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Abstract. To model the sheath structure around an emissive probe with cylindrical geometry,
the Orbital-Motion theory takes advantage of three conserved quantities (distribution funetion,
transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system
into a single integro-differential equation. For a stationary collisionless unmagnetized plasma,
this equation desecribes self-consistently the probe characteristics. By solving such an equation
numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP)
characteristics can be performed, which show that: (a) for strong emission, the space-charge
effects increase with probe radius; (b) the probe can float at a positive potential relative to
the plasma; (c¢) a smaller probe radius is preferred for the FP method to determine the plasma
potential; (d) the work function of the emitting material and the plasma-ion properties do not
influence the reliability of the floating-potential method. Analytical analysis demonstrates that
the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The
flat potential is not a self-consistent solution for emissive probes.

1. Introduction

Plasma potential is one of the principal parameters to be measured for understanding a wide
range of plasma phenomena. For this purpose, emissive probes (EPs) are frequently used,
mainly due to their simple practical implementation and robustness [1][2]. The determination of
plasma potential relies on two experimental curves of EP measurements: the current-voltage (IV)
characteristics and the floating-potential (FP) characteristics. When the EP is heated to emit
thermionic electrons and thus to achieve certain emission level, the current-voltage characteristic
is obtained by measuring the net current to the probe, for a range of different probe biases. The
floating-potential characteristic is obtained by directly measuring the probe bias at the floating
condition (i.e., zero net current), for different emission levels.

Theoretical difficulties for EPs arise from the cylindrical geometry and the space-charge effects
that can result in a virtual cathode in front of the probe (i.e., non-monotonic potential profile).
Available theoretical works commonly considered planar geometry [3][4][5]. The effects of the
particle orbital motions were neglected [6], or partially developed in some asymptotic regimes
and limited conditions [7][8]. Not until recently, a full-kinetic model based on the Orbital-
Motion Theory (OMT) for cylindrical EPs was finally developed [9]. This work is organized as
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follows. In Sec. 2, the model in [9] is briefly described, with focus on the independent parameters
that determine the EP characteristics. Parametric studies on the current-voltage and floating-
potential characteristics are presented in Sec. 3 and Sec. 4, respectively, together with discussions
on their applications. The conclusions are summarized in Sec. 5.

2. OMT for cylindrical emitters
2.1. Plasma and probe conditions
Let us consider a long emissive probe (denoted by the subscript p), with two-dimensional
cylindrical geometry, radius I, and bias ¢, relative to the Maxwellian plasma at infinity that
has unperturbed density N, electron temperature T,, ion temperature T;, and ion mass m;.
As long as collisions, plasma drift, particle trapping, transient effects, and magnetic field are
not significant, the OMT can be applied to model the probe-plasma interaction.

Thermionic electrons are emitted at the probe with a half-Maxwellian (HM) distribution
based on the probe temperature (7},) [10]. The thermionic current density is given by the
Richardson-Dushman (RD) law as
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with W the work function in eV, T}, the probe temperature in K, Agp the material-specific
correction factor, e the elementary charge, and Ag a universal constant given by
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where m, is the electron mass, kp is the Boltzmann constant, and h is the Plank constant.
Combing the HM distribution and the RD law, electrons are emitted at the probe with a density
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The dimensional parameters that determine the net current to probe are: plasma properties
(Te, T;, m;, and N), thermionic properties of the probe (T, W, and Agrp), and the probe
geometry R, and bias ¢,,.

2.2. The Vlasov-Poisson system

To obtain the net current, one needs to first find out the potential distribution along the radial
direction of the probe, by solving the Vlasov-Poisson system self-consistently. The dimensionless
radial coordinate r is defined as the radial distance to the cylinder axis normalized by Rp. The
r-dependent electric potential and particle densities are normalized as
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with the subscript a = i, e, em denoting for plasma ion, plasma electron, and emitted electrons,
respectively. Poisson’s equation for cylindrical geometry then reads
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where ions are taken as single-charged, p, is the radius to Debye length ratio
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and 8 is the emission level
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Based on the OMT, the densities n, on the right-hand-side of Poisson’s equation can be written
out explicitly as a function of ¢(r) according to Vlasov characteristics [9] [11]. The Vlasov-
Poisson system then becomes a single integro-differential equation that is to be solved for ¢(r).

