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Abstract

The performance of protocols and architectures for upcoming vehicular net-

works are commonly investigated by means of computer simulations, due to the

excessive cost and complexity of large-scale experiments. Dependable and re-

producible simulations are thus paramount to a proper evaluation of vehicular

networking solutions. Yet, we lack today a reference dataset of vehicular mobil-

ity scenarios that are realistic, publicly available, heterogeneous, and that can be

used for networking simulations straightaway. In this paper, we contribute to the

endeavor of developing such a reference dataset, and present original synthetic

traces that are generated from high-resolution real-world traffic counts. They

describe road traffic in quasi-stationary state on three highways near Madrid,

Spain, for different time-spans of several working days. To assess the poten-

tial impact of the traces on networking studies, we carry out a comprehensive

analysis of the vehicular network topology they yield. Our results highlight the

significant variability of the vehicular connectivity over time and space, and its

invariant correlation with the vehicular density. We also underpin the dramatic

influence of the communication range on the network fragmentation, availability,

and stability, in all of the scenarios we consider.

Keywords: Vehicular networks, highway traffic, synthetic traces,

vehicle-to-vehicle communication, connectivity, complex networks.
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1. Introduction

A key enabling technology of future Intelligent Transportation Systems (ITS),

vehicle-to-vehicle (V2V) communication is envisioned to interconnect vehicles

into distributed, self-organized networks. The latter are expected to comple-

ment today’s mobile access architecture, and support services such as coopera-5

tive awareness, collision avoidance, or data dissemination.

The emergence of large-scale vehicular networks requires that a large fraction

of vehicles is equipped with dedicated radio interfaces. Such a pervasive deploy-

ment of V2V communication is closer than one would imagine: standards for

V2V communication, such as IEEE 802.11-2012 [1], IEEE 1609 [2],OSI CALM-10

M5 [3] and ETSI ITS-G5 [4] are now finalized, and regulators in the USA plan

to enforce V2V radio interfaces on all new vehicles by 2017 [5]. Early large-scale

field tests are also in progress, e.g., within the simTD project in Germany, or

the Ann Arbor Safety Pilot in Michigan, USA.

This notwithstanding, experimental trials of vehicular networking solutions15

remain an exception, due to their costs and complexity. The vast majority

of applications, protocols and architectures for upcoming vehicular networks is

evaluated via computer simulation. The dependability of results is then condi-

tional on the level of realism of the models assumed, and the representation of

the mobility of individual vehicles is often the single feature that introduces the20

largest bias [6].

For that reason, during the past decade, significant efforts have been made

to gather real-world road traffic data [7, 8], develop effective tools for the sim-

ulation of vehicular movement [9–12], and generate realistic synthetic mobility

traces [13–15]. Still, a reference set of realistic, publicly shared, heterogeneous25

road traffic scenarios for networking simulation is not yet available. This situa-

tion, originated by a manifest scarcity of mobility traces featuring the required

level of realism and spatiotemporal granularity, is raising questions on the de-

pendability and reproducibility of research results [16]. Within such a context,

this paper puts forward several major contributions, as follows.30
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First, we take a step forward in the direction of dependable and reproducible

vehicular networking research, by providing to the community multiple novel

realistic highway traffic traces for network simulation. The traces are based

on real-world traffic count measurements that feature an unprecedented level

of detail, and are representative of heterogeneous motorway segments and road35

traffic conditions, as discussed in Sec. 2.

Second, we outline a detailed methodology to generate synthetic mobility

traces of unidirectional highway traffic starting from road traffic counts. The

traces model road traffic in quasi-stationary conditions, where macroscopic fea-

tures such as the average vehicular density, speed, and out-flow observed on each40

highway lane are invariant over the full span of the simulated road segment. To

that end, we leverage inherent properties of the real-world data for the per-

vehicle calibration of well-known car-following and lane-changing microscopic

models. Details are provided in Sec. 3.

Third, we characterize the vehicular network connectivity resulting from45

the proposed synthetic traces. To that end, we perform a network protocol-

independent study, by adopting an instantaneous topology model, as discussed

in Sec. 4. We investigate the impact of a wide range of parameters, including

time (i.e., hour of the day, day of the week), highway settings (i.e., number

of lanes, speed limits), road traffic conditions (i.e., free flow or synchronized50

traffic), and V2V communication range. Our results, presented in Sec. 5 un-

derscore, in all of the scenarios we considered, the following properties: (i) the

dramatic impact that relatively small communication range variations have on

the network structure; (ii) the prevalent role of the vehicular density in driv-

ing network connectivity via three-phase dynamics; (iii) the limited availability55

and stability of long-range multi-hop vehicular networks, (iv) the fact that the

highway vehicular network is difficult to navigate.

Finally, a comparative review of the related literature is provided in Sec. 6,

before we draw conclusions in Sec. 7.
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(a) Highway locations (b) M30 - Aerial view (c) M40 - Aerial view (d) A6 - Aerial view

Figure 1: (a) Geographical location of the measurement points on the three highways consid-

ered in our study, near Madrid, Spain: M30 (A), M40 (B) and A6 (C). (b,c,d) Close-by views

of measurement points on M30, M40 and A6.

2. Source measurement data60

The synthetic traces we present in this paper are based on empirical data that

comes from real-world measurements carried out in the region of Madrid, Spain.

The data, kindly provided to us by the Spanish office for the traffic management

(Dirección General de Tráfico, DGT) and the Madrid City Council, details the

vehicular traffic conditions on the following three arterial highways.65

M30. With an average distance of 5.17 Km from the city center, M30 is the

inner part of the Madrid city beltway system, which also comprises the outer-

most M40 and M50. The data employed in this study comes from measurements

along the northbound direction, close to the junction with the A-2 Motorway

and marked as A in Fig. 1a. There, M30 features 4 lanes in the main carriage-70

way, as it can be observed in the aerial view of Fig. 1b. The speed limit along

M30 is 90 Km/h.

M40. Motorway M40 is part of the intermediate layer of the Madrid city

beltway system. It has an average distance of 10.7 Km from the city center, and

traverses both the most peripheral areas of the municipality as well as several75

surrounding minor cities. The measurement point, marked as B in Fig. 1a, is

at the 12.7-Km milepost, where M40 traverses the suburb of San Blas and the

town of Coslada. The measures cover the southbound carriageway, in Fig. 1c,

which includes 3 lanes with a speed limit of 100 Km/h.
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A6. Autov́ıa A6 is a motorway that connects the city of A Coruña to the80

city of Madrid. A6 enters the urban area from the northwest, collecting the

traffic demand of the conurbation built along it. The data collection point is

placed around the 11-Km milepost in the Madrid direction, depicted with a C

in Fig. 1a, where A6 features 3 lanes, as per Fig. 1d. The speed limit is 120

Km/h.85

2.1. Collecting fine-grained traffic count data

The sensors deployed on the three highways are induction loops, i.e., loops

of wires buried under the concrete layer and creating a magnetic field. When

a vehicle transits on the vertical axis of the loop, it induces a variation in the

magnetic field. If two loops are placed close to each other, other metrics, e.g.,90

the vehicle speed and length, can be also determined.

Usually, these devices are programmed to supply coarse-grained data, since

public transportation authorities are generally interested in aggregate measures

on, e.g., the number of vehicles transiting on a road, their average speed, or

the percentage of heavy vehicles1, so as to detect major alterations of traffic95

conditions [17, 18]. The loops used in this work are normally configured to

supply data averaged over 60 seconds, but their setup was changed specifically

for our study, so as to provide fine-grained information on each transiting vehicle.

Not only the level of detail, but also the timing and duration of the mea-

surements are critical aspects of the data collection. Indeed, vehicular traffic100

presents significant daily variability, and rush hours yield diverse traffic condi-

tions than off-peak hours, especially on main arterial roads like those we con-

sider. In order to capture such temporal heterogeneity, and compatibly with

the limitations imposed by the dedicated setup needed at the induction loops,

we collected the following datasets.105

1As an example, Dirección General de Tráfico provides elaborations of the traffic count data

via the Infocar web service at http://infocar.dgt.es, with visualizations of the historical

aggregate data at the observation points.
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One day-long dataset, collected on M30 during 24 hours of a typical weekday

in May 2010. This dataset features variable conditions, from very sparse traffic

at night to heavy congestion during the morning rush hours. It thus provides

a rather complete view of the possible traffic scenarios met on a real-world

highway.110

Sixteen 30-minute datasets, collected on M40 and A6. These datasets were

recorded on multiple weekdays of May 2010, during the morning traffic peak

(from 8:30 a.m. to 9 a.m.), and during off-peak hours (from 11.30 a.m. to 12

p.m.). The rationale for these shorter datasets is that they allow us to generalize

our study, by investigating the effects induced by different roads (e.g., number115

of lanes, speed limits and proximity to the city center) and different weekdays.

Overall, these traffic count datasets provide a comprehensive view of het-

erogeneous traffic conditions, and they do so at a high level of detail. Their

unprecedented combination of precision and completeness makes them an ideal

input to the microscopic simulation of highway traffic, enabling the generation120

of realistic mobility traces that are representative of many and varied traffic

situations.

2.2. Understanding the data

Each traffic count dataset entry records one vehicle transiting at the mea-

surement point, and includes:125

• Timestamp: the time at which the vehicle transit was recorded by the

induction loop. The precision of the time reference is 100 milliseconds.

• Speed: the vehicle speed, in Km/h.

• Lane: the lane on which the vehicle transited.

