

There	exist	several	different	procedures	of	evaluating	a	ML	classifier.	It	is	enough	to	train	
the	ML	model	we	want	to	test	with	some	part	of	the	available	data,	and	test	over	the	
unseeing	one.	However,	this	simple	approach	can	lead	to	an	undesirable	effect	called	
overfitting	[14].	

In	case	of	overfitting,	the	model	describes	with	very	high	accuracy	the	test	set,	making	
it	excessively	complex	and	violating	Occam’s	razor	principle,	which	can	be	summarized	
as	“the	simpler	the	solution	the	better	the	generalization”.	A	model	suffering	this	effect	
will	provide	bad	predictive	performance	as	it	overreacts	to	minor	changes	in	the	data.	

On	 the	 other	 hand,	 underfitting	 is	 the	 situation	 in	 which	 a	 trained	model	 does	 not	
capture	 the	 general	 trend	 of	 the	 data.	 The	 predictive	 performance	will	 be	 also	 bad	
because	the	model	is	too	simple	to	describe	the	underlying	relationships	in	the	data.	

A	balance	between	 these	 two	phenomena	 is	what	 creates	a	good	classifier,	and	 this	
problem	is	usually	called	“the	bias-variance	tradeoff”,	in	which	a	model	must	neither	be	
too	complex	so	 its	predictions	vary	a	 lot	from	dataset	to	dataset	(small	bias	but	high	
variance),	nor	too	simple	because	the	model	will	do	assumption	to	simplify	the	reality,	
lowering	the	predicting	performance	(low	variance	but	high	bias).	

One	of	the	most	used	approaches	to	test	a	complex	classifier	without	falling	into	the	
overfitting	problem	is	K-folds	Cross-validation	(CV).	This	technique	considers	only	one	
dataset	to	be	used	for	both	training	and	testing.	It	divides	the	dataset	in	which	what	are	
called	“folds”,	training	with	all	of	them	but	one,	which	is	used	for	testing.	The	procedure	
is	repeated	until	all	folds	have	been	used	for	testing	once.	Because	the	training	and	test	
sets	were	varied,	a	good	score	about	how	well	our	model	is	going	to	generalize	can	be	
obtained.	

Before	 using	 CV,	 the	 number	 of	 folds	 (k)	 must	 be	 decided.	 This	 parameter	 is	 very	
important	because	if	it	is	defined	as	a	very	low	number	or	a	very	high	one,	the	overfitting	
testing	is	not	as	high	and	the	results	must	be	considered	less	into	account.	Although	the	
values	 that	 are	most	 frequently	used	are	5	 and	10,	 the	evaluations	were	performed	
using	just	10	folds.	

	 	

	

	
47	

Feeling:	Sentiment	Analysis	on	Twitter	

5.2. Evaluation	metrics	

The	comparison	among	the	different	classifiers	(Logistic	Regression,	Bernoulli	NB,	SVM	
and	Random	Forest)	needs	to	have	a	specific	metric	to	evaluate	the	quality	of	them	and	
to	select	the	one	that	performs	better.	

In	any	ML	classification	problem,	one	of	 the	 first	 steps	 to	determine	the	comparison	
metric	 is	 to	 decide	 if	 the	 classification	 errors	 regarding	 one	 of	 the	 classes	 are	more	
important	than	the	ones	in	the	other	classes.	Considering	the	classification	scheme	in	
Figure	3.1,	there	exist	2	classifiers	(neutral-polarized	and	positive-negative),	without	any	
classification	error	unbalance	towards	any	class	with	respect	to	the	other.	

However,	 as	 the	 classification	 follows	 a	 hierarchical	 model,	 the	 errors	 in	 the	 first	
classifier	 (the	 one	 that	 discriminate	 between	 neutral	 and	 polarized	 tweets),	 have	 a	
bigger	impact	into	the	final	assigned	label	than	the	second	one,	which	relies	in	a	second	
hierarchical	level.	

