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Abstract

This dissertation studies the effects of interference burstiness in the trans-

mission of data in wireless networks. In particular, we investigate the effects of

this phenomenon on the largest data rate at which one can communicate with a

vanishing small probability of error, i.e., on channel capacity. Specifically, we study

the capacity of two different channel models as described in the next sections.

Linear deterministic bursty interference channel

First, we consider a two-user linear deterministic bursty interference channel (IC),

where the presence or absence of interference is modeled by a block-independent

and identically distributed (IID) Bernoulli process that stays constant for a

duration of T consecutive symbols (this is sometimes referred to as a coherence

block) and then changes independently to a new interference state. We assume

that the channel coefficients of the communication and interference links remain

constant during the whole message transmission. For this channel, we consider

both its quasi-static setup where the interference state remains constant during

the whole transmission of the codeword (which corresponds to the case whether

the blocklength N is smaller than T ) and its ergodic setup where a codeword

spans several coherence blocks. For the quasi-static setup, we follow the seminal

works by Khude, Prabhakaran and Viswanath and study the largest sum rate of

a coding strategy that provides reliable communication at a basic (or worst-case)

rate R and allows an increased (opportunistic) rate ∆R in absence of interference.

For the ergodic scenario, we study the largest achievable sum rate as commonly

considered in the multi-user information theory literature. We study how (non-

causal) knowledge of the interference state, referred to as channel state information

(CSI), affects the sum capacity. Specifically, for both scenarios, we derive converse

and achievability bounds on the sum capacity for (i) local CSI at the receiver-side

only; (ii) when each transmitter and receiver has local CSI, and (iii) global CSI

at all nodes, assuming both that interference states are independent of each other

and that they are fully correlated. Our bounds allow us to identify regions and

conditions where interference burstiness is beneficial and in which scenarios global

xi



CSI improves upon local CSI. Specifically, we show the following:

• Exploiting burstiness: For the quasi-static scenario we have shown that

in presence of local CSI, burstiness is only beneficial if the interference

region is very weak or weak. In contrast, for global CSI, burstiness is

beneficial for all interference regions, except the very strong interference

region, where the sum capacity corresponds to that of two parallel channels

without interference. For the ergodic scenario, we have shown that, under

global CSI, burstiness is beneficial for all interference regions and all possible

values of p. For local CSI at the receiver-side only, burstiness is beneficial for

all values of p and for very weak and weak interference regions. However, for

moderate and strong interference regions, burstiness is only of clear benefit

if the interference is present at most half of the time.

• Exploiting CSI: For the quasi-static scenario, local CSI at the transmitter is

not beneficial. This is in stark contrast to the ergodic scenario, where local

CSI at the transmitter-side is beneficial. Intuitively, in the ergodic scenario

the input distributions depend on the realizations of the interference states.

Hence, adapting the input distributions to these realizations increases the

sum capacity. In contrast, in the quasi-static case, the worst-case scenario

(presence of interference) and the best-case scenario (absence of interference)

are treated separately. Hence, there is no difference to the case of having

local CSI only at the receiver side. Featuring global CSI at all nodes yields

an increased sum rate for both the quasi-static and the ergodic scenarios.

The joint treatment of the quasi-static and the ergodic scenarios allows us to

thoroughly compare the sum capacities of these two scenarios. While the converse

bounds for the quasi-static scenario and local CSI at the receiver-side appeared

before in the literature, we present a novel proof based on an information density

approach and the Verdú-Han lemma. This approach does not only allow for

rigorous yet clear proofs, it also enables more refined analyses of the probabilities

of error that worst-case and opportunistic messages can be decoded correctly.

For the converse bounds in the ergodic scenario, we use Fano’s inequality as the

standard approach to derive converse bounds in the multi-user information theory

literature.
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Bursty noncoherent wireless networks

The linear deterministic model can be viewed as a rough approximation of a

fading channel, which has additive and multiplicative noise. The multiplicative

noise is referred to as fading. As we have seen in the previous section, the linear

deterministic model provides a rough understanding of the effects of interference

burstiness on the capacity of the two-user IC. Now, we extend our analysis to a

wireless network with a very large number of users and we do not approximate

the fading channel by a linear deterministic model. That is, we consider a memo-

ryless flat-fading channel with an infinite number of interferers. We incorporate

interference burstiness by an IID Bernoulli process that stays constant during the

whole transmission of the codeword.

The channel capacity of wireless networks is often studied under the assumption

that the communicating nodes have perfect knowledge of the fading coefficients in

the network. However, it is prima-facie unclear whether this perfect knowledge

of the channel coefficients can actually be obtained in practical systems. For

this reason, we study in this dissertation the channel capacity of a noncoherent

model where the nodes do not have perfect knowledge of the fading coefficients.

More precisely, we assume that the nodes know only the statistics of the channel

coefficients but not their realizations. We further assume that the interference

state (modeling interference burstiness) is known non-causally at the receiver-side

only. To the best of our knowledge, one of the few works that studies the capacity

of noncoherent wireless networks (without considering interference burstiness)

is by Lozano, Heath, and Andrews. Inter alia, Lozano et al. show that in the

absence of perfect knowledge of the channel coefficients, if the channel inputs

are given by the square-root of the transmit power times a power-independent

random variable, and if interference is always present (hence, it is non-bursty),

then the achievable information rate is bounded in the signal-to-noise ratio (SNR).

However, the considered inputs do not necessarily achieve capacity, so one may

argue that the information rate is bounded in the SNR because of the suboptimal

input distribution. Therefore, in our analysis, we allow the input distribution

to change arbitrarily with the SNR. We analyze the asymptotic behavior of the

channel capacity in the limit as the SNR tends to infinity. We assume that all

nodes (transmitting and interfering) use the same codebook. This implies that

each node is transmitting at the same rate, while at the same time it keeps the
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analysis tractable. We demonstrate that if the nodes do not cooperate and if the

variances of the path gains decay exponentially or slower, then the achievable

information rate remains bounded in the SNR, even if the input distribution

is allowed to change arbitrarily with the transmit power, irrespective of the

interference burstiness. Specifically, for this channel, we show the following:

• The channel capacity is bounded in the SNR. This suggests that noncoherent

wireless networks are extremely power inefficient at high SNR.

• Our bound further shows that interference burstiness does not change the

behavior of channel capacity. While our upper bound on the channel capacity

grows as the channel becomes more bursty, it remains bounded in the SNR.

Thus, interference burstiness cannot be exploited to mitigate the power

inefficiency at high SNR.

Possible strategies that could mitigate the power inefficiency of noncoherent

wireless networks and that have not been explored in this thesis are coop-

eration between users and improved channel estimation strategies. Indeed,

coherent wireless networks, in which users have perfect knowledge of the

fading coefficients, have a capacity that grows to infinity with the SNR.

