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Abstract—There is a growing need for vehicular mobility
datasets that can be employed in the simulative evaluation of
protocols and architectures designed for upcoming vehicular
networks. Such datasets should be realistic, publicly available,
and heterogeneous, i.e., they should capture varied traffic con-
ditions. In this paper, we contribute to the ongoing effort to
define such mobility scenarios by introducing a novel set of traces
for vehicular network simulation. Our traces are derived from
high-resolution real-world traffic counts, and describe the road
traffic on two highways around Madrid, Spain, at several hours
of different working days. We provide a thorough discussion of
the real-world data underlying our study, and of the synthetic
trace generation process. Finally, we assess the potential impact
of our dataset on networking studies, by characterizing the
connectivity of vehicular networks built on the different traces.
Our results underscore the dramatic impact that relatively small
communication range variations have on the network. Also, they
unveil previously unknown temporal dynamics of the topology of
highway vehicular networks, and identify their causes.

I. INTRODUCTION

Vehicular communication is regarded as a key enabling tech-

nology within upcoming Intelligent Transportation Systems

(ITS), which are in turn expected to significantly improve

road safety and traffic management. Communication-enabled

vehicles will exchange data in a direct way, via vehicle-to-

vehicle (V2V) communication, and build spontaneous, dis-

tributed, self-organizing vehicular networks. The latter are

anticipated to complement the existing cellular network, by

providing short-range, low-latency, inexpensive transfers that

are especially suitable to implement ITS services such as co-

operative awareness, collision avoidance, and danger warning.

The moment when V2V technologies and the associated

services will hit the market is in fact approaching. Standards

especially designed for V2V communication, such as IEEE

802.11p, IEEE 1609 OSI CALM-M5 and ETSI ITS are being

finalized, and the automotive industry is actively participating

in the first field tests, such as the simTD platform in Frankfurt,

Germany, or the Ann Arbor Safety Pilot in Michigan, USA.

However, experimental trials remain an exception, due to

their costs and complexity. The vast majority of applications,

protocols and architectures for upcoming vehicular networks

is still evaluated via simulative studies. Within such a context,

the level of realism of the simulation is a paramount aspect to

account for, and the way the mobility of individual vehicles

is represented is often the single feature that introduces the

largest bias in the results [1].

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under REA grant agreement n.630211.

During the past decade, there have been efforts aiming

at gathering real-world road traffic data [2]–[4], developing

tools for the simulation of vehicular movement [5], [6], and

generating synthetic mobility datasets [7]–[9]. This notwith-

standing, there is still a noticeable scarcity of road traffic

datasets featuring the level of realism and of spatiotemporal

granularity required for network simulation [10]. The result of

the lack of a set of realistic, publicly shared, heterogeneous

scenarios is that simulations of vehicular networks are often

unreliable and non-reproducible [11].

In this paper, we contribute to the endeavor of enlarging

the set of realistic datasets of vehicular mobility that are

freely available to the research community. To that end, we

present 16 original traces describing the road traffic on two

highways around Madrid, Spain, at different times of multiple

weekdays. The traces are derived from high-detail real-world

traffic counts, and describe unidirectional free-flow traffic in

quasi-stationary conditions on a road spanning over 10 km.

More precisely, our contributions are as follows:

• We collect real-world traffic count data that feature an un-

precedented resolution, and study the road traffic dynam-

ics they capture. Our analysis pinpoints the heterogeneity

of the empirical dataset, and confirms that widely adopted

assumptions on exponential inter-arrivals of vehicles do

not necessarily hold in real scenarios.

• We present a process to generate synthetic mobility

traces from road traffic counts, by leveraging microscopic

models and properties of the real-world data. Our analysis

is relevant to the calibration of car-following and lane-

changing models, and results in original, publicly avail-

able datasets of highway mobility for network simulation.

• We provide a characterization of the vehicular network

connectivity in the synthetic traces, investigating the

impact of time (i.e., hour of the day, day of the week),

highway diversity, and vehicular communication range.

Our results highlight that: (i) the level of global vehicular

connectivity can be primarily ascribed to the V2V com-

munication range; (ii) for short communication ranges,

the vehicular connectivity is driven by a mixture of slow

and fast temporal dynamics that are regulated by the road

traffic density and by V2V contact durations, respectively.

The paper is organized as follows. After a discussion of

related works, in Sec. II, we present and analyze the real-

world traffic count data we use in our study, in Sec. III. Then,

Sec. IV describes the generation process of the synthetic ve-

hicular mobility traces, whose vehicular network connectivity

is characterized in Sec. V. Finally, Sec. VI concludes the paper.978-1-4799-4657-0/14/$31.00 c© 2014 IEEE

1



II. RELATED WORK

The impact of realistic mobility models on the simulation

of communication protocols for vehicular networks has been

emphasized in many works [1], [8], [11], [12]. This fact has

pushed the research community to seek for an ever-increasing

realism in road traffic traces used to feed network simulators.

