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Three dimensional fluid-kinetic model of a magnetically guided

plasma jet

Jesús J. Ramos, Mario Merino,∗ and Eduardo Ahedo†
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Universidad Carlos III de Madrid, Leganés, Spain

A fluid-kinetic model of the collisionless plasma flow in a convergent-divergent

magnetic nozzle is presented. The model combines the leading-order Vlasov equa-

tion and the fluid continuity and perpendicular momentum equation for magnetized

electrons, and the fluid equations for cold ions, which must be solved iteratively to

determine the self-consistent plasma response in a three-dimensional magnetic field.

The kinetic electron solution identifies three electron populations and provides the

plasma density and pressure tensor. The far downstream asymptotic behavior shows

the anisotropic cooling of the electron populations. The fluid equations determine the

electric potential and the fluid velocities. In the small ion-sound gyroradius case the

solution is constructed one magnetic line at a time. In the large ion-sound gyroradius

case, ion detachment from magnetic lines makes the problem fully three-dimensional.
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I. INTRODUCTION

Applying a convergent-divergent magnetic field to guide the plasma jet of an electric space

thruster enables the active control of the thrust magnitude, the thrust direction, and the

specific impulse. The contactless operation of such a magnetic nozzle[1–5] (MN) avoids the

efficiency, erosion and thermal problems of solid nozzles, and adds propulsive flexibility to

address different mission needs. For these reasons, MNs constitute the acceleration stage of

several next-generation plasma thrusters, such as the helicon plasma thruster (HPT)[6–14],

the electron cyclotron resonance thruster (ECRT)[15–17], the applied-field magnetoplasma-

dynamic thruster (AF-MPDT) [18–22], and the variable specific impulse magnetoplasma

rocket (VASIMR) [23–25].

Understanding the physics of the plasma beam created by a MN is essential to maximize

the magnetic thrust generated by the MN, optimize the thruster performances, and reduce

the negative impact of the energetic charged particles from the periphery of the plasma

beam on the spacecraft, which takes place mainly if the beam divergence is large. A review

of the state-of-art of the knowledge on the physics of propulsive MNs can be found in Ref.

[5].

There are several key aspects and related challenges in MN physics. A first one is that the

aforementioned thrusters use different heating mechanisms to deliver power to the plasma,

resulting in different forms of internal energy, which determines the conversion process into

axially directed kinetic energy in the MN. For instance, HPTs store plasma internal energy

isotropically on the electrons, ECRT do it anisotropically on electrons, while VASIMR do it

anisotropically on ions, and the AF-MPDT seems to store it partially in both populations. In

a macroscopic view, isotropic internal energy is converted into axially directed one through

electrical and fluid-mechanical (i.e. pressure) forces, while magnetic mirror conversion plays

also a role when internal energy is anisotropic.

A second challenge is related to the modeling of the near-collisionless plasma expansion

regime in most of the MN, which implies the absence of local thermodynamic equilibrium.

This makes uncertain the application of a fluid closure to each species[26], and calls for

a description that retains the dominant kinetic effects[27] In the particular case of the

electron population, which consists of a majority of confined electrons plus a small tail

of energetic free electrons that compensate the emitted ion current, the habitual isothermal
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or adiabatic closure relations do not provide an adequate description; while experimentally-

fitted polytropic laws[28–30] provide a higher degree of sophistication, they still misrepresent

the local electron cooling behavior and the development of anisotropy.

Thirdly, the knowledge of the far plume presents several issues and processes to be as-

sessed. One of them is the total electric potential fall along the MN, which is set by the

full expansion of the plasma beam, closely related to the thruster specific impulse and de-

terminant in the interaction between the plasma and the spacecraft wet surfaces. The total

potential fall depends again on the electron thermodynamics and also on the ratio of bulk

electron current extracted from the plasma source to the thermal electron flux[31, 32]. A sec-

ond one is the plasma detachment from the MN[33], and thus the effective plume divergence

angle. The detachment of the demagnetizing ions downstream due to their inertia is well

understood[34], but the picture remains incomplete without a model that allows treating

electron demagnetization too.

A fourth challenge is the study of the plasma expansion in a three-dimensional (3D)

MN, like the one sketched in Fig. 1. While most MNs are axisymmetric (and plasma and

magnetic tubes are well identified), some applications, such as the magnetic control of the

thrust vector[35], are based on MNs with variable 3D shape. The extension of the numerical

treatment from the two-dimensional (2D) to a 3D nozzle geometry is not straightforward

and requires a careful analysis of the most suitable way to integrate the set of equations.

The previous efforts by Ahedo, Merino and coworkers in dealing with MN physics are sum-

marized in [5], and can be divided in three MN model types. Firstly, there is a 2D/3D fully-

magnetized and stationary fluid model[36], implemented in the open-source FUMAGNO

code[37] with a simple closure relation for the plasma pressures (polytropic or isothermal

electrons and quasi-cold ions). The model is useful to analyze the near-region of a divergent

MN, where most of the thrust gain takes place, and allowed to demonstrate the feasibility

of the magnetic control of the thrust vector with a 3D MN[35]. The model is surprisingly

simple, as the fluid equations in the fully-magnetized limit can be integrated along each

magnetic line independently.

Secondly, there is a 2D stationary fluid model with partially demagnetized ions and

the same simple fluid closure for the isotropic plasma pressures, implemented in the code

DIMAGNO[26]. This model is more suitable to the mild magnetic strengths used in most

plasma thrusters, and allows studying the far-region plume and ion detachment from the
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FIG. 1. Sketch of a three-dimensional magnetic field representative of a HPT or ECRT, generated

by a solenoid (green) and a 3D MN (blue) composed of 15 deg tilted coils. A single magnetic tube

has been plotted (yellow). The central magnetic line (red line) and the axis of symmetry (dashed

black line) are shown.

closed magnetic field lines. The model applies efficiently the method of characteristics to

integrate the ion equations. Extensions of the core DIMAGNO model have evaluated the

effects of collisions[33], electron inertia[38], double-Maxwellian electron populations[39], and

plasma-induced magnetic field[40] on the beam expansion.