The particle density n, at any radius r can be found by integrating the local distribution
function f, over the (v, vg) velocity space,

a(r) = ] / fo (1, 0, ) vy dug | (8)

where the normalizations applied are 2kpTy fo/(maNoo,emp) — fa for distribution function,

V' Ma/2kgTav, — vp for radial velocity (positive outwards), and +/ma/2kTavy — vy for
azimuthal velocity. The Vlasov equation conserves the distribution function along particle orbits.
Due to the Maxwellian plasma faraway from the probe and the HM electrons emitted at the
probe, the local distributions for the particles existing at r are
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with the normalized electric potential energy uq,(r) being defined for each species as
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For each specie, this electric potential energy is taken relative to the origin of the particle
(infinity for a = 7, e and probe for a = em).

Due to the cylindrical symmetry of the problem and its stationary character, the normalized
angular momentum and the normalized transverse total energy,

la =7Tv9, €= Uf + Ug + Ugr (11)

are also conserved along particle orbits. They not only suffice to characterize the orbits but also
allow transforming the density integration over the v,vg-space to the el-space. After applying
change of variables (v,,vg) — (€a,la), Eq. (8) becomes
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The domain of integration (2D,) should contain all the values of the orbital invariants (eq,ly)
for the particles present at r, with the factor 2 for considering only positive I, and l,, hereafter.

For each species, without trapped particles, the r-dependent domain I, is composed by two
sub-domains, D, = Dy, + Da,: 1) The sub-domain D;, stands for the particles that are able to
overcome all the barriers to arrive at r for the first time; 2) the other sub-domain Ds, stands



for the particles that are reflected back to r and appear at that radius for the second time. For
plasma species, Dy, and Ds, corresponds to incoming and outgoing particles, respectively (vice
versa for emitted electrons).

According to Eq. (13), a particle is certainly forbidden at r if v,2 > 0 can not be satisfied.
Consequently, for a particle to exist at r, it is necessary (but not sufficient) to have: a) an
adequately large energy as €4 > uq,(r); b) for any energy in this range, a small enough angular
momentum as lo < lar(r, €q). If the orbital characteristics (e and [) of a particle can fulfil the
necessary condition at any 7’ that is between r and the origin of the particle, this particle can
arrive at r for the first time, thus yielding the D, domain as
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Among the particles within this Dj, domain, some plasma particles (emitted electrons) can be
captured by the probe (infinity). The el-domain that contains all the captured particles is thus
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Readily, the reflected sub-domain Ds, can be found as the relative complement of Dy in Dy,
i.e., DQT = Dltru - Do.

After substituting Dy, = D, — Dy into Eq. (12) and using Egs. (14) and (15), the particle
density becomes
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Such an integration does not only depend on the value of ¢(r) at the local r location, but also
depends on the value at other r locations (as denoted by the star signs).

The integro-differential equation that describes the Vlasov-Poission system is thus obtained
by substituting Eq. (16) into Eq. (5). It is important to note that the solution of such a system
depends only on five independent dimensionless parameters (d;, dp, ¥p, pp, 5), and yet it is
independent of the mass ratio p; = m;/me.

To solve this integro-differential equation numerically, a non-uniform mesh for the spatial
coordinate r is created and truncated at a maximum radius rmyg,. The values of the potential
¢(r) and density nqo(r) at all mesh points are contained inside two vectors ¢ and no. With
an initial guess for ¢, the numerical scheme first computes the densities n, with Eq. (16) by
carrying out the integrals numerically with Simpson’s rule (as a Vlasov solver). Then, by using
a finite-element formulation [12,13], with the boundary conditions for a cylindrical probe as
@lr=1 = @p and d¢/dr|y,... = —@/T|rm.. [14]; a Poisson solver for Eq. (5) calculates a new ¢,
from the n, previously obtained. These two steps are the main building blocks of the Newton-
Raphson iterative scheme that solves the non-linear algebraic equation F(¢) = ¢ — @, = 0.
The most costly part of the algorithm is to numerically calculate the Jacobian for F', which is
carried out by several processors in parallel.



3. Current-voltage characteristics
Once ¢(r) is found, the current per unit probe length (normalized to the electron random
thermal current Iy;) can be found as
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being invariant with r and positive for collected electron current. For a set of independent
parameters (pp, [, 0;, 0p, 3), the current-voltage characteristic (i; = i +4; + iem Versus gp) can
be obtained by varying the probe bias ¢p.