A first approach is to use real-world mobility traces that

have been recorded by directly logging the position of vehicles

during their movements. Unfortunately, the traces of this kind

that are currently available yield a partial description of the

road traffic, as they only report the positions of, e.g., buses [2],

[3] or taxis [4]. Also, they are typically affected by limited

temporal accuracy, with positions logged with periodicities in

the order of tens of seconds [10].

Therefore, most works have focused instead on the gen-

eration of synthetic vehicular traces. In particular, a number

of studies have considered urban mobility scenarios, created

by feeding real-world road topologies of different cities to

microscopic traffic simulators such as SUMO [5] or Vanet-

MobiSim [6]. In order to characterize the number, origin,

destination and time of trips, these works usually made use of

macroscopic data (i.e., origin-destination matrices) collected

from user surveys [7], [8], [13] or from roadside detectors

such as induction loops, cameras and infrared counters [9].

However, the dynamics of traffic in urban regions – charac-

terized by vehicles traveling at low or medium speed, and

frequent intersections regulated by traffic lights or roundabouts

– are not comparable to those on highways – featuring instead

high speeds and frequent overtakings. Moreover, none of the

aforementioned works considers the problem of fine-tuning the

microscopic mobility model, as we do in this study.

Closer to our approach, the study in [12] uses two empirical

road traffic datasets to generate synthetic highway mobility

traces that can be used in network simulation. The two

24-hour datasets were collected using detectors underneath

the road: the first dataset is from the I-80 highway nearby

Berkeley, CA, USA, and contains information from dual-

loop detectors (that log data on individual vehicles passing

through); the second dataset is from the Gardiner Expressway

in Toronto, Canada, and includes records from metal detectors

(that measure aggregated characteristics on each lane every

20 seconds). In order to generate the synthetic traces, inter-

arrivals are assumed to follow exponential distributions and

vehicle speeds are modeled as Gaussian distributions: the

real-world data is then employed to calculate the parameters

of such distributions for different hours of a day. Then, a

stochastic vehicle mobility generator is developed according

these models. Our study improves that in [12] from several

viewpoints: (i) we consider more detailed and heterogeneous

traffic count data; (ii) we use the empirical traffic counts as

they are, and not to parameterize distributions; (iii) we employ

validated microscopic car-following and lane-changing models

instead of resorting to stochastic modeling; (iv) the synthetic

mobility traces we generate are publicly available, which is

not the case for those of I-80 and Gardiner Expressway.

Highway scenarios are considered also in [14], where empir-

ical data from the Freeway Performance Measurement System

(PeMS) 1 is fed to the SUMO microscopic mobility simulator

to generate synthetic traces. In particular, the real-world data,

collected from road sensors in Alameda County, CA, USA, is

used to determine the assignment of vehicular traffic flows and

the average speed values over the road. However, the empirical

traffic count dataset used in [14] is affected by a coarse time

granularity (i.e., flow and speed sampling rates between 30

seconds and 5 minutes), which prevents using it to model the

precise arrival time of each vehicle, as we do instead.

Also relevant to our work are vehicular network connectivity

studies. There, several research teams have focused on urban

areas [4], [15]–[17]. Although interesting, their findings are

hardly applicable to the highway scenarios we are interested

in, due again to their significant differences with respect to

urban environments. As far as highway traffic is concerned, a

number of works dealt with the analytical characterization of

vehicular connectivity in unidimensional scenarios [18]–[20],

which however implies adopting simplifying assumptions in

order to make the problem mathematically tractable.

Fewer papers rely instead on realistic mobility traces.

Specifically, in [21] synthetic data generated via a microscopic

simulator is used to confirm the intuition that increasing the

traffic density or the number of lanes improves connectivity.

Nevertheless, the study employs a simple highway traffic

model with deterministic vehicle inter-arrivals, while our

analysis relies on much more realistic mobility traces built

from real-world data. More realistic mobility is accounted for

in [22], which uses (publicly unavailable) reality-audited high-

way movements from the FleetNet project, and in [14], which

employs the aforementioned Alameda County trace. In both

cases, however, the connectivity assessment is limited to statis-

tical analyses of node degree and link duration distributions.

In this paper, we provide a more thorough characterization

of the instantaneous vehicular network connectivity, including

original quantitative results on the correlation between the

radio communication range, the traffic density, and the number

and size of network components.

III. REAL-WORLD TRAFFIC COUNT DATA

The empirical data used throughout this work comes from

measurement locations in the region of Madrid, Spain. The

data, kindly provided to us by the Spanish office for the traffic

management (Dirección General de Tráfico, DGT), detail road

traffic conditions on the following two arterial highways.

