

This is a postprint version of the following published document:

Gramaglia, Marco, et al. (2011). Performance
evaluation of a tree-based routing and address
autoconfiguration for vehicle-to-Internet
communications. 2011 11th International Conference
on ITS Telecommunications (ITST 2011), St.
Petesburg, Russia, 23-25 August 2011. Proceedings.
Pp. 45-50. USA: IEE, cop. 2011

DOI: https://doi.org/10.1109/ITST.2011.6060101

©2011 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288501004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/
https://doi.org/10.1109/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

978-1-61284-671-2/11/$26.00 c⃝2011 IEEE

Performance evaluation of a Tree-Based Routing
and Address Autoconf guration for
Vehicle-to-Internet Communications

Marco Gramaglia∗†, Carlos J. Bernardos†, Maria Calderon†, Antonio de la Oliva†
∗ Institute IMDEA Networks, Avda. del Mar Mediterraneo 22, 28918 Madrid, SPAIN

E-mail: marco.gramaglia@imdea.org
† Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, SPAIN

E-mail: {cjbc, maria, aoliva}@it.uc3m.es

Abstract—Vehicular ad hoc networks have proven to be quite
useful for broadcast alike communications between nearby cars,
but can also be used to provide Internet connectivity from
vehicles. In order to do so, vehicle-to-Internet routing and IP
address autoconf guration are two critical pieces. TREBOL is
a tree-based and conf gurable protocol which benef ts from the
inherent tree-shaped nature of vehicle to Internet traff c to reduce
the signaling overhead while dealing eff ciently with the vehicular
dynamics. This paper experimentally evaluates the performance
of TREBOL using a Linux implementation under lab-controlled
realistic scenarios, including real vehicular traces obtained in the
region of Madrid.

I. INTRODUCTION

Enabling vehicles to talk – that is, to be able to exchange
useful information that can be used for example to prevent
traff c accidents or let drivers know of critical traff c conditions
ahead – has been and continue to be a key research topic.
Most of the work has been focused so far on human safety
and traff c eff ciency applications, which mostly make use
of broadcast communications. However, drivers and passen-
gers also demand to enjoy Internet connectivity from their
vehicles, so classical and new Internet applications could be
enabled in cars. Providing vehicles with Internet connectivity
would additionally help speeding up the adoption of vehicular
communication systems by the users, since they will see an
additional benef t in the installation of communication systems
in their cars.

The use of vehicular ad hoc networks (VANETs) is the most
widely adopted approach to provide connectivity in vehicular
environments in a cheap and scalable way. A VANET is an ad
hoc, multi-hop and short-range wireless network, formed by
vehicles in a certain area and f xed roadside gateways placed
along the roads. Compared to other wireless communication
approaches, using a multi-hop solution brings benef ts to the
user (i.e., cost savings and high bandwidth), and to the net-
work providers that can alleviate their already overloaded 3G
infrastructure. In real deployments, these roadside gateways
(RSGs) can be co-located with the Road Side Units (RSUs)
deployed around the roads for safety purposes.

To enable Vehicle-to-Internet communications, some func-
tionalities are needed:

• Address conf guration: Vehicles have to be able to auto-
conf gure a valid IP network address in an automatic way,
without requiring manual intervention from the user.

• Routing capability: mechanisms for an eff cient routing of
IP datagrams, mainly unicast, from the vehicle to roadside
gateways and vice versa.

• Mobility management: vehicular networks are character-
ized by high mobility. Thus, an effective mechanism
for seamless handover between different networks and
roadside gateways is required.

We proposed TREBOL in [1], a tree-based protocol for
vehicle-to-Internet communications, which addresses two of
the previously mentioned functionalities, namely routing and
address conf guration. In this paper we experimentally vali-
date TREBOL, by implementing the protocol in a controlled
testbed, and performing tests using real traff c traces in an
emulated vehicular environment.

The rest of the paper is organized as follows. Section II
introduces how TREBOL works, while in Section III we
describe our prototype implementation of TREBOL. We report
our experimental evaluation of TREBOL in Section IV, and
Section V fi alizes this paper.

II. TREBOL

TREBOL [1] is a tree-based routing and IP address au-
toconf guration protocol which bases its data forwarding de-
cisions on IPv6 addresses (i.e., it is a topological routing
protocol). Data paths follow a tree built by the TREBOL
protocol, which is formed using position information (e.g.,
vehicles are assumed to have a GPS receiver) to minimize the
control overhead load. We describe next how this is achieved.
Let’s focus f rst on the routing capabilities of TREBOL, by
assuming for the time being that nodes are already provided
with IPv6 addresses.