The phenomenological closure of the electron fluid equations is the weakest aspect of the

previous models. The third type of MN models, already developed, is a fully-magnetized,

stationary, kinetic, paraxial model, which integrates along the MN axis the Vlasov equation

for the velocity distribution function (VDF) of each species[31]. The model demonstrates

that collisionless cooling and development of temperature anisotropy are due to the emp-

tying of regions in the VDF space as the plasma beam flows downstream into vacuum.

Unfortunately, this kinetic model brings up a new issue: there are islands in the VDF phase

space containing trapped electrons, disconnected from the boundary conditions of the prob-

lem, so their VDF is unknown. Incidentally, this model is fully analogous to that of an

unmagnetized plasma plume[41]. A posterior time-dependent kinetic paraxial model has

demonstrated the formation of trapped populations in the transient period of formation of

the MN[32].

This paper attempts to continue these previous modeling efforts by establishing a consis-
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tent 3D stationary fluid-kinetic model of the MN, which takes advantage when possible of

fluid equations and relies on the moments of the collisionless VDF when necessary. Mathe-

matical consistency is achieved by carefully applying the hierarchy of magnitudes established

by the relative orders of the main dimensionless parameters. The resulting model unifies

two main lines of work and can be used to tackle the issues commented above.

The rest of the article is structured as follows. The fluid-kinetic model is derived in

Section II. Section III discusses the integration of the VDF for electrons, raises again the

issue of the presence of trapped electrons, and analyzes asymptotically their influence on

the downstream asymptotic behavior of the beam. Section IV discusses the fluid model for

nearly-cold ions and its coupling with the previous electron kinetic model. Fully-magnetized

and partially-magnetized ion cases are distinguished. For the last case, two possible schemes

to solve it in 3D are proposed. Section V discusses the posterior determination of electron

currents and related issues. Finally, Section VI gathers the conclusions of this work.

II. FLUID-KINETIC MODEL FOR A MAGNETIC NOZZLE PLASMA

To a good approximation, the plasma in the MN of a space thruster can be assumed to

be collisionless and, at least before it becomes too diluted at far distances from the nozzle

throat, quasineutral. For each plasma species characterized by particle mass ms and electric

charge es, the fluid equations that describe the conservation of particles and momentum are

∂ns
∂t

+∇ · (nsus) = 0 (1)

and

msns

[
∂us
∂t

+ (us · ∇)us

]
+∇ · Ps − esns (E + us ×B) = 0, (2)

where ns and us are respectively the macroscopic particle density and flow velocity, Ps is

the pressure tensor,

Ps(x, t) = ms

∫
(v − us)(v − us) fs(x,v, t) d3v, (3)

and fs(x,v, t) is the distribution function that satisfies the collisionless Vlasov equation.

For such a collisionless plasma, the mean scalar temperatures can be defined as Ts ≡
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tr(Ps)/(3ns). The electromagnetic fields are determined by Ampere’s and Faraday’s laws,

∇×B = µ0 (jc + jp) , (4)

∇×E = −∂B
∂t

, (5)

along with ∇ ·B = 0 and the quasineutrality condition∑
s

esns = 0. (6)

In equation (4), the source for the magnetic field includes the current jc in the coils that

generate the externally applied nozzle field, and the current jp =
∑
esnsus in the plasma.

It is advantageous to determine us from the macroscopic fluid equations (1), (2) and

use the kinetic solution for fs only to close such collisionless fluid system. To this end, we

consider the kinetic equation in the reference frame of the macroscopic flow of the species

under consideration, in which the phase-space velocity coordinate is the peculiar velocity

w = v − us. Thus, the expression of the pressure tensor reduces to

Ps(x, t) = ms

∫
ww fs(x,w, t) d3w (7)

and the collisionless kinetic equation for fs(x,w, t) becomes

∂fs
∂t

+ (w + us) ·
∂fs
∂x

+

[
es
ms

w ×B +
Fs
msns

− (w · ∇)us

]
· ∂fs
∂w

= 0, (8)

where

Fs = esns(E + us ×B)−msns

[
∂us
∂t

+ (us · ∇)us

]
(9)

is the force density that combines the electric force in the moving frame with the inertial

force that arises from the transformation to such accelerating frame. Using the relationships∫
fs(x,w, t) d3w = ns and

∫
w fs(x,w, t) d3w = 0, the 1 and w moments of equation (8)

yield the fluid continuity and momentum conservation equations (1), (2).

In addition to the quasineutral approximation and the neglect of collisions, our theoretical

model for the plasma in a space thruster MN will incorporate a number of simplifying

idealizations. The electrons will be assumed magnetized, i.e. their Larmor radius of gyration

about the magnetic field ρe will be assumed much smaller than the characteristic length

scale of the system L. The electron mass will be assumed much smaller than the ion
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mass, and the ion temperature much smaller than the electron temperature, consistent

with a plasma production and heating system based on the interaction of radio-frequency

waves with the magnetized electrons as in HPTs and ECRTs. The electron βe parameter,

namely the ratio of electron pressure to magnetic pressure, will be assumed sufficiently

small for the plasma current contribution to the magnetic field to be negligible compared

to the field externally generated by the hardwired coils. On the other hand and for the

sake of simplicity, it will be assumed that the plasma contains a single ion species of unit

charge, hence the quasineutrality condition reduces to ne = ni = n. A steady state will

be considered, ∂/∂t = 0, so equation (5) yields E = −∇φ, where the electric potential is

commensurate with the electron temperature, eφ ∼ Te. No simplifying assumptions will be

made regarding the spatial geometry of the system, and a three-dimensional formulation will

be maintained, to allow the analysis of non-axisymmetric MNs with thrust vector control[35].