• M40: the M40 is part of the middle layer of the Madrid

city beltway system, which also comprises M-30 (inner-

most) and M-50 (outermost). This beltway, which has an

average distance of 10.7 km from the city center, traverses

both the most peripheral areas of the municipality and

surrounding cities. The measurement point is placed at

the 12.7-km milepost, where the M40 traverses the suburb

of San Blas and the town of Coslada. The measures

1http://pems.dot.ca.gov/
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(a) Measurement locations (b) M40 - Measurement point detail (c) A6 - Measurement point detail (d) M40 - Buried induction loop

Fig. 1. Geographical location of the two highways near Madrid, Spain (a). Close-by view of measurement points (b,c), and of the induction loop on M40 (d).

cover the internal carriageway (southbound) that includes

3 lanes with a speed limit of 100 km/h. The M40 is

indicated as A in Fig. 1(a), while a photographic view of

the exact measurement location is provided in Fig. 1(b).

• A6: the Autovı́a A6 is a motorway that connects the city

of A Coruña to the city of Madrid. This road enters into

the urban area from the northwest and collects the traffic

demand of the conurbation that was built along it. The

data collection point is placed around the 11-km milepost

(Madrid direction), where the A6 features three lanes

with a speed limit of 120 km/h. We remark, however,

that this location is right after a popular entrance ramp

that joins the rightmost lane and significantly slows down

the road traffic. The highway maps to B in Fig. 1(a). A

photographic view of the collection point is in Fig. 1(c).

A. Collecting high-resolution traffic counts

The sensors that DGT deployed on M40 and A6 are

induction loops. They consist of loops of wires buried under

the concrete layer that create a magnetic field. When a vehicle

passes on the vertical axis of the loop, it creates a variation

in the magnetic field, which is considered as a new transit. If

two loops are placed close to each other, also the vehicular

speed (and possibly other metrics, such as the vehicle length)

is obtained. A picture of the buried induction loops used to

collect measurements on the M40 is provided in Fig. 1(d).

Usually, these devices are programmed to supply coarse-

grained data, as public transportation authorities are generally

interested in aggregate measures 2 (e.g., the number of vehicles

transiting on a road, their average speed, or the percentage of

heavy vehicles) so as to detect exceptional alterations in the

road capacity [12], [14]. The loops installed by DGT were

configured to supply data averaged over 60-second intervals,

but their configuration was changed specifically for our study:

the real-world traffic counts we collected provide fine-grained

time, speed and lane information on each single transiting

vehicle. To the best of our knowledge, this is the most precise

traffic count dataset recorded to date, and represents an ideal

input to our microscopic simulation of highway traffic.

The timing of the data collection is a very important variable

to account for, since vehicular traffic presents, as many other

2As an example, Dirección General de Tráfico provides an elaboration of
the traffic data via the Infocar web service at http://infocar.dgt.es,
including historical data visualization for some of the observation points.

human activities, important temporal variability: for instance,

rush hours yield diverse traffic conditions than off-peak hours,

especially on main arterial roads like those we consider. The

dataset analyzed in this work was collected on multiple days of

May 2010, namely Friday the 7th, Monday the 10th, Tuesday

the 11th, and Wednesday the 12th. For each measurement

location and each day, two traces are available: one capturing

the traffic peak (from 8:30 a.m. to 9:00 a.m.), and one during

off-peak hours (from 11:30 a.m. to 12:00 p.m.). As a result,

our empirical dataset provides a heterogeneous view of traffic

conditions, allowing us to generate synthetic mobility traces

that are representative of different highway congestion levels.

B. Understanding the data

Each entry of the dataset refers to one individual vehicle

transiting over the induction loops, and includes the following:

• Timestamp: the time at which the vehicle passage was

recorded by the induction loop. The precision of the time

reference is 100 milliseconds.

• Speed: the vehicle speed, in km/h.

• Lane: the lane on which the vehicle transited. Both M40

and A6 feature three lanes at the measurement points.

They are referred to as the right, center and left lanes (in

the heading direction) in the remainder of the paper.

In [23], we performed an extensive analysis of vehicle inter-

arrival times (IAT) in the traffic count dataset. We found

that, although many works assume exponential distribution or

even uniform distribution to model the time headway between

subsequent vehicles, a mixture gaussian-exponential model

yields a much better approximation of the empirical data.

The mixture model also provides valuable information on

drivers’ behavior: the gaussian part of the distribution captures

bursty arrivals of vehicles that travel close to each other at

similar speeds, whereas the exponential part models isolated

vehicles whose movement is less constrained by that of other

cars. Fig. 2 shows the excellent match between the mixture

model and the experimental data on multiple combinations of

highway, day and hour for each lane.