Furthermore, for such networks, the most efficient transmission strategies,

such as interference alignment, rely on cooperation. Our results suggest that

these two strategies may be essential to obtain an unbounded capacity in the SNR.

Keywords: information theory, channel capacity, interference, bursti-

ness, channel with states, interference channel, channel-state information, linear

deterministic model, ergodic scenario, quasi-static scenario, exponential decay,

converse bounds, achievability bounds, signal-to-noise ratio, wireless networks
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1
Introduction

1.1 Motivation

The accelerated growth in mobile communications implies a huge increase in

the number of users and demands higher data rates. In addition, the design of

future wireless networks has to take into account the efficient use of spectrum.

However, one of the key limiting factors in the efficient use of spectrum in wireless

networks is interference, which also grows with the number of users. For this

reason, the effect of interference on the information-theoretical limits of wireless

networks is the focus of several works. So far, most of these works do not consider

certain physical phenomena such as shadowing, which can make the interference

intermittent or bursty. Interference can also be bursty due to the bursty nature

of data traffic, distributed medium access control mechanisms, and decentralized

networking protocols. Thus, considering that interference is always present is a

pessimistic assumption. For this reason, understanding and exploring the effects
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of interference burstiness is an important point to consider in wireless networks.

In this dissertation, we study the effect of interference burstiness on channel

capacity. We capture the burstiness of interference by modeling the wireless

network as a channel with states [7], [20, Ch. 7]. The presence/absence of

interference is modeled by a block-independent and identically distributed (IID)

Bernoulli process as Wang et al. have done in [65]. The channel capacity highly

depends on the level of knowledge that transmitters (Txs) and receivers (Rxs)

have about the interference state. In this thesis, this knowledge is referred to

as channel state information (CSI)1. We study how knowledge of CSI or lack

thereof affects the largest rate at which the users can communicate with very low

probability of error when the interference is bursty. We focus our analysis on two

kinds of channel models with different limitations.

In the first part, we study the two-user IC as the simplest model to understand

the effect of interference in a wireless network. We use the linear deterministic

model (LDM) of the IC [5], which is a simplified model, but yields a unified

treatment of several aspects previously studied in the literature and gives rise to

several new results concerning the effect of CSI on the achievable rates over the

bursty IC. We assume that the interference state stays constant for a duration

of T symbols (referred to as coherence block) and then changes independently

to a new state. We investigate both a quasi-static setup where the interference

state remains constant during the whole transmission of the codeword (which

corresponds to the case whether the blocklength N is smaller than T ) and an

ergodic setup where a codeword spans several coherence blocks. For the quasi-

static setup, we follow the seminal works by Khude et al. [32], [33] and study

the largest data rate of a coding strategy that provides reliable communication

at a basic (or worst-case) rate R and allows an increased (opportunistic) rate

∆R when there is no interference. For the ergodic setup, we study the largest

achievable sum-rate as commonly considered in the multi-user information theory

literature. For the two setups, we also derive converse and achievability bounds

on capacity, which in many cases are matching. These bounds allow us to study

the effect of interference burstiness and level of CSI on capacity.

In the second part, we study the effect of interference burstiness on channel

1This CSI is different from the one sometimes considered in the analysis of interference

channels (ICs) (see, e.g., [30]), where CSI refers to knowledge of the channel coefficients.
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capacity of large wireless networks. The LDM, considered in the first part, can

be viewed as a rough characterization of a fading channel which has additive and

multiplicative noise, where the latter noise is sometimes referred to as fading.

While the LDM provides a rough understanding of the effects of interference

burstiness on the capacity of the two-user bursty IC, in the second part we

consider a more realistic channel model. Specifically, we model the wireless

network as a memoryless flat-fading channel with an infinite number of interferers.

We assume that the Tx and Rx are only cognizant of the statistics of the channel

coefficients, but they do not know their realizations, which is also known as a

noncoherent scenario. We model the interference burstiness by an IID Bernoulli

process that stays constant during the whole transmission of the codeword. We

assume that the interference states are perfectly known at the Rx side only. For

this channel model, we derive an upper bound on the channel capacity. Our

results show that the capacity of this channel is bounded in the signal-to-noise

ratio (SNR), indicating that noncoherent wireless are extremely power inefficient

at high SNR. Since this result holds irrespective of the burstiness, we conclude

that interference burstiness cannot mitigate the poor power efficiency. That

said, exploiting burstiness in this channel increases the upper bound on capacity

compared to the one we can achieve when interference is always present.

Possible strategies that could mitigate the power inefficiency of noncoherent

wireless networks and that have not been explored in this thesis are cooperation

between users and improved channel estimation strategies. Indeed, coherent

wireless networks, in which users have perfect knowledge of the fading coefficients,

have a capacity that grows to infinity with the SNR. Furthermore, for such

networks, the most efficient transmission strategies, such as interference alignment,

rely on cooperation. Our results suggest that these two strategies may be essential

to obtain an unbounded capacity in the SNR.

1.2 Outline and Contributions

This dissertation is organized as follows. Chapters 2 and 3 present the background

knowledge needed for this thesis. In particular, they introduce channel capacity,

channels with state, the interference channel, and the LDM. Chapter 4 addresses

the channel capacity for the bursty IC, as modeled by a LDM, and considers its
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ergodic and its quasi-static setup. Chapter 5 investigates the channel capacity

for a network with infinity number of bursty interference signals as modeled by a

noncoherent fading channel. Chapter 6 provides a summary and conclusions of

the results in this dissertation. Some proofs of the presented results are deferred

to the appendix sections. Here, we summarize the main contributions of this

thesis:

Chapter 4: Linear deterministic bursty interference channel

In this chapter, we study the sum capacity of the bursty IC as modeled by a LDM.

This study is performed for its quasi-static and ergodic setups. We analyze the

effects of burstiness on the channel capacity. Specifically, our contributions in this

chapter include:

• We perform a joint treatment of the quasi-static and the ergodic model:

Previous literature on the bursty IC considers either the quasi-static model

or the ergodic model. In contrast, this chapter discusses both models,

allowing for a thorough comparison between the two.

• We derive novel achievability and converse bounds: For the ergodic model,

the achievability bounds for the case where Tx and Rx know their corre-

sponding interference states, and the achievability and converse bounds

for the case when all nodes know all interference states, are novel. In

particular, novel achievability strategies are proposed that exploit certain

synchronization between the users.

• We provide novel converse proofs for the quasi-static model: In contrast to

existing converse bounds, which are based on Fano’s inequality, our proofs

of the converse bounds for the rates of the worst-case and opportunistic

messages are based on an information density approach (more precise, they

are based on the Verdú-Han lemma).

