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Abstract—Store-carry-and-forward is extensively used in ve-
hicular environments for many and varied purposes, including
routing, disseminating, downloading, uploading, or offloading
delay-tolerant content. The performance gain of store-carry-
and-forward over traditional connected forwarding is primarily
determined by the fact that it grants a much improved net-
work connectivity. Indeed, by letting vehicles physically carry
data, store-carry-and-forward adds a temporal dimension to
the (typically fragmented) instantaneous network topology that
is employed by connected forwarding. Temporal connectivity
has thus a important role in the operation of a wide range
of vehicular network protocols. Still, our understanding of the
dynamics of the temporal connectivity of vehicular networks is
extremely limited. In this paper, we shed light on this underrated
aspect of vehicular networking, by exploring a vast space of
scenarios through an evolving graph-theoretical approach. Our
results show that using store-carry-and-forward greatly increases
connectivity, especially in very sparse networks. Moreover, using
store-carry-and-forward mechanisms to share content within
a geographically-bounded area can be very efficient, i.e., new
entering vehicles can be reached rapidly.

I. INTRODUCTION

Connectivity promises to bring disruptive innovations in
the automotive industry. Already today, connected vehicles
equipped with cellular interfaces enable services such as road
traffic estimation and smart navigation [1], remote vehicle
monitoring [2], or insurance data recording [3]. Cellular
connectivity will be soon complemented by vehicle-to-vehicle
communications. The technology is standardized [4]–[6], and
may become mandatory on all new cars sold in the US as
early as 2017 [7].
Direct communication among vehicles is primarily expected

to enable road safety services that have stringent latency
requirements, as well as to provide decentralized support to
traffic efficiency applications [8]. However, vehicle-to-vehicle
communications will also warrant a wide range of infotain-
ment services to drivers and passengers.
In the light of the interest towards direct vehicular com-

munications, the networking research community has made
a significant effort in proposing architectures and protocols
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for vehicular environments. This has led to a vast literature,
thoroughly reviewed by comprehensive surveys [9]–[11].
A subject that has attracted significant attention within

the networking community is that of multi-hop communi-
cation among moving vehicles. This data transfer paradigm
is especially challenging, since it turns short-range radio-
equipped vehicles into a fully distributed network of highly
dynamic nodes. In such an environment, leveraging traditional
connected forwarding (as done in wired networks or wireless
networks of static nodes) proved exceedingly hard. Initial
attempts at performing connected forwarding were gradually
turned down, in favor of store-carry-and-forward approaches.
The latter limit the support of the multi-hop vehicular net-
work to delay-tolerant services only, but with a much higher
reliability. They have been leveraged for multiple purposes,
including unicast routing [12], [13], multicast routing [14],
dissemination [15], content downloading [16], cellular network
offloading [17], or floating car data collection [18].
The fundamental reasons behind the limited viability of con-

nected forwarding in spontaneous networks of vehicles were
neatly exposed by topological analyses of the instantaneous
connectivity of the network. Specifically, studies carried out
on large-scale road traffic datasets unveiled an inadequate
presence of connected components, often unstable and hard
to navigate [19]–[21]. These works are in fact the tip of a
fairly large literature on the connectivity analysis of vehicular
networks, including studies on analytical models [19], [22]–
[27], synthetic mobility traces [20], [21], [27]–[30] and real-
world vehicle movement datasets [31], in either highway [22],
[26], [27], [29], [30] or urban [19]–[21], [23]–[25], [27], [28],
[31] environments.
Despite the significant efforts made in studying the instan-

taneous topology of vehicular networks, there is no equivalent
investigation on the connectivity of store-carry-and-forward
networks. Some works have considered pairwise temporal
metrics, such as the duration of links between vehicles [19],
[28], or the duration of the interval during which two vehicles
remain (dis)connected in a multi-hop fashion [19]. However,
these metrics do not provide a global view of the overall
network connectivity in presence of store-carry-and-forward
transmissions. The only work to date to address that aspect is
in [32], where preliminary results are drawn in a single non-
validated mobility scenario, considering unit-disc propagation
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and a low (i.e., 10%) penetration rate of communication-
enabled vehicles.
In this paper, we leverage an evolving graph-theoretical