An overview of the traffic count data is provided in Fig. 2. The day-long130

time series of the vehicular speed and in-flow on M30 are portrayed separately

for each lane in Fig. 2a and Fig. 2d, respectively. The in-flow is the number

of vehicles transiting by the measurement point per minute, and us typically
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Figure 2: Traffic count data overview. Per-lane speed (a) and in-flow (d) recorded during a

full day on M30, and during two sample 30-minute intervals (highlighted as gray-shaded in

day-long plots) on M40 (b,e) and A6 (c,f).

used as a measure of road traffic intensity. We remark the very low in-flow at

night, i.e., from midnight to around 7.30 a.m., where speeds also tend to be135

the highest. Early morning, from 7.30 a.m. to 10 a.m. is characterized by

a significant increase of in-flow and reduction of speeds – a clear symptom of

congestion. Once the morning rush hours have passed, the traffic is quite regular

over the rest of the day, with the notable exception of some flow reduction at

around 2 p.m., i.e., lunch time in Spain. On a per-lane basis, the speed of the140

rightmost lane is typically the lowest, while that of the leftmost lane is normally

the highest: this is expected, since overtaking is only allowed to the left in Spain,

which pushes faster vehicles to travel on left lanes. Also, we observe that traffic

tends to be the thickest in the central lanes, at least in standard, non-congested

situations: again, this is the common behavior in Spain, with the rightmost lane145

left to heavy trucks and the leftmost one used for overtaking only.

From a traffic flow theoretical standpoint, the diverse combinations of speed

and in-flow present in the M30 dataset fall into two different road traffic states.

So-called free flow traffic [19], characterized by neatly separated speeds on dif-

ferent lanes, dominates most of the dataset. This is especially evident from 10150

a.m. onward, as beforehand the traffic is either too sparse to be statistically

significant, or too thick to be in free flow. The latter situation, i.e., thick traffic

leading to congestion, is observed during the early morning, between 8 a.m. and

10 a.m. During this period, the traffic is in so-called synchronized state [19],

where the density is such that all lanes are equally jammed: indeed, we can155
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Figure 3: Inter-arrival time CDF measured on May 12, 2010. Each plot refers a lane on M40

at 8:30 a.m. (a, b), A6 at 11:30 a.m. (c, d), and M30 at 11:30 a.m. (e,f). Solid black lines

represent the mixture model for each distribution.
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Figure 4: Time series of the percentage of road traffic entering M30 with exponential inter-

arrivals. Curves refer to different lanes of the highway.

remark the distinctive slower, homogeneous speeds on all lanes.

As far as the 30-minute datasets collected on M40 and A6 are concerned, the

speed and in-flow yielded by two sample excerpts are shown in the remaining

plots of Fig. 2. Their time-spans are highlighted in the day-long M30 plots as

gray-shaded intervals, so as to give a better perception of how their duration160

compares to that of the M30 data. Throughout all these datasets, road traf-

fic is mostly in a free flow state, but for rare and episodic spontaneous local

perturbations that rapidly disappear.

2.3. Interarrival times analysis

The analysis of vehicle inter-arrival times in the traffic count datasets we col-165

lected on M30, M40 and A6 shows that a mixture Gaussian-exponential model

yields an excellent approximation of the empirical data. Fig. 3 shows the match

between the mixture model and the experimental data on multiple combinations
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of highway, lane, day and hour.

The mixture model also provides valuable information on drivers’ behavior.170

On the one hand, the Gaussian part of the distribution captures bursty arrivals

of vehicles that travel close to each other at similar speeds, a behavior typical

of congested road traffic. On the other hand, the exponential part of the distri-

bution models isolated vehicles whose movement is less constrained by that of

other cars, which is normally observed in pure free flow traffic conditions.175

An intuitive representation of the mixture of the two road traffic behaviors

is depicted in Fig. 4. There, we portray the percentage of road traffic measured

on M30 during the whole day that exhibits exponential inter-arrivals. The value

on the y axis is expressed as the percentage of vehicles that show an isolated be-

havior (i.e., exponential inter-arrivals); clearly, the residual percentage is made180

of vehicles traveling in bursts (i.e., with Gaussian inter-arrivals). Results are

divided by lane.

We observe that inter-arrivals are never purely exponential. In fact, the

Poisson arrival assumption may be a somehow decent approximation at night,

between 11 p.m. and 6 a.m. However, throughout the rest of the day, all lanes185

are characterized by an even mixture of bursty and isolated arrivals. In fact, we

even remark the prominence of the first type of arrivals on the leftmost lanes

(i.e., lanes 3 and 4) between 8 a.m. and 9 a.m., i.e., during the morning traffic

peak.

Some differences also emerge among lanes. Inter-arrivals on the leftmost190

lane, denoted as lane 4 in the plot, tend to have a more exponential behavior

in the general case: as shown by Fig. 2d, this lane is typically less trafficked

than the others, and vehicles traveling on it are more isolated. However, during

the morning rush hours, traffic on the leftmost lanes increases significantly, and

the high speed of vehicles traveling on such lanes forces drivers to keep very195

similar safety distances: ultimately, this results in very homogeneous traffic and

low-variance Gaussian inter-arrivals.

Interestingly, all the results above invalidate, in the case of our target sce-

narios, the common assumption of exponential or even uniform distribution of

9



the time headway between subsequent vehicles on each lane.200

For additional details on the modeling of inter-arrival times in our datasets,

we refer the reader to the discussions in [20, 21].

3. Vehicular mobility traces

Our objective is to generate road traffic traces that are representative of

unidirectional highway traffic in quasi-stationary state, i.e., such that traffic205

conditions are comparable between the in-flow and out-flow boundaries of the

simulated road segments. Quasi-stationarity is a common assumption in vehic-

ular networking research, see, e.g., [17, 22–28]. It provides a controlled envi-

ronment where ungoverned road traffic phenomena (e.g., continuous road traffic

variations due to in- and out-ramps, unpredictable drivers’ behaviors, or acci-210

dents) do not bias the evaluation of network solutions. Although it does not

model macroscopic perturbations induced by the aforementioned phenomena,

quasi-stationarity still allows a full-fledged representation of the microscopic

dynamics of real-world road traffic (including, e.g., varying vehicle speed due to

acceleration or deceleration, lane changes, overtakes).215

In this section, we feed the real-world traffic count data presented in Sec. 2

to a microscopic vehicular mobility simulator2, based on state-of-the-art car-

following and lane-changing models (Sec. 3.1) that are purposely calibrated

(Sec. 3.2) so as to derive our trace (Sec. 3.3).

3.1. Microscopic models220

The car-following and lane-changing microscopic mobility models imple-

mented by our simulator are IDM and MOBIL. Both models have been vali-

dated by the transportation research community, and are widely adopted for

the simulation of vehicular networks.

The Intelligent Driver Model (IDM) [29] characterizes the behavior of the

driver of a vehicle i through the instantaneous acceleration dvi(t)/dt, calculated

2Available at http://www.it.uc3m.es/madrid-traces.
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as
dvi(t)

dt
= a

[

1−
(

vi(t)

vmax
i

)4

−
(

∆xdes
i (t)

∆xi(t)

)2
]

, (1)

∆xdes
i (t) = ∆xsafe +

[

vi(t)∆tsafei − vi(t)∆vi(t)

2
√
ab

]

. (2)

In (1), vi(t) is the current speed of vehicle i, vmax
i is the maximum speed its225

driver would like to travel at, and ∆xdes
i (t) is the so-called desired dynamical

distance, representing the distance that the driver should keep from the leading

vehicle. The latter is computed in (2) as a function of several measures taken

with respect to the car in front of vehicle i: the minimum bumper-to-bumper

distance ∆xsafe, the speed difference ∆vi(t), and the minimum safe time head-230

way, i.e., the time the driver needs in order to react to sudden braking by the

front vehicle and avoid an accident, denoted as ∆tsafei . In both equations, a

and b denote the maximum absolute acceleration and deceleration, respectively.

When combined, these formulae return the instantaneous acceleration of the

car, as a combination of the desired acceleration on an empty road, i.e., the235

term [1− (vi(t)/v
max
i )4], and the braking deceleration induced by the preceding

vehicle, i.e., the term (∆xdes
i (t)/∆xi(t))

2.

The Minimizing Overall Braking Induced by Lane-changes (MOBIL) model [30]

builds on a game theoretical approach, and lets the driver of a vehicle i move to

an adjacent lane if the advantage in doing so is greater than the disadvantage

of the trailing car j in the new lane. The (dis)advantage is measured in terms

of acceleration, which translates into the inequality

∣

∣

∣

∣

dvi(t)

dt

∣

∣

∣

∣

L

− dvi(t)

dt
+ aL ≥ p

(

dvj(t)

dt
−
∣

∣

∣

∣

dvj(t)

dt

∣

∣

∣

∣

L

)

+ k · a, (3)

where the notation | · |L denotes accelerations computed as if vehicle i were

traveling on the lane to its left rather than in the current one. In (3), p ∈ (0, 1]

is a politeness factor that models the selfishness of the driver with respect to the240

new back vehicle j, k ·a is a hysteresis threshold that prevents lane hopping, and

aL is a bias acceleration that can be used to favor or limit movements to left.

An identical formulation can be used for right-hand-side lane changes, and the
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respective advantages can be compared to determine the final lane movement,

if any. Note that, in Spain, road traffic regulations enforce drivers to travel on245

the rightmost lane whenever possible: we thus expect aR > aL and aR > 0, i.e.,

right-hand-side movements to be favored over left or no movement, if equivalent

conditions are present on all lanes.