Based on the self-consistent full-kinetic model, the first results on the current-voltage
characteristics were presented in [9] for an EP with radius R, ~ 3.6 mm and immersed in an
oxygen plasma with T; = T, ~ 0.25eV and N, ~ 1.07 x 1012 m~3. Together with the material
thermionic properties W ~ 2.5eV and Agp = 1, the IV curves for different probe temperature T},
were calculated. Non-monotonic potential due to space-charge effects were successfully captured.
This non-monotonic behaviour is not only present when the probe is negatively biased relative to
the plasma (¢, < 0), but also extends to positive probe bias (¢, > 0). The higher the emission
level is, this non-monotonic regime covers a larger range of ¢,. In this work, we consider the
same ambient parameters as d; = 1, p; = 29164.1, d, = 0.32, and 3 = 1.716, but varying the
probe radius from p, = 0.1 to pp = 2 [see Fig. 1].

For a very negative probe bias (¢p < 0), the probe emits electrons following the RD law,
being invariant with ¢p,. Because this emitted electron current is much larger than both the
plasma ion current and the plasma electron current, the total current is also invariant with ¢y.
The numerical results for such ¢, range can be found in [9]. Although not shown in Fig. 1, the
IV curves for different p, overlap with each other, as a result of normalizing the current with
the thermal electron current. For a very large probe bias (¢p > 0), the probe collects mainly
electron current. This dimensionless current can depend on p, if the probe collects electrons
beyond the Orbital-Motion-Limited (OML) regime [11]. Nevertheless, numerical results are not
shown for this ¢, range since it is not relevant for the purpose of this work.
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Figure 1. Current-voltage charac- Figure 2. The calculated and fitted
teristics for different probe radius pp, emitted electron current iem, in the
with & = 1, pi = 29164.1, §, = 0.32, case of ¢p, > 0 and monotonic
and 3 = 1.716. potential profile (p, = 0.1).

In Fig. 1, numerical results are presented for ¢, values that are close to zero. For negative
probe bias (¢, < 0), a dotted marker is placed on each curve to indicate the transition between



the monotonic and non-monotonic regime. To the left of the transition point, the potential
profile is monotonic. It can be observed that, as long as within the monotonic regime, all curves
overlap with each other. Nevertheless, the net current no longer follows the RD law as being a
constant value. It increases because the current from the plasma species becomes comparable
with the emitted electron current. To the right of the transition point, the potential profile
becomes no-monotonic and the emitted electron current is substantially reduced by the virtual
cathode in front of the probe. The net current (positive for electron collection) thus rises rapidly
and deviates from the overlapped route. For a larger probe radius, a larger net current implies
more reduction of the emitted electron current, thus a stronger space-charge effect.

In the case of positive probe biases (pp > 0), for all the curves in Fig. 1, the non-monotonic
potential profile persists for some positive probe biases (¢p > 0). Because the RD current
is larger than the random thermal current (Irp/Iin =~ 1.94), the floating (zero-net-current)
condition occurs at a positive probe bias. For ¢, > 0, the interest here is the emitted electron
current [15]. This problem was first tackled by Langmuir. The electron current in vacuum was
calculated considering electrons emitted from an internal cylindrical anode to an external coaxial
cathodic cylinder, see Fig. 40 in [16]. According to the results from Langmuir, if i¢p, is plotted
against ¢, with natural logarithm scale and linear scale respectively, the slope is estimated to
be 1/8,. Our numerical calculations show that, as long as the potential profile is monotonic,
iem is identical for different pp. In Fig. 2, the emitted electron current iem, (the dotted curve)
for pp = 0.1 is plotted (in decimal logarithm scale) versus ¢, (in linear scale). The value of
iem decreases exponentially, as indicated by the linear slope in this plot. After applying an
exponential fitting (the solid line), the slope of the decreasing 7.y, in a natural logarithm scale
is found to be 2.93, close to 1/4, ~ 3.13. The slight difference could result from the presence of
plasma particles, which modifies the potential profile and thus the current.