approach to characterize the temporal connectivity of vehicular
networks, and better understand its dynamics. Our results
confirm the preliminary findings in [32], and extend them.
Namely, we (i) consider validated road traffic scenarios, (ii)
adopt a realistic radio-frequency signal propagation model,
(iii) generalize to multiple urban and suburban areas in dif-
ferent cities, (iv) evaluate critical system parameters such as
the impact of the traffic conditions and of the technology
penetration rate.
Overall, we provide a first comprehensive analysis of the

temporal connectivity of vehicular networks. The outcome
of our study allows answering questions that are currently
open, such as “can store-carry-and-forward achieve complete
network connectivity?”, “how long does it take to do so?”, or
“how does the number of nodes that can be reached from a
source evolves during that time interval?”. The responses to
these issues allow for a clear understanding of the temporal
connectivity granted by very popular delay-tolerant network-
ing techniques employed in vehicular environments.

II. EVOLVING GRAPH AND REACHABILITY GRAPH MODELS

In our experiments we will use a graph model, either
called reachability graph [33] or transitive closure [34], to
represent temporal connectivity. Constructing such a graph is
done in two steps: firstly an evolving graph is derived from
the trace; secondly, based on the existence of some temporal
paths (journeys) in this evolving graph, the transitive closure
is calculated.

A. From input trace to evolving graph
An evolving graph G is a set of static graphs, or snapshots,

G = {G1, G2, . . . , G`

} that will represent, in our case, the
direct communication connection between pairs of vehicles
at a given time. Every G

i

= (V

i

, E

i

) 2 G is a static graph
with node (vehicle) set V

i

and edge (communication links) set
E

i

. We will denote the time indexes at which these snapshots
are taken from the mobility trace by t1, t2, . . . , t`, where the
integer ` denotes the last time step of the vehicular mobility
under study. We implicitly consider that G

i

is the snapshot of
G at time t

i

. At time t

i

, every two vehicles a and b such that
{a, b} 2 E

i

are considered to be within communication range
in the mobility trace at time t

i

. The approach we adopt in order
to determine whether two given vehicles are in communication
range is defined in Section III-C.

B. Evolving graphs and journeys
A journey is a set of hops (from node to node) in time.

It is important to define the journey model as there are, in
the literature, distinctive classes of journeys. They distinguish
strict and non-strict, as well as direct and indirect journeys.
Informally, a journey is said to be strict if only one edge can
be traversed between two consecutive time steps, otherwise the
journey is said to be non-strict. Also, a journey is said to be

indirect if it is allowed to stay put at some node over time; if
instead the journey has to perform one hop at every time step,
it is called direct. In our study we will only consider strict and
indirect journeys, therefore we will only define formally this
type of journeys and omit the qualifying term ’strict-indirect’:

Definition 1 (Itinerary and Journey). For a given evolving
graph G = (G1, G2, . . . , G`

) an itinerary is an ordered
sequence of tuples where every tuple is made of a pair of
nodes and a time stamp:
I =

⇣

�

{a = a

s

, b

s

} , t
s

�

,

�

{a
s+1, bs+1} , ts+1

�

, . . . ,

�

{a
f

, b

f

= b} , t
f

�

⌘

, such that 8i 2 [s, f), b

i

= a

i+1

If the itinerary I is feasible in G, then it is referred as a
journey, i.e., if 1  s  f  ` and 8i 2 [s, f ], {a

i

, b

i

} 2
E

i

[ {{u, u} | u 2 V }.