Based on the above theoretical assumptions, the mathematical analysis will carry asymp-

totic expansions in the following small parameters:

ρe
L
≡ m

1/2
e T

1/2
e

eBL
� 1,

me

mi

� 1,
Ti
Te
� 1, βe ≡

nTe
B2
� 1. (10)

This implies the separation of three velocity scales, namely the ion thermal velocity, the

sound velocity and the electron thermal velocity, defined respectively as

vthi ≡
√
Ti
mi

� cS ≡
√
Te
mi

� vthe ≡
√
Te
me

. (11)

The final assumption is a sonic scale ordering for the macroscopic flows,

|ue| ∼ |ui| ∼ cS. (12)

With the above asymptotic expansion scheme, eφ ∼ Te ∼ mi|ui|2 � Ti and eφ ∼ Te �

me|ue|2, and the leading-order, steady-state fluid system reduces to the cold-ion, massless-

electron limit

∇ · (nui) = 0 (13)

mi

[
1

2
∇|ui|2 + (∇× ui)× ui

]
+ e (∇φ− ui ×B) = 0 (14)

∇ · (nue) = 0 (15)

∇ · Pe − en (∇φ− ue ×B) = 0. (16)
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Besides, the leading-order electron pressure tensor for small electron gyroradius (ρe/L� 1)

has the gyrotropic form[42]

Pe = pe‖bb+ pe⊥(I− bb), (17)

where b = B/B is the magnetic unit vector,

pe‖ = me

∫
w2
‖f

(0)
e (w‖, w⊥) d3w, (18)

pe⊥ =
me

2

∫
w2
⊥f

(0)
e (w‖, w⊥) d3w (19)

and the leading-order distribution function f
(0)
e (w‖, w⊥) is independent of the gyrophase

angle. This leading-order distribution function satisfies the zero-Larmor-radius drift-kinetic

equation in the reference frame of the electron macroscopic flow[43]:

(w‖b+ ue) ·
∂f

(0)
e

∂x
+

{
b ·
[
e

me

∇φ− (ue · ∇)ue

]
− w‖(bb) : (∇ue)−

w2
⊥

2
b · ∇ lnB

}
∂f

(0)
e

∂w‖

+
w⊥
2

[
(bb− I) : (∇ue) + w‖b · ∇ lnB

] ∂f (0)
e

∂w⊥
= 0. (20)

For the assumed situation where the electron flow velocity is much smaller than the electron

thermal velocity (|ue| � vthe), and for the purpose of evaluating the leading-order moments

(18), (19), it is sufficient to solve the small-flow-velocity limit of the above drift-kinetic

equation,

w‖b ·
∂f

(0)
e

∂x
+

[
e

me

b · ∇φ− w2
⊥

2
b · ∇ lnB

]
∂f

(0)
e

∂w‖
+

w⊥w‖
2

b · ∇ lnB
∂f

(0)
e

∂w⊥
= 0. (21)

Here, the phase-space advection operator acting on f
(0)
e has definite (odd) parity with

respect to w‖. Therefore, the solution for f
(0)
e is the sum of two independent solutions, one

that is even with respect to w‖ and another that is odd. Only the even solution is needed

in order to evaluate the moments n(x) and Pe(x) of interest to close the system of fluid

equations (13)–(16).

In order to solve the drift-kinetic equation (21), it is useful to make the change of phase-

space coordinates from (x, w‖, w⊥) to (x, H, µ), where H and µ are the energy and the

magnetic moment,

H =
me

2
(w2
‖ + w2

⊥)− eφ(x), µ =
mew

2
⊥

2B(x)
(22)
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and call

F (x, H, µ) = m−3/2e f (0)even
e (x, w‖, w⊥). (23)

With this change of coordinates we have

b · ∂
∂x

∣∣∣∣
w‖,w⊥

= b · ∂
∂x

∣∣∣∣
H,µ

− e(b · ∇φ)
∂

∂H
− (b · ∇ lnB)µ

∂

∂µ
, (24)

∂

∂w‖
= mew‖

∂

∂H
, (25)

∂

∂w⊥
= mew⊥

∂

∂H
+

2µ

w⊥

∂

∂µ
, (26)

and equation (21) becomes

w‖b ·
∂F

∂x

∣∣∣∣
H,µ

= 0 (27)

which can be solved independently along each magnetic field line, with b · ∂/∂x|µ,H =

∂/∂`|H,µ where ` is the arc length. Equation (27) states that for each (H,µ), F is piece-wise

constant along `, with discontinuities at the turning points for that family of electrons, i.e.

where w‖ = 0. For a given H and ` the range of the magnetic moment is 0 < µ < µmax(`,H),

where

µmax(`,H) =
H + eφ(`)

B(`)
(28)

corresponds to w‖ = 0 from equation (22).

In terms of the (H,µ) variables, the moments of the electron distribution function needed

to close the system of fluid equations are:

n = 23/2πB

∫ ∞
−eφ

dH

∫ µmax

0

Fdµ

(H + eφ− µB)1/2
, (29)

pe‖ = 25/2πB

∫ ∞
−eφ

dH

∫ µmax

0

(H + eφ− µB)1/2Fdµ, (30)

pe⊥ = 23/2πB2

∫ ∞
−eφ

dH

∫ µmax

0

µFdµ

(H + eφ− µB)1/2
. (31)

The leading-order drift-kinetic equation (27) for F (x, H, µ) implies that the parallel gradient

of (30) is

b · ∇pe‖ = pe‖(b · ∇ lnB) + 23/2πB

∫ ∞
−eφ

dH

∫ µmax

0

(eb · ∇φ− µb · ∇B)Fdµ

(H + eφ− µB)1/2
(32)
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and, recalling (29) and (31), this can be expressed as

b · ∇pe‖ = (pe‖ − pe⊥)(b · ∇ lnB) + enb · ∇φ (33)

which is the parallel component of the electron momentum conservation equation (16). On

the other hand, the perpendicular components of (16) and the electron continuity equa-

tion (15) do not follow from the leading-order drift-kinetic system (27)–(31) and contain

additional information.