An overview of two traffic count data samples is provided

in Fig. 3. Each plot depicts the evolution over time of the

speed on the three lanes of the highway under consideration:

consistently with Spanish road regulations, the speed of the

right lane is typically the lowest, while that of the left lane is

normally the highest. As anticipated, the dataset used in this

3
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Fig. 2. Inter-arrival times CDF measured on May 12, 2010. Each plot refers to a different lane of M40 at 8:30 a.m. (a, b, c) and A6 at 11:30 a.m. (d, e, f).
Solid black lines show the mixture model for each distribution. The fitting is good under any combination of highway, day and hour for each lane.
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Fig. 3. Per-lane speed versus time in two dataset samples. The plots are
representative of free flow traffic (a) and of a mild perturbation (b) on M40.

work presents different traffic characteristics in terms of traffic

measures (i.e., density, flow and speed). However, we remark

that, throughout all the dataset, the road traffic is always in a

so-called free flow state, i.e., there is a quasi-linear relationship

between the vehicular flow and density, and no significant

congestion is observed [24]. Free flow traffic conditions result

in neatly separated speeds on different lanes, as shown, e.g., in

Fig. 3(a). Only in rare occasions, we record mild congestion

situations that result in a pinch effect, i.e., travel speeds on

different lanes are leveled down to a same value [24]. An

example of such a phenomenon is observed in Fig. 3(b), at

around 8:50 a.m.

IV. ROAD TRAFFIC DATASET GENERATION

Our objective is to generate road traffic traces that are repre-

sentative of unidirectional free flow highway traffic in a quasi-

stationary state, i.e., such that comparable traffic conditions are

present in between the in-flow and out-flow boundaries of the

simulated highways. The datasets should cover a geographical

distance that is sufficient for networking studies (e.g., for

warning message dissemination or floating car data upload).

In the following, we simulate a 10-km road segment, but we

remark that our approach can easily accommodate shorter or

longer highway stretches.

In order to achieve the goal above, we fed the real-

world traffic count data presented in Sec. III to a microscopic

vehicular mobility simulator. Next, we first present the state-

of-art car-following and lane-changing models employed by

the simulator. Then, we discuss the calibration of the micro-

scopic models to attain quasi-stationary road traffic conditions.

Finally, we outline the features of the resulting dataset.

A. Microscopic vehicular mobility models

The car-following and lane-changing microscopic mobility

models implemented by our simulator are IDM and MOBIL,

both of which have been validated by the transportation

research community and are among those most commonly

used in vehicular networking research.

The Intelligent Driver Model (IDM) [25] characterizes the

behavior of the driver of a car i through her instantaneous

acceleration dvi(t)/dt, which is calculated as

dvi(t)

dt
= a

[

1−
(

vi(t)

vmax
i

)4

−
(

∆xdes(t)

∆xi(t)

)2
]

(1)

∆xdes(t) = ∆xsafe +

[

vi(t)∆tsafe −
vi(t)∆vi(t)

2
√
ab

]

(2)

In (1), vi(t) is the current speed of vehicle i, vmax
i is the

maximum speed its driver would like to travel at, and ∆xdes(t)
is the so-called desired dynamical distance, representing the

distance that the driver should keep from her leading vehicle.

The latter is computed in (2) as a function of several measures

taken with respect to the car in front of vehicle i: the minimum

bumper-to-bumper distance ∆xsafe, the minimum safe time

headway ∆tsafe, and the speed difference ∆vi(t). In both

equations, a and b denote the maximum absolute acceleration

and deceleration, respectively. When combined, these formulae

return the instantaneous acceleration of the car, as a combina-

tion of the desired acceleration [1− (vi(t)/v
max
i )

4
] on a free

road, and the braking deceleration induced by the preceding

vehicle (∆xdes(t)/∆xi(t))
2.

The Minimizing Overall Braking Induced by Lane-changes

model (MOBIL) [26], follows a game theoretical approach,

and allows the driver of a vehicle i to move to an adjacent lane

if her advantage in doing so is greater than the disadvantage

of the trailing car j in the new lane. The (dis)advantage is

measured in terms of acceleration, which translates the lane

movement condition above into the inequality
∣

∣

∣

∣

dvi(t)

dt

∣

∣

∣

∣

L

− dvi(t)

dt
+aL ≥ p

(

dvj(t)

dt
−
∣

∣

∣

∣

dvj(t)

dt

∣

∣

∣

∣

L

)

+ka, (3)

where the notation | · |L denotes accelerations computed as if

vehicle i were traveling on the lane to its left rather than in the

current one. In (3), p ∈ (0, 1] is a politeness factor that models

the selfishness of the driver with respect to the new back

vehicle j, ka is a hysteresis threshold (computed as a fraction
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TABLE I
IDM AND MOBIL PARAMETER SETTINGS

Model Parameter Meaning Value

IDM a Maximum acceleration 1 m/s2

IDM b Maximum (absolute) deceleration 2.5 m/s2

IDM vmax
i Maximum desired speed ∼ fV (v)

IDM ∆xsafe Minimum safety distance 1 m

IDM ∆tsafe Minimum safe time headway 0.65 s

MOBIL p Politeness factor 0.5

MOBIL aL Bias acceleration (left) 0 m/s2

MOBIL aR Bias acceleration (right) 0.2 m/s2

MOBIL k Hysteresis threshold factor 0.3

k of the maximum acceleration a) that prevents lane hopping,

and aL is a bias acceleration that can be used to favor or

limit movements to left. An identical formulation can be used

for right-hand-side lane changes, and the respective advantages

can be compared to determine the final lane movement, if any.