C. Reachability graph (Transitive closure)
In our case the evolving graph are extracted from various

mobility traces with the sole purpose of computing the corre-
sponding transitive closure, which is why the transitive closure
will only be considered from time t1 (i.e., s = 1). For any
evolving graph G = {G

i

= (V

i

, E

i

) | i 2 [1, `]} and any time-
interval [t1, tk] with k  `, we define C

k

= (V
k

,J
k

) to be
the transitive closure of G at time k. Note that when referring
to the closure of the whole graph sequence G we will omit
the subscript and simply write C (= C

`

). In the literature, C
is also called reachability graph of G. The set of nodes V

k

is
a subset of {V

i

| i 2 [1, `]} and represents the set of vehicles
that were sampled in the given time-interval. The set of arcs
J
k

✓ V
k

⇥ V
k

represents every available journey in G within
t

k

. In other words, if (u, v) 2 J
k

, then it exists a temporal path
from u to v in G such that the arrival time is smaller than k.
Which intuitively means that vehicle u is able to communicate
with vehicle v in the trace represented by the evolving graph
{G

i

| i 2 [1, k]}. Notice that the relation “can communicate
with” is not symmetric: considering three vehicles A, B and
C, if A meets B and B later meets C then A can send a message
to C via B but not the other way around.
We compute the transitive closure using an algorithm in-

spired by [34], which is the temporal equivalent of a Breadth-
First Search. At every time step t

i

, the algorithm adds the
new available journeys to the closure C

i�1 = (V
i�1,Ji�1).

Thus, at time i, for any given node u 2 V
i�1 a new journey

from u to another node v exists in C
i

either if it exists some
node w 2 V

i

such that (u,w) 2 J
i�1 and {w, v} 2 E

i

, or
if {u, v} 2 E

i

. The closure of G over the time interval [1, k]
is computed recursively using this aggregation of journeys.
The algorithm we use to compute the closure from an input
evolving graph G is provided in Listing 1.

III. REFERENCE SCENARIOS

A. Road traffic
We consider different road traffic scenarios in our analysis

of temporal connectivity in order to generalize our findings as
much as possible. As we aim at assessing the performance of
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1 def compute_closure(dynamic_graph G):

2 let C be stable graph

3 for every snapshot G_i in G:

4 closure_increment(C, G_i)

5 return C

6

7 def closure_increment(graph C, dynamic_graph G_i):

8 add every new node from G_i to C

9 for every node u in C:

10 # direct journeys

11 let neighbors of u in G_i be neighbors of u in C

12 # long journeys w. several hops in time

13 for every node v in neighborhood of u:

14 let neighbors of v in G_i be neighbors of u in C

Listing 1: Pseudocode for the incremental construction of the
closure C given an input evolving graph G.

Fig. 1. Bologna Ringway scenario. Road layout, darker colors denote more
trafficked road segments.

store-carry-and-forward in presence of significant technology
penetration rates, we need a complete description of the
vehicular traffic. This rules out real-world mobility traces of,
e.g., taxis [31], since they only provide a partial view of the
overall circulating traffic.
Instead, we rely on synthetic mobility scenarios. Since these

are issued from simulations, and realism becomes a major
question, we only consider properly validated road traffic
traces, presented next.
1) Bologna Ringway dataset: The first scenario covers a

20 km2 area in Bologna, Italy, comprising downtown, the
arterial ringway around it, as well as part of the periphery. The
dataset describes road traffic during the morning, in various
traffic conditions, ranging from the rush hour to mild traffic.
The mobility in the region was generated using Open-