• We perform a thorough comparison of the sum capacity of various scenarios:

Inter alia, the obtained results are used to study the advantage of featuring

different levels of CSI, the impact of the burstiness of the interference, and

the effect of the correlation between the channel states of both users.
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The contribution of this chapter was published in the the following paper [63]:

Grace Villacrés, Tobias Koch, Aydin Sezgin and Gonzalo Vazquez-

Vilar. “Robust Signaling for Bursty Interference”. Entropy, 20(11):870,

2018.

The corresponding preprint version can be found on Arxiv:

Grace Villacrés, Tobias Koch, Aydin Sezgin and Gonzalo Vazquez-

Vilar. “Robust Signaling for Bursty Interference”. ArXiv preprint,

November, 2018. arXiv:1809.02022v2.

Chapter 5: Bursty noncoherent wireless networks

In this chapter, we study the effect of burstiness on channel capacity of wireless

network, where two nodes are communicating and an infinite number of nodes

are interfering. Specifically, we consider a memoryless flat fading channel with

an unbounded number of interferes. Furthermore, we include burstiness in the

interference links, where presence or absence is known only at the receiver side

and stays constant during the whole transmission. We show that the channel

capacity is bounded in the SNR under the assumptions that the interferers do

neither cooperate with each other nor with the Tx, and they all use the same

codebook. Specifically, our contributions in this chapter include:

• The channel capacity is bounded in the SNR. This suggests that noncoherent

wireless networks are extremely power inefficient at high SNR.

• Our bound further shows that interference burstiness does not change the

behavior of channel capacity. While our upper bound on the channel capacity

grows as the channel becomes more bursty, it remains bounded in the SNR.

Thus, interference burstiness cannot be exploited to mitigate the power

inefficiency at high SNR.

• Our results suggest that cooperation and better channel estimation strategies

may be essential to obtain an unbounded capacity in the SNR.

The contribution of this chapter was partially published in the paper [64]:
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Grace Villacrés and Tobias Koch. “Wireless Networks of Bounded

Capacity”. In Proceedings of the 2016 IEEE International Symposium

on Information Theory (ISIT), Barcelona, Spain, July 10-15, 2016, pp.

2584-2588.

The corresponding preprint version can be found on Arxiv:

Grace Villacrés and Tobias Koch. “Wireless Networks of Bounded

Capacity”. ArXiv preprint, July, 2015. arXiv:1507.00131.

1.3 Notation

To differentiate between scalars, vectors, and matrices we use different fonts:

scalar random variables and their realizations are denoted by upper and lower

case letters, respectively, e.g., B, b; vectors are denoted using bold face, e.g., X,

x; random matrices are denoted via a special font, e.g., X; and for deterministic

matrices we shall use yet another font, e.g., S. For sets we use the calligraphic

font, e.g., S. We denote sequences such as Ai,1, . . . , Ai,M by AM
i and sequences

such as En, En+1 . . . , EM by EM
n . Generic sequences are denoted by {Ai,k} and

{Ei}. We define (x)+ as max{0, x}.
The set R denotes the set of real numbers, C denotes the set of complex

numbers, Z denotes the set of integers, N denotes the set of positive integers.

We use F2 to denote the binary Galois field and ⊕ to denote the modulo 2

addition. We define the q × q matrix Su ∈ F
q×q
2 as

Su =

[

0Tu×(q−u) 0

Iu 0u×(q−u)

]

q×q

with 0q−1 ∈ F
q−1
2 the all-zero vector and Iu ∈ F

(n)×(n)
2 the identity matrix, and

we refer to it as down-shift matrix.

Similarly, we define the q × q matrix Ld ∈ F
q×q
2 as

Ld =

[

0 0Td×(q−d)

0d×(q−d) Id

]

q×q

.

The matrix selects the d lowest components of a vector of dimension q.
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We shall denote by Hb(p) the entropy of a binary random variable X with

probability mass function (p, 1− p) [26, Sec. 3.3] i.e.,

Hb(p) , −p log p− (1− p) log(1− p). (1.1)

Similarly, we denote by Hsum(p, q) the entropy H(X ⊕ X̃) where X and X̃ are

two independent binary random variables with probability mass functions (pmfs)

(p, 1− p) and (q, 1− q), respectively:

Hsum(p, q) , Hb(p(1− q) + (1− p)q). (1.2)

For this function it holds that Hsum(p, q) = Hsum(1 − p, q) = Hsum(p, 1 − q) =

Hsum(1− p, 1− q).

We denote the floor function by ⌊·⌋. Likewise the ceiling function is denoted

by ⌈·⌉. Thus ⌊a⌋ denotes the largest integer that is smaller than or equal to a and

⌈a⌉ denotes the smallest integer that is greater than or equal to a. We further

use 1(·) to denote the indicator function, i.e., 1(statement) is 1 if the statement

is true and 0 if it is wrong.

We shall denote the limit superior by lim and the limit inferior by lim. Finally,

AN
1 denotes the liminf in probability of AN

1 . It is defined as the supremum of all

reals α for which Pr{AN
1 ≤ α} tends to zero as N tends to infinity. Similarly, the

limsup in probability of AN
1 is denoted by A

N

1 . It is defined as the infimum of all

the reals β for which Pr{AN
1 ≥ β} tends to zero as N tends to infinity.

The norm-1 or Hamming weight of a length-n vector x is denoted by ‖x‖1 and

is defined as ‖x‖1 , |x1|+ |x2|+ . . .+ |xn|.
We denote the pmf of X by PX(·) and the pmf of Y given X by PY |X(·|·).
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2
Channel Capacity

This chapter is devoted to the channel capacity of channels with states. Inter alia,

channels with states can be used to model communication scenarios with fading

and different levels of channel state information (CSI) at transmitter and receiver

[7], [20, Ch. 7], [41].

B1, . . . , BN

Source Encoder Channel Decoder
W X1, . . . , XN Y1, . . . , YN Ŵ

Figure 2.1: Block diagram of a communication system with state [20, Ch. 7].

In particular, we consider the mathematical model of the communication
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system depicted in Figure 2.1. In the figure, the channel depends on the state

sequence BN . The message generated by the information-source, denoted by

W , is independent of the channel state and is uniformly distributed over the

set W = {1, . . . , |W|}, where |W| corresponds to the cardinality of W. In this

dissertation, we consider the following evolutions of the state sequence BN :

i) The state sequence remains constant for a duration of T consecutive symbols

and then changes independently to a new state (ergodic scenario).

ii) The state sequence remains constant during the whole message transmission

(quasi-static scenario).