In	terms	of	which	metric	has	been	used	to	compare	the	classifiers	quality,	F1	score	[15]	
was	 the	 chosen	 one.	 This	metric	 is	 a	 combination	 of	 recall	 (false	 negative	 rate)	 and	
precision	(false	positive	rate),	following	this	formula:	

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∗	
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
(𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)	

Equation	5.1:	F1	Score	

The	main	reason	to	choose	F1	score	over	the	commonly	used	accuracy	(fraction	of	well	
classified	 instances	 over	 the	 total	 number	 of	 them)	 is	 that,	 in	 case	 the	 number	 of	
examples	over	one	class	is	way	different	from	the	number	representing	the	other	class,	
the	accuracy	rate	can	hide	a	wrong	classification	of	those	in	the	less	represented	class.	
A	good	example	of	this	can	be	found	in	the	“R”	programming	language	blogs	[16].	

Once	the	metric	has	been	chosen,	it	is	interesting	to	figure	out	which	algorithm	performs	
better	 in	 case	 of	 each	 classifier	 (neutral-polarized	 and	 positive-negative).	Moreover,	
comparing	the	F1	scores	in	case	of	using	unigrams	or	unigrams	+	bigrams	can	give	us	an	
idea	of	the	importance	of	those	structures	inside	the	training	dataset.	

N-grams	of	more	than	2	tokens	have	been	not	considered	because	they	do	not	appear	
as	frequent	in	the	dataset	and	therefore	they	are	not	likely	to	provide	an	error	decrease,	
while	 increasing	 the	 number	 of	 features.	 This	 decision	 is	 shared	 by	 other	 academic	
papers	such	as	the	one	by	Pang	et	al.	[17].	

	 	

	

	
48	

Feeling:	Sentiment	Analysis	on	Twitter	

5.3. Feature	analysis	

Because	the	number	of	features	used	has	a	direct	impact	on	the	classification	error	of	
the	 models,	 a	 comparison	 between	 different	 configurations	 of	 them	 yields	 useful	
results.	

Thanks	to	the	implementation	of	the	feature	extraction	function,	the	number	of	features	
can	 be	 varied,	 and	 it	 needs	 to	 be	 expressed	 as	 a	 percentage	 of	 the	 total.	 Two	
percentages	must	be	specified:	one	for	unigrams,	and	another	for	bigrams.	It	is	usually	
sensible	for	the	proportion	of	considered	unigrams	to	be	bigger	than	the	one	for	bigrams	
because	if	there	are	‘n’	different	unigrams,	there	could	be	up	to	(n2)	bigrams.	

The	evaluation	 is	performed	by	the	shell	 script	called	“Evaluate.sh”,	which	generates	
four	files	in	a	folder	called	“Evaluations”,	one	file	for	each	ML	algorithm,	using	10-folds	
cross	 validation.	 The	 comparison	performed	 separately	 for	 each	model	 (polarity	 and	
sentiment).	

5.3.1. Polarity	comparison	

In	this	case	the	comparison	takes	place	between	the	models	generated	with	the	dataset	
Polarized.txt	and	Neutral.txt.	The	conclusions	are	stated	in	section	5.3.3.	

• Considering	1%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.1:	Polarity	model	with	1%	unigrams	

	 	

0,8

0,825

0,85

0,875

0,9

0,925

0,95

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

	

	
49	

Feeling:	Sentiment	Analysis	on	Twitter	

• Considering	2%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.2:	Polarity	model	with	2%	unigrams	

	
• Considering	3%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.3:	Polarity	model	with	3%	unigrams	

	 	

0,8

0,825

0,85

0,875

0,9

0,925

0,95

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

0,8

0,825

0,85

0,875

0,9

0,925

0,95

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

	

	
50	

Feeling:	Sentiment	Analysis	on	Twitter	

• Considering	4%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.4:	Polarity	model	with	4%	unigrams	

	
• Considering	5%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.5:	Polarity	model	with	5%	unigrams	