3.1. Inflection-point method

The inflection point method makes use of the derivatives of the IV characteristics (di;/dgy)
to measure the plasma potential. In [17], it is stated that, if an emissive probe is operated
at sufficiently low emission level to minimize space-charge effects, the probe bias - at which
the maximum of the derivatives occurs - is equal to the plasma potential. The inflection point
refers to this maximum of the derivatives. Based on this theoretical prediction, in experiments,
the inflection points are first measured for a number of low emission levels and then linearly
extrapolated to obtain the inflection point for zero emission. Therefore, the plasma potential is
given by the probe potential that coincides with this extrapolated inflection point in the limit
of zero emission. The justification of this method has been provided qualitatively in [17] and
quantitatively based on a model assuming planer emitter, cylindrical collector, and cold emitted
electrons [15][18]. Before the attempts to seek for the justification by taking derivatives of the
IV curves from numerical calculations, analytical results for zero emission can already provide
significant insights.

If there is no emission (8 = 0) and the probe is biased at the plasma potential (¢p = 0),
we first assume that there is no electric field anywhere and the plasma is directly connected to
the probe without a sheath region. It can be proved later that such a flat potential is indeed a
self-consistent solution of the Vlasov-Poisson system. In this case, there is no electric potential
barrier that repels the plasma particles: u}, = u}, = uqr = 0. Electrons and ions move towards
the probe due to orbital effects alone. According to Eq. (13), the angular momentum limitation
for the non-forbidden condition is given by lar2 = 72€4. Because it decreases all the way towards
the probe, we have the sufficient condition as [, = lar = ry/€a at every r. Consequently, the
captured condition for the particles to be collected by the probe is determined by the non-
forbidden condition at the probe only, i.e., u}, = uq,(r = 1) and I}, = lo-(r = 1). The current is
then said to be orbital-motion-limited (OML) [19] [11]. Substituting uj, = 0 and [}, = /€, into



Eq. (17), the currents are given by
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which coincide with the random thermal currents.

To prove that the flat potential profile is a self-consistent solution for a non-emitting probe
biased at the plasma potential, the particle densities need to be found. By substituting
I3 = 7y/€a and u},. = 0 into Eq. (12), the electron and ion densities are given by [19]

=1 arcsin(1/r) 1 (19)
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which recovers the classical OML result with the particle density at the probe being 1/2.
Equation (19) has been used as an initial condition in the analytical studies and the numerical
simulations for transient effects [20] [21]. The reason for this normalized density to be less
than one everywhere (i.e., particle density smaller than the plasma density) can be explained
by Fig. 7 in [22]. Due to the particles that are captured by the probe, they do not turn back to
the plasma, which results in a non-populated region in the distribution function for out-going
particle populations. This non-populated region grows towards the probe. Because the particles
arriving at the probe surface are collected by the probe (with no out-going particle populations),
the distribution function becomes half-Maxwellian at the probe (thus n, = 1/2 under OML
condition). According to Eq. (19), the net charge density is zero everywhere. Therefore, given
by Poisson’s equation, the flat potential profile is a self-consistent solution for ¢, = 0.

To determine the IV derivative near the plasma potential, it requires the expression for the
net current #; at the vicinity of ¢, = 0. It has been shown in the previous paragraphs that,
if the probe is biased at the plasma potential (¢, = 0), both ions and electrons currents do
not only coincide with the thermal currents but also with the OML currents. Therefore, at the
vicinity of ¢, = 0, the current for the attracted species can be expected to follow the OML
law, which is confirmed by the numerical results [9][22]. For repelled species, the collection is
also OML as the captured condition is determined by the non-forbidden condition at the probe
only. Nevertheless, the electric potential barrier at the probe (u}, > 0) leads to the Boltzman
current law. By applying u, = 0 for attracted species, u}; = uqr(r = 1) for repelled species, and
k= \/ €a + Uar(r = 1) for both, the currents at the vicinity of ¢, = 0 are exactly given by
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The derivatives of i;_ = i._ + i;_ and ;4 = i.4 + 7;4 are thus given by
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For two different cases, the total current and the derivatives are plotted in Fig. 3. The inflection
point of the IV curve (as the maximum of the derivative curve) at ¢, = 0 can be observed.
Note that, due to d erfex(y/z)/d z = erfex(y/z) — 1/y/mx, the second derivative of the IV curve
becomes to be positive infinity to the left of ¢, = 0 and negative infinity to the right.