Note that, in Spain, road traffic regulations enforce drivers to

travel on the rightmost lane whenever possible: we thus expect

aR > aL and aR > 0, i.e., right-hand-side movements to be

favored over left or no movement, if equivalent conditions are

present on all lanes.

B. Parameter calibration

In order to obtain quasi-stationary traffic conditions over

the simulated highway segment, some calibration of the IDM

and MOBIL parameters proved necessary. Specifically, for

the acceleration a, deceleration b, politeness factor p and

minimum safety distance ∆xsafe we could use the default

values suggested in [25], [26]. The other parameters had

instead to be adapted to the specificities of each road scenario,

as detailed next. We remark that we employed a discrete time

step of 100 ms in all mobility simulations. The final IDM and

MOBIL settings are summarized in Tab. I.

Maximum desired speed. Vehicles enter the simulated high-

way segment at the time and with the speed defined by the

real-world traffic count data. However, it is then necessary to

determine the maximum desired speed vmax
i of each driver,

i.e., the cruise velocity that she would keep if she were alone

on the highway. To that end, we exploit our observation

in Sec. III-B that all traffic count datasets yield free flow

conditions. We thus assume that the experimental distribution

of real-world ingress speeds can be used as a base for inferring

the actual distribution of desired speeds.

We thus computed the Probability Density Functions (PDF)

of traffic count ingress speeds for each combination of road,

day, and measurement hour. We found that the empirical

distributions for the same highway at the same time were

overlapping, and thus aggregated such data for different days.

This left us with four combinations of highway and hour. For

each such combination, we separated the results on a per-lane

basis, since each lane yields significantly diverse speeds.

The resulting PDFs are shown in Fig. 4. We note that the

empirical ingress velocities tend to follow gaussian distribu-

tions in all cases. Nonlinear least squares fittings performed

via the Trust-Region algorithm confirm that intuition, with
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(b) M40, 11:30 a.m.
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(d) A6, 11:30 a.m.

Fig. 4. Empirical per-lane ingress speed distributions and fitted normal
distributions for different highway and measurement hour combinations.

adjusted R-square values always above 0.97 and root mean

square errors below 0.02. The fitted gaussian distributions are

portrayed as solid lines in the plots of Fig. 4.

Despite being measured in free flow conditions, ingress

speeds cannot be directly mapped to desired velocities. Indeed,

the presence of surrounding vehicles implicitly limits the

ingress speeds, even if by a limited extent. Therefore, when

the values of vmax
i are directly extracted from the gaussian

ingress speed distributions, vehicles tend to have an egress

velocity from the simulated road segment that is on average

2.8 m/s (around 10 km/h) lower than expected. By adding

such a speed offset to the mean of the theoretical PDF, we

obtain, for each lane of every highway and hour combination,

a distribution of maximum desired speed fV (v) that grants

quasi-stationary speed traffic over the whole highway stretch.

Interestingly, we highlight that the shapes of such fV (v) are

similar for the two measurement hours on a same highway,

but remarkably different for the two highways3: this matches

the intuition that the desired speed of a driver is influenced by

the type of road she is traveling on, rather than by daytime.

Safety time. The safe time headway ∆tsafe was reduced

from the default value of 1.5 s to 0.65 s. As a matter of

fact, we observed that in the real-world traffic count data

the inter-arrival time between two cars on a same lane may

get much smaller than 1.5s. Maintaining the default value

of ∆tsafe can then bias the IDM behavior in cars that

just entered the scenario. Specifically, we recorded excessive

brakings that caused traffic jams at the entrance, which in

3This can be observed by looking at the gaussian shapes in Fig. 4, since
the final fV (v) are just shifted versions of the same over the x axis.
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Fig. 5. Heatmaps of the average vehicular density in two sample traces, on
Wednesday the 12th: M40 at 11:30 a.m. (top) and A6 at 8:30 a.m. (bottom)

TABLE II
MAIN AVERAGE CHARACTERISTICS OF THE 16 TRACES

Trace Speed Density Headway
(km/h) (vehicles/km) (s)

M40, Fri 7, 8:30 85.66 56 0.74
M40, Mon 10, 8:30 84.85 59 0.72
M40, Tue 11, 8:30 84.33 63 0.70
M40, Wed 12, 8:30 84.98 60 0.71
M40, Fri 7, 11:30 86.88 52 0.82
M40, Mon 10, 11:30 87.49 49 0.84
M40, Tue 11, 11:30 87.52 46 0.88
M40, Wed 12, 11:30 87.71 48 0.85
A6, Fri 7, 8:30 69.09 62 0.86