	 	

0,8

0,825

0,85

0,875

0,9

0,925

0,95

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage
Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

0,8

0,825

0,85

0,875

0,9

0,925

0,95

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

	

	
51	

Feeling:	Sentiment	Analysis	on	Twitter	

5.3.2. Sentiment	comparison	

In	this	case	the	comparison	takes	place	between	the	models	generated	with	the	dataset	
Positive.txt	and	Negative.txt.	The	conclusions	are	stated	in	section	5.3.3	

• Considering	1%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.6:	Sentiment	model	with	1%	unigrams	

• Considering	2%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.7:	Sentiment	model	with	2%	unigrams	 	

0,65

0,675

0,7

0,725

0,75

0,775

0,8

0,825

0,85

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

0,65

0,675

0,7

0,725

0,75

0,775

0,8

0,825

0,85

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

	

	
52	

Feeling:	Sentiment	Analysis	on	Twitter	

• Considering	3%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.8:	Sentiment	model	with	3%	unigrams	

• Considering	4%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.9:	Sentiment	model	with	4%	unigrams	

	 	

0,65

0,675

0,7

0,725

0,75

0,775

0,8

0,825

0,85

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage
Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

0,65

0,675

0,7

0,725

0,75

0,775

0,8

0,825

0,85

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

	

	
53	

Feeling:	Sentiment	Analysis	on	Twitter	

• Considering	5%	of	unigrams	in	relation	to	the	bigrams:	

	
Figure	5.10:	Sentiment	model	with	5%	unigrams	

5.3.3. Comparisons	conclusions	

After	generating	the	evaluation	curves	for	both	classifiers	and	for	all	the	considered	ML	
algorithms,	depending	on	the	classifier,	the	following	conclusions	were	drawn:	

In	the	case	of	the	polarity	classifiers	(Figure	5.1	to	Figure	5.5),	the	score	curves	increase	
less	 with	 each	 new	 bigram	 percentage,	 and	 are	 softer	 with	 each	 new	 unigram	
percentage.	Once	the	most	informative	features	have	been	selected,	the	rest	of	them	
are	not	that	useful,	and	they	can	produce	overfitting	(the	scores	decrease)	in	SVM	and	
Random	Forest	when	more	than	3%	of	bigrams	are	selected.	In	terms	of	the	algorithms,	
Naïve	 Bayes	 performs	 the	 best,	 followed	 by	 Logistic	 Regression	 and	 SVM,	 leaving	
Random	Forest	with	the	lowest	scores.	

In	 case	of	 the	 sentiment	 classifiers	 (Figure	 5.6	 to	Figure	 5.10),	 the	 score	 curves	 also	
increase	less	with	each	new	bigram	percentage	and	with	each	new	unigram	percentage.	
However,	this	time	the	overfitting	effect	can	be	seen	in	Logistic	Regression	and	Random	
Forest	in	the	last	figure	from	4%	of	bigrams.	This	results	in	SVM	scores	much	closer	to	
Naïve	 Bayes	 than	 were	 previously	 recorded,	 followed	 by	 Logistic	 Regression	 and	
Random	Forest.	

Finally,	results	indicate	that	the	various	models	react	differently	to	overfitting,	such	that	
the	Random	Forest	algorithm	is	the	most	sensitive	to	it.	

0,65

0,675

0,7

0,725

0,75

0,775

0,8

0,825

0,85

0% 1% 2% 3% 4% 5%

F1
	sc

or
e

Bigrams	percentage

Logistic	Regression Bernouilli	NB Linear	SVM Random	Forest

	

	
54	

Feeling:	Sentiment	Analysis	on	Twitter	

5.4. Algorithms	analysis	

In	this	section,	all	the	feature	evaluation	results	of	the	different	classifiers	are	compared.	
All	 the	ML	 algorithms	were	 evaluated	 using	 the	 default	 Scikit-learn	 parameters,	 but	
Random	 Forest.	 In	 this	 last	 case,	 the	 parameter	 indicating	 the	 number	 of	 trees	was	
increased	to	100	in	order	to	obtain	comparable	results.	