3.2. Model parameter calibration

In order to obtain quasi-stationary traffic conditions over the simulated high-250

way segment, some calibration of the IDM and MOBIL parameters are nec-

essary. Specifically, for the acceleration a, deceleration b, politeness factor p

and minimum bumper-to-bumper distance ∆xsafe the default values suggested

in [29, 30] work well. The other parameters have instead to be adapted to the

specificities of the road traffic scenarios we considered, as summarized in Tab. 1.255

We remark that ours is the first work integrating fine-grained traffic counts in

a microscopic vehicular mobility generator; in this context, the calibration pre-

sented below is mandatory in order to avoid instability in the synthetic road

traffic3.

Maximum desired speed. Vehicles are introduced in the simulation at260

the time and with the speed defined by the real-world traffic count dataset.

However, we need to determine the maximum desired speed vmax
i of each vehicle

i, i.e., the cruise velocity that its driver would keep if alone on the highway [29].

We proceed as follows.

First, we recall that, according to traffic flow theory, vehicles in a free flow265

state have limited interactions, which allows them to travel at velocities close to

3Specifically, we recorded a significant amount of dangerous driving behaviors in the real-

world traffic count data, leading to inter-distances that are incompatible (i.e., too small)

with the speed difference (too high) among subsequent vehicles. In such a scenario, letting

vehicles move at constant speed, or choosing desired speeds and safe time headway from non-

calibrated distributions, leads to continuous accidents or extremely slow traffic. Also, removing

misbehaving vehicles is not an option, since their number is not negligible, and discarding them

would limit data realism. Our parametrization can accommodate such dangerous but realistic

situations in a synthetic mobility trace.
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Table 1: IDM and MOBIL parameter settings

Model Parameter Meaning Value

IDM a Maximum acceleration 1 m/s2

IDM b Maximum (absolute) deceleration 2.5 m/s2

IDM vmax
i Maximum desired speed ∼ fV (v)

IDM ∆xsafe Minimum distance 1 m

IDM ∆t
safe
i Minimum safe time headway ∼ fT (∆t)

MOBIL p Politeness factor 0.5

MOBIL aL Bias acceleration (left) 0 m/s2

MOBIL aR Bias acceleration (right) 0.2 m/s2

MOBIL k Hysteresis threshold factor 0.3

their maximum desired speed. We thus assume that real-world ingress speeds

in the free flow zone can be used as a baseline for the derivation of the desired

speeds. We identify the free flow zone in each traffic count dataset: in the

M30 dataset, as discussed in Sec. 2.2, free flow characterizes the hours from the270

start of the day and 6 a.m. (when synchronized traffic first appears), and from

10 a.m. (once synchronized traffic dissolves) to midnight; in the M40 and A6

datasets, we can safely consider that road traffic is consistently in free flow.

Second, we extract the free flow speed distributions for each road, on a per-

lane basis. The corresponding Probability Density Functions (PDF) are shown275

in Fig. 5a, Fig. 5b, and Fig. 5c, for M30, M40 and A6, respectively. In the latter

two cases, the empirical distributions overlap for all combinations of day and

hour, and are thus aggregated. The PDFs are separated by lane, as drivers

traveling on different lanes tend to have dissimilar maximum desired speeds.

Interestingly, all distributions have Gaussian shapes, which let us model the280

maximum desired speeds as a Gaussian-distributed random variables, whose

fitted PDFs are portrayed as solid lines in Fig. 5. Clearly, the mean µh,l and

standard deviation σh,l of the fitted distributions vary depending on the highway

h and lane l considered: there is a neat trend for lanes towards the left to yield

higher velocities than those towards the right, in all scenarios.285
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Figure 5: Calculation of the maximum desired speed vmax
i . (a,b,c) Empirical and fitted

distributions of the free flow speed on each lane of M30, M40 and A6, respectively. (d)

Example of per-vehicle truncation and normalization of the fitted distribution, so that only

values larger than the initial speed v0i are considered for vmax
i , ∀i.

As a third step, we adapt the final lane-dependent vmax
i distribution on a

per-vehicle basis, as

fV (v) =











0, v < v0i
√
2 exp(−(v−µh,l)

2/2σ2

h,l)

σh,l

√
π [1+erf((v0

i
−µh,l)/σh,l

√
2)]

, v ≥ v0i .
(4)

The expression in (4) truncates and re-normalizes the Gaussian distribution at

the speed v0i recorded in the real-world traffic count data for vehicle i. This

is graphically explained in Fig. 5d. This way, the initial velocity of i, i.e., v0i ,

becomes the lower bound to vmax
i , which guarantees that the maximum desired

speed of a vehicle i is never lower than v0i . The opposite would be unrealistic, for290

two reasons: first, it would imply that i enters the simulation at a speed higher

than the maximum velocity it targets, which hardly makes sense; second, it
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Figure 6: Calculation of the minimum safe time headway ∆t
safe
i . (a) Reference distributions

of the typical safe time headway on each lane of M30, as inferred by the experimental flow,

speed, and inter-arrival information contained in the traffic count dataset. (b) Example of

per-vehicle truncation and normalization of the reference distribution, so that only values

smaller than the initial inter-arrival time ∆t0i are considered for ∆t
safe
i , ∀i.

would force an immediate braking according to the IDM model in (1), slowing

down the following vehicles and introducing an unrealistic queuing perturbation

in the highway traffic.295

Minimum safe time. The minimum safe time headway ∆tsafei is known

to vary across real-world scenarios. In [29], the default value is 1.5 s. However,

drivers in different countries prefer diverse safe times, from 0.9 s in Germany [31]

to 3 s in some States of USA [32].

In order to determine the correct per-vehicle ∆tsafei for our scenario, we fol-300

low a similar approach as that taken for the calculation of the maximum desired

speed. In this case, however, extracting the baseline empirical distributions is

less straightforward, and we opt for a mixed analytical-empirical approach, as

follows.

From the dataset, we can measure the inter-arrival times between vehicles,305

which can be directly related to the ∆tsafei values. However, as discussed in

Sec. 2.3, the mixture Gaussian-exponential shape of inter-arrivals is known to

aggregate bursty as well as isolated arrivals [20]. The latter are generated by

vehicles that travel far away from each other: in this case, drivers are not

influenced by the behavior of nearby vehicles, and thus isolated arrivals are not310
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representative of actual safety distances. As a result, we need to exclude them

from the ∆tsafei estimation, and preserve bursty arrivals that refer to thick

traffic, where drivers actually keep a minimum safe time headway with respect

to their front vehicle.

We resort to traffic flow theory to perform the operation above, on a per-lane

basis. On a highway h, the vehicular density ρ on lane l can be expressed as

ρh,l =
1

L+∆tsafeh,l vh,l
(5)

where L is the average length of the vehicles, vh,l is the average speed, and ∆tsafeh,l

is the average safe time headway [33]. From density ρh,l, we can compute the

vehicular flow qh,l = ρh,l · vh,l, which results in

∆tsafeh,l =
1

qh,l
− L

vh,l
. (6)

Expression (6) directly relates ∆tsafeh,l to the maximum value of the flow qh,l315

and average speed vh,l. The maximum flow qh,l can be inferred by identifying

in the M30 dataset the time interval at which the speed breakdown occurs on

each lane in Fig. 2. The average speed vh,l is easily computed as the average

velocity of vehicles in free flow conditions. Considering L = 4 m as the vehicle

length, we obtain typical values of ∆tsafeh,l on each lane of every highway. In the320

M30 dataset, we have 2.11, 1.93, 1.66 and 1.52 s for lanes from the rightmost to

the leftmost, respectively. Interestingly, these values are well aligned with those

found in the literature [29, 31, 32].

The reference Gaussian distribution of safe time headway is then assigned a

mean ∆tsafeh,l . The standard deviation σh,l is set such that the minimum inter-325

arrival time recorded in the real-world traffic count dataset, i.e., 0.3 s, represents

the 0.99 quantile of the distribution, i.e., three standard deviations. Formally,

σh,l = (∆tsafeh,l − 0.3)/3. The resulting per-lane distributions are plotted in

Fig. 6a for the M30 case4.

4An equivalent analysis is not possible for M40 and A6, since the associated traces do not
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As a final step, similar to what done for the maximum desired speed, a per-

vehicle distribution is to be determined from the lane-dependent reference ones.

In this case, the final ∆tsafei distribution is

fT (∆t) =











√
2 exp(−(∆t−∆tsafe

h,l
)2/2σ2

h,l)

σh,l

√
π [1+erf((∆t0

i
−∆tsafe

h,l
)/σh,l

√
2)]

, t ≤ ∆t0i

0, t > ∆t0i ,

(7)

where ∆t0i is the initial inter-arrival time of vehicle i recorded in the traffic count330

dataset. Again, (7) yields transformations that truncate and re-normalize the

reference distribution, as graphically shown in Fig. 6b. In this case, ∆t0i becomes

the upper bound to ∆tsafei , ensuring that no vehicle enters the simulation with

an inter-arrival time that is lower than its minimum safe time headway. Such a

situation would in fact lead to sudden braking, and possibly to accidents.335

Lane change bias and hysteresis threshold. In our highway scenarios,

the default MOBIL settings result in a traffic that is highly skewed towards

the left lane, which thus suffers from unrealistic congestion. We ran a compre-

hensive campaign to identify the combination of right (aR) and left (aL) lane

change bias, and lane change hysteresis threshold factor (k) that grants quasi-340

stationary traffic over the different lanes. Such consistent ingress and egress

per-lane properties were obtained for aR = 0.2 m/s2, aL = 0 m/s2, and k =

0.3. Interestingly, the lane change bias favor movements to the right in absence

of a clear preference among lanes, which is in compliance with road regulation

in Spain.345

3.3. Synthetic mobility traces

The final synthetic traces are composed of one day-long trace describing road

traffic over the four lanes of M30, and sixteen 30-minute traces of vehicular

mobility along M40 and A6, for different day and hour combinations5. The

feature congestion periods. We assume that drivers on M40 and A6 have minimum safe time

headway values comparable to those computed for M30, and reuse the same distributions.
5Available at http://www.it.uc3m.es/madrid-traces.
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Figure 7: Vehicular density heatmap, day-long M30 trace. Plots refer to lanes from right to

left (bottom to top). Figure best viewed in color.

traces record the position of each vehicle at every 500 ms, over a 10-Km road350

stretch6.