In summary, our fluid-kinetic model can be regarded as composed of three subsystems

of equations. The first one is the ion fluid system (13), (14) which, assuming the density

n to be known, would determine the ion flow velocity ui and the electric potential φ. The

second one is the electron drift-kinetic system (27)–(31) which, assuming φ to be known,

would determine the electron distribution function F (x, H, µ) and its moments n, pe‖ and

pe⊥. The third one is the electron fluid system which includes (15) and the perpendicular

components of (16) and that, once the density and the electron pressure tensor are known,

determines the three components of the electron flow velocity ue. The first two subsystems

must be solved simultaneously for n, φ and ui, but the third one for ue and pe‖ and pe⊥

can be solved alone, after a closed solution of the first two coupled subsystems has been

obtained. The magnetic field B is assumed to be fixed and determined by the hardwired

coil sources and/or permanent magnets, neglecting the contribution of the plasma current.

We should note that equation (27) admits as integration constants arbitrary functions of

(H, µ) that are uniform along the magnetic field lines. These integration constants, which

are necessary to define a complete steady-state solution, are partially specified by boundary

conditions on the electron distribution function at the upstream and downstream ends of

the plasma domain, as will be discussed in more detail in the next Section.

III. ELECTRON DRIFT-KINETIC EQUATION ANALYSIS

The steady-state, zero-Larmor-radius electron drift-kinetic equation (27) for F applies

independently to each magnetic field line, in a three-dimensional phase space with coor-

dinates (`,H, µ). The range of the magnetic moment in this phase-space is limited by

0 < µ < µmax(`,H), where µmax(`,H) is the surface of electron turning points given by (28).

The qualitative shape of the µmax(`,H) surface can be inferred from the expected variation
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of B(`) and φ(`) along the magnetic line. As sketched in Fig. 2, in a MN configuration the

magnitude of the magnetic field has a maximum at the nozzle throat, and decays to zero at

far distances upstream and downstream. Setting the origin of the electric potential at the

far upstream side of the nozzle, φ(`→ −∞) = 0, we expect φ(`) to decrease monotonically

along the expansion and approach a downstream value φ∞ ≡ φ(` → +∞) < 0 asymp-

totically. Then, the shape of the µmax(`,H) surface presents three behaviors, sketched in

Fig. 3:

1. For H less than some value H∗ < −eφ∞, µmax is a monotonic function of `, decreasing

from µmax = +∞ at ` = −∞ to µmax = 0 at the value of ` that makes H = −eφ(`).

2. For H∗ < H < −eφ∞, µmax decreases with ` from ` = −∞ until some critical value

` = `c(H) where it reaches a local minimum µc(H), then increases until reaching a

local maximum after which it decreases to 0 at the value of ` that makes H = −eφ(`).

3. Finally, for H > −eφ∞, µmax has a minimum value µc(H) at ` = `c(H) and tends to

+∞ as `→ ±∞.

The general solution of the drift-kinetic equation (27) is any function of (H,µ) that is

constant along each magnetic line. However, the permitted (`,H, µ) phase-space is made

of the different domains discussed above, that are not always connected by the magnetic

line. Therefore, the F (H,µ) solution may be specified differently in each of those domains,

which results in the following expression for the general solution of the electron drift-kinetic

equation:

F (`,H, µ) = F1(H,µ) for H ≤ H∗

F (`,H, µ) = F2a(H,µ) for H∗ < H < −eφ∞, µ ≤ µc(H)

F (`,H, µ) = F2b(H,µ) for H∗ < H < −eφ∞, µ > µc(H), ` < `c(H)

F (`,H, µ) = F2c(H,µ) for H∗ < H < −eφ∞, µ > µc(H), ` > `c(H) (34)

F (`,H, µ) = F3a(H,µ) for H ≥ −eφ∞, µ ≤ µc(H)

F (`,H, µ) = F3b(H,µ) for H ≥ −eφ∞, µ > µc(H), ` < `c(H)

F (`,H, µ) = F3c(H,µ) for H ≥ −eφ∞, µ > µc(H), ` > `c(H).
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FIG. 2. Sketch of the magnetic field strength B(`) and the electric potential φ(`) along a single

magnetic line. The maximum of the magnetic field defines the throat of the flux tube. The electric

potential goes to an asymptotic value downstream φ∞.

Next, steady-state boundary conditions are imposed to F . Following [31], the far up-

stream side of the nozzle is connected to a plasma source characterized by a certain distri-

bution F0(H,µ), whereas on the far downstream side all electrons are lost. The domains

labeled 1, 2a, 2b, and 3b contain electrons that are connected to the upstream reservoir and

are reflected by the combined barrier of the electric potential and the magnetic mirror force.

Thus, the steady-state solution in these “reflected-electron” domains should be[31]

F1 = F2a = F2b = F3b = F0(H,µ) (35)

The domain labeled 3a contains electrons that are connected to the upstream reservoir

but are not reflected by the electric and magnetic mirror forces and travel freely to the

far downstream side. The steady state distribution function in this “free-electron” domain

should be F0(H,µ) for positive parallel velocities and zero for negative parallel velocities

[31], so their zeroth-order even representation is

F3a =
1

2
F0(H,µ). (36)
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FIG. 3. Sketch of the µmax(`,H) function of equation (28) for five increasing values of H: H1, H∗,

H2, −eφ∞, and H3. Dots denote the position of the minimum of each curve, (`c, µc). The smaller

diagrams to the right identify the regions 1, 2a, 2b, 2c, 3a, 3b, 3c of (34) for H1, H2, H3.