Analysis	the	evaluation	curves	from	section	5.3,	it	is	clear	that	the	higher	the	percentage	
of	unigrams	is,	the	softer	the	curve	becomes	while	increasing	the	bigrams.	This	effect	
occurs	 because	 the	 higher	 unigrams	 are	 considered,	 the	 less	 improvement	 can	 be	
achieved	when	including	more	of	them.	

Although	overfitting	cannot	be	 seeing	while	 increasing	 the	percentage	of	 considered	
unigrams	up	to	5%	(the	curves	always	start	higher	than	the	 last	percentage),	 it	 takes	
place	when	the	percentage	of	bigrams	treated	as	 features	 is	 larger	than	3%	(polarity	
classifier)	and	4%	(sentiment	classifier)	in	SVM	and	Random	Forest.	Even	if	this	effect	
does	not	seem	to	affect	neither	Bernoulli	Naïve	Bayes	nor	Logistic	Regression,	it	is	an	
indicator	that	low	number	of	bigrams	can	produce	overfitting.	

Finally,	with	 the	 aim	of	 selecting	 the	best	model,	 only	 those	with	 5%	unigrams,	 and	
either	3%	bigrams	(polarity	classifiers)	or	4%	(sentiment	classifiers)	are	compared:	

Classifier	 N-grams	 Algorithm	 F1	Score	(K	=	10)	

Polarity	
5%	Unigrams	+	
3%	Bigrams	

Logistic	Regression	 0.8998	

Bernoulli	NB	 0.9161	

Linear	SVM	 0.8901	

Random	Forest	(n	=	100)	 0.8480	

Sentiment	
5%	Unigrams	+	
4%	Bigrams	

Logistic	Regression	 0.8173	

Bernoulli	NB	 0.8408	

Linear	SVM	 0.8251	

Random	Forest	(n	=	100)	 0.7333	

Bernoulli	Naïve	Bayes	performs	the	best,	followed	by	Linear	SVM	and	Logistic	Regression	
with	similar	scores,	leaving	Random	Forest	as	the	worst	model.	
	 	

	

	
55	

Feeling:	Sentiment	Analysis	on	Twitter	

6. Conclusions	
After	the	complete	development	of	the	project	and	the	evaluation	process	(classifiers	
comparison	and	number	of	features	analysis),	there	are	several	conclusions	that	have	
been	reached	and	that	could	be	useful	to	future	projects	or	work:	

1. It	is	recommended	to	use	libraries	for	accessing	Twitter	API:	
The	original	Twitter	API	is	not	as	intuitive	as	the	third-party	libraries.	Moreover,	
they	simplify	the	communication	process	with	it,	saving	developers	time	to	focus	
in	the	real	goal	of	the	project.	Taking	a	look	to	the	internal	code	of	those	libraries,	
for	instance	Tweepy,	we	can	realize	the	number	of	cases	that	we	should	consider	
when	communicating	with	Twitter.	
	

2. The	datasets	bias	is	adopted	when	learning:	
As	the	examples	used	for	the	learning	process	come	from	the	training	datasets,	
any	 bias	 that	 those	 examples	 /	 files	 have	 is	 going	 to	 be	 reflected	 in	 the	way	
models	 are	 trained.	 In	 case	 of	 the	 neutral,	 polarized,	 negative	 and	 positive	
datasets	provided	by	NLTK,	 they	contain	movie	 reviews,	 so	although	any	 text	
with	any	of	those	sentiment	should	be	recognizable	because	of	its	words,	people	
do	not	express	themselves	in	the	same	way	rating	a	movie	than	writing	a	tweet.	
	