As mentioned earlier, all traces are representative of quasi-stationary road

traffic. This clearly emerges in Fig. 7, which shows heatmaps of the vehicular

density on each lane of M30 over 24 hours: density variations at the beginning

of the trace (i.e., at distance equal to 0 Km) reflect throughout the whole length355

of the road, up to the end of the simulated segment (i.e., at distance equal to

10 Km). The slight slope is normal, and due to the time required for vehicles

to traverse the highway segment. White stripes in the bottom plot indicate

occasional absence of traffic on the leftmost lane at night.

The unprecedented combination of source data granularity, temporal dura-360

tion, and road heterogeneity makes these traces the current state-of-the-art for

6The road segment span is a configurable parameter in our simulator. We opted for a 10-km

distance since it is a common choice in the literature that allows evaluating the performance

of most networking solutions.
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vehicular networking studies in highway environment. This is supported by the

comparative analysis of our datasets with respect to synthetic mobility traces

used in the networking literature, as discussed in Sec. 6.

Finally, we underscore that the original methodology presented in Sec. 3.2365

can be used to calibrate any model of microscopic vehicular mobility. Thus, it

is fully compatible with the models implemented by popular road traffic simu-

lators used by the networking research community, such as SUMO [9] or Vanet-

MobiSim [10].

4. Vehicular network model370

We consider the mobility traces presented in Sec. 3, and analyze them from

a vehicular networking perspective. Specifically, we are interested in investigat-

ing the connectivity properties of spontaneous vehicular networks that emerge

from the mobility traces. The rationale for such an approach is that network

connectivity is the base upon which solutions at all network layers are built.375

Thus, a connectivity study is, by its own nature, protocol-independent. More-

over, connectivity analyses have been shown to unveil the availability, stability

and internal structure of the network – all of which are paramount notions to

the sensible design of vehicular networking solutions [34].

As a preliminary step to our analysis, we present in this section the network380

model that we assume (Sec 4.1). We then leverage this model to formally define

the connectivity metrics used in our study (Sec 4.2).

4.1. Instantaneous connectivity graph

Our analysis focuses on the instantaneous connectivity of spontaneous ve-

hicular networks. Therefore, at each time instant t, we represent the network385

as an undirected graph G(V(t),E(t)), where V(t) = {vi(t)} is a set of vertices 7

vi(t), each mapping to a vehicle i in the network at that time. E(t) = {eij(t)} is

7Or nodes – the two terms will be used interchangeably.
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the set of edges eij(t), connecting vi(t) and vj(t) if a direct V2V communication

link exists, at time t, between vehicles i and j.

We adopt a unit disc model to represent the radio-frequency signal propaga-390

tion. Hence, an edge eij(t) exists if vehicles i and j are separated by a distance

of at most R meters at time t, where R is the communication range. We employ

this simple model due to the fact that deterministic (based on, e.g., ray tracing

techniques) and stochastic (based on, e.g., statistical approaches) propagation

models do not scale to the large mobile scenarios we consider, composed of tens395

of thousands instantaneous graphs, each including hundreds of vehicles. Instead,

the unit disc model is computationally inexpensive, and fully captures the con-

nectivity dynamics induced by vehicular mobility, which occur at timescales in

the order of seconds.

In order to make our study as general as possible, we repeat all of our an-400

alyzes for several significant values of R. Despite physical layer standards for

vehicle-to-vehicle Dedicated Short-Range Communication (DSRC) claiming up

to 1-Km ranges [35], independent experimental studies demonstrated that ac-

ceptable packet delivery ratios are constrained to much lower distances [36–39].

Extensive experimental analyses in [37] show that a distance of 100 m allows405

around 80% of the packets to be correctly received in urban environments, when

using common power levels (15-20 dBm) and robust modulations (3-Mbps BPSK

and 6-Mbps QPSK). Under similar settings, R = 50 m is experimentally iden-

tified as the largest distance at which vehicle-to- vehicle communication attains

packet delivery ratios close to one [36, 37]. Conversely, R = 200 m is the410

maximum distance granting a reception ratio above 0.5 [37]. The propagation

conditions appear to be even worse in pure highway environments, where R

= 50 m is found to be the threshold beyond which the packet delivery ratio

drops, on average, below 50% [38]. This occurs even when transmissions are

performed at 21 dBm, i.e., the maximum power allowed in Europe (where the415

tests were performed), and using the lowest coding rate with BPSK modula-

tion, corresponding to a data rate of 6 Mbps with standardized 20-Mhz channel

bandwidth. Finally, extensive field trials on 35 highways in the United States,
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Germany, Austria, Italy, and Australia confirmed that reliable vehicle-to-vehicle

communication is achieved, in the vast majority of cases, at distances ranging420

from 46 to 229 m [39]. In the light of all these results, in our analysis we will

consider R ∈ [50,200].

4.2. Connectivity metrics

We use the graph model to define the metrics of interest to our connectivity

study. First of all, we denote the number of nodes in the graph (i.e., the425

number of vehicles in the road scenario) at time t as N (t) = ‖V(t)‖.
We name a component Cm(t) = G(Vm(t),Em(t)) a subgraph ofG(V(t),E(t)),

such that Vm(t) is a subset of V(t) including all and only the vertices map-

ping to vehicles that can communicate via direct or multi-hop V2V links at

time t. Similarly, Em(t) ⊆ E(t) includes all edges mapping to communication430

links among vehicles whose corresponding vertices are in Vm(t). We denote as

Sm(t) = ‖Vm(t)‖ the size of the component Cm(t).

By definition, components are disjoint, i.e., a vertex belongs to one and only

one component at each time instant. We thus use C(t) = {Cm(t)} to refer to

the set of components appearing in the network at time t, and C(t) = ‖C(t)‖435

to indicate the number of components. As a result, the average size of

components appearing at time t is referred to as Savg(t) = N (t)/C(t).
We denote Cmax(t) = Cm(t), s.t. m = argn maxSn(t), as the largest com-

ponent appearing in the network at time t. As Cmax(t) = G(Vmax(t),Emax(t)),

we also use Smax(t) = ‖Vmax(t)‖ to represent the size of the largest com-440

ponent at the same time instant.

With reference to the internal structure of a given component, we can iden-

tify, for each pair of vertices vi(t) and vj(t) belonging to a same component

Cm(t) at time t, a shortest path of length pij(t), which corresponds to the

sequence of vertices in Cm(t) that connect vehicles i and j at minimum com-445

munication hop cost. We can thus define the average shortest path of the

component Cm(t) as lm(t) =
∑

(i,j),i6=j pij(t)/(Sm(t) · (Sm(t)− 1)).

Finally, we name vertex degree the number of nodes directly connected
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Table 2: Notation employed in the vehicular network connectivity analysis. All metrics refer

to the instantaneous topology of the vehicular network.

Parameter Meaning

R Vehicle-to-vehicle radio-frequency communication range

N Number of network nodes

C Number of network components

Savg Average size of a (generic) component

Smax Size of the largest component

l Average shortest path within a (generic) component

k Degree of a (generic) node

to a given vertex vi(t) at time t, formally ki(t) = ‖{vj(t) s.t. ∃ eij(t)}‖. The

degree of vertex vi(t) thus maps to the number of direct V2V communication450

neighbors of vehicle i.

For the sake of simplicity, we drop the time notation in the rest of the paper,

and we refer to all metrics at a generic time instant. Similarly, we consider

generic clusters or nodes, and drop the cluster and node indices. Then, N
represents the number of vertices in the network, C the number of components,455

Savg the average size of a component, and Smax the largest component size.

Equivalently, l is the average shortest path of a component, and k is the node

degree of a generic vertex. Tab. 2 summarizes the notation introduced above

and used throughout Sec. 5 below.

5. Vehicular network connectivity460

Our study of the connectivity of vehicular networks considers a variety of

highway scenarios (M30, M40, A6) and road traffic conditions (sparse overnight

traffic, daytime free flow traffic, congested traffic during rush hours). It is or-

ganized by focuses. We will first address network-wide connectivity features

(Sec. 5.1), and then study how they depend on the vehicular density and com-465

munication range (Sec. 5.2). The availability and stability of the network are

then discussed (Sec. 5.3). Finally, we investigate the internal structure of the
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Figure 8: The distribution of the number of components, C, for different mobility traces, and

under varying R values.
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Figure 9: The distribution of the largest component size, Smax, for different mobility traces,

and varying R values.

highway vehicular network, so as to assess its navigability (Sec. 5.4). We sum-

marize our discussion by providing networking insights (Sec. 5.5).

5.1. Network-wide connectivity470

We start by studying the global connectivity properties of the network at

each time instant. Thus, we focus on the distributions of the number of com-

ponents C and of the size of the largest component Smax. Indeed, C is a mea-

sure of how fragmented the network is, while Smax is the maximum number of

nodes that can be reached via multi-hop communication at a given time instant.475

Therefore, the lower C and the larger Smax, the better connected the vehicular

network.