StreetMap (OSM) road infrastructure data, the well-known
SUMO simulator [35], and a realistic origin-destination (O-D)
matrix of road traffic flows compiled within the collaborative
research project iTetris [36]. A representative map of the area,
including road traffic intensity levels on each road segment, is
depicted in Fig. 1.
The synthetic mobility was validated through an original

methodology that leverages publicly accessible data provided
by free navigation services and concerning routing and travel
time estimation functions. Full details on the dataset, its
generation process, and the validation procedure are available
in [37]. In the following we will refer to this scenario as
bo-ringway.
2) Cologne dataset: The second scenario describes road

traffic in the conurbation of Cologne, Germany. It encom-
passes a wide region of 400 km2, and includes various

traffic conditions, from sparse overnight vehicular mobility to
heavy congestion during peak traffic hours. The dataset was
generated the same way as the Bologna one. Road layout
information was obtained from OSM, and the microscopic
behavior of individual drivers was modeled through SUMO.
This time, the O-D matrix was derived using the TAPAS
methodology on census data and large-scale surveys of the
local population [38]. The mobility description was validated
against live traffic service data, as well as against real-world
road traffic counts. We refer the interested reader to [39], [40]
for a detailed description of the dataset and of its validation.
We extract from the Cologne dataset six scenarios, each

encompassing a 25-km2 region, and thus comparable to the
Bologna one. Areas have distinctive features, and range from
downtown to suburban and per-urban regions. The six scenar-
ios are depicted in Fig. 2. They will be referred to as co-A

to co-F in the remainder of the paper.

B. Dissemination procedure

Datasets connectivity properties are evaluated under differ-
ent system parameters. The first one is the road traffic density.
The bo-ringway dataset is hence also scaled to 70, 80,
90 and 100% of the original feed to mimic diverse traffic
levels [37]. In co-[A-F], the traffic intensity in the different
areas of a the city are already provided at different times of
the day mapping to heterogeneous traffic densities.
The second parameter is the percentage of equipped vehi-

cles, or penetration rate. In real-world applications, it is very
unlikely that all vehicles deployed in the road network are
equipped with a wireless interface, especially during the early
adoption phase. Therefore, we study the dataset considering
different penetration rates p, ranging from 1% to 100%.

C. Signal propagation

A correct modeling of the radio-frequency signal propa-
gation is critical to the dependability of vehicular network
simulations. Indeed, vehicle-to-vehicle communication chan-
nels feature fairly specific properties that need dedicated
modeling [41].
In our evaluation, we resort to one of the state-of-the-art

models proposed in the literature, and complement it with
packet error rate information, as detailed next.
1) Received power: The radio-frequency signal propagation

model we consider is based on that proposed in [42]. The
model includes obstacle information, has been experimentally
validated, yields a good trade-off between complexity and ac-
curacy, and is implemented in popular tools for the simulation
of vehicular networks, such as Veins [43].
The model works as follows. For any pair of vehicles (a, b)

we define P to be the shortest euclidean path between a and b

in the input mobility trace. Let d(a, b), D
b

(a, b) and N

b

(a, b)

be the length of P (in meters), the total distance within P
that crosses building on the city-map (also in meters), and
the number of buildings crossed by P , respectively. The two
vehicles a, b are in communication range if and only if the
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Highway Primary Urban

(a) co-A

Highway Primary Urban

(b) co-B

Highway Primary Urban

(c) co-C

Highway Primary Urban

(d) co-D

Highway Primary Urban

(e) co-E

Highway Primary Urban

(f) co-F

Fig. 2. Cologne scenarios areas: (A) city downtown, (B) industrial/transit, (C) suburban highways, (D) residential outskirts, (E) peri-urban and (F) rural
highways. Different colors denote highway, primary and urban roads, respectively.

following inequation is satisfied:

P

r

(a, b) = P

t

� 10 log10

⇣

f

d(a,b)↵

⌘

� (1)

� ·N
b

(a, b)� � ·D
b

(a, b) > RSS
min

.