3. Scikit-learn	was	advantageous	over	other	implementations:	
Initially,	my	own	cross	validation	(CV)	implementation	was	tried,	and	although	it	
took	 advantage	 of	 all	 CPU	 possible	 threads,	 the	 implementation	 provided	 by	
Scikit-learn	 ran	 about	 10	 times	 faster	 while	 only	 using	 one	 CPU	 core.	
Furthermore,	 Scikit-learn’s	 “Vectorizer”	 functionality	 transforms	 example	
features	to	sparse	arrays	which	drastically	reduces	the	memory	usage.	
	

4. Including	more	than	3-4%	of	bigrams	as	features	produce	overfitting:	
As	 shown	 in	 section	 5.3,	 when	 the	 polarity	 classifiers	 (which	 discriminate	
between	neutral	and	polarized	classes)	have	a	proportion	of	bigrams	higher	than	
3%,	 the	F-scores	of	 Linear	 SVM	and	Random	Forest	algorithms	decrease.	 The	
same	effect	can	be	seen	in	the	sentiment	models	(which	discriminate	between	
negative	and	positive	classes)	such	that	the	F-score	decreases	when	the	bigrams	
are	increased	to	4%.	Even	though	the	effect	is	not	visible	in	every	algorithm,	it	is	
a	clear	indicator	of	how	irrelevant	features	can	negatively	impact	results.	 	

	

	
56	

Feeling:	Sentiment	Analysis	on	Twitter	

5. Naïve	Bayes	and	SVM	seem	to	return	the	best	results:	
Among	the	compared	algorithms,	those	are	the	ones	with	the	best	results.	The	
reason	of	this	is	that	due	to	their	characteristics	they	perform	quite	well	in	the	
case	of	big	number	of	features,	the	first	one	(NB)	using	a	probabilistic	approach	
and	the	other	one	(SVM)	using	support	vectors	and	kernel	functions	as	a	way	of	
creating	the	most	flexible	model	without	falling	into	overfitting.	
	

6. Difficulty	of	achieving	very	good	(>	0.9	F1-score)	models:	
Considering	the	obtained	results,	it	is	easy	to	realize	that	training	very	good	text	
classification	models	are	taught	to	get	because	of	all	the	corner	cases	that	cannot	
be	easily	recognized	(sarcasm,	irony,	text	typos,	weird	abbreviations…).	Models	
recognizing	those	concepts	need	to	be	complex	in	so	many	ways	without	falling	
into	 overfitting,	 that	 it	will	 require	 not	 only	more	 human	 resources,	 but	 also	
more	linguistics	knowledge.	
	

7. Most	the	tweets	nowadays	are	neutral:	
Finally,	after	the	algorithms	have	been	compared	and	the	number	of	features	
selected,	some	streams	of	data	have	been	analyzed	and	filtered	by	words	that	
do	not	contain	any	inherent	positive	or	negative	feeling.	It	was	observed	that	the	
majority	of	the	tweets	(50-60%)	were	neutral,	through	this	we	can	infer	that	the	
users	are	not	providing	any	opinion	(at	least	in	the	positive-negative	spectrum).	
Although	this	depends	a	lot	with	the	specific	word	and	its	context,	the	results	
allude	to	a	trend	of	using	Twitter	more	like	an	information	social	network	than	a	
personal	opinion	one.	
	

8. The	usefulness	of	debatable	trending	topics	analysis:	
Thanks	 to	 the	 provided	 web	 application,	 the	 sentiment	 analysis	 of	 trending	
topics	and	hashtags	can	be	useful	when	performing	statistical	studies	on	social	
networks,	 define	 possible	 marketing	 targets	 and	 analyze	 how	 global	 events	
produce	different	feelings	depending	on	the	country,	region,	or	city.	Moreover,	
it	could	be	used	by	companies	to	track	product	acceptance	in	different	locations.	
	

	 	

	

	
57	

Feeling:	Sentiment	Analysis	on	Twitter	

7. Future	work	
Even	if	the	project	has	been	finished	and	most	of	the	main	goals	fulfilled,	there	is	always	
space	for	improvements	and	new	functionalities.	