In Fig. 8 and Fig. 9, we present the distributions of C and Smax, respectively.

In both figures, each plot refers to a different value of the communication range

R. Within every plot, each candlestick summarizes the distribution for one480
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(subset of) mobility trace, and is obtained by aggregating the C or Smax met-

rics computed in all instantaneous graphs observed at every 500 ms during a

30-minute timespan. In the M40 and A6 cases, 30 minutes match the whole

duration of each trace, whereas in the M30 scenario we selected four represen-

tative 30-minute subsets of the day-long trace, i.e., at 7.30 a.m. (traffic peak485

time), 11.30 a.m. and 5 p.m. (free flow traffic comparable to that encountered

in the M40 and A6 cases), and 11 p.m. (very sparse traffic).

Each box extends from the lower to the upper quartile of the distribution,

with a line at the median. The whiskers pinpoint the minimum and maximum

values. Also, the step function in the plots of Fig. 9 is the maximum value Nmax490

of N observed throughout the whole 30-minute interval. It thus represents the

upper bound, and an important benchmark value, to Smax: the closer Smax to

Nmax, the nearer the vehicular network to a fully connected single component.

Communication range. When observing the plots, the most striking result

is the dramatic impact of the communication range R, whose value can dra-495

matically improve or disrupt the network-wide connectivity. For R = 50 m,

there are, on average, between 20 and 50 disconnected components throughout

all datasets – excluding a few outlying situations that we will discuss later in

detail. As R grows, however, the network fragmentation is reduced, and more

nodes join the largest component: e.g., when R = 100 m, C typically drops500

below 10; when R = 200 m, almost all vehicles belong all the time to one single

component. We conclude that the communication range is the first and fore-

most parameter controlling the vehicular network connectivity, as it can induce

variations in C and Smax that are typically much larger than those imputable

to the many and varied road traffic conditions encountered throughout the 20505

datasets in Fig. 8 and Fig. 9.

Vehicular density. Still, some diversity is noted across the different traces,

and, in a couple of cases, the impact of the road traffic scenario attains levels

comparable to those induced by communication range variations. Although

the relative performance of each 30-minute (sub-)trace tends to be consistent510

throughout all values of R, such diversity is perhaps best observed for R = 50
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Figure 10: C and Smax versus the number of nodes N for the M30, M40 and A6 datasets, for

different R values. Blue points represent the average C with the 5th and 95th percentile when

M30, M40 and A6 have valid N values.

m, in Fig. 8a and Fig. 9a. There, both C and Smax show three major behaviors.

The first is that of traces referring to free flow traffic conditions, i.e., all M40 and

A6 traces, plus M30 traces at 11.30 a.m. and 5 p.m.: these present a comparable

fragmentation, as the network is separated into 20-50 small components. The515

second and third behaviors correspond instead to outliers. On the one hand,

the M30 trace at 7.30 a.m. yields a vehicular network that consists of a single

connected component, as C ∼ 1 and Smax ∼ Nmax. On the other hand, the

M30 trace at 11 p.m.results in extremely poor connectivity, with 70 or more

components of a few nodes each. As these outlying behaviors correspond to rush520

hours and sparse overnight traffic, respectively, we speculate that the vehicular

density is the second key parameter that drives vehicle-to-vehicle network-wide

connectivity.

5.2. Laws of vehicular connectivity

We investigate whether some general law exists that can explain the fluc-525

tuations of vehicular network connectivity as a function of the different system

parameters. To that end, we model the network-wide connectivity metrics, i.e.,

25



C and Smax, as functions of the factors that appear to influence them the most

in the analysis of Sec. 5.1, i.e., R and the vehicular density. We map the lat-

ter to the number of nodes N , following a common practice in network science530

analyses [40].

Three-phase connectivity in N . Fig. 10 portrays the evolution of C and

Smax versus N . As the latter is a proxy for the vehicular density, we also report

that measure, expressed in vehicles/km, on the top x axis. For the sake of

clarity, at this time we limit our analysis to the mean behavior recorded in the535

day-long M30 trace, denoted by solid black lines in all plots of Fig. 10. We will

introduce the other elements of the plots in due time.

The dynamics of both C and Smax are strongly dependent on N . The largest

component size, in the bottom plots, features a clear positive correlation with

N . The number of components, in the top plots, displays instead a skewed bell540

shape. Comparing the plots, the instantaneous vehicular connectivity appears

to be characterized by three phases, or behavioral regions, as a function of N ,

under any R.

I. Initially, for low N , Smax ∼ 1 and C grows linearly with N . This means

that the network is very sparse, and increasing the number of vehicles N545

just means to introduce additional isolated nodes: as these nodes are not

connected with each other, they become new components (of one node

each).

II. Once a first critical N threshold is reached (denoted by the leftmost red

dotted vertical line “A” in the plots), a second behavior ensues. Namely,550

Smax grows super-linearly with N , and C decreases sub-linearly with N .

Beyond this first critical vehicular density, new cars are not isolated any-

more, but tend to be connected to each other. Thus, they either join

existing components or even bridge them into larger ones.

III. The third region is attained after a second N threshold (denoted by the555

rightmost red dotted vertical line “B” in the plots) is surpassed. There,

Smax ∼ N and C ∼ 1, i.e., the vehicular network becomes fully connected
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Figure 11: Number of nodes N , for different values of R. Critical thresholds are marked with

A and B.

into a single component whose size matches the number of vehicles on

the highway segment. Additional vehicles necessarily end up in the giant

component and increase its size.560

The qualitative three-phase behavior above is invariant across different val-

ues of the communication range R. The impact of R is on the critical N thresh-

olds that trigger phase changes: the “A” and “B” critical densities are shifted

to the left (i.e., intervene at lower vehicular density) for larger values of R. This

naturally induces better connectivity for higher values of R, for a fixed N .565

Some interesting considerations emerge from the mapping of the critical

density thresholds above to the time series, shown in Fig. 11. We remark that

when R = 50 m, the vehicular network never reaches the third phase. Indeed,

it remains in the first phase at night, and in the second phase for the rest of the

day, i.e., 7 a.m. to 11 p.m. The second phase also dominates when R = 100 m,570

as the network spends just a few hours in the first (2 a.m. to 6 a.m.) and third

(7 a.m. to 8 a.m.) phases. The network behavior changes radically for R = 200

m, where the third phase spans over most of the day (7 a.m. to 10 p.m.), and

the rest of the time is spent in the second phase.

These results let us comment that attaining the third phase, i.e., persistent575

full connectivity, in highway vehicular networks cannot be taken for granted, as

it requires either elevate communication ranges, or significant traffic congestion

conditions. In all cases, common values of highway V2V communication range,

e.g., 50-100 m [38, 39], seldom allow reaching this phase.

27



Impact of other road traffic parameters. In all plots of Fig. 10, the light580

gray region around the mean shows how the 0.05-0.95 quantile range of the C and

Smax metrics varies as a function of N . We observe that such a range is fairly

small throughout all plots, which means that the network-wide connectivity

dynamics we discussed above are statistically consistent, i.e., yield a moderate

variability. This is an important remark, since it implies that other parameters585

characterizing the road traffic do not have a significant impact on the vehicular

network connectivity. In other words, factors such as the specific daytime or

day of the week, the number of lanes of the highway, or the speed limits are only

responsible for minor variability around the connectivity dynamics dictated byR

and N . Another way to read the same conclusion is that considering one single590

road traffic parameter, i.e., N , is enough to properly characterize the vehicular

connectivity in all situations encountered during a typical working day.

On a related point, the precise conditions of road traffic do not appear to

be directly related to the connectivity of the vehicular network. In all plots

of Fig. 10, black vertical dashed lines separate the different regions (in the N595

space) characterized by diverse traffic conditions. Specifically, these thresholds

roughly identify N ranges corresponding to sparse overnight traffic (left region),

typical daytime free flow traffic (middle region), and synchronized congested

traffic (right region). By confronting these N thresholds with those that denote

connectivity phase changes (“A” and “B”), we do not observe any significant600

overlap. Thus, no direct correspondence can be established between the sole road

traffic state and the vehicular network connectivity.

Comparison across different traces. The plots in Fig. 10 also include the C
and Smax recorded for the sixteen M40 and A6 traces. These are represented

as filled circles in the plots, where dots represent the mean values recorded605

for different values of N , and are obtained by aggregating all traces showing

a similar vehicular density. Error-bars represent the 0.05 and 0.95 quantiles.

These dots do not cover the whole N range, since the M40 and A6 traces only

capture 30 minutes of traffic, mostly in free flow conditions, and thus only

provide a partial view of the connectivity dynamics. Still, the majority of M40610
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Figure 12: Vehicular network average γ-availability versus the number of nodes N , for different

values of R.

and A6 fall very close to the mean behavior observed in the M30 case, and their

0.05-0.95 quantile ranges tend to correspond to those of M30. Therefore, we

conclude that the same three-phase connectivity dynamics in N holds for all of

the highway scenarios we consider. Moreover, the impact of R on the network

connectivity is equivalent in all such scenarios.615

5.3. Availability and stability

As prominent connectivity factors, R and N control two key network prop-

erties, i.e., availability and stability. We now quantify these very features, and

investigate how they depend on the communication range and vehicular density.

Network availability. The availability maps to the probability that vehicle-620

to-vehicle communications build a network that can be actually exploited for

basic services such as multi-hop cooperative awareness, content dissemination,

or data aggregation. Formally, we say that the system has a level of availability

γ if a component of size at least equal to γN is present in the network.