As previously demonstrated, a flat-potential is a self-consistent solution for a non-emitting
probe biased at the plasma potential. Since a flat potential requires an equal density of plasma
ion and plasma electron everywhere [see Eqgs. (5) and (19)], the presence of emitted electrons
would thus violate this zero net charge and, according to Poisson’s equation, a sheath region
with non-zero electric field would build up. It can then be concluded that a flat potential can
not be possible for an emissive probe biased at the plasma potential.



Figure 3. The it-versus-gp curve (solid curve) and the di;/ dyp derivative (dashed curve) near
¢p = 0 for two cases: ; = 1 and p; = 1 (left); 4; = 1 and p; = 10000 (right).

4. Floating-potential characteristics

The probe is said to be floating if the net current is zero (i = 0). In laboratories, an emissive
probe is heated to different temperatures (dp) to achieve different emission levels (3). The probe
bias at the floating condition - the floating potential (¢; = eds/kTe) - is measured. The FP
characteristics can thus be obtained by plotting ¢ versus é, (or versus other quantities that are
equivalent to emission level, such as RD current and heating current). Such a FP curve was first
shown by Kemp and Sellen, which rises rapidly at low emission and plateaus at high emission
[6]. They claim that the knee (or break point) of this curve approximates the plasma potential.
In 1967, by considering planar geometry and fluid approximation, Hobbs and Wesson found the
monotonic to non-monotonic transition on a FP curve. The probe-to-plasma potential at that
transition was found to be e¢p =~ —kpTe (i.e., ¢p = —1) [3]. Since then, the floating-potential
method is said to underestimate the plasma potential with an error being close to the electron
temperature T.

To calculate this FP characteristic (¢, versus d,), our numerical scheme is modified. The
vector function F' = 0 (solved by the Newton-Raphson iterative scheme) considers the floating
probe bias ¢y and the floating condition i#; = 0 as an additional unknown and an additional
equation, respectively. The parameters that determine the FP characteristics are (pp, p, 0;, s,
0y). The emission level § (a parameter in the Vlasov-Poisson system) is determined by 4,, and
ds as given in Eq. (7).

In this work, the parameter set is first chosen as p, = 1, p; = 29164.1, é; = 1, d,, = 10, and
8¢ = 2 x 10719, The FP characteristics are then compared by varying one of the parameters
as shown in Figs. 4-6. The probe is found to be able to float at positive probe bias (¢ > 0),
in agreement with the PIC simulation for planar geometry [5]. The saturated behaviour of the
floating potential at high emission level is not observed for the parameters presented in this
work. Such a non-saturating behaviour has also been found by PIC simulations for spheres [23]
and in experiments performed for the plasma jet system [24]. For this reason, the knee of the FP
curve is adopted in this work to evaluate the accuracy of floating-potential method. The knee is
shown in Figs. 4-6 by a dot marker on each FP curve. To define this knee without ambiguity, it
has been taken as the transition between non-monotonic and monotonic potential profile. That
is to say, on each FP curve, to the left of the knee, the potential profile is monotonic (due to less
emission), otherwise non-monotonic. If the knee occurs at ¢ = 0, the floating-potential method
estimates the plasma potential precisely. If the knee occurs at ¢y < 0, the floating-potential
method underestimates the plasma potential with the error being |p¢|. What we are interested
here is to see how this error varies with the ambient condition.
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Figure 4. The floating-potential
characteristics for different pj.

The probe radius p, is varied between 0.1 and 2, as shown in Fig. 4. The values of ¢ at
the knee lie between 0 and —1, thus underestimating the plasma potential. They are also found
to decrease with the probe radius. Nevertheless, this decreasing behaviour seems to weaken
at larger radius as the curves become closer to each other. Although further calculations still
need to be carried out to fully recover the planar solution ¢ ~ —1 for p, > 1, this asymptotic
behaviour suggests that this is viable. We can also say that, the smaller the probe radius is, the
knee is closer to the plasma bias. Therefore, for a better approximation of the plasma potential
using floating-potential method, a smaller probe radius is preferred.
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Figure 5. The floating-potential Figure 6. The floating-potential
characteristics for different d,. characteristics for different ion mass.