There	are	some	ideas	that	will	fit	very	well	with	the	code	base	already	available	and	that	
will	 create	 a	 richer	 tool	 for	 Sentiment	 analysis.	 They	 are	 going	 to	 be	 split	 into	 2	
categories:	Back-End	improvements	and	Front-End	improvements.	

7.1. Back-End	improvements	

• Introduce	more	complex	techniques:	

During	 the	 training	 data	 processing	 and	 learning,	 all	 of	 the	 most	 common	
techniques	for	text	mining	has	been	applied	(transform	all	words	into	lower	case,	
tokenize	 them,	 remove	 the	 stop	 words	 and	 lemmatize	 the	 remaining	 ones).	
However,	there	are	more	complex	techniques	such	as	the	use	of	Part	of	Speech	
(POS)	tags,	chunking	using	a	parser	and	word	sense	disambiguation	(WSD).	

One	 possible	 problem	 of	 introducing	 these	 capabilities	 is	 the	 performance	
decrease	when	analyzing	streams	of	tweets.	These	streams,	depending	on	the	
filtered	words	can	go	very	fast,	and	there	could	be	an	increasing	delay	between	
the	speed	in	which	the	tweets	are	provided	and	the	classification	results.	

• Obtain	better	data	sets	using	the	search	tool:	

Another	possible	aspect	in	which	the	project	can	improve	is	on	the	ML	training	
part.	 By	 default,	 the	 datasets	 of	 neutral,	 polarized,	 positive	 and	 negative	
sentences	from	the	NLTK	corpus	are	used,	but	these	datasets	are	not	perfect	and	
do	not	contain	every	possible	word	or	bigram	that	someone	can	use	to	express	
a	 sentiment.	 Moreover,	 reading	 the	 documentation	 about	 the	 NLTK	 corpus	
datasets,	 it	 is	 clear	 that	 they	 have	 been	 created	 using	movie	 reviews	 from	 a	
webpage.	Using	these	datasets	to	train	a	model	that	will	predict	sentiment	over	
unseen	tweets	is	not	ideal,	supposing	that	users	express	themselves	in	the	same	
way	rating	a	movie	and	writing	a	tweet,	is	a	dangerous	assumption.	

For	 this	 reason,	 the	 “search”	 functionality	 that	 allows	 us	 to	 create	 our	 own	
dataset	 retrieving	 tweets	 from	 the	 Twitter	 API	 was	 implemented.	 The	 main	
problem	comes	when	we	must	decide	the	set	of	words	to	filter	the	tweets	 in	
order	to	build	our	training	data.	It	is	more	or	less	easy	in	the	case	of	positive	and	
negative	data,	but	it	is	not	when	we	consider	neutrality.	

	 	

	

	
58	

Feeling:	Sentiment	Analysis	on	Twitter	

7.2. Front-End	improvements	

• Implement	a	login	system	to	manage	tokens:	

The	most	important	improvement	over	the	web-application	infrastructure	is	to	
create	a	login	web-page	before	accessing	the	tool.	If	this	login	is	implemented,	
each	new	user	can	have	their	own	Twitter	API	token,	and	there	will	be	less	query	
limitations	while	trying	to	operate	with	the	web-application.	The	change	will	be	
huge,	because	the	application	will	be	able	of	performing	180	queries	per	user	
instead	of	240	for	every	user,	each	15	minutes	(current	state)	[18].	

The	main	reason	why	this	improvement	has	not	been	included	in	the	project	is	
just	a	logistic	problem:	it	was	going	to	take	a	long	time	to	implement,	without	
providing	 any	 improvement	 over	 a	 future	 presentation	 of	 the	 project.	 The	
improvements	will	only	be	noticed	if	the	project	is	publicly	used	by	a	large	group	
of	users.	

	 	

	

	
59	

Feeling:	Sentiment	Analysis	on	Twitter	

8. References	
1. “Internet	Live	Stats	–	Internet	Usage	&	Social	Media	Statistics.”	Internet	Live	Stats,	

Real	Time	Statistics	Project,	www.internetlivestats.com.	