Transmitter (Tx) or/and receiver (Rx) may have knowledge about BN . This

knowledge can be perfect, partial or fully unknown, as Biglieri et al. describe in

[7]. Furthermore, the knowledge may be causal or non-causal. In general, we shall

use UN ∈ UN to indicate the level of CSI at the Tx and V N ∈ VN to indicate

the level of CSI at the Rx side. Specifically, in this chapter, we study the perfect

non-causal knowledge of the channel state BN at Tx and/or Rx side, and the

perfect causal knowledge at the Tx side.

The encoder assigns to the message a length-N sequence (X1, . . . , XN ) ∈ XN ,

where N is known as the blocklength and X denotes the input alphabet of the

channel. Mathematically, for non-causal knowledge of UN at the Tx, the encoder

is described by a function fN : W × UN 7→ XN , such that XN = fN (W,UN ).

When the channel state is causally known at the Tx, the encoder at time k is

described by a function fk :W×Uk 7→ X , such that Xk = fk(W,Uk), 1 ≤ k ≤ N .

The sequence XN is then sent over the channel. The channel generates an output

sequence (Y1, . . . , YN ) ∈ YN , where Y denotes the channel output alphabet.

The distribution of the channel outputs Y N depends on the input sequence

and the channel-state sequence, as described by the channel law

PY N |XN ,BN (y1, . . . , yN |x1, . . . , xN , b1, . . . , bN ). (2.1)

Physically, the channel law can be interpreted as the probability that the sequence

Y N appears at the Rx when the Tx sends the sequence XN and the channel

uncertainty is modeled by BN [3, Ch. 3], [7].

For simplicity, we assume that, given the channel states BN , the channel is
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memoryless, i.e.,

PY N |XN ,BN (y1, . . . , yN |x1, . . . , xN , b1, . . . , bN ) =

N
∏

k=1

PY |X,B(yk|xk, bk). (2.2)

We further assume that the channel is discrete in the sense that X ,Y , and B are

finite alphabets. The channel law describes the physical propagation characteristics

of the channel model we study. We shall specify in each chapter which channel

model we consider.

The decoder attempts to guess the transmitted message W based on the

sequence of N channel outputs Y N and the information about BN given by the

CSI V N , i.e., (Y1, . . . , YN , V1, . . . , VN ). Mathematically, Ŵ = gN (Y N , V N ) for

some mapping gN : YN × VN 7→ W, where Ŵ denotes the decoded message.

Definition 1 (Achievable rate [14, Def. 7.5]) A rate R is said to be achiev-

able if there exist sequences of mappings {fN , N ∈ N} and {gN , N ∈ N} such that

for each N ∈ N

R =
log(|W|)

N
nats/bits

channel use

and

Pr{W 6= Ŵ} → 0 as N →∞. (2.3)

Definition 2 (Channel capacity [14, Def. 7.5]) The capacity C is the supre-

mum over all achievable rates.

2.1 Capacity of Channels without State

The capacity of a point-to-point memoryless channel was first obtained by Shannon

[51]. For the sake of completeness, we provide this capacity in the following

theorem.

Theorem 1 The capacity of a point-to-point memoryless channel is given by

C = max
Q

I(X;Y ) (2.4)

where the optimization is over all distributions of X.
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Proof: See [51].

Equation (2.4) reveals that to obtain the channel capacity, one needs to

maximize the mutual information I(X;Y ) over all input distributions Q of X.

A common approach to do this is by computing lower and upper bounds on the

channel capacity. Since any choice of input distribution yields a lower bound,

obtaining lower bounds on the channel capacity is usually easier than deriving

upper bounds. Lapidoth and Moser proposed in [40] a general technique that

makes the derivation of upper bounds tractable. Specifically, this approach is

based on the following theorem.

Theorem 2 ([40, Th. 5.1]) Let the channel input and output take value in X
and Y, respectively, let X be of law Q, and let the conditional law of Y , conditioned

on X, be given by P . Assume that X and Y are separable metric spaces, and

assume that for any Borel set B ⊆ Y the mapping x→ P (B|x) from X to [0, 1] is

Borel measurable. Then

I(X;Y ) ≤
∫

D(P (·|x)‖R(·))dQ(x), (2.5)

where D(·‖·) denotes the relative entropy, i.e.,

D(P (·|x)‖R(·)) ,
{

∫

log dP (·|x)
dR(·) dP (·|x) if P (·|x)≪ R(·)

+∞ otherwise
(2.6)

and where R(·) is any distribution on Y.

Proof: See [40, Sec. V].

Theorem 2 shows that, for any choice of R, the right-hand side (RHS) of (2.5)

yields an upper bound on the mutual information I(X;Y ). We will use this

technique in Chapter 5.

Remark 1 Regarding channels that are not memoryless, Verdú and Han [62]

showed that the capacity of general channels is given by

C = sup
Q

I(XN ;Y N ) (2.7)

where I(XN ;Y N ) denotes the liminf in probability of the normalized information

density between input sequence X and output sequence Y, defined as

1

N
i(XN ;Y N ) =

1

N
log

PY N |XN (yN |xN )

PY N (yN )
. (2.8)
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The maximization in (2.7) is over all input distributions Q of X. This definition

of channel capacity is used for the quasi-static scenario.

If the channel has memory and behaves ergodically, (2.7) becomes

C = lim
N→∞

sup
Qn

1

N
I(XN ;Y N ) (2.9)

where the supremum is over all input distributions QN of XN . Specifically,

Dobrushin [17] showed the validity of (2.9) for information stable channels [61,

Def. 3].1 Kim [34] showed that (2.9) is the capacity of a stationary channel with

finite input memory and ergodic noise. However, in general, proving that the

expression in (2.9) is the capacity is a difficult task.

For channels with state, its capacity depends further on the level of CSI

available at the Tx and/or Rx side. In the following sections, we revise the

capacity expressions for the ergodic and quasi-static scenarios under different

availabilities of CSI.

2.2 Channels with States: Ergodic Scenario

In the ergodic scenario, the channel state stays constant during the coherence

time T and then changes to a new independent state. For simplicity, we assume

that T = 1, i.e., the state sequence BN is independent and identically distributed

(IID) and Bk ∼ PB , where PN
B denotes any arbitrary distribution of BN .

2.2.1 No CSI available

We first discuss the case where neither the Tx nor the Rx have access to CSI. Let

Q be the input distribution of X. Then, the channel capacity is given by

C = max
Q

I(X;Y ) (2.10)

where the optimization in (2.10) is over all input distributions Q of X and where

the channel law is given by

PY |X(y|x) =
∑

b∈B

PY |X,B(y|x, b).

1Roughly speaking, these channels have the property that the input that maximizes mutual

information I(XN ;Y N ) and its corresponding output behave ergodically.
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In this case, one may use Theorem 2 to obtain upper bounds on channel capacity.