If the work function of the emitting material (d,,) is reduced, the emission level () would
increase according to Eq. (7). This noticeably modifies the floating-potential characteristics as
shown in Fig. 5. If we look at the curves at a same probe temperature (d,), for a lower work
function (d,,), the floating potential (¢;) increases due to higher emission level (). Such a
rise in ¢y serves to repel the excess of emitted electrons back to the probe and thus to attain
the zero-net-current condition. Nevertheless, the influence of §,, on ¢; weakens as 4, decreases.
This is because, for §, < d,,, the change of the emission level 3 is dominated by d, other than
0y [see Eq. (7)]. Although not shown in this figure, these three curves are superimposed at
very low 4, values, in that the floating potential is mainly determined by the plasma electron
and ion current. At the end, since the knee is found to vary little with 4, the accuracy of the
floating-potential method is the same for different materials.



Calculations were also carried out for Xenon and Argon [see Fig. 6]. Three curves are found
to overlap with each other near the knee and for higher 6, values, yet deviate from each other for
low 4, values. This results from the same reason mentioned in the paragraph above. Since the
decrease in &, reduces the emission level 3, the ion current becomes comparable to (or even can
be larger than) the RD current. Under these circumstances, the floating potential would vary
with the plasma-ion properties (such as ion mass) due to their influences on the ion current. If
the ion mass is increased, the ion current tends to reduce. Therefore, to balance the plasma
electron current and thus to retain the zero-net-current condition, the probe needs to float at
a more negative potential to collect more ions, as shown by the dotted curve for Xenon. If the
probe temperature d, increases, the floating potential also increases. When it becomes close to
the plasma potential, as in the case of the knee in Fig. 6, the ion current becomes negligible
compared to the emitted electron current. The influence of the ion properties on the knee thus
becomes negligible and the knee is found to be independent on the ion mass. Due to this reason,
calculations for different §; would not provide more information.

5. Conclusions

Based on the Orbital Motion Theory, a full-kinetic model for emissive probes with two-
dimensional cylindrical geometry can solve the Vlasov-Poisson system self-consistently and
determine the potential and density profiles for arbitrary plasma parameters (as long as the
effects of collisions, plasma drift, particle trapping, transient effects, and magnetic fields are
negligible) [9]. Such a model can capture the kinetic nature of the plasma sheath, reveal the non-
negligible space-charge effects, solve for the non-monotonic potential profile without ambiguity,
and unify both collecting (Langmuir) [19] and emissive probes in one compact framework. Some
hypotheses for the numerical calculations presented this work can be easily relaxed within the
framework of the model [22]: 1) the distribution function of the plasma and emitted species can
be substituted by any energy distribution; 2) trapped particles can be included with a prescribed
distribution function (under the condition of axial-symmetric electric field); 3) multiple plasma
or emitted species, with arbitrary charge number (negative and positive), can be included.

Based on the numerical results, extensive parametric studies can be used to asses the accuracy
of plasma-potential measurements using emissive-probe techniques. For the parameter range
presented in this work, it is found that: (a) the space-charge effect increases with probe
radius; (b) for a positive probe bias (relative to the plasma potential) and a monotonic radial
potential profile, the emitted electron current decreases exponentially with the probe bias and
the slope in the semi-natural-logarithmic plot is approximately 1/Tp; (c) the probe can float
at a positive bias relative to the plasma; (d) to determine the plasma potential using the
knee of the floating-potential curve, a smaller probe radius is preferred; (e) the reliability of
the floating-potential method is not influenced by the work function of the emitting material,
neither the plasma-ion properties. An appropriate fitting of experimental EP measurements
to this numerically calculated results can also be used to predict other plasma parameters, in
addition to the plasma potential. Besides probe theory and plasma diagnostics, the numerical
results can also benefit space applications such as spacecraft charging [25] and Low Work function
Tethers (LWTs) for space debris removal [26].

To investigate the inflection-point method, analytical analysis for zero-emission was carried
out, in the purpose to determine the current and its derivative for the probe bias at the vicinity
of the plasma potential. Inflection point occurs exactly at the plasma potential, yet with the
second derivative being infinite. In addition, for a non-emitting probe biased at the plasma
potential, a flat potential is found to be a self-consistent solution of the Vlasov-Poisson system.
In this case, the density of each species decreases towards the probe, yet with the net charge
density being zero everywhere. If there is emission, emitted electrons result in negative space
charge and a flat-potential solution is thus not self-consistent for an emissive probe biased at

10



the plasma potential.
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