The left-hand side in (1) represents the received power P

r

for transmissions between the two vehicles, when the source
emits at power P

t

. The right-hand side is the received power
threshold RSS

min

above which the communication can occur.
The parameters are set according to [42]: P

t

= 20 dBm, ↵ =

2.2, � = 9.2 dBm, � = 0.32 dBm, RSS
min

= �90 dB, and
f =

G

t

·G
r

·W 2

16⇡2 with G

t

= 7, G
r

= 7, and W = 0.050812.
2) Packet loss ratio: The model in (1) provides a simple

binary connectivity decision. Network simulators typically use
the actual received power information to determine the bit
error rate (BER); from that, the erroneous bits can be com-
puted on each individual packet, and the latter can be correctly
received or discarded. As we rely on an evolving graph-
theoretical approach rather than on packet-level simulation, we
need to integrate the model above with a direct representation
of the packet loss probability.
To that end, we replace the fixed threshold RSS

min

with a
probability function accounting for the fact that the weaker the
received signal is, the more likely it is to have packet losses.
In order to tune the function, we rely on experimental results
on vehicle-to-vehicle communication that analyze the relation
between the received power and the packet loss ratio [44].
Specifically, the packet loss probability loss(P

r

) for a received
message with signal strength P

r

(in dBm) is:

loss(P

r

) =

(

0, if P

r

> P

max

r

min

n

1, (

P

max

r

�P

r

P

max

r

�P

min

r

)

⌧

o

, otherwise
(2)

with P

max

r

= �78 dBm, Pmin

r

= �91 dBm, and ⌧ = 3.6.
Applying (2) to our evolving graph model, we obtain a

probabilistic graph where, at any moment in time, two vehicles
that establish a communication link with received power P

r

are connected with probability 1� loss(P

r

).
Fig. 3 outlines some statistical properties of the links re-

sulting from the propagation model described above. The
scatterplot clearly shows the logarithmic relationship that ties
the distance and received power in line-of-sight conditions
(apparent solid line). The presence of buildings introduces
a negative offset in the received power, which depends on
the number of interposing obstacles (clouds of points towards

Fig. 3. Signal propagation model. The plot portrays, for every pair of vehicles
a, b 2 V2 in the bo-ringway road traffic scenario, the distance d(a, b) of
the vehicles as a function of recepived power Pr(a, b). Plots on the top and
right represent probability density distributions on each axis. Colors tell apart
all links (light-blue), links that satisfy (1) (green), and links in the probabilistic
graph obtained from (2) (dark-blue). Figure best viewed in colors.

more negative received powers, more evident in the zoomed-
out inset plot). When applying the binary threshold in (1), only
links whose signal strength is above �91 dBm are retained
(green dots). However, looking at the distributions at the top
and right of the main plot, this retains numerous links with low
signal strength and large distance. By introducing the proba-
bilistic model of packet loss ratio, we limit the number of links
to realistic ones (dark-blue dots): we stress that the resulting
distances, typically around 50-100 meters but reaching up to
250 m, are consistent with those of experimental assessments
of direct vehicular communication in urban environments [44].

IV. SIMULATION SETUP AND RESULTS

Let us first study the bo-ringway scenario with full
traffic density, all vehicles equipped with radio interfaces and
considering the strict-indirect journey model. The first metric
we observe is the (temporal) reachability ratio:
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Fig. 4. bo-ringway scenario. Every plot represents the outgoing degree
distribution of the closure at time t, i.e., Ct. The x-axis is the set of node
ordered by degree and the y-axis corresponds to the degree of these nodes.

Definition 2 (Reachability ratio). The expected ratio of vehi-
cles that a given vehicle can communicate with after k units
of time. Formally, for an evolving graph G = {G

i

| i 2 [1, `]},
the reachability ratio at time k  ` is |J

k

|
|V

k

|(|V
k

|�1) . Note that
this ratio is exactly equal to the density of the transitive closure
at time k.