2.2.2 Perfect CSI available at Receiver

Suppose now that the receiver has access to the channel-state sequence BN . In

this case, the capacity is given by [7, Eq. 3.3.6]

C = max
Q

I(X;Y |B) (2.11)

where the optimization is over all input distributions Q of X. As pointed out

by Caire and Shamai [11], this expression can be obtained by treating BN as an

additional channel output. This case is studied in many information-theoretical

works that concern, e.g., the capacity of fading channels with side information

[24], the bursty-interference channel (IC) [32], [33], [65], or cellular mobile radio

networks [46].

2.2.3 Perfect CSI available at Transmitter

When the Tx has access to the CSI (but the Rx has not), the literature focuses on

two cases: i) causal CSI and ii) non-causal CSI. The case of non-causal CSI at the

Tx (UN ) was considered by Gelfand and Pinsker [23]. In this case, the transmitter

knows in advance the entire sequence BN . This assumption is reasonable, e.g,

when one is concerned with storage of encoded information in a computer, like

coding in a memory with defective cells [38] or the capacity of computer memory

with defects [28]. The channel capacity for this channel is given by [23], [20,

Sec. 7.6.1 and 7.6.2]

C = max
PD|B ,

f :X=f(D,B)

(I(D;Y )− I(D;B)). (2.12)

Here, D is an auxiliary random variable that depends B and has cardinality |D| ≤
min{|X | · |B|, |Y|+ |B| − 1}. The maximization is over all mappings X = f(D,B)

and all conditional distributions of D given B such that D → (X,B)→ Y forms

a Markov chain.

The capacity of memoryless channels with causal CSI at the Tx was first

obtained by Shannon [52] and then generalized by Salehi [48]. In this setting, the
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transmitter knows at time k the CSI B1, . . . , Bk. The channel capacity is given

in [11], [52] and also in [20, Sec. 7.5]:

C = max
PD,

f :X=f(D,B)

I(D;Y ). (2.13)

Here, D is an auxiliary random variable independent of B, with cardinality

|D| ≤ min{(|X | − 1)|B|,Y}. The maximization is over all mappings X = f(D,B)

and all distributions PD.

2.2.4 Perfect CSI available at Transmitter and Receiver

We finally discuss the case where CSI is available (causally or non-causally) at

both Tx and Rx. The capacity of this channel was first derived by Wolfowitz [67,

Th. 4.6.1]

C = max
PX|B

I(X;Y |B) (2.14)

see also [7, Eq. 3.3.7]. The optimization in (2.14) is over all conditional distribu-

tions of X given B, which reflects the dependence of the inputs on the channel

state. This capacity is achieved when the transmitter adapts its coding scheme,

power and data rate to the channel-state variations. This is sometimes referred to

as rate adaption in the literature [24]. Goldsmith and Varaiya [24] showed that

the optimal power allocation is a time-water-pouring approach, which optimally

adapts the power at the transmitter according to the quality of the channel.

2.2.5 Channel Capacity under Different Levels of CSI

To show the effect of CSI on the channel capacity, we compare the results for the

cases: i) CSI unavailable at Tx and Rx, ii) non-causal CSI available at Rx side

(V N = BN ) iii) non-causal CSI at the Tx side (UN = BN ) and iv) non-causal

CSI available at both Tx and Rx sides (V N = UN = BN ). To this end, let us

consider the following example.

Example 1 ([20, Example 7.3], [48]) Consider a discrete memoryless channel

with a discrete memoryless channel state depicted in Figure 2.2. As we can observe,

the channel has a ternary channel state B ∈ {0, 1, 2}, whereas the channel input

X and the channel output Y are binary. In Figure 2.2 we observe that, if B = 0,

29



CHAPTER 2. CHANNEL CAPACITY
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Figure 2.2: Model for a binary memory cell with defects.

then the channel always outputs a 0 independent of its input value; if B = 1, then

the channel always outputs a 1 independent of its input value; if B = 2, then

the output has the same value as its input. This channel is a rough model for a

binary storage medium with equiprobable one-defects and zero-defects, each with

probability (w.p.)

PB(0) = PB(1) =
p

2
, and (2.15)

PB(2) = 1− p. (2.16)

We present the capacity for the following cases:

i) Non-causal CSI unavailable at both Tx and Rx: In this case

PY |X(1|0) =
p

2
(2.17)

PY |X(0|1) =
p

2
. (2.18)
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This corresponds to a binary symmetric channel (BSC) with crossover prob-

ability p
2 , so the channel capacity is

C = max
Q

I(X;Y ) = 1−Hb

(

p
2

)

bits
ch. use . (2.19)

ii) Non-causal CSI available at Rx: In this case

PY |B,X(1|0, 0) =
p

2
(2.20)

PY |B,X(0|1, 1) =
p

2
. (2.21)

This corresponds to a binary erasure channel (BEC) with erasure probability

p, so the channel capacity is

C = max
Q

I(X;Y |V ) = 1− p bits
ch. use . (2.22)

iii) Non-causal CSI available at Tx: Here, we just derive a lower bound on

the capacity. Since this lower bound will coincide with the capacity when

both Tx and Rx have non-causal CSI, and since CSI at both Tx and Rx

cannot be worse than CSI at the Tx only, it follows that this lower bound

is also the capacity. To derive a lower bound, we evaluate (2.12) for the

following distributions. If B = 2, then we set X = D ∼ Ber
(

1
2

)

. If B = 1

or B = 0, then we set D = X = B. It follows that, for this choice of PD|B

and X = f(D,B), the channel capacity is lower-bounded as

C = max
PD|B ,

f :X=f(D,B)

(I(D;Y )− I(D;B))

≥ H(D|B)−H(D|Y )

= H(D|B)

= 1− p (2.23)

where the lower bound follows because our choice of PD|B and f(·) may be

suboptimal, and the subsequent equality follows because, Y = X = B for our

choice of PD|B and f(·).
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Figure 2.3: Capacity of the channel given in Example 1 as a function of p.

iv) Non-causal CSI available at both Tx and Rx: In this case

C =
∑

b

PB(b) max
PX|B(·|b)

I(X;Y |B = b)

=
p

2
I(X;Y |B = 0) +

p

2
I(X;Y |B = 1) + (1− p)I(X;Y |B = 2)

= 1− p. (2.24)

where we need that I(X;Y |B = 0) = I(X;Y |B = 1) = 0 and I(X;Y |B =

2) = 1.

Figure 2.3 shows the capacities obtained for the cases i)-iv) as a function of p.