The domain labeled 3c is in the shadow of the potential barrier, extending to the far down-

stream side but not connected to the upstream reservoir, therefore it should be empty in

steady-state,

F3c = 0. (37)

Finally, the domain labeled 2c is a region of trapped electrons where the sampled extent

of magnetic line is limited by two particle reflecting points and extends neither to −∞ nor

to +∞. There is no physical criterion in the framework of the present model for what the

steady-state distribution function should be in this domain, other than the previous time

history that led the system to the steady state under consideration. Accordingly, one should

allow in principle any possible steady-state function of (H,µ) in this “trapped-electron”

domain. We choose to write such trapped particle domain solution as

F2c = F0[H,µc(H)] G[H,µ− µc(H)] (38)

with G(H, µ̄) arbitrary. Once F (`,H, µ) is fully specified in all domains for a given φ(x),
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equation (29) yields n(x), which is implemented in the ion fluid model of next Section

to provide a new φ(x), and iteration progresses until convergence is achieved to the self-

consistent φ(x) and n(x).

It turns out that the choice of G(H, µ̄) has a large impact in the solution for n(x). The

steady-state paraxial model of Ref. [31] assumed G to be a constant α, equal or lower than 1.

Then, in the asymptotic downstream limit, where B → 0 and n→ 0, the vanishing n(x) was

surprisingly dominated by trapped electrons instead of by free electrons. More recently, the

paraxial model of Ref. [32] obtained numerically the time-dependent, initial-value solution

of a related collisionless MN problem. Its long-time behavior is in agreement with the

steady-state solution (35)-(38); the chosen initial conditions and the collisionless transient

dynamics specify a particular form of the function G(H, µ̄), that vanishes at µ̄ → ∞ and

reduces the relevance of trapped electrons far downstream.

A. Downstream asymptotic analysis

It is possible to study analytically the asymptotic behavior of the fluid moments of the

steady-state solution (35)–(38) in the far downstream limit, even without knowing the self-

consistent profile of φ(`). This analysis illustrates a number of important physical features

in the divergent MN such as the plasma expansion laws, its anisotropic collisionless cooling,

and the relevance there of trapped electrons (of phase-space domain 2c).

For the sake of clarity, the analysis is particularized for an upstream Maxwellian reservoir,

that is

F0(H,µ) = FM(H) ≡ N0(2πTe0)
−3/2 exp (−H/Te0) (39)

and equations (29)–(31) assure that the constants N0 and Te0 are indeed the far upstream

density and temperature:

n(`→ −∞) = N0, pe‖(`→ −∞) = pe⊥(`→ −∞) = N0Te0. (40)

Far downstream, it is useful to show separately the contributions of the free-electron,

reflected-electron and trapped-electron domains, which will be labeled respectively with

the f , r and t superscripts. For ` → +∞, where φ → φ∞ and B → 0, the asymptotic

14



contribution of the free-electron domain is

nf (`→ +∞) =
N0B

2π1/2Te0
exp

(
eφ∞
Te0

)∫ ∞
0

dt exp(−t)t−1/2µc (Te0t− eφ∞) , (41)

pfe‖(`→ +∞) =
N0B

π1/2
exp

(
eφ∞
Te0

)∫ ∞
0

dt exp(−t)t1/2µc (Te0t− eφ∞) , (42)

pfe⊥(`→ +∞) = O(B2)� pfe‖(`→ +∞). (43)

This asymptotic behavior (nf ∝ B, pfe‖ ∝ B, pfe⊥ ∝ B2) is consistent with a double-adiabatic

equation of state,

pfe‖ ∝
(nf )3

B2
, pfe⊥ ∝ nfB. (44)

For ` → +∞, where φ → φ∞ and B → 0, the asymptotic contribution of the reflected-

electron domain is

nr(`→ +∞) =
2N0B

π1/2Te0

[
e

Te0
(φ− φ∞)

]1/2
exp

(
eφ∞
Te0

)
µc (−eφ∞) , (45)

pre‖(`→ +∞) =
4N0B

3π1/2

[
e

Te0
(φ− φ∞)

]3/2
exp

(
eφ∞
Te0

)
µc (−eφ∞) , (46)

pre⊥(`→ +∞) = O
[
B2(φ− φ∞)1/2

]
, (47)

which is also consistent with a double-adiabatic equation of state[42]

pre‖ ∝
(nr)3

B2
, pre⊥ ∝ nrB, (48)

but is always negligible compared to the free-electron contribution (41)–(43).

Evaluating the contribution of the trapped-electron domain requires knowing the function

G(H, µ̄) in equation (38) which, as discussed above, is not possible based on steady-state

considerations alone. Here we shall consider two heuristic models for this function and

explore the different outcomes that follow from such working assumptions. The first one

(labeled as t1) assumes a constant G(H, µ̄) = α with 0 < α ≤ 1, meaning that the trapped

electrons are thermalized and fill the whole range of available magnetic moments. This was

the model adopted (with α = 1) in [31] and yields

nt1(`→ +∞) = α
4N0

3π1/2

[
e

Te0
(φ− φ∞)

]3/2
exp

(
eφ∞
Te0

)
(49)

pt1e‖(`→ +∞) = α
8N0Te0
15π1/2

[
e

Te0
(φ− φ∞)

]5/2
exp

(
eφ∞
Te0

)
(50)

pt1e⊥(`→ +∞) = α
8N0Te0
15π1/2

[
e

Te0
(φ− φ∞)

]5/2
exp

(
eφ∞
Te0

)
, (51)
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consistent with an isotropic, adiabatic equation of state

pt1e‖ = pt1e⊥ ∝ (nt1)5/3. (52)

The complete numerical solution of [31] showed a downstream asymptotic behavior of the

electric potential (φ−φ∞) ∝ B2/3. In this case, the trapped-electron asymptotic contribution

to the density is comparable to the free-electron one, nt1 ∝ B ∼ nf , and the trapped-electron

asymptotic contributions to the pressures are pt1e‖ ∝ B5/3 � pfe‖ and pfe⊥ � pt1e⊥ ∝ B5/3 � pfe‖.