We will show that this ratio never reaches one. This is due to
the fact that some vehicles enter the observed area after others
have left it, and it is true even in the case of 100% penetration
rate. The effect is observed in Fig. 4, where a clear cut in the
out-degree distribution appears. This cut starts around the 30-
s mark and has approximately the same slope as the total
number of vehicles (parallel red lines help to visualize this).
Remark that if a vehicle leaves the observed area at time t

l

,
all the vehicles entering at time t > t

l

will never be able to
reach it. Therefore, for any given vehicle, its outgoing degree
is upper bounded by the total number of vehicles that are or
will be inside the observed area. A similar effect appears in
the distribution of ingoing degrees (not shown for the sake of
brevity). A further confirmation is in Fig. 5, where the closure
average degree never reaches the total number of vehicles1,
a gap separating the two curves even after long observation
intervals. These observations are an artifact induced by the
geographical boundaries of the considered scenario, rather
than an intrinsic property of vehicular networks connectivity.
Nevertheless, in some application cases, observing geograph-
ically delimited areas may be pertinent: e.g., in the case of
location-based services where contents are meaningful only
within well-defined spatial regions.
Fig. 5 yields additional information, as it shows, for every

time step i of the input evolving graph: (i) the total number of
vehicles observed, |V

i

|; (ii) the number of vehicles present in
the observed area, |V

i

|; (iii) the size of the largest connected
component of G

i

; (iv) the average degree of nodes in the
closure, i.e., 2 · |J

i

|/|V
i

|. This figure shows a clear step
transition around the 30-s mark when the closure graph has
converged to its maximum reachability ratio. Afterwards, the

1If the total number of vehicles is equal to the average degree in the closure,
then, by definition, the reachability ratio is equal to one.

Fig. 5. bo-ringway scenario. Evolution of the closure connectivity function
of time together with the evolving graph connectivity.

total number of vehicles provides the upper bound on the
nodes average degree. In other words, a representative majority
of the new arcs in the transitive closure from this particular
moment in time come from (or go to) new vehicles (i.e.,
vehicles that appeared after the 30-s mark) and a large amount
of vehicles that enter the simulation are involved in the
creation of new arcs. This observation could be also derived
from the slope of the cut in Fig. 5, and is partly due to the
fact that vehicles moving outside the observed area can still
increase their outgoing degree in the closure as long as they are
connected (within the closure) to vehicles that are still inside
the area. In practice, our results show that if a message is to
be sent to all vehicles entering an area, after a certain amount
of time (in this particular experiment, 30 s) the majority of
new arriving vehicles receive it with a very low delay.

a) Impact of vehicle traffic density: The variation of
traffic density has a marginal impact on the reachability ratio,
as shown in Fig. 6. However, reachability is dependent on the
graph connectivity, and the bo-ringway scenario shows a
unusually good vehicular network connectivity. To show this
effect, we measure the expected instantaneous connectivity:

Definition 3 (Expected instantaneous connectivity). This con-
nectivity metric is equal to the expected component size of a
random node at a random time step in the evolving graph.

We also use a normalized version of this metric (i.e., divided
by the number of nodes in the snapshot of the selected node).
The latter is equal to the proportion of vehicles that a randomly
picked vehicle could send a message to, when no store-
carry-and-forward is allowed and only connected forwarding
is employed. For vehicular traffic densities of 100%, 90%,
80% and 70% in the bo-ringway scenario, the normalized
expected instantaneous connectivity score very high values at
0.925, 0.869, 0.852 and 0.584, respectively: in other words a
node can reach almost 60% of the vehicles through connected
forwarding, even in the sparsest road traffic conditions. In
this excellent instantaneous connectivity situation, the conver-
gence time to a maximally connected closure is driven by
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Fig. 6. bo-ringway scenario. Evolution of density (reachability ratio)
function of time for different traffic densities.