We observe that, by having CSI, we increase the channel capacity compared to the

case when CSI is unavailable at both Tx and Rx. We further observe that, in this

example, CSI available at the Rx, CSI available at the Tx and CSI available at

both Tx and Rx are equivalent. Of course, in general this is not the case.
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2.3 Channels with States: Quasi-Static Scenario

In this section, we consider the quasi-static scenario [55, Sec. 5.4.1] of the channel

with state. In this scenario, the coherence time is longer than the time needed

for the transmission of the whole message and the channel state stays constant

during the whole transmission. For the quasi-static scenario we distinguish two

scenarios:

• Composite channel [18, Def. 2]: A collection of channels modeled

as a parameterized sequence of N -dimensional conditional distributions

{PY N |XN ,B(·|·, b), b ∈ B}. The channel law for a given N is determined by

the random variable B, chosen according to some channel-state distribution

PB at the beginning of transmission and stays constant for all N .

• Compound channel [67, Ch. 4]: A collection of channels modeled

as a parameterized sequence of N -dimensional conditional distributions

{PY N |XN ,B(·|·, b), b ∈ B}. In contrast to the composite channel, b is not

a random variable, i.e., there is no distribution according to which b is

chosen. Instead, encoding and decoding strategies must work for all possible

channels in the collection.

The capacity of both, composite and compound channels, is the same. Indeed,

Effros et al. [18] remarked:

“In particular, the capacity of the composite channel is a special case

of the general channel capacity derived by Verdú and Han. However,

the distribution over the collection of channels is not used in this

capacity calculation, since the definition of Shannon capacity requires

reliable communication for all channels in the collection. Hence, the

Verdú–Han (Shannon) capacity of a composite channel will be the

same as the Shannon capacity of a compound over the same collection

of possible channels {b ∈ B}, regardless of the PB over the composite

channel states.”

In the next subsections, we specify the channel capacity of these channels for the

cases where an expression is available in the literature.
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2.3.1 No CSI available

The capacity in this scenario is based on the mismatch capacity [22]. The

mismatched capacity is the highest rate at which reliable communication is

possible over the channel with a given (possibly suboptimal) decoding rule. In

other words, the decoding rule is mismatched to the actual channel.

The capacity of the memoryless compound channel with unavailable CSI at

both transmitter and receiver is given by [8], [15], [67, Ch. 4]

C = max
Q

min
b∈B

I(X;Y ) (2.25)

where Q corresponds to the input distribution, and the channel law is given by

PY |X,B(·|·, b). Lapidoth and Telatar [42] derived an expression similar to (2.25)

for a special class of finite-state channels.

2.3.2 Perfect CSI available at Receiver

Suppose now that the Rx has access to the channel-state sequence B. In this case,

the capacity is given by [67, Ch. 4]

C = max
Q

min
b∈B

I(X;Y |B = b) (2.26)

where the optimization is over all input distributions Q of X.

2.3.3 Perfect CSI available at Transmitter

We first consider a channel where the Tx has access to the CSI B. Wolfowitz [67,

Ch. 4] has shown that the capacity of these channels corresponds to the capacity

of the worst-case channel in B. In particular, the capacity is given by

C = min
b∈B

max
Q

I(X;Yb) (2.27)

where, conditioned on X = x, Yb has distribution PY |X,B(·|x, b) and Q corresponds

to the input distribution. This capacity might be enhanced compared to the one

achieved when no CSI is available at the Tx, since it can adapt its transmission

to the current channel.
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2.3.4 Perfect CSI available at Transmitter and Receiver

Suppose now that CSI is available at both Tx and Rx. Then, the Tx can adapt

the transmission rate to the channel state, hence, it performs rate adaption. In

this case, the capacity is given by [67, Ch. 4]

C = max
PX|B

min
b∈B

I(X;Y |B = b) (2.28)

where the optimization is over all conditional distributions of X given B, which

reflects the dependence of the inputs on the channel state.

2.3.5 Alternative Metrics

2.3.5.1 Capacity-versus-Outage

As mentioned in Definition 2, the capacity is the maximum rate at which informa-

tion can be reliably transmitted, i.e., the probability of error (2.3) can be made

arbitrarily small by letting the blocklength N tend to infinity. This definition

requires that all channels in B must be treated equally, and a code that performs

well on all channels must be designed. Hence, the capacity of a composite or

compound channel is typically limited by the worst channel in B. Consequently,
the capacity may be low even if it is very unlikely that a “bad” channel occurs,

[7], [67], because the probability of occurrence of “bad” or “good” channels is

not taken into account. In fact, the probability of error may be bounded away

from zero for every positive rate R > 0 if there is at least one channel in B that

has zero capacity. Hence, the capacity of composite channels can be pessimistic.

Taking advantage of the channel-state distribution, it may be possible to allow

for errors in rare events. This is the case for the capacity-versus-outage metric.

Consider the composite channel where only the Rx has access to CSI, i.e.,

V = B. As Effros et al. [18] pointed out, the capacity-versus-outage metric is

applied to cases where a variable rate R is not possible or desirable. Thus, the

transmitter sends messages at a fixed R. If the channel is “good” (which happens

most of the time) the message is received correctly. However, with some maximal

probability q, the channel is “bad” and the decoder declares an outage, in which

case the information is not decoded and lost. This approach is referred to as

capacity-versus-outage, which we formally introduce next.
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Definition 3 (Capacity-versus-outage [18, Def. 5]) Consider a composite

channel with CSI available only at the receiver side, i.e., U = 0 and V = B. An

(N,R) code for this channel consists of:

1. An independent message W uniformly distributed over the message sets

W , {1, 2, . . . , 2NR}.

2. An encoder: fN : (W ) 7→ XN .

3. An outage identification function: O : B 7→ {0, 1}.

4. A decoder: gN : (Y N , V N ) 7→ Ŵ , which only decodes when O = 1.

Here, Ŵ denotes the decoded message.

The outage probability corresponds to the probability that the decoder determines

that it cannot decode reliably the channel output and declares an outage. Hence,

the outage probability is defined as

P
(N)
out , Pr{O = 0}. (2.29)

Correspondingly, the probability of error in non-outage channel states is

P (N)
e = Pr{W 6= Ŵ |O = 1}. (2.30)

Definition 4 (Outage-q achievable rate [18, Def. 5]) A rate R is outage-q

achievable if there exists a sequence of (N,R) codes such that

lim
N→∞

P
(N)
out ≤ q (2.31)

and

lim
N→∞

P (N)
e = 0. (2.32)

The capacity-versus-outage Cq is the supremum over all outage-q achievable rates.

The following theorem presents the capacity-versus-outage of a composite channel.
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Theorem 3 ([18, Th.1]) The capacity-versus-outage of a composite channel

with outage probability q is given by

Cq = sup
Q

Iq(X
N ;Y N |B) (2.33)

where the supremum is over all joint input distributions QN of XN , and

Iq(X
N ;Y N |B) is the supremum of all αs satisfying

Pr

{

1

N
log

PY N |XN ,B(y
N |xN , b)

PY N |B(yN |b)
≤ α

}

≤ q. (2.34)

Proof: The converse bound follows from [62] and the achievability is given

in [18, Sec. IV].