Thus, the asymptotic behaviors of the parallel and perpendicular temperatures are

Te‖ ≡
pe‖
n
→

pfe‖
nf + nt1

→ constant (53)

and

Te⊥ ≡
pe⊥
n
→ pt1e⊥

nf + nt1
∝ B2/3 � Te‖. (54)

Our second model for the steady-state trapped-electron distribution function (labeled as

t2) is motivated by the initial-value, dynamical analysis of a related collisionless plasma

model in Ref. [32]. This work showed a time-dependent electron distribution function that

approaches a steady-state at long times, having the form given by equations (35)–(38) with

a specific F2c(H,µ). This distribution of trapped electrons was formed during the transient

evolution and approaches the Maxwellian FM(H) at µ = µc(H), making a continuous tran-

sition to the reflected-electron domain at the trapped-untrapped boundary. Then, it is a

decreasing function of µ − µc(H), that tends to zero away from such trapped-untrapped

boundary. Accordingly, we postulate a G(H, µ̄) function satisfying G(H, 0) = 1 and∫ ∞
0

G(H, µ̄)dµ̄ = J(H) <∞ (55)

so that

lim
ε→0

1

ε
G
(
H,

µ̄

ε

)
= J(H)δ(µ̄). (56)

With this assumption, the trapped-electron asymptotic contribution in the far downstream

limit, where φ→ φ∞ and B → 0, is comparable to the reflected-electron contribution:

nt2(`→ +∞) =
2N0B

π1/2Te0

[
e

Te0
(φ− φ∞)

]1/2
exp

(
eφ∞
Te0

)
J (−eφ∞) , (57)

pt2e‖(`→ +∞) =
4N0B

3π1/2

[
e

Te0
(φ− φ∞)

]3/2
exp

(
eφ∞
Te0

)
J (−eφ∞) , (58)

pt2e⊥(`→ +∞) = O
[
B2(φ− φ∞)1/2

]
. (59)
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This is now also consistent with a double-adiabatic equation of state,

pt2e‖ ∝
(nt2)3

B2
, pt2e⊥ ∝ nt2B, (60)

and is negligible compared to the free-electron contribution. Finally, the asymptotic behav-

iors of the parallel and perpendicular temperatures in this case are

Te‖ ≡
pe‖
n
→

pfe‖
nf
→ constant (61)

and

Te⊥ ≡
pe⊥
n
→ pfe⊥

nf
∝ B � Te‖. (62)

IV. THREE-DIMENSIONAL SOLUTION SCHEME FOR THE ION FLUID

SYSTEM

The drift-kinetic electron model is coupled with the fluid ion equations through the

quasineutrality condition (6). The ion momentum equation (14) has the Bernoulli integral

ui · ∇
(mi

2
|ui|2 + eφ

)
= 0. (63)

Therefore, considering that the previous electron drift-kinetic model provides n, the ion fluid

system (13)-(14) for φ and ui can be written as

eφ = mi

(
ĥi − |ui|2/2

)
with ui · ∇ĥi = 0, (64)

where ĥi is the Bernouilli energy, constant along each ion flow line,

B · ∇
(nui‖
B

)
= −∇ · (nui⊥), (65)

ui⊥ =
mi

eB
b×

[
∇ĥi + (∇× ui)× ui

]
. (66)

The solution of this system depends on the relative magnitude of the two small parameters

ρe/L ≡ mevthe/(eBL)� 1 and me/mi � 1, and two separate cases can be considered. The

first corresponds to ρe/L� (me/mi)
1/2, in which case the ion-sound-gyroradius ρS is much

less than the scale length L:

ρS
L
≡ micS
eBL

=
(mime)

1/2vthe
eBL

=
ρe
L

(
mi

me

)1/2

� 1. (67)

The second corresponds to ρe/L ∼ (me/mi)
1/2, in which case ρS is comparable to L:

ρS
L

=
ρe
L

(
mi

me

)1/2

∼ 1. (68)
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A. Small ion-sound-gyroradius

When ρS/L ≡ micS/(eBL) � 1, the cold ions are effectively magnetized and the ion

parallel flow velocity is much greater than the perpendicular velocity:

ui‖ ∼ cS � |ui⊥| '
mi

eB

∣∣b× [(∇× ui‖b)× ui‖b]
∣∣ ∼ ρScS

L
. (69)

Therefore, the ion continuity equation is

B · ∇
(nui‖
B

)
= −∇ · (nui⊥) ∼ nρScS

L2
�

nui‖
L

(70)

and its the leading-order solution is

ui‖ =
kiB

n
with B · ∇ki = 0, (71)

so that for each streamline ki is the (constant) ratio of ion to magnetic flux. Retaining only

this leading-order accuracy, the stream lines for the ion flow coincide with the magnetic field

lines and the solution for the electric potential is

eφ = mi

(
ĥi −

k2iB
2

2n2

)
(72)

where both ĥi and ki are now constant along the magnetic field. Equation (72) provides

a relationship between the density and the electric potential on each magnetic line which,

coupled to the electric drift-kinetic system (27)–(31), allows to solve the three-dimensional

problem one magnetic line at a time[35, 36]. In addition to the integration constants ĥi and

ki, the behavior of the plasma solution on each different magnetic line depends only on the

variation B(`) of the magnitude of the magnetic field as a function of the arc length along

the line, which is given by the chosen nozzle coil configuration. Calling φ(`→ +∞) = φ∞,

the downstream asymptotic behavior of the density and the ion velocity for `→ +∞ are

ui‖ → ui‖∞ =

(
2ĥi −

2eφ∞
mi

)1/2

, n→ kiB

ui‖∞
∝ B. (73)

Furthermore, if ui‖(`→ −∞)→ 0, then ĥi = 0 for all magnetic (and ion) lines, and several

expressions above simplify.
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B. Large ion-sound-gyroradius

When ρS/L ≡ micS/(eBL) ∼ 1, the cold ions are partially demagnetized so that the

parallel and perpendicular components of the ion flow velocity are comparable:

ui‖ ∼ |ui⊥| =
mi

eB
|b× [(∇× ui)× ui]| ∼

ρScS
L
∼ cS. (74)