TABLE I
bo-ringway SCENARIO. EVOLVING GRAPH MEASUREMENTS VERSUS

PENETRATION RATES, WITH 100% ROAD TRAFFIC DENSITY.
Penetration rate (%) 5 10 20 30 50 80 100
Expected instant connectivity (%) 6.7 10.0 14.2 21.7 45.5 81.5 93.0
Largest component diameter 5.6 9.7 13.0 19.1 32.2 44.1 42.3

the diameter of the snapshots2. Our experiments for traffic
ratios of 100%, 90%, 80% and 70% in the bo-ringway

scenario show that the average diameter of the snapshots are
respectively 42.3, 43.6, 47.4 and 41.4 whereas the convergence
times are respectively around 25, 28, 30 and 37 seconds.
To sum up, under all traffic conditions in the bo-ringway

scenario, a randomly picked vehicle is able to send a message
to at least 91% of the vehicles, as shown in Fig. 6. This occurs
in at most 37 communication hops (and less than 37 seconds),
thanks to the excellent instantaneous connectivity.

b) Impact of the penetration rate: The previous results
assume a 100% penetration rate. We now investigate the
impact of lower penetration rates, leading to sparser evolving
graphs. Tab. I shows how the penetration rate influences the
instantaneous connectivity, whereas Fig. 7 and Fig. 8 show
the impact on the convergence to a maximally connected
closure. The reduced network density best highlights the power
of store-carry-and-forward. In very sparse cases where only
10% of vehicles are communication-enabled, the instantaneous
connectivity is limited to 10%, yet the reachability ratio is at
almost 70%, with a convergence time of around four minutes.
Nevertheless, the performance degradation seems to scale in
a superlinear way, showing the importance of the penetration
rate. Specifically, Fig. 7 and Fig. 8 also show two phases: the
first, up to a 40% penetration rate, characterized by a linear
decrease of the convergence time as the fraction of participat-
ing vehicles grows; the second, from a 40% penetration rate
onwards, where the convergence is always fast and efficient.
However, even for small penetration rates such as 10%,

store-carry-and-forward mechanisms allow, for example, to
increase the reachability ratio from 10% (in the connected
forwarding case, see Tab. I) to 20% after 60 seconds and
60% after five minutes (see Fig. 7). After two minutes and 30
seconds the number of vehicles that are reached by a message

2This is due to the slowly changing nature of connectivity graphs: in most
cases, given two consecutive snapshots, the distance (number of hops in the
graph) between two vehicles is often the same. Instead, the convergence time
is less than the evolving graph size if every snapshot is composed of a single
connected component.

Fig. 7. bo-ringway scenario. Temporal evolution of the average reach-
ability ratio for different penetration rates. This allows appreciating the
convergence time to maximal density.

Fig. 8. bo-ringway scenario. Convergence time to maximal reachability
ratio for different penetration rates.

is four times bigger than the number of vehicles reachable
without using store-carry-and-forward.

c) Generalization to other urban areas: Tab. II shows
how the vehicular network connectivity varies under the het-
erogeneous road traffic scenarios provided by the co-[A-F]

datasets. The table reports results for different daytimes (top
part) and urban regions (bottom part). It concerns both the
instantaneous connectivity (in terms of normalized expected
connectivity and largest component diameter) and the tran-
sitive closure (in terms of the average degree of vehicles in
the evolving graph). Results are ordered by closure average
degree. The table let us appreciate the very strong variability
that the daytime and urban region induce in both instantaneous
and temporal connectivity: e.g., the expected connectivity can
range from little more than 5% to almost 50%, and the closure
degree from a hundred to more than a thousand neighbors.
A complete summary of temporal connectivity, for all

combinations of daytime and urban region, is provided in
Fig. 9 and Fig. 10. There, we observe how higher closure
average degrees map to transitive closures that converge faster
and to higher reachability ratios. In typical cases, the gain
brought by store-carry-and-forward is strongly correlated to
the average instantaneous connectivity itself. The gain is
higher if the connectivity of the evolving graph is low, as
shown in Fig. 11. In other words, it is in sparse vehicular
networks that store-carry-and-forward shows its superiority
over connected forwarding: for example, in co-D at 8am,
the average connected component size is 8.5%, after 30 s the
temporal reachability ratio is 27% and goes up to 46% after
one minute. Yet, some cases may not obey this tendency: e.g.,
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TABLE II
EVOLVING GRAPH MEASUREMENTS FOR VARIOUS PERIODS OF THE DAY

AND THEN FOR DIFFERENT AREAS OF COLOGNE.