Fig. 12 portrays the level of availability one can expect from the vehicular625

networks in our reference mobility scenarios, as a function of the chief factors R

and N . The three plots refer to different communication ranges, and each plot

illustrates the average probability that a level of availability γ is attained at a

given vehicular density. For instance, the leftmost curve in Fig. 12a shows that,

for R = 50 m and N = 400, the network is 0.1-available (i.e., there exists a630

component that includes 10% of the nodes or more) with a probability of 30%.
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The same probability grows to 80% by considering a slightly denser network

with N = 500. These numbers imply that the network is unavailable 70% of

the time in the first case, and 20% in the second.

In addition, a comparative analysis of the plots in Fig. 12 yields the following635

remarks. First, the results confirm the dramatic impact of R. If vehicles that are

200 m apart can communicate, 1.0-availability (i.e., full network connectivity)

is around as probable as 0.1-availability with R = 50 m, and 0.25-availability

with R = 100 m. Conversely, the network is never 1.0-available with a proba-

bility higher than 80% if R = 50 m. Second, most curves are quite steep as a640

function of N , indicating that percolation thresholds in N often characterize the

network availability: if the system operates around the threshold, small varia-

tions of vehicular density (in the order of a a few vehicles/km) can drastically

change the probability that the network is γ-available, for a given γ. A notable,

persistent exception to the percolation behavior is visible in the longer tail of645

high-availability curves (i.e., γ ≥ 0.75): this implies that ensuring with certainty

that the vehicular network is highly available demands a significant additional

effort, for any R.

Network stability. The notion of stability concerns the amount of time for

which the vehicular network maintains the same connectivity properties. We650

investigate stability by focusing on the largest network component, as it repre-

sents the portion of the network that can best support practical services based

on multi-hop vehicle-to-vehicle communication. More precisely, we map the
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Figure 14: Vehicular network average temporal stability versus the number of nodes N , for

different values of R.

stability of such a component to the temporal autocorrelation of its size, Smax.

The rationale is that if Smax is strongly autocorrelated over long time periods,655

then we can expect that the most significant portion of the network conserves

stable topological properties.

An intuitive explanation of the analysis we carry out is provided in Fig. 13.

There, we show heatmaps of the correlograms of time series of Smax. To de-

rive the plots, time series are divided into 10-minute windows, and, for each660

window, the temporal autocorrelation at different lags is calculated. Values in

the heatmap hence represent the autocorrelation value for each window (along

the horizontal axis) and lag (along the vertical axis) pair. The heatmaps pro-

vide complete information on the level of stability of the vehicular network over

time. In particular, it proves how stability can be highly time-varying: as an665

example, we can remark that, for R = 100 m, a strong Smax autocorrelation

peak, denoting a network much more stable than usual, appears just before 8

a.m.

The heatmap representation allows introducing a more formal definition of

stability: we say the vehicular network to be stable if the size of its largest670

component yields a temporal autocorrelation higher than 0.7 [41]. Fixing this

autocorrelation threshold allows pinpointing a precise lag time at each instant

in time and for each R, i.e., for each point in the (R,N ) space. The result is

portrayed in Fig. 14, which provides a neat representation of the stability one

can expect from the vehicular networks in the highway scenarios we consider.675
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We remark that, when R = 50 m, in Fig. 14a, the network is very unstable, as

the low threshold lag implies that the largest component undergoes significant

size variations every 2-3 seconds on average. This behavior is independent of

N . As the communication range grows to 100 m, the stability only slightly

improves over the R = 50 m case, raising to 3-5 s. This time, however, N starts680

having some impact, even if only at rather high vehicular densities around 80

vehicles/km that already denote road traffic at the boundary between free flow

and congestion. In such traffic conditions, increasing N favors stability, and

large components that persist over intervals of 10-25 s can be observed. For

R = 200 m, as soon as N grows beyond sparse overnight traffic, at around685

50 vehicles/km, a more stable behavior emerges, with large components that

typically endure 20-25 s. By looking at the absolute values of the network

stability that we identify, we note that, under all system parametrizations, the

stability of the vehicular network is in the order of a few tens of seconds at most.

5.4. Internal structure690

Having assessed that the spontaneous vehicular network yields poor avail-

ability and stability, we study its level of navigability, i.e., its predisposition

to support multi-hop communication [40]. To that end, we analyze internal

structural properties of the largest network component, where multi-hop V2V

transfers can actually occur. Also relevant to the network navigability is the du-695

ration of V2V contacts: indeed, it determines the amount of time during which

two vehicles can communicate, and thus the usability of contact opportunities.

Small-world property. A network is said to be a small-world if the distance

among its vertices stays small as the network size grows. More rigorously, a

typical example of small-world network is the Erdös-Rényi random graph, whose700

average shortest path length, i.e., l̃, scales logarithmically in the number of

vertices N . In fact, in a Erdös-Rényi network, l̃ ∼ log(N )/log(k̃), where k̃ =
∑N

i=1 ki/N is the average vertex degree.

We compare the instantaneous vehicular networks in our reference highway

scenarios to the Erdös-Rényi random graph, in Fig. 15. The plots show the705
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Figure 15: Scaling properties of the average shortest path l̃ measured in the largest component

Cmax of the vehicular network, for different values of R. The result is compared to an Erdös-

Rényi random graph of equivalent size Smax.

average shortest path times the logarithm of the average node degree, versus

Smax, along log-linear axes. Therefore, the Erdös-Rényi model portrays as a

line of unit slope.

By observing how the same measure scales with the component size in our

case study, we conclude that instantaneous vehicular networks in the highway710

scenarios we consider are not small-world: the empirical curves lay well above

the logarithmic scaling of a typical small-world graph. The effect of R is again

evident, as the average multi-hop distance among vehicles is reduced threefold

for significant component sizes, i.e., Smax ≥ 100, when R grows from 50 m to

200 m. However, the super-logarithmic trend of the mean for any R implies715

that adding nodes to the network pushes the largest component farther away

from a small-world behavior, making it harder to navigate. From a networking

perspective, this implies that increasing the vehicular density leads to larger

components where multi-hop communication among node pairs becomes much

more challenging and delay-prone.720

Scale-free property. A scale-free network retains the same functional form

of its vertex degree distribution at all scales. In other words, the probability

distribution of the degree obeys a power law P (k) ∼ k−α, with the exponent

α typically lying between 2 and 3 [40]. This property is known to result in

an easily navigable network, with a backbone of high-degree hub nodes that725

interconnect that majority of low-degree leaf nodes.

This is, however, not the case in the vehicular networks we consider, as shown
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Figure 16: CCDFs of the node degree k, for different values of R, separated according to Smax

ranges.
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Figure 17: Vehicle-to-vehicle contact duration on M30, under different values of the commu-

nication range R. (a) Time-aggregate PDF. (b) Time-aggregate CDF. (c) Time series, over

24 hours.

in Fig. 16. There, Complementary Cumulative Distribution Functions (CCDFs)

of the vertex degree, separated for different Smax ranges (0-400, 400-800, and

800-1200, respectively) are plotted for each value of R. It is evident that the730

distributions are not power laws, and thus the highway vehicular networks we

consider in our study are not scale-free. Instead, they are characterized by a

remarkably small range over the node degree k: vehicles traveling on highways

have one-hop communication neighborhoods of rather constant size over time,

with a variability in the order of a few units at most. We remark that this is735

very different from what is observed in urban scenarios [34].

Contact duration distributions. As anticipated, the duration of commu-

nication links established by vehicles is an important metric that characterizes

how easy (or difficult) it is to exploit the data transfer opportunities created
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by vehicular mobility. Indeed, experimental works showed that, in presence of740

short-lived V2V contacts, even simple signalization procedures induce a signifi-

cant overhead and waste precious communication time [36, 37].

Fig. 17a and Fig. 17b show the PDF and CDF of the V2V contact duration.

Each curve refers to a different value of the communication range R. We observe

that also in our large-scale scenarios, contacts typically last from a few tens of745

seconds to a few minutes, and are thus quite short, as one could expect in a

highly dynamic environment such as the vehicular one.

The communication range has a significant impact on the contact duration,

which can be expected again. In order to highlight the dramatic effect of R, we

can, e.g., underscore that 10% of contacts last more than two minutes when R =750

50m, while the same percentage grows to 90% when R = 200m. Similarly, the

median contact duration grows from 30 seconds to 3 minutes when R increases

from 50m to 200m.

These results are aggregated over a full day of measurements on M30. An

interesting question is then if the different road traffic conditions we observed to755

occur on the highway throughout the day affect the duration of V2V contacts.

Fig. 17c portrays time series of the median contact duration over 24 hours, un-

der different communication ranges. The results highlight once more the critical

importance of R, but also the minor variability of contact durations throughout

the day. Except for slightly shorter contacts at night, between midnight and760

6 a.m., and slightly longer contacts during the morning traffic peak, contacts

tend to have the same duration. The reaction to different road traffic conditions

is intuitive, since the higher (respectively, lower) speed recorded at night (re-

spectively, during congestion) leads to shorter (respectively, longer) lived V2V

communication links. However, even the maximum variability due to different765

traffic conditions is not dramatic, especially when compared to that induced by

different values of R.

Overall, the results above underscore that vehicular network components

are not small-world nor scale-free, and that they are in fact the result of fairly

short-lived V2V contacts, in the order of a few tens of seconds at most. All770
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Table 3: Impact of system parameters on vehicular connectivity properties, and implications

for the design of networking solutions.

Connectivity properties Networking insights

N
e
tw

o
rk

-w
id
e

Three-phase network connectivity
model in Fig. 10. The model is a function
of N (determines the overall shape) and R
(introduces a scaling factor).