We argue that vehicle-to-Internet unicast communications
exhibit a common set of characteristics that may be exploited
by the VANET routing protocol. In particular, not all network
nodes behave in the same way: roadside gateways (RSG) play
a critical role, since they operate as relays to the Internet. The
required network connectivity graph is anchored at the RSG
(i.e., all data traff c traverses the RSG), as opposed to other

1

Fig. 1. TREBOL area

vehicle scenarios, in which a mesh graph is desired. On the
other hand, as opposed to the very popular geographical rout-
ing protocols, TREBOL forwarding is not based on positions,
so neither beacon messages nor location service information
is needed, allowing great savings in terms of control overhead.

In TREBOL, the upstream tree (i.e., the tree used in the
forwarding of data packets from the vehicle to the Internet) is
built and updated when each node learns about its parent upon
receiving periodical conf guration messages (CM) sent by the
roadside gateway (RSG). It is assumed that each RSG plays
the role of relay (i.e., forwarding traff c from/to the Internet)
for the vehicles within a limited geographical area, known
as TREBOL area (see Fig. 1). Thus, conf guration messages
sent by a RSG are spread within its TREBOL area. On the
other hand, the creation of the downstream tree (i.e., the tree
used in the forwarding of data packets from the Internet to the
vehicle) follows a reactive approach: each node learns who are
its children on a per data packet basis, as part of the forwarding
of data packets.

As already mentioned, TREBOL builds and refreshes the
upstream tree by using periodical conf guration messages
(identif ed by a unique and incremental sequence number)
which are initially sent by the RSG and then regenerated and
sent by a subset of the VANET nodes. Once a node receives
a CM with a newer sequence number, the sender of that CM
becomes the parent of the receiving node, and the forwarding
state is updated accordingly (i.e., the parent is used as next hop
for upstream data traff c towards the Internet). Then, the node
regenerates the CM (i.e., updating some f elds but keeping the
original sequence number) and sets a backoff timer. Only if
this backoff timer expires, the node broadcasts this regenerated
CM to its neighbors. In the meantime, if the node receives
another CM with this same sequence number (i.e., sent by
another node with a shorter backoff time), it cancels the
sending of the regenerated CM. It is worth mentioning that
only if a node sends a regenerated CM, it has the chance to
become a parent node. Parent nodes take the responsibility
of forwarding data traff c from/to the Internet from/to its
descendants, so a critical issue in TREBOL is to select as
parents those nodes that according to their characteristics (e.g.,
speed, position, etc.) lead to more stable trees. The CMs sent
by the RSG include the following information:

• areaBoundary: geographic information describing the
TREBOL area. Nodes outside this area receiving a CM
discard the message.

• sendPos: geographic position of the sender of the CM.
It is set initially to the location of the RSG and then over-
written with the position of the last node that regenerated
and sent the CM.

• prefR: value that represents the preferred distance be-
tween consecutive parents (i.e., nodes with children).
Lower values imply more dense, populated trees, while
higher ones imply sparse trees.

• R: value f xing the maximum allowed distance between
the receiver and the sender (i.e. the RSG or a potential
parent node) of the CM. If the sender is farther away
from the receiver node than R (i.e., sendPos fi ld), then
the CM is discarded. In this way, R serves as a virtual
wireless coverage radius.

• prefS: value that represents the preferred speed of nodes
sending regenerated CMs (i.e., potential parent nodes). It
is set by the RSG. This value is used to preserve the
stability of the tree selecting as parent nodes those that
travel at similar speeds (closer to prefS).

• maxSpeedDiff : nodes whose speed differs more than
this value from prefS will be prevented from sending
regenerated CMs (i.e., becoming parent nodes).

• Dpos and Dspeed: these two values set the maximum
value for the backoff timer. The higher these values
are, the more time is required to build the tree. On the
other hand, too short values might cause many wireless
collisions.