A6, Mon 10, 8:30 68.73 62 0.85
A6, Tue 11, 8:30 68.24 65 0.83
A6, Wed 12, 8:30 68.65 61 0.86
A6, Fri 7, 11:30 77.26 42 1.11
A6, Mon 10, 11:30 77.01 40 1.14
A6, Tue 11, 11:30 76.99 43 1.10
A6, Wed 12, 11:30 77.19 42 1.13

turn prevented new cars to enter the highway segment as

commended by the real-world data. After extensive tests, we

selected ∆tsafe = 0.65 s, as that is the largest safety time for

which the effect described above disappears, allowing vehicles

to enter the simulated scenario according to the traffic count

datasets.
Lane change bias and hysteresis threshold. The default

MOBIL settings resulted in a traffic that was highly skewed

towards the left lane, which became then unrealistically con-

gested. We run comprehensive trials to find the combination

of right (aR) and left (aL) lane change bias, and lane change

hysteresis threshold factor (k) that granted quasi-stationary

traffic over the different lanes. The most consistent ingress

and egress per-lane properties were obtained for aR = 0.2

m/s2, aL = 0 m/s2, and k = 0.3. Those values also respect the

intuitive observation that traffic should be skewed to the right

so as to abide Spanish road regulations, and we thus chose to

use them for the generation of the traces.

C. Final dataset

The final road traffic dataset 4 is composed of 16 different

mobility traces, resulting from all possible combinations of

4Available at http://trullols.site.ac.upc.edu/downloads.

two highways, four days and two measurement times. By

default, the position of each vehicle is recorded over a 10-

km road stretch at every second. Each mobility trace has a

duration of 30 minutes, dictated by the measurement intervals

of the real-world traffic count data. As mentioned earlier, all

traces are representative of quasi-stationary road traffic. For

instance, Fig. 5 presents heatmaps of the average vehicular

density recorded on two sample traces: we can remark that

traffic conditions are similar all over the road stretch (along

the x axis of the plots) for each lane (y axis of the plots).

Finally, Tab. II summarizes the main properties of the 16

traces, in terms of average values of speed, vehicular density,

and headway time recorded over the 30-minute duration of

each trace. As already anticipated, the speeds measured on

each highway at the same time of different days tend to be

similar. However, different highways and hours yield signifi-

cant diversity in terms of average speeds, which range between

68 km/h (A6 at 8:00 a.m.) and 87 km/h (M40 at 11:30 a.m.).

Also, we remark in all traces the correlation between the speed

and the other metrics, which is consistent with well-known

road traffic theory results [24]. However, M40 and A6 show

non-comparable behaviors in that sense, since lower densities

and longer headway times on A6 can lead to a traffic that

– counter-intuitively – is much slower than that recorded on

M40 in presence of higher density and shorter headway times.

This is an effect induced by the different nature of the two

highways, and a proof of the heterogeneous nature of the traces

in our vehicular mobility dataset.

V. CONNECTIVITY ANALYSIS

In this section, we study the connectivity properties of the

vehicular networks built on the mobility traces derived in the

previous sections. We start by presenting the model that we

apply and the metrics that we consider, followed by the results

we obtained. We conclude the section by discussing vehicle-

to-vehicle contact duration properties.

A. Network model and metrics

In our analysis, we focus on the instantaneous connectivity

properties of the network. For each time instant, we represent

the vehicular network as an undirected graph G(V(t),E(t)),
where V(t) = {vi(t)} is the set of vertices vi(t), representing

each a vehicle i appearing in the network at time t, and

E(t) = {eij(t)} is the set of edges eij(t). We consider

that an edge eij(t) is present between vi(t) and vj(t), if a

communication link exists between vehicles i and j at time t.
We adopt the unit disc model as a representation of the RF

signal propagation. Thus, we assume that two vehicles can

communicate directly if they are separated by a distance of

at most R meters, where R is the communication range. We

apply this simplistic model due to the fact that deterministic

propagation models do not scale well to large mobile scenarios

and imply expensive instantaneous computations. Moreover,

the unit disc model is representative of the average behavior

of the system obtained under stochastic propagation models.

Specifically, in the following we present results for different
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values of R, from 50 to 300 meters. Despite standards claiming

up to 1-km communication ranges, these values represent the

lower and upper bounds for acceptable packet delivery ratios,

according to different experimental studies on Dedicated Short

Range Communication (DSRC) transfers [27], [28].