• R ≥ 200 m induces a fully connected network,
but connectivity rapidly deteriorates for lower
R, until complete fragmentation is reached for
R ≤ 50 m.

• Vehicular connectivity is easily modeled and
predicted given N , R.

• Employ store-carry-and-forward for delay-
tolerant data dissemination.

• Resort to cellular networks for long-range or
QoS data transfers.

C
o
m
p
o
n
e
n
ts • Large connected components are

typically unavailable, and 100% avail-
ability is extremely difficult to obtain un-
der any system settings.

• Large connected components remain sta-
ble for a few tens of seconds at most.

• Reference chart of component availability as
a function of N , R in Fig. 12.

• Network- and transport-layer protocols need
to be highly reactive to topology changes.

W
it
h
in

c
o
m
p
o
n
e
n
ts • No small-world property observed in

highway vehicular networks.

• No scale-free property observed in high-
way vehicular networks.

• Short-lived links established among ve-
hicles traveling on highways.

• Stable one-hop neighborhood as far
as size is concerned.

• Use effective (geographical) routing.

• Need for extremely rapid V2V link establish-
ment (across the whole protocol stack).

• MAC-layer solution design:

– Data rate adaptation must operate on fast
(order of 100 ms) dynamics, while channel con-
tention and power control can be less reactive.

– Different MAC-layer algorithm are needed
for highway and urban environments.

– Reference chart of expected contention as
a function of N , R in Fig. 16.

these aspects together let us conclude that vehicular networks in highway en-

vironments have poor navigability properties. We remark that, in this regard,

highway vehicular networks are comparable to urban ones [34].

5.5. Discussion and networking insights

The results presented in Sec. 5.1–5.4 have significant implications in terms775

of viability of communication paradigms and design of network architectures

and protocols in vehicular environments. Below, we summarize our findings

and discuss how they are useful to the networking community. Tab. 3 provides

a useful reference in that sense.

The limitations of the network connectivity may be even more severe780

than expected. The positive impact of factors such as R and the vehicular

density on the instantaneous connectivity of vehicles is a quite intuitive result
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that has already been observed in the past, as also indicated in Sec. 6. How-

ever, in addition to confirming the findings of previous works, our study allows

unveiling for the first time the exact proportions of the phenomenon on a fairly785

large set of realistic highway mobility traces. The results we obtain indicate that

a communication range above 200 m guarantees a well-connected network inde-

pendently of the traffic conditions, but reducing that value causes the topology to

break apart dramatically fast.

This is a troubling observation at the light of experimental studies that790

found 50 m to be a credible value of R in highway scenarios [38, 39]. With

such a communication range, the network is normally so fragmented that it is

barely exploitable, and traffic jams represent the only hope for V2V connectivity.

On the one hand, this lets us advocate in favor of store-carry-and-forward ap-

proaches to data dissemination in spontaneous highway vehicular networks. On795

the other hand, a more controversial conclusion is that, given the coverage of

the diverse radio interfaces envisioned to be embedded in cars, vehicle-to-vehicle

communication may just be unfit to long-range (e.g., order of km) delay-bounded

(e.g., order of seconds) transfers in highway environments, and, in such cases,

vehicles may have to resort to cellular transfers for reliable and time-bounded800

data delivery. In other words, the vehicular network may not support some ser-

vices it is envisioned to enable, such as those based on the decentralized floating

car data paradigm supported by ETSI [42].

Network-wide vehicular connectivity is easily predictable. We unveil

the three-phase relationship that drives the network-wide instantaneous connec-805

tivity of a spontaneous highway vehicular network. This relationship captures

well the full diversity in connectivity dynamics, and relies on two factors only:

(i) the communication range, R, and (ii) the vehicular density, N . All other

settings have small impact on the network topology, and one can safely neglect

information on the daytime, day of the week, number of lanes, and speed limits810

when estimating the level of connectivity of the network. Similarly, the fact that

we find consistent dynamics throughout a variety of highway scenarios (M30,

M40, A6) and road traffic conditions (sparse overnight traffic, daytime freeflow
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traffic, congested traffic during rush hours) is a promising result with respect to

the generality of our study. Indeed, it suggests that our conclusions may hold815

for a vast range of highways, different than those modeled by our road traffic

datasets.

Overall, these considerations imply that network-wide vehicular connectivity

is especially simple to model and anticipate, as the knowledge of two parameters

is sufficient to comprehensively describe the system.820

Vehicular multi-hop clusters are not stable. The communication range R

has a paramount importance to both the availability and stability of connected

components in the vehicular network. Indeed, a slightly larger R makes such a

well connected network emerge much more frequently and sustain for a longer

timespan. Our evaluation suggests that when the communication range shifts825

from 50 to 200 m, the network becomes roughly 10 times more available and

stable.

Still, the stability of the vehicular network never exceeds a few tens of sec-

onds, which imposes strict requirements on protocols operating at the network

layer and above, in terms of reactivity to very frequent topology changes.830

Finally, our analysis includes figures that pinpoint the level of availability

of spontaneous highway vehicular networks in the (R,N ) space. In this sense,

Fig. 12 represents a useful reference chart for networking practitioners to un-

derstand the network availability they can expect, given their specific R and N
settings.835

MAC-layer requirements are heterogeneous. Unlike multi-hop clusters,

we observed one-hop neighborhoods to be relatively stable: at least the size

of the neighborhood of a vehicle tends to remain the same for fairly long time

periods. This means that, from a MAC-layer protocol perspective, the require-

ments, in terms of reactivity, of wireless channel contention and power control840

algorithms are not especially stringent as long as vehicles stay on highways.

Since this result is very different from what happens in urban scenarios [34],

diverse, dedicated MAC solutions shall be adopted for highway and urban envi-

ronments, for optimal operation. In the highway case, Fig. 16 can be leveraged as
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a reference chart to estimate MAC-layer channel contention and power control845

settings, based on the current operational point in the (R,N ) space.

However, we also found that pairwise links in the network are short-lived no

matter the traffic conditions. This corroborates the results obtained in small-

scale field tests [36, 37], and confirms that MAC- and network-layer protocols

have to rapidly establish V2V links, so that the time available for data transfer is850

maximized. The latter constraint also applies to MAC-layer solutions, stressing

how vehicular networks require effective and highly adaptive data rate adaptation

algorithms.

The limited duration of V2V links adds to the fact that the vehicular network

is not small-world nor scale-free: all these undesirable features determine the855

poor navigability of the network. From this viewpoint, and despite their simpler

quasi-unidimensional road layout, highway vehicular networks resemble urban

ones [34]: thus, similar considerations apply, i.e., effective geographical routing

techniques are highly recommended to move data throughout the intrinsically

complex vehicular network topology.860

6. Related Work

Our work relates to two main research directions in vehicular networking,

i.e., mobility modeling and connectivity analysis. Below, we separately discuss

the relevant literature, and how our study compares to it.

6.1. Vehicular mobility modeling865

The impact of realistic mobility modeling in the simulation of communi-

cation protocols tailored for vehicular networks has been emphasized in many

works [6, 14, 16, 17]. As a result, in the last decade, the research community

has devoted significant effort to the quest for ever-increasing realism of road

traffic traces used in network simulators. A first approach consists in directly870

recording real-world mobility traces, by logging the position of vehicles during

their movements. Unfortunately, these traces are currently limited to subsets
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of the overall traffic, i.e., fleets of specific vehicles such as buses [8] or taxis [7],

which prevents the analysis of full-fledged vehicular networks; moreover, none

of such datasets is specific to the highway environment we target.875

Other works have focused on the generation of synthetic vehicular traces

by feeding real-world road topologies of different cities to microscopic traffic

simulators such as SUMO [9] or VanetMobiSim [10]. In order to characterize

the number, origin, destination and time of trips, these works usually make use

of macroscopic data (e.g., origin-destination matrices) collected from user sur-880

veys [13, 14] or from roadside detectors [15]. However, all the works above deal

with synthetic traces of road traffic in cities like Zurich [13], Cologne [14] or

Luxembourg [15]. Yet, the dynamics of traffic over urban regions are not com-

parable to those of highways: the former are characterized by vehicles traveling

at low or medium speed, and often crossing intersections regulated by traffic885

lights or roundabouts; the latter feature instead high speeds and frequent over-

taking. Moreover, none of the aforementioned works considers fine-tuning of

microscopic mobility models, as we do in this study.

The work in [17] is closer to our approach, as it uses two empirical datasets

are used to generate synthetic highway mobility traces. The first dataset was890

collected on the I-80 highway near Berkeley, CA, USA, using dual-loop detectors

that log information on individual vehicles; the second dataset contains 20-

second aggregated traffic on the Gardiner expressway, near Toronto, Canada,

recorded using metal detectors. The authors assume vehicle inter-spacing and

car speed to be exponential and Gaussian random variables, respectively, and895

use the empirical data to derive the distribution parameters. Then, a mobility

generator implementing these probabilistic models is used to create synthetic

traces of road traffic. Our study improves that in [17] from several viewpoints:

(i) the traffic-count datasets we employ are more detailed and heterogeneous,

and do not accommodate the exponential inter-arrival assumption, as detailed in900

Sec 2.3. (ii) we use validated microscopic car-following and lane-changing models

to describe the behavior of drivers, instead of simple stochastic representations;

(iii) the synthetic mobility traces we generated are publicly available.
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Table 4: Highway road traffic datasets in the vehicular networking literature.