Selecting the potential parent nodes is a completely dis-
tributed process based on a backoff timer:

Tbackoff =
∥((∥pos− sendPos∥)− prefR)∥

R
×Dpos

+
∥speed− prefS∥

maxSpeedDiff
×Dspeed

where pos is the node’s position and speed is the node’s speed.
A node that is located at a distance prefR from the sender

of the CM, and that travels at a speed of PrefSpeed would
immediately send the regenerated CM (Tbackoff = 0 s). After
waiting Tbackoff seconds, the node sends the regenerated CM
(with the sendPos fi ld updated) only if it has not received
another CM with the same sequence number from one of its
neighbors before. In this way, the shorter the Tbackoff of a
node is, the more likely the node sends a regenerated CM
becoming a potential parent (i.e., assuming the responsibility
of having children and forwarding their data traff c).

On the other hand, the TREBOL downstream tree (i.e.,
the tree followed to deliver data traff c from the Internet to the
vehicle) is built and refreshed on a per data packet basis as part
of the data packets forwarding process. A node will be aware
of the identity (i.e., the IPv6 address) of its descendants (i.e.,
downstream nodes in the tree) when it receives data traff c
addressed to the Internet from one of its children (i.e., the
child has selected the node as next hop for traff c towards
the Internet). Thus, upon receiving a data packet addressed
to the Internet, the node learns the identity of the descendant

2

(i.e., the source address of the data packet) and updates the
corresponding forwarding state information (i.e., the child
which forwarded this data packet becomes the next hop for
downstream data traff c towards the descendant).

So far we have assumed that VANET nodes are already
provided with an IP address that can be used by the TREBOL
routing mechanism as identif er in the forwarding process.
The same CM messages used for building up the upstream
tree could also be used to convey IPv6 pref x information,
allowing nodes to autoconf gure IP addresses in a way similar
to the standard IPv6 SLAAC [2], as described next. All nodes
within the same TREBOL area share the same IPv6 pref x (or
set of pref xes), effectively forming a multi-link subnet. The
RSG sends standard Router Advertisements (RAs) messages,
modif ed as follows by TREBOL: i) RAs are regenerated by
each parent node, keeping the same pref x, and ii) RAs are
used by all VANET nodes (including parent nodes, which are
also routers) to autoconf gure an address from the pref x. These
RAs are extended with additional options to carry the f elds
def ned in the CMs (needed by TREBOL routing). In order
to avoid unnecessary control overhead, Duplicate Address
Detection (DAD) is disabled.

This approach reduces the overall control overhead required
by combining routing and address autoconf guration functions
using a single set of signaling messages [1].

III. IMPLEMENTATION

Number and high mobility of nodes (i.e., vehicles) and
lack of connectivity due to sparse traff c (i.e. low vehicle
density) are some of the challenges that VANETs have to
face to, in comparison to more traditional mobile ad hoc
networks (MANETs). These problems, together with other
low-layer related issues (e.g., severe wireless conditions at
high speed and obstacles), make it very diff cult to conduct
realistic experiments. Some testbeds for VANET applications
have been deployed so far, among them we highlight the
following: Cartel and Cabernet projects at MIT [3], [4], Dome
and DieselNet at Amherst [5], VanLan by Microsoft Research
[6] and C-VeT at UCLA [7].

Our long-term goal is to develop a low-cost, f exible
VANET emulation platform using COTS wireless devices to
get more insight of some aspects of VANET protocols that
cannot be investigated using a simulator (tool already used
to evaluate TREBOL in [1]), as for example implementation
complexity or behaviour of the protocol with real data traff c.
This kind of testbed does not aim at looking for a realistic
emulation of the wireless medium, but we rather focus on how
the protocol reacts using a multi-hop connectivity map based
on nodes position and movement. Studying the behaviour
of a VANET protocol using an emulated environment fed
by real traff c traces and realistic mobility patterns can help
to analyze how the protocol operates under conditions that
cannot be easily reproduced in a simulator. We plan to use as
COTS devices, the well-known wireless SOHO router Linksys
WRT54GL 1, but in this paper we report on f rst validation

1http://www.linksysbycisco.com/EU/en/products/WRT54GL

Fig. 2. Deployed testbed

experiences using a smaller PC-based testbed consisting in
10 PCs running a Linux system, and TREBOL as VANET
protocol to be analyzed. The installed OS distribution is
Ubuntu 10.10 running a 2.6.35 kernel. Each node is equipped
with an Atheros AR5001X wireless card managed by the
ath5k driver. We are currently working on the migration of
this PC-based testbed to the Linksys-based one.