Definition 5 (Outage capacity [18]) The outage capacity is defined as

CO
q = (1− q)Cq. (2.35)

The outage capacity corresponds to the long-term average rate, obtained by

sending messages over independent quasi-static composite channels. By the law

of large numbers, a fraction (1− q) of the time the Rx can correctly decode the

information.

Remark 2 Sometimes, the capacity-versus-outage Cq is referred to as outage

capacity, and the outage capacity CO
q is referred to as throughput.

2.3.5.2 Opportunistic Rates

Consider the compound channel where only the Rx has access to CSI, i.e., V = B.

As mentioned at the beginning of this chapter, we aim of communicating reliably at

the highest data rate. For a Tx that wishes to communicate through a compound

channel with the Rx at the highest reliable rate, Cover [13] suggested to not only

consider the worst-case channel, but also the best one. This idea was generalized

by Bergman [6], and is now known as the broadcast approach. The broadcast

approach was used e.g., by Shamai [53] for a single-input single-output (SISO)

Gaussian slowly fading channel.

The broadcast approach allows to deliver information rates which depend on

the actual channel realization, when the Tx has no access to CSI. The broadcast
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Figure 2.4: Broadcast approach for a channel with state.

approach is depicted in Figure 2.4. Specifically, in the upper part of Figure 2.4

we depict a compound channel with CSI available only at the Rx, in the lower

part we represent graphically the broadcast approach for this channel. For the

Tx, the compound channel is viewed as a broadcast channel with a given number

of virtual Rxs indexed by the channel-state realization B = b, where b ∈ B. The
number of virtual Rxs is given by the cardinality of |B|. Then, the encoder uses

a broadcast code to encode the message and send it to all virtual Rxs. The Rx,

which has access to B, chooses the appropriate decoder based on the current

channel-state realization.

Using this approach, Körner and Marton [36] studied the case where the

transmitted messages are divided into common and private messages sent over a

degraded broadcast channel as in [13]. Common messages are sent to all receivers,

private messages are sent only to the stronger receiver. The work by Körner and

Marton [36] motivated the idea of opportunistic codes introduced by Digavvi
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and Tse for a quasi-static flat-fading channel [16], where the transmitted messages

are divided into messages with high priority (wH) and low priority (wL). The

messages wH are recovered reliably for all channel realizations in B, whereas the
messages wL are recovered only when the channel conditions are “good”. This

allows for reliable communication when the channel is bad and allows transmission

at an increased rate when the channel is “good”.

Next, we define formally an opportunistic code for the case where CSI is

available at the Rx. To this end, we denote the set of opportunistic messages by

{∆W (·)} , {∆W (v), v ∈ V}. Then, we define an opportunistic code as follows.

Definition 6 (Opportunistic code) An
(

N,R, {∆R(v), v ∈ V}
)

opportunistic

code consists of:

1. An independent message W uniformly distributed over the message sets

W , {1, 2, . . . , 2NR}.

2. An independent set of opportunistic message {∆W (·)} uniformly distributed

over the message set ∆W(v) , {1, 2, . . . , 2N∆R(V )}, v ∈ V.

3. An encoder: f : (W, {∆W (·)}) 7→ XN .

4. A decoder: g : (Y N , V ) 7→ (Ŵ ,∆Ŵ (V )).

Here, Ŵ and ∆Ŵ (V ) denote the decoded message and the decoded opportunistic

message, respectively.

Definition 7 (Achievable opportunistic rates) A rate pair
(

R, {∆R(·)}
)

is

achievable if there exists a sequence of codes
(

N,R, {∆R(·)}
)

such that

Pr
{

Ŵ 6= W
}

→ 0 as N →∞ (2.36)

and

Pr
{

(Ŵ ,∆Ŵ (V )) 6= (W,∆W (V ))|V = v
}

→ 0 as N →∞, v ∈ V. (2.37)

The capacity is the supremum of the set of achievable rate tuples [20, Sec. 6.1].

This opportunism is studied in many fading channel scenarios, including the

IC [32], [33]. In this dissertation, we consider opportunistic codes in Chapter 4.
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Definition 8 (Average capacity) Similarly to the outage capacity of the com-

posite channel, for the compound channel, we define the average capacity as

C̄ , sup
R,∆R

{R+ (1− p)∆R} . (2.38)

Intuitively, the average capacity corresponds to the long-term average rate, ob-

tained by sending messages over independent quasi-static compound channels. By

the law of large numbers a fraction p of the time the Rx can decode the message

W , and a fraction (1 − p) of the time it can further decode the opportunistic

message ∆W .
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3
Interference Channel

As mentioned in Chapter 1, interference is a key limiting factor for the efficient

use of the spectrum in modern wireless networks. For this reason, understanding

its effects on the reliable communication and how to deal with them is an open

research line in Information Theory. The basic model used to better understand

these effects is the interference channel (IC).

This chapter introduces the two-user IC depicted in Figure 3.1 [20, Ch. 6].

This channel models the scenario where two independent transmitters (Txs) want

to communicate a message Wi, i = 1, 2, to two different receivers (Rxs) over a

shared channel. In the figure, each message Wi, i = 1, 2, is separately encoded

into a codeword XN
i and transmitted over the channel. Rx i, i = 1, 2 produces

the estimate Ŵi of Wi based on the received signal Y N
i . Because of the shared

medium used for the communication, the signal at each receiver may be affected

not only by the noise in the channel, but also by the interference caused by the

other transmitted codeword. The maximum data rate at which the users can

communicate reliably in such a channel is an interesting problem that has received
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Figure 3.1: Interference channel [20, Ch. 6].

great attention in the information-theory literature; see e.g., [1], [12], [19], [21],

[27], [37], [50] and references therein. Despite its vast interest, its channel capacity

is still unknown.

3.1 Discrete Memoryless Interference Channel

The discrete memoryless IC (X1 ×X2, p(y1, y2|x1, x2), Y1 ×Y2 ) [20, Sec. 6.1] is

defined by the finite sets X1, X2, Y1, Y2 and the channel transition probability

PY N
1 Y N

2 |XN
1 XN

2
(yN1 , yN2 |xN

1 , xN
2 ) =

N
∏

k=1

PY1Y2|X1X2
(y1,k, y2,k|x1,k, x2,k). (3.1)

Definition 9 (Code for the discrete memoryless IC) An (N,R1, R2) code

for the IC consists of:

1. Two independent messages W1 and W2 uniformly distributed over the mes-

sage sets Wi , {1, 2. . . . , 2NRi}, i = 1, 2.