In this case, the complete ion fluid system (64)–(66) must be solved in the whole three-

dimensional space. This problem admits a notable simplification when ĥi are the same for

all the ion flow lines, as in the case where all ions have negligible velocity far upstream,

ui‖(` → −∞) → 0. Under this assumption, we eliminate ui‖ in favor of its renormalized

counterpart

λ ≡
ui‖

Ωci + ωi‖
, (75)

where Ωci = eB/mi is the ion cyclotron frequency and

ωi‖ ≡ b · (∇× ui) (76)

is the parallel ion vorticity which, under the working assumption that the plasma current

contribution to the magnetic field is negligible so that ∇×B = 0 outside the coils, can also

be expressed as

ωi‖ =
1

B
∇ · (ui⊥ ×B). (77)

Then, in terms of the variable λ, the ion perpendicular momentum equation (66) becomes

ui⊥ + λωi‖b− λ∇× (ui⊥ + λωi‖b) = Ωciλ∇λ× b (78)

which, assuming λ to be a given input, is now a linear equation for ui⊥. Moreover, the ion

continuity equation (65) reduces to the simpler form

ui · ∇(nλ) = 0. (79)

The details of the derivation of the last two equations are given in Appendix A. Therefore,

for ĥi equal to a constant everywhere, the system of partially demagnetized ion equations

for large ion-sound-gyroradius simplifies to

λ =
mik̂i
en

with ui · ∇k̂i = 0 (80)
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and

eφ = mi

[
ĥi −

k̂2iB
2

2n2

(
1 +

ωi‖
Ωci

)2

− |ui⊥|
2

2

]
, (81)

along with (77), (78) for ωi‖ and ui⊥, where both ĥi and k̂i are now constant along the ion

streamline. Observe that the parallel flow velocity is given by

ui‖ =
k̂iB

n

(
1 +

ωi‖
Ωci

)
. (82)

C. Direct integration of ion equations

The method of solution presented above begins with a density guess n(x) for the ion

equations, from which an electric potential map φ(x) is then computed. This feeds the

kinetic electron model, which yields its own density calculation. The density error with

respect to the initial guess can then be used to establish an iterative convergence procedure.

An alternative scheme for integrating the ion model in the large ion-sound-gyroradius case

relies on the direct integration of the ion equation of motion. Firstly, a potential φ(x) guess

is produced, from where E(x) = −∇φ can be computed. For prescribed fields B(x), E(x),

the cold ion momentum equation (14) has a single characteristic family, which coincides

with the ion trajectories. The characteristic equation is solved from the upstream boundary

condition, where n, ui are assumed known. This procedure yields the ion velocity map in

the MN, ui(x):

dui
dsi

=
ei
miui

(E + ui ×B) , (83)

where si is the arc-length coordinate along ion trajectories. Secondly, the continuity equation

(13) is used to compute n(x),

d lnn

dsi
=

1

ui
∇ · ui. (84)

This value of n(x) is then compared against the output of the electron drift-kinetic model,

equations (27)–(29) for that φ(x). Then, the density difference error in (6) (or alternatively,

the Poisson equation on ni, ne) can be used to set up the iterative convergence scheme for

the self-consistent solution φ(x), ui, n. As a side note, observe that in the small ion-sound-

gyroradius limit this treatment of the ion equations coincides with the one given in Section

IV A.
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Incidentally, observe that, beyond the ion trajectories, two additional Mach characteristic

families are present in the two-fluid model of [26] when a simple relation φ = φ(n), based in

an heuristic closure of electron equations, is used.

V. ELECTRON FLUID EQUATIONS AND THE LOW PLASMA CURRENT

CONDITION

The electron fluid system of (15) and the perpendicular components of (16) is to be

solved as a post-process, once the density and the electron pressure tensor are known from

the solution of the coupled ion-fluid and electron-drift-kinetic systems. Accordingly, the

electron perpendicular velocity is given explicitly by

ue⊥ =
1

B
b×

(
∇φ− 1

en
∇ · Pe

)
= b×

(
∇φ
B
−
∇pe⊥ + (pe‖ − pe⊥)κ

enB

)
(85)

with κ = b · ∇b the magnetic curvature. The electron flow perpendicular velocity combines

the E ×B and the pressure gradient contributions and its order of magnitude is

|ue⊥| ∼
Te
eBL

∼ ρScS
L

. (86)

Then, the electron parallel velocity follows from the continuity equation

B · ∇
(nue‖
B

)
= −∇ · (nue⊥) ∼ nρScS

L2
. (87)

Again, in the low ion-sound gyroradius limit, this equation reduces in leading order to

ue‖ =
keB

n
with B · ∇ke = 0. (88)

Notice that the development of pressure anisotropy in the kinetic formulation of electrons

prevents postulating the existence of a barotropic function he (defined by∇he = ∇pe/ne) and

a thermalized potential φ∗ = φ−he/e, which were very useful in electron fluid models of Refs.

[26, 36] to reduce the electron momentum equations (33) and (85) to simple expressions.

Throughout this work it is assumed that the contribution of the plasma current to the

magnetic field is negligible, so the magnetic field is a fixed input, specified solely by the

applied currents in the hardwired coils. For this to be valid, the condition en|ui − ue| �

B/L must be satisfied. The perpendicular flows are |ui,e⊥| ∼ ρScS/L hence the low-beta
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assumption, βe ≡ nTe/B
2 � 1, guarantees that the perpendicular component of the plasma

current is sufficiently small:

en|ui⊥ − ue⊥| ∼
enρScS
L

=
nTe
BL

= βe
B

L
� B

L
. (89)

From equations (65), (87), the parallel flows are

ui,e‖ =
ki,eB

n
+O

(ρScS
L

)
= O(cS) +O

(ρScS
L

)
, with B · ∇ki,e = 0. (90)

In the large ion-sound-gyroradius case, ρS/L ∼ 1, the low-beta assumption also guarantees

a sufficiently small parallel plasma current:

en(ui‖ − ue‖) ∼ encS ∼
enρScS
L

= βe
B

L
� B

L
. (91)

However, in the small ion-sound-gyroradius case, ρS/L� 1, we have

en(ui‖ − ue‖) = eB(ki − ke) +O

(
βe
B

L

)
(92)

so, in addition to βe � 1, it is necessary to enforce the independent condition eL(ki−ke)� 1.