2. Kishori	K.	Pawar,	Pukhraj	P	Shrishrimal,	R.	R.	Deshmukh.	“Twitter	Sentiment	Analysis:	
A	Review.”	Twitter	Sentiment	Analysis:	A	Review,	volume	6,	 issue	4,	4	April	2015,	
http://www.ijser.org/researchpaper%5CTwitter-Sentiment-Analysis-A-Review.pdf.	

3. “Sentiment	 Analysis.”	 Wikipedia,	 Wikimedia	 Foundation,	 13	 June	 2017,	
https://en.wikipedia.org/wiki/Sentiment_analysis.	

4. Helmbold,	David.	“Machine	Learning	and	Data	Mining”.	University	of	California	(SC).	

5. Quijano	Sánchez,	Lara.	“Machine	learning	and	Text	Mining”.	UC3M.	

6. Kowalczyk,	 Alexandre.	 “Linear	 Kernel:	 Why	 is	 it	 Recommended	 for	 Text	
Classification?”	SVM	tutorials,	12	April	2017,	www.svm-tutorial.com/2014/10/svm-
linear-kernel-good-text-classification.	

7. “Twitter	Developer	Documentation.”	Twitter,	Twitter,	https://dev.twitter.com/docs	

8. Agarwal,	Apoorv,	et	al.	“Sentiment	Analysis	of	Twitter	Data.”	Columbia	University,	
www.cs.columbia.edu/~julia/papers/Agarwaletal11.pdf.	

9. Koppel,	Moshe,	and	Jonathan	Schler.	“The	Importance	of	Neutral	Examples	for	
Learning	Sentiment.”	Bar-Ilan	university,	
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9735&rep=rep1&type=pdf.	

10. Bromberg,	Andy.	“Second	Try:	Sentiment	Analysis	in	Python.”	Andy	Bromberg	RSS,	
http://andybromberg.com/sentiment-analysis-python/	.	

11. Kinsley,	 Harrison.	 “Twitter	 Sentiment	 Analysis	 with	 NLTK.”	 Python	 Programming	
Tutorials,	https://pythonprogramming.net/twitter-sentiment-analysis-nltk-tutorial/		

12. “Twitter	Libraries.”	Twitter	Developer	Documentation,	Twitter,	
https://dev.twitter.com/resources/twitter-libraries	.	

13. “Streaming	API	Request	Parameters.”	Twitter	Developer	Documentation,	Twitter,	
https://dev.twitter.com/streaming/overview/request-parameters#locations.	

14. “Overfitting.”	Wikipedia,	Wikimedia	Foundation,	9	June	2017,	
https://en.wikipedia.org/wiki/Overfitting	.	

	

	
60	

Feeling:	Sentiment	Analysis	on	Twitter	

15. “F1	Score.”	Wikipedia,	Wikimedia	Foundation,	20	May	2017,	
https://en.wikipedia.org/wiki/F1_score	.	

16. Cisneros,	Benjamin	Tovar.	“Accuracy	versus	F	Score:	Machine	Learning	for	the	RNA	
Polymerases.”	R-Bloggers,	16	August	2013,	www.r-bloggers.com/accuracy-versus-
f-score-machine-learning-for-the-rna-polymerases	.	

17. Bo	Pang,	Lillian	Lee,	and	Shivakumar	Vaithyanathan.	“Thumbs	up?	Sentiment	
classification	using	machine	learning	techniques.”	Proceedings	of	the	Conference	
on	Empirical	Methods	in	Natural	Language	Processing,	pages	79–86,	2002.	
https://www.cs.cornell.edu/home/llee/papers/sentiment.pdf	.	

18. “Rate	Limits:	Chart.”	Twitter	Developer	Documentation,	Twitter,	
https://dev.twitter.com/rest/public/rate-limits	.	