Study
Macroscopic features Microscopic features

Measurements Availability
Stationarity Road heterogeneity Traffic heterogeneity Speed adjustment Overtaking

[22] perfect no no no no no –

[23] perfect no no no no no –

[24] perfect no 3 × 2 hours no no high-detail no

[25] perfect no no no no no –

[26] perfect no no no no no –

[43] perfect no no no no no –

[44] perfect no no no no no –

[45] perfect no no no no no –

[46] perfect no no no no no –

[47] perfect no no no no no –

[17] perfect two US highways 48 hours no no high-detail no

[27] quasi no no no Nagel-Schreckenberg no no

[18] non two US highways 14 × 30 minutes Krauss Krajzewicz low-detail yes

Ours quasi
three Spanish 1 × 24 hours

IDM MOBIL high-detail yes
highways 16 × 30 minutes

Highway scenarios are also considered in [18], where empirical aggregated

data from the Freeway Performance Measurement System (PeMS) is fed to the905

SUMO simulator to generate synthetic highway traces. More precisely, the real-

world data, from road sensors on the I5 and I880 highways, CA, USA, is used

to determine the assignment of the vehicular traffic flow and the average speed

values over the road. However, the traffic count dataset features a coarse time

granularity, with a sampling interval of the flow and speed from 30 seconds to910

5 minutes.

Although those in [17, 18] are the only previous works that employ real-world

traffic count data, other attempts at modeling highway traffic have been also

made. We summarize in Tab. 4 the features of the mobility traces considered in

a representative set of aforementioned works that study vehicular networks in915

highway environments. In the table, columns are read as follows.

• Stationarity refers to whether the considered vehicular mobility is quasi-

stationary (i.e., macroscopic traffic conditions are comparable in between

the in-flow and out-flow boundaries of the simulated road segments, but

microscopic dynamics are modeled), or in perfect stationarity (i.e., not920

only macroscopic traffic conditions are uniform, but vehicles all travel
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at constant speed and maintain a constant inter-vehicle distance, e.g.,

distributed according to some random variable). Non-stationarity refers

to the presence of in- and out-ramps that induce variations in the vehicular

density along the simulated road segment.925

• Macroscopic heterogeneity is further expressed in terms of whether dif-

ferent highways and traffic conditions (i.e., time periods featuring diverse

traffic levels) are considered.

• Speed adjustment and overtaking are at the base of microscopic dynamics

of road traffic. The former allows vehicles to accelerate and decelerate930

depending on the surrounding traffic, while the latter enables lane changes

towards the left and right lanes.

• Measurements can be at the origin of the mobility traces. If so, we tell

apart high-detail measurement data, which records information on each

vehicle separately, and low-detail data, which provides aggregate informa-935

tion at some periodicity (typically in the order of tens of seconds).

• Availability refers to whether the datasets are publicly available.

A vast majority of works consider road traffic in perfect stationarity, thus ne-

glecting microscopic-level dynamics determined by individual drivers’ behavior.

In fact, most of such works propose analytical models of highway traffic, which940

build on simplifying assumptions that make problems analytically tractable.

Common assumptions include randomly distributed speeds and inter-arrivals of

vehicles, which are then kept constant: thus most of the works dealing with per-

fect stationary conditions also consider one single road type, and no microscopic-

level models of acceleration/deceleration or lane changing. A few works dealing945

with perfect-stationary mobility build on measurement data, and account for

heterogeneous real-world traffic conditions, at different time periods. However,

the relevant datasets do not consider detailed microscopic modeling, nor they

are publicly available.
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Only a pair of previous works in Tab. 4 consider quasi- or non- stationarity,950

i.e., account for the microscopic dynamics of highway traffic. However, the

work in [27] does not build on real- world data, but on assumptions about

stochastic features of traffic. The work in [18] is that closest to ours, however

it employs coarse-grained measurement data that does not allow reproducing

the arrivals and velocity of vehicles with the same level of detail as in our955

dataset. In addition, the vehicular mobility traces in [18] are representative of

30-minute time intervals, whereas our M30 dataset covers one full day and thus

enables a larger variety of networking studies (e.g., those targeting scalability,

adaptability and reactiveness of network solutions to temporal variations of road

traffic conditions).960

In the light of the considerations above, we summarize the advantages of

our proposed methodology for the generation of vehicular mobility (detailed in

Sec. 4) as follows.

• With respect to other attempts at generating synthetic mobility traces in

quasi- or non-stationary conditions (i.e., through vehicular mobility simu-965

lators that capture microscopic dynamics), ours is the first work that em-

ploys fine-grained traffic counts (i.e., containing per-vehicle statistics) col-

lected through real-world measurements. Accounting for the actual inter-

arrivals yields a higher accuracy than considering deterministic or random

inter-arrivals, derived frommeasurements of road traffic flow with order-of-970

minute precision. We underscore that integrating such fine-grained traffic

counts in a microscopic mobility generator is not a trivial task, and re-

quires an original, dedicated parametrization as that presented in Sec. 3.2

of the main document.

• When considering perfect-stationary mobility (employed in semi-analytical975

or analytical models) the works in [17, 24] are the only using fine-grained

traffic counts comparable to those we employ. However, synthetic traces

are, by their own nature, more accurate than measurement-based semi-

analytical or analytical models. Specifically, synthetic traces such as those
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we generate are based on validated representations of drivers’ acceleration,980

deceleration, and lane change behaviors (see Sec. 3.1 of the main docu-

ment). They thus convey a richness of microscopic dynamics in vehicular

movement (e.g., different drivers’ target speeds and safe time headway,

left- and right-lane movements, overtakes, etc.) that mathematical repre-

sentations of highway traffic proposed in the networking literature (based985

on, e.g., constant speed, fixed vehicle inter-distance, no lane changes, etc.)

cannot capture.

We also point out that the methodology proposed in this paper advances

that appeared in an earlier version [48]. Specifically, the conference version of

the work only considered the short 30-minute traces, while we base the analysis990

in this manuscript on the 24-hour M30 dataset, Moreover, the calibration of the

microscopic mobility models in [48] operated on a per-lane basis in the confer-

ence version – an appoach that could not accommodate the more demanding

road traffic conditions present in the new traffic dataset. Thus, the calibration

proposed in this paper is different for each vehicle, and much more flexible.995

6.2. Vehicular network connectivity

As far as vehicular network connectivity studies are concerned, some sem-

inal works have considered urban areas [34, 49]. However, their findings do

not necessarily apply to the highway scenarios we are interested in, due to the

significant differences between urban and highway road traffic. Concerning the1000

latter environment, a large number of studies have addressed the problem from

an analytical perspective [22–24], characterizing features such as the mean com-

ponent size [25], the probability of attaining a single connected component [26],

or the impact of a dedicated roadside infrastructure [43].

Far fewer analyses have instead employed realistic traces to investigate the1005

instantaneous connectivity of highway vehicular networks. Pioneering results

on the connectivity of free flow highway traffic are provided in [27]: the authors

use synthetic data generated by a simple microscopic simulator to prove that

higher vehicular densities help connectivity. Subsequent studies confirmed this
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conclusion, observing that the communication range is another primary factor1010

affecting the network connectivity [23, 25]. However, these works are based

on less detailed mobility traces, and only provide a basic assessment of the

structural properties of the network topology.

More recently, the focus has shifted towards the internal structure of high-

way vehicular networks. In [18], the authors characterize distributions of the1015

centrality, clustering coefficient, and vertex degree in the Alameda County road

traffic traces presented above. In [28], the aforementioned I-80 mobility trace

is leveraged to investigate the small-word and scale-free properties of vehicular

networks. Our study confirms the findings of these statistical analyses on more

detailed and comprehensive mobility traces. In addition, we take a step forward1020

in the topological analysis, and unveil previously unknown properties, such as

the invariant three-phase dependence of the connectivity on the network size,

or the actual availability and stability of highway vehicular networks. These

findings are new even with respect to those in the earlier version of the work

in [48].1025

7. Conclusions and open issues

In this paper, we employed fine-grained road traffic counts collected on real-

world highways in proximity of Madrid, Spain, to generate synthetic traces of

vehicular mobility along those road segments. An original approach to the pa-

rameterization of well-known microscopic vehicular mobility models allowed us1030

to obtain realistic descriptions of quasi-stationary unidirectional traffic in het-

erogeneous conditions, including different highways, weekdays and measurement

hours. These traces are publicly available and, to the best of our knowledge,

represent the current state of the art in highway traffic datasets for networking

studies.1035

We carried out a comprehensive topological analysis on the mobility traces,

confirming that: (i) the communication range and the vehicular density are the

factors that primarily control the connectivity of highway vehicular networks;
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(ii) vehicular networks are not small-world or scale-free in nature. In addition,

we unveiled the three-phase dependence of connectivity on network size, and its1040

potential general validity across highway scenarios. We also quantified for the

first time the actual availability and stability of the system.

Our study also has limitations that open the way for future research ac-

tivities. First, our analysis is based on data collected on three highways, and

all results are thus specific to those scenarios. Some promising results on the1045

potential generality of our conclusions come from the invariance of the connec-

tivity dynamics in all such different datasets, in Sec. 5. Still, a much larger set

of measurements is required to generalize our findings.

Second, our connectivity analysis builds on a unit-disc representation of the

radio signal propagation. Considering some model of signal fading would add1050

the rapid variability induced by radio signal fluctuations on top of the mobility-

dependent dynamics we observe in our study. Ultimately, that would lead to an

even finer-grained description of the vehicular connectivity.

Third, in this paper we only investigate the instantaneous connectivity of

highway vehicular networks. The temporal analysis of vehicular connectivity,1055

aimed at the characterization of delay-tolerant network properties, would require

a completely different approach (based, e.g., on time-expanded representations),

and it is an interesting extension of our work.
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