Observe that when βe ∼ 1 the plasma-induced magnetic field is comparable to the applied

one, and can thus modify the geometry of the magnetic nozzle. The study of the plasma-

induced magnetic field can be approached setting up an iterative convergence method on

top of the kinetic-fluid model, in the same way as in [40].

VI. SUMMARY AND CONCLUDING REMARKS

A three-dimensional fluid-kinetic model of a collisionless plasma channeled and acceler-

ated by a convergent-divergent MN has been formulated. The model provides a consistent

collisionless solution for each species to dominant orders of each variable and for plausible

plasma conditions: quasineutrality, small electron gyroradius, low plasma-beta, negligible

electron inertia, and cold ions. Ion and electron velocities are of the order the ion sound

velocity. The model provides the self-consistent electron thermodynamics in the plasma

plume, enables the study of non-Maxwellian and non-isotropic electron populations, rele-

vant in devices like the ECRT.

The kinetic part of the model determines at each magnetic line the zeroth-order electron

VDF for a given (monotonically decreasing) electric potential profile. Then, the plasma
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density and parallel and perpendicular pressures are obtained by integral moments of the

VDF. The fluid part of the model provides the rest of magnitudes: electric potential, ion

velocities, and electron velocities. The two parts of the model are coupled through the

electric potential (or equivalently, through the plasma density). The computation of the

electron velocities can be carried out separately at the end.

An asymptotic study of the far-downstream behavior of the different electron populations

(free, reflected, trapped) in the kinetic model has been carried out, showing different adia-

batic, anisotropic laws, and pointing out the limitations of this stationary model on defining

the trapped electron population. The downstream pressure anisotropy also indicates that

the polytropic law closure, based on an isotropic pressure, postulated in the fluid DIMAGNO

and FUMAGNO models is not fully consistent.

There are two well distinguished cases of the ion fluid model depending on ion mag-

netization. For the small the ion-sound gyroradius case (i.e. ion full-magnetization), ion

fluid equations can be solved independently at each magnetic line, so the 3D problem re-

duces to a set of infinite one-dimensional (1D) problems. This problem was already solved,

with a slightly different formulation, for the central line of a paraxial (i.e. quasi 1D) MN

[31], showing that convergence of the fluid and kinetic parts is achievable. The numerical

implementation to 2D and 3D geometries should not present big difficulties.

Then, there is the large ion-sound gyroradius case, with ions partially or totally de-

magnetized, such that ion lines are not following magnetic lines. This is indeed the most

interesting case, since in current applications the small ion-sound gyroradius case applies,

at most, within a limited region around the MN throat, where the magnetic field is maxi-

mum. In particular, the demagnetization of ions and subsequent beam detachment in the

MN downstream side is a central aspect of its physics. The implementation of a numerical

scheme for the large the ion-sound gyroradius case is still pending, even for a 2D axisymmet-

ric geometry. The advantageous three-characteristics scheme used in DIMAGNO[26] cannot

be extended to the present ion model due to the coupling with the electron kinetic equation

and the 3D geometry. This paper limits itself to suggest two possible forms of integrating

the ion equations, leading to two different numerical schemes, leaving for further work the

investigation of these last ones.

Finally, the numerical implementation will also have to deal with the expected univocal

relation between the total electric potential fall along the nozzle, |φ∞|, and the electric
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current carried by the beam [31]; in particular there should be a single |φ∞| for a current-

free beam. If this last condition is imposed and |φ∞| is an unknown of the problem, a second

iteration loop appears in solving consistently the problem.
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Appendix A: Large ion-sound-gyroradius ion equations

This Appendix details the derivation of the ion fluid results for large ion-sound-gyroradius

used in Section IV B. When ∇(miu
2
i /2+eφ) = 0, the perpendicular ion momentum equation

(66) reduces to

ui⊥ =
1

Ωci

b× [(∇× ui)× ui)] =
1

Ωci

[ui‖(∇× ui)− ωi‖ui)] (A1)

where Ωci = eB/mi is the ion cyclotron frequency and ωi‖ = b · (∇× ui) is the parallel ion

vorticity. This can be rewritten as

(Ωci + ωi‖)ui⊥ = ui‖(∇× ui − ωi‖b) (A2)

and, introducing the variable λ = ui‖/(Ωci + ωi‖),

ui⊥ = λ(∇× ui − ωi‖b). (A3)

Eliminating now ui‖ in favor of λ one arrives at

ui⊥ = λ
{
∇× [ui⊥ + λ(Ωci + ωi‖)b]− ωi‖b

}
(A4)

which, using the condition ∇×B = 0, becomes the result of (78)

ui⊥ = λ
[
∇×

(
ui⊥ + λωi‖b

)
+ Ωci∇λ× b− ωi‖b

]
. (A5)

From (A3) and ∇ ·B = 0, one obtains

∇ ·
(ui⊥
λ

)
= −B · ∇

(ωi‖
B

)
(A6)
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hence

λ∇ · ui⊥ = ui⊥ · ∇λ+ λ2∇ ·
(ui⊥
λ

)
= ui⊥ · ∇λ− λ2B · ∇

(ωi‖
B

)
. (A7)

On the other hand,

λ∇ · (ui‖b) = λB · ∇
(ui‖
B

)
= ui‖b · ∇λ+ λ2B · ∇

( ui‖
Bλ

)
(A8)

and the definition of λ implies

ui‖
Bλ

=
ωi‖
B

+
e

mi

(A9)

so that

λ∇ · (ui‖b) = ui‖b · ∇λ+ λ2B · ∇
(ωi‖
B

)
. (A10)

Then, the sum of (A7) and (A10) yields

λ∇ · ui = ui · ∇λ (A11)

which, combined with the continuity equation ∇ · (nui) = 0, yields the result of equation

(79),

ui · ∇(nλ) = 0. (A12)
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