We use the graph model to define several metrics of

interest to the instantaneous connectivity analysis. Namely,

a component Ck(t) = G(Vk(t),Ek(t)) is a subgraph of

G(V(t),E(t)), where Vk(t) is a subset of V(t) and includes a

group k of vehicles that can communicate together via direct

or multi-hop links at time t, and Ek(t) is a subset of E(t)
formed by all the communication links among the vehicles

in k. Sk(t) = ‖Vk(t)‖ is the size of the component Ck(t).
C(t) = {Ck(t)} refers to the set of components appearing in

the network at time t, and C(t) = ‖C(t)‖ denotes their number.

We use Cmax(t) to indicate the largest cluster appearing in

the network at time t and Smax(t) to represent its size. We

denote the number of nodes appearing on the highway at t as

N (t) = |V(t)|. Finally, the average size of clusters appearing

at time t is referred to as Savg(t) = N (t)/C(t).
In the rest of the paper, for the sake of simplicity, we drop

the time notation and we refer to all metrics at a generic

time instant: N represents then the number of vehicles on

the highway, C the number of components, Savg the average

size of component, and Smax the largest component size.

B. Instantaneous network connectivity

We start by studying the global connectivity properties of

the network at each time instant. Thus, we focus on the

distributions of the number of components C and of the size

of the largest component Smax. Indeed, C is a measure of how

fractioned the network is, while Smax is the maximum number

of nodes that can be reached via multi-hop communication at

a given time instant. Clearly, the lower is C and the larger is

Smax, the better connected is the vehicular network.

In Fig. 6, we present the distributions of C (left plots) and

Smax (right plots), for various values of the communication

range R (on different rows). In every plot, each candlestick

refers to one mobility trace, and is obtained by aggregating

the metrics computed in all instantaneous graphs observed at

every second during the 30-minute timespan of that trace. The

lowest and highest values in the candlesticks (in grey) are the

minimum and maximum values that the metric attains. The

inner error bars (in red) depict the first and ninth deciles, while

the box highlights the first and third quartiles (in red) around

the median value (in black). Also, the step function in the

Smax plots is the maximum value Nmax of N , observed in

all instances of the respective trace. It thus represents the upper

bound to Smax: the closer is Smax to Nmax, the closer the

vehicular network is to a fully connected single component.

Let us now focus on the case of R = 50 m, in Fig. 6(a)

and Fig. 6(b). We observe that the connectivity metrics are

very similar on different days of the week, forming four

clear clusters in both plots. This implies that we can expect

the network to have consistent topological properties from

Monday to Friday. The aforementioned clusters are instead
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Fig. 6. Distributions of the number of components C (left), and of the largest
component size Smax (right), for each trace under different values of R.

separated by highway (A6 or M40) and hour (8:30 or 11:30).

Specifically, the network appears more fragmented on A6 than

on M40, and, in both cases, the connectivity is worse at

11:30 a.m. than at 8:30 a.m. Intuitively, we can ascribe such a

variability to the different road traffic conditions encountered

on the two highways at different times of the day. In fact, we

will further investigate the issue and provide a more rigorous

explanation later in this section.

Most of the observations above still hold when considering

different communication ranges separately. Nonetheless, when

comparing the plots for varying R, it is evident that increasing

the communication range can dramatically improve the con-

nectivity of the network. Indeed, for R = 50 m, there exist on

average 30-50 disconnected components, the largest of which

only comprises around one tenth of the vehicles. As R grows,

however, the network fragmentation is reduced, and more
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Fig. 7. Time series of N , Smax, Savg , and C on the A6 highway at 8:30
a.m. of Friday the 7th, for R = 50 m (a) and R = 100 m (b).

TABLE III
CORRELATION COEFFICIENTS OF C AND Smax WITH RESPECT TO N

R = 50 m R = 100 m R = 200 m R = 300 m
C -0.88 -0.72 -0.28 -0.08

Smax 0.72 0.69 0.77 0.98

nodes join the largest component. When R = 300 m almost

all vehicles belong all the time to one single component, as in

Fig. 6(g) and Fig. 6(h). We conclude that the communication

range is the foremost parameter controlling the vehicular

network connectivity, as it can induce variations in C and

Smax that are much more significant than those imputable to

road traffic conditions. Indeed, R = 300 m guarantees a well

connected network independently of the traffic scenario, but

reducing that value causes the topology to rapidly break apart.

In this latter case, and precisely when R falls below 200

m, differences among the traces emerge. In order to better

investigate the causes behind such a diversity, we analyze

time series rather than temporal aggregates. More precisely,

we observe the evolution of N , Smax, Savg and C over time,

for each trace and varying R. In Fig. 7, we show two sample

plots for one of the A6 traces at 8:30 with R = 50 m and R =

100 m. We omit results for R = 200 m and R = 300 m because

they lead, as seen before, to a stable network with constant

behaviors over time (i.e., C ∼ 1, and Smax ∼ Savg ∼ N ). The

key remark here is that the time series of C, Smax and Savg

are combinations of two dynamics: slow variations somehow

similar to shadowing in a RF signal at the receiver, and rapid

variations comparable to fast fading in the RF signal analogy.