Fig. 2 depicts the architecture of the testbed deployed in
a laboratory of the Department of Telematics Engineering
of the Universidad Carlos III de Madrid. All nodes in the
testbed are conf gured in ad-hoc mode, belong to the same
IBSS, and therefore are conf gured on the same IEEE 802.11a
channel (i.e., 140). Nodes are placed in a reduced space, and
consequently can all directly communicate with each other
(as they are all within 1-hop radio coverage), thus creating a
full-mesh topology. Note that an Ethernet network is used for
controlling and result-gathering purposes.

In order to emulate a dynamic multi-hop connectivity map
of the nodes traveling in a road, it is necessary to know the
complete route of each vehicle in the considered stretch, a
feature provided by the SUMO 2 microscopic traff c simulator.
SUMO supports many mechanisms for providing the input
traff c rate of the system, but our choice was to use real
vehicular traces kindly supplied by the Madrid city council.
The measurements, collected at a f xed observation point along
the M-303 orbital motorway, provide a time mark and the
sensed speed for each vehicle that goes through the checkpoint.
Feeding the simulator with real traces which have a resolution
of 0.1 seconds gives a good estimation of the nodes position at
any time. The f nal output provided by SUMO is a trace f le
for each vehicle providing the vehicle’s position and speed
at every time step. Using these traces we can calculate the
connectivity map for each node at any time. For this evaluation
we used the unit disk coverage rule (with the parameter
coverage radius, R) but more complex rules can be used,
taking into account the vehicles relative speed or the presence
of obstacles. The outcome of this procedure is to obtain, for

2http://sumo.sourceforge.net/
3http://en.wikipedia.org/wiki/M30 motorway

3

each node, the connectivity map at any moment.
In our testbed all nodes are within 1-hop direct radio cover-

age. To emulate a multi-hop connectivity environment we arti-
fi ially inhibit the wireless connections using a software mod-
ule. We implemented a library that, using the ip6tables
Kernel API 4, can emulate a dynamically changing multi-hop
wireless connectivity graph. As each vehicle is bound to a
single machine the connectivity mapping can be represented
using the wireless card MAC addresses. Hence, at each time
step, the f rewall rules are updated allowing traff c coming
only from the neighbor wireless cards and, thus, creating an
emulated virtual topology over the full-mesh real one.

This approach requires time synchronization among nodes,
a task that we accomplished running a pacemaker module
in the controller node. The synchronization is kept by the
reception of broadcast time-step messages on the Ethernet
control network. By merging the time-step information with
the generated vehicle trace, each node can create a snapshot of
its current connectivity map. The TREBOL software client is
in charge of processing the time-step messages and updating
position, speed and neighbors set (using the aforementioned
library) for each node. The positioning information is also
used by TREBOL in order to calculate the backoff timer while
processing a new RA. TREBOL has to change the forwarding
table in two situations: during the tree-refreshing phases and
when the node is forwarding data on behalf of a child node.
In the f rst case, the RA source address (i.e., the parent node
address) is taken as the default gateway to the Internet. In
the latter case TREBOL, using the libpcap5 API, gets the
source address of the data packets it is relaying and updates
the routing table accordingly. Netlink sockets [8] are used
for both of the tasks. Finally, the software keeps track of all the
routes added for the downstream tree and periodically cleans
the forwarding table, removing all the unused entries.

IV. RESULTS

In our previous work [1], we focused on comparing TRE-
BOL by simulation with a geographic based routing protocol.
In this paper, we aim at evaluating the behavior of TREBOL
in a more realistic environment, looking at how the algorithm
reacts to possible wireless malfunctions and how real data traf-
fi requirements are met by the emulated moving network. We
have selected three metrics: i) the parent nodes placement, ii)
the total tree construction time, and, iii) the TCP throughput.

Regarding the f rst of these metrics, analysis of the parent
locations selected by TREBOL, this metric can provide in-
sights on how the protocol reacts to conf guration parameters
changes6. Moreover, it can also prove the resilience of the
algorithm to losses of Router Advertisements. We set up a
emulation scenario representing a stretch of road 2Km long,
with an RSG placed half way, and a total of 9 cars entering

4http://www.netf lter.org/projects/iptables/
5http://www.tcpdump.org/
6We have not explained in detail how TREBOL works due to space

limitation constraints. The behavior of TREBOL can be inf uenced by tuning
some parameters [1].