Day time 7am 5pm 8am 1pm 11am 9pm
Expected connectivity (%) 33.1 26.6 27.4 13.4 5.8 5.3
Largest component diameter 30.0 24.3 19.0 15.7 9.6 6.8
Closure average degree 880.7 726.2 539.5 376.8 254.4 198.2
Zone identifier A B D C F E
Expected connectivity (%) 49.0 12.6 9.5 7.0 18.0 15.7
Largest component diameter 36.0 22.3 13.7 13.7 15.9 3.6
Closure average degree 1327.6 708.0 307.4 282.5 237.6 112.6

Fig. 9. Temporal connectivity with different urban regions and daytimes.

this is the case for zone E at 8pm. However, this is explained
by an unusually high instantaneous connectivity at 51.7%,
leading to an average degree of 227, or 1.9% of the average
12205 vehicles per snapshot.
At this point, we would like to unveil the physical reason

behind the variability induced by scenario settings such as the
daytime or urban region, so as to derive a unifying theory of
the temporal connectivity of vehicular networks. To that end,
we explore the relationship between the transitive closure and
the road traffic density, which has already been demonstrated
to play a major role in the instantaneous connectivity of urban
vehicular networks [20]. In Fig. 12, we observe a farily neat
correlation of the convergence time and maximum reachability
ratio in the transitive closure, independently of the urban zone
and daytime. Similar results were obtained for other cases as
well, but are omitted for the sake of brevity. Moreover, the
resulting trends are very similar to the ones obtained for the
bo-ringway dataset under different penetration ratios (i.e.,
road traffic density), in Fig. 8, which further confirms that the
trend has general validity. The average Pearson’s correlation
coefficients over all samples are very high, at 0.88.
These results unveil how the temporal connectivity (and thus

the performance of store-carry-and-forward) are driven solely
by the number of vehicles traveling in an area, and is instead
only marginally affected by, e.g., the road layout or the travel

Fig. 10. Reachability ratio in co-C for different periods of the day.

Fig. 11. Reachability ratio versus the expected instantaneous connectivity.

demand flows. Moreover, Fig. 12 proves how the dependence
is sub-linear. Thus, high store-carry-and-forward performance
gains are expected when increasing vehicles participation at
low penetration rate regimes or in presence of sparse traffic;
less so, once a critical density of communication-enabled
vehicles is achieved. We remark that the critical density is
very low in all our tests, at around 8 veh/km2.

V. CONCLUSION AND FUTURE WORKS

We showed that, even though it cannot not allow full
network connectivity, store-carry-and-forward improves signif-
icantly the instantaneous connectivity attained through simple
connected forwarding. In dense networks, the convergence to
a maximal connectivity is fast (a few tens of seconds in a
region of a few km2). In sparse networks, sore-carry-and-
forward increases the reachability (by a factor up to 90 in
our experiments) with convergence times of the order of few
minutes. Moreover, once connectivity has converged to its
maximum, new arriving vehicles in the area get new messages
very quickly: a useful feature for local data dissemination.
Our work paves the way to additional research on the

temporal connectivity of vehicular networks. We analyzed
two different cities, Bologna and Cologne, however further
scenarios may let additional behaviors emerge. Also, other
store-carry-and-forward models can be taken into account, e.g.,
hybrid models in between strict and non-strict, or direct and
indirect, journeys; this would allow modelling cases where a
vehicle is allowed to multi-hop information at each snapshot,
or to carry information for a limited amount of time.
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Fig. 12. Temporal connectivity versus the average road traffic density.
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