Next, we analyze these two dynamics in detail.

Slow connectivity dynamics. In Fig. 7, we can glimpse that

the slow dynamics of C and Smax seem correlated to that of

N . To explore that possibility, in Fig. 8 we draw scatterplots of

such measures 5 by aggregating data from all of the 16 traces,

when R = 50 m and R = 100 m. There, each point represents

one instantaneous connectivity graph in one of the traces.

The correlation is evident in all cases. The Pearson product-

moment correlation coefficients (PPMCC) [29] computed on

the different scatterplots, in Tab. III, confirm that 6. Specif-

ically, we remark the strong negative correlation between C
5Note that studying the correlation for Smax = N/C would be redundant.
6We recall that the value of PPMCC varies between -1 (perfect negative

linear correlation) and 1 (perfect positive linear correlation), with values
around 0 indicating absence of linear correlation between the variables.
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and N for 50-m and 100-m communication ranges. Such a

correlation is reduced when R = 200 m and R = 300 m,

since the number of clusters becomes then very small and

nearly constant. For Smax, we note a high positive correlation

under all communication ranges. We conclude that the slow

topological dynamics of the network are guided solely by the

vehicular density, with more intense road traffic leading to a

smaller number of larger components of connected vehicles.

This is a key finding, since it unveils how long-term variations

of the connectivity are not affected by the type of highway,

the weekday or the hour considered, but only by the volume

of traffic they yield. It is also interesting to note that this

result assimilates highway and metropolitan scenarios, as a

akin conclusion was reached for urban vehicular networks [8].

Fast connectivity dynamics The fast dynamics observed in

Fig. 7 lead to changes in the connectivity metrics at every

few seconds, and are also the cause of the dispersion of

values around the linear correlation models in Fig. 8. We

speculate that such variations are due to fast-speed vehicular

movements that cause links to be established and tore down
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with high frequency. To investigate this prospect, we compute

the distributions of the durations of vehicle-to-vehicle (V2V)

contacts in the mobility traces. Due to space limitations, we

show the results for one trace only, as all other traces displayed

very similar contact duration properties. Fig. 9 portrays the

Probability Density Function (PDF), the Cumulative Distribu-

tion Function (CDF), and the Complementary CDF (CCDF)

of the contact duration between any pair of communicating

vehicles over M40, on Mon 11 at 11:30 a.m., with varying R.

As presumed, contacts are relatively short, even if we are

considering unidirectional road traffic that should favor long-

lived connections 7. The CDF shows that 80% of the contacts

last less than 5 minutes when R = 300 m, and less than

1 minute when R = 50 m. More importantly to us, there

are multiple elements that link V2V contact durations to the

fast connectivity dynamics we previously observed. First, the

probability peak in the PDF for R = 50 m is attained at 30 s,

i.e., it is in the same order of magnitude of the fast temporal

dynamics in Fig. 7(a). Second, the relationship above holds

also as R grows, since the fast temporal dynamics become

slower in Fig. 7(b) exactly as the V2V contacts become more

stable. Third, the effect of higher values of R is milder than

one could expect, and the majority of the links last well

below one minute at R = 100 m. As a result, increasing R
generates a much larger number of slightly more stable links,

i.e., offers larger space for connectivity disruptions: this is in

agreement with the fact that fast connectivity dynamics are

stronger in amplitude in Fig. 7(b) than in Fig. 7(a). Overall,

these elements let us conclude that the V2V contact duration

is the cause behind the short-term variations of the vehicular

network connectivity.

VI. CONCLUSIONS

In this paper, we analyzed real-world high-resolution road

traffic count measurements, and employed them as the cor-

nerstone for the generation of realistic synthetic traces of

vehicular mobility on highways. The resulting datasets are rep-

resentative of quasi-stationary unidirectional traffic in hetero-

geneous conditions, including different highways, weekdays

and measurement hours. They are the current state of art in

publicly available highway traffic datasets for network study.

The topological analysis carried out on the mobility datasets

reveals that the factor that primarily controls the connectivity

of highway vehicular networks is the communication range.

Notably, a 300-m communication range appears to grant full

connectivity under any condition; when instead the range falls

below 200 m, the network connectivity undergoes temporal

variations that are a combination of slow dynamics, controlled

by the road traffic density, and fast dynamics, due to the

predominant presence of short-lived contacts. Interestingly,

we found such properties to be invariant throughout multiple

weekdays and on different highways.

7Such long-lived V2V contacts (established by vehicles traveling at similar
speeds for a significant amount of time) do exist, but they occur with much
lower probability than short-lived V2V contacts. This is demonstrated by the
heavy tail of the distributions, shown in the log-log scale CCDF plot of Fig. 9.
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