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25
 0

 1

 2

 3

 4

Th
ro

ug
hp

ut
 [k

B/
s]

H
op

s
#

Time [s]

Throughput
Hops #

Fig. 5. UDP Throughput and the hop distance from the RSG

TABLE I
TREE CONSTRUCTION TIMES

prefR T̄build [s] Min [s] Max [s]
180 0.087 0.022 0.214
150 0.088 0.025 0.21
120 0.09 0.03 0.215

the road (at position 0) with times and speeds ref ecting the
actual ones in a real scenario as explained in Section III. The
average distance between the f rst and the last vehicle of the
queue is around 500m. The test is run 40 times leading to about
240 tree-refreshing phase (the time between consecutive RAs,
TRA, is uniformly distributed between 1.5s and 2.5s). Results
are shown in Fig. 3. In the sub-f gures we can see the effect of
varying one of the TREBOL conf guration parameters, prefR
(which inf uences on the desired distance between consecutive
parents): 120m for Fig. 3(a), 150m for Fig. 3(b) and 180m for
Fig. 3(c) keeping the coverage radius R at 200m. We can see
that the protocol behaves as expected: using a prefR value
close to the maximum coverage radius forces parent nodes to
be more separated between them, while shorter values make
the parents topology much denser.

Another important aspect is the time required to build the
tree. This time depends on the real topology (well placed
nodes have shorter backoff times) and on the conf guration
parameters. The number of chosen parents (value inf uenced
by prefR) might have an impact on this time: the higher
the number of the hops, the higher the tree construction
time. Choosing too short values for the parameters that have
an impact on the backoff timer (see [1] for details) might
cause problems for parent selection, as retransmission attempts
would be scheduled too close. On the other hand higher values
will increase the tree construction time, worsening the effect of
asymmetrical paths. Notice that during tree-refreshing phase
the downstream and upstream tree may not match exactly for
short periods of time, which may cause asymmetrical paths.

Results (with the same setup as the previous test) are shown
in Table I. With this setup, we f xed Dpos = 0.04s and

4

 600 700 800 900 1000 1100 1200 1300 1400
Pos [m]

Parent node pos.

(a) prefR = 120m

 600 700 800 900 1000 1100 1200 1300 1400
Pos [m]

Parent node pos.

(b) prefR = 150m

 600 700 800 900 1000 1100 1200 1300 1400
Pos [m]

Parent node pos.

(c) prefR = 180m

Fig. 3. Node Placement

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 5 10 15 20 25 30 35 40 45 50
 0

 1

 2

 3

 4

Se
q

H
op

s
#

Time [s]

Sequence Number
Hops #

(a) TCP Throughput run #1

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 10 20 30 40 50
 0

 1

 2

 3

 4

Se
q

H
op

s
#

Time [s]

Sequence Number
Hops #

(b) TCP Throughput run #2

Fig. 4. TCP Throughput and the hop distance from the RSG

Dspeed = 0.01s. The tree construction time (Tbuild), covering
2 or 3 hops (according to Fig. 3), is on average around
0.9s. This value includes the backoff procedure, the wireless
medium access time and the packet processing time for each
hop. Also the minimum and the maximum T̄build does not
seem to be signif cantly affected by prefR, but only by Dpos

and Dspeed.
A second goal of this paper is to show how a network running
TREBOL performs under real data traff c conditions . The
fi st test we run consists in streaming a video 7 from a server
at the infrastructure to a vehicle. For this purpose we used
RTP/RTCP [9] for delivering the multimedia f ow. The request
for the video f ow is done using the RTSP [10] protocol.

Fig. 5 shows that the throughput consumed by the video is
not inf uenced by the mechanism used by TREBOL to update
the routes. Although the bitrate value varies over the time (the
video is encoded using Ogg/Vorbis [11], [12], a VBR codec),
the average value is kept stable with the number of hops.

Finally, we evaluated the performance of a TCP connection
(namely a HTTP session) to check the effect that asymmetrical
paths may have on the offered throughput. As already men-
tioned, the TREBOL tree refresh process can lead to asymmet-
ric paths, which are known to affect TCP performance [13].

7http://www.sintel.org/

Although available rate and RTT do not change dramatically
in our testbed, we wanted to make sure that the TREBOL tree
refresh process would not affect the TCP performance heavily.
Our test was done using a node initially placed 400m far from
the RSG. Once it is conf gured, the node starts downloading a
huge text f le stored in a Web Server running in the RSG, while
the node keeps traveling along the road, f rst getting closer to
the RSG (in terms of distance and hence of hop numbers) and
then moving away.

Results in Fig. 4 show that the tree refresh process only
affects the TCP connection while moving away from the
RSG (i.e., when increasing the hop number). There, due to
the increasing RTT value, the throughput oscillates for short
periods. However, as shown in Fig. 4, TCP Cubic [14] (the
used TCP f avor, it comes by default in Linux kernels since
the version 2.6.19) can easily manage this situation.

V. CONCLUSION

TREBOL is a tree-based routing and IP address autocon-
fi uration protocol, proposed in [1], that benefi s from the
inherent tree-shaped nature of vehicle-to-Internet traff c to
reduce the signaling overhead while dealing eff ciently with
vehicular dynamics.

The performance of TREBOL was analyzed in [1] based
on simulations. In this paper we have gone a step further, by

5

developing a real prototype of TREBOL in Linux. Besides,
an emulation testbed has also been designed and deployed,
allowing the simulation of dynamic multi-hop connectivity
patterns (such as the ones found in real traff c situations) on
top of a physical testbed deployment in which all nodes are
within direct radio coverage. SUMO and real traff c traces
from Madrid are used in the experiments, with the goal of
emulating scenarios as close as possible to real ones. Obtained
results do not only show that TREBOL can be implemented in
real devices and works as expected, but also that the achieved
performance is good enough for a broad range of applications,
covering both UDP and TCP ones.

Next steps include the migration of the VANET emulation
testbed to COTS devices as well as the analysis of how to
better emulate wireless degradation conditions (not just hard
connectivity decisions) within a reduced physical space.

VI. ACKNOWLEDGEMENTS

The authors would like to acknowledge the Madrid city
council for kindly providing us with the vehicular traces used
in this work.

The research of Marco Gramaglia and Carlos J. Bernardos
leading to these results has been supported by the Ministry of
Science and Innovation of Spain under the QUARTET project
(TIN2009-13992-C02-01). The work of Marco Gramaglia,
Carlos J. Bernardos and Antonio de la Oliva has also been
supported by the European Community’s Seventh Frame-
work Programme (FP7-ICT-2009-5) under grant agreement n.
258053 (MEDIEVAL project).

REFERENCES

[1] M. Gramaglia, M. Calderon, and C. J. Bernardos, “TREBOL: Tree-
Based Routing and Address Autoconf guration for Vehicle-to-Internet
Communications,” in IEEE Vehicular Technology Conference (VTC),
May 2011.

[2] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address Auto-
conf guration,” RFC 4862 (Draft Standard), September 2007.

[3] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “Cartel: A distributed mobile
sensor computing system,” in 4th ACM SenSys, Boulder, CO, November
2006.

[4] J. Eriksson, H. Balakrishnan, and S. Madden, “Cabernet: Vehicular
content delivery using wif ,” in 14th ACM MOBICOM, San Francisco,
CA, September 2008.

[5] A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine, and
J. Zahorjan, “Interactive WiFi Connectivity for Moving Vehicles,” in
Proc. ACM SIGCOMM, August 2008.

[6] R. Mahajan, J. Zahorjan, and B. Zill, “Understanding wif -based con-
nectivity from moving vehicles,” in In IMC ’07: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, 2007.

[7] P. Lutterotti, G. Pau, D. Jiang, M. Gerla, and L. Delgrossi, “C-vet,
the ucla vehicular testbed: An open platform for vehicular networking
and urban sensing,” in International Conference on Wireless Access for
Vehicular Environments (WAVE 2008), 2008.

[8] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux Netlink as
an IP Services Protocol,” RFC 3549, July 2003.

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 3550, July 2003.

[10] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol
(RTSP),” RFC 2326, April 1998.

[11] I. Goncalves, S. Pfeiffer, and C. Montgomery, “Ogg Media Types,” RFC
3534, September 2008.

[12] L. Barbato, “RTP Payload Format for Vorbis Encoded Audio,” RFC
5215, August 2008.

[13] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz, “The effects of
asymmetry on tcp performance,” in Mobile Computing and Networking,
pp. 77–89.

[14] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.

View publication statsView publication stats

6

https://www.researchgate.net/publication/224264323