2. Two encoders: fi : Wi 7→ XN
i , i = 1, 2.

3. Two decoders: gi : Y
N
i 7→ Ŵi, i = 1, 2.

Here Ŵi denotes the decoded message.
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→ X1W1

Y1 → Ŵ1
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→ X2W2

Y2 → Ŵ2
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h11

h12

h22

h21

Figure 3.2: Gaussian IC [20, Sec. 6.4].

Definition 10 (Achievable rates [20, Ch. 6]) A rate pair (R1, R2) is achiev-

able if there exists a sequence of (N,R1, R2) codes such that

Pr{Ŵ1 6= W1 ∪ Ŵ2 6= W2} → 0 as N →∞. (3.2)

Definition 11 (Capacity region [20, Ch. 6]) The capacity region is the clo-

sure of the set of achievable rate pairs.

The capacity region of the discrete memoryless IC is not known in general.

However, when the level of interference is strong or very strong, then the capacity

region is known [20, Sec.6.3] Specifically a discrete memoryless IC operates under

strong interference level if the following conditions are satisfied [50, Eq. 12]:

I(X1;Y1|X2) ≤ I(X1;Y2|X2) (3.3)

I(X2;Y2|X1) ≤ I(X2;Y1|X1). (3.4)

It operates under very strong interference level if the following conditions are

satisfied [50, Eq. 11]:

I(X1;Y1|X2) ≤ I(X1;Y2) (3.5)

I(X2;Y2|X1) ≤ I(X2;Y1). (3.6)

3.2 Gaussian Interference Channel

As defined in [20, Sec. 6.4], the two-user Gaussian IC (see Figure 3.2) is considered

as a simple model for a wireless IC, and hence there are many works related; see
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e.g., [2], [21], [37] and references therein. We consider a discrete-time channel.

The channel outputs at time instant k, corresponding to the channel inputs X1,k

and X2,k, are given by

Y1,k = h11X1,k + h12X2,k + Z1,k

Y2,k = h22X2,k + h21X1,k + Z2,k (3.7)

where hij is the channel coefficient from Tx j to Rx i, and Z1 ∼ NC(0, σ
2) and

Z2 ∼ NC(0, σ
2) are noise components. Here we use the notation H ∼ NC(µ, σ

2)

to indicate that H is a circularly-symmetric, complex Gaussian random variable

of mean µ and variance σ2. It is assumed that XN
1 and XN

2 are constrained by

the average-power constraint

1
N E

[

|Xi|2
]

≤ P, i = 1, 2 (3.8)

and we define signal-to-noise ratio (SNR) as

SNRi =
|hii|2P
σ2

, i = 1, 2 (3.9)

and the interference-to-noise ratio (INR) as

INRi =
|hij |2P
σ2

, i 6= j and i, j = 1, 2. (3.10)

By assuming without loss of generality (wlog) that σ2 = 1, the SNRs are given by

SNR1 = |h11|2P and SNR2 = |h22|2P, and the INRs are given by INR1 = |h12|2P
and INR2 = |h21|2P.

Definition 12 (Code for the Gaussian IC) An (N,R1, R2) code for the

Gaussian IC consists of:

1. Two independent messages W1 and W2 uniformly distributed over the mes-

sage sets Wi , {1, 2. . . . , 2NRi}, i = 1, 2.

2. Two encoders: fi : Wi 7→ XN
i , i = 1, 2, satisfying the average-power

constraint (3.8).

3. Two decoders: gi : Y
N
i 7→ Ŵi, i = 1, 2.

Here, Ŵi denotes the decoded message.

Achievable rates and the capacity region of the Gaussian IC are defined as in

Definitions 10 and 11.
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3.2.1 Capacity of the Gaussian IC

As mentioned before, the capacity region of the Gaussian IC is not completely

characterized in general. However, when the level of interference is strong or very

strong, then the capacity region is known [27], [50], [12]. Specifically a Gaussian

IC operates under strong interference level if the following conditions are satisfied:

|h21| ≤ |h11| (3.11)

|h12| ≤ |h22|. (3.12)

It operates under very strong interference level if the following conditions are

satisfied:

|h22| ≤ |h12|
1 + |h11|

(3.13)

|h11| ≤ |h21|
1 + |h22|

. (3.14)

Remark 3 The conditions (3.11) and (3.12) are equivalent to the conditions (3.3)

and (3.4) for the discrete memoryless IC. Similarly, the conditions (3.13) and

(3.14) are equivalent to the conditions (3.5) and (3.6) for the discrete memoryless

channel [20, Sec. 6.4.2], [50, Eq. 11, Eq. 12].

In the following theorems we present the corresponding capacity regions for these

cases.

Theorem 4 (Capacity region under strong interference [50]) The capac-

ity region of the Gaussian IC under strong interference is the union of the set of

rate pairs (R1, R2) satisfying

R1 ≤ log(1 + SNR1) (3.15)

R2 ≤ log(1 + SNR2) (3.16)

R1 +R2 ≤ min{log(1 + SNR1 + INR1), log(1 + SNR2 + INR2)}. (3.17)

Proof: See [50] and [27].
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Theorem 5 (Capacity region under very strong interference [12]) The

capacity region of the Gaussian IC under very strong interference is the union of

the set of rate pairs (R1, R2) satisfying

R1 ≤ log(1 + SNR1) (3.18)

R2 ≤ log(1 + SNR2). (3.19)

Proof: See [12].

Theorem 5 further shows that interference does not affect the capacity when it is

very strong. Indeed, the capacity region corresponds to the case of two parallel

point-to-point channels.

Some converse and achievability bounds have been derived and proposed for

other interference levels using different approaches. We summarize the bounds in

the following section.

3.2.1.1 Converse bounds

• Genie-aided bound: In this approach, each receiver is provided by addi-

tional information, such as the interference signal or a noisy version of the

caused interference, that allows it to decode both messages, see e.g., [37],

[21].

• Degraded IC [37]: In this approach, the IC is transformed to a degraded

broadcast channel.

3.2.1.2 Achievability bounds

• Han-Kobayashi: The best known achievability strategy for the remaining

unsolved cases was proposed by Han and Kobayashi [27]. It combines

the ideas of time-sharing and rate-splitting, i.e., dividing the transmitted

message into two parts: a common part which can be decoded by both

receivers, and a private part, which can be decoded only by the intended

receiver.

Theorem 6 (Han-Kobayashi Achievability Bound) A rate pair
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(R1, R2) is achievable for a discrete memoryless IC if

R1 <I(X1;Y1|U2, T )

R2 <I(X2;Y2|U1, T )

R1 +R2 <I(X1, U2;Y1|T ) + I(X2;Y2|U1, U2, T )

R1 +R2 <I(X2, U1;Y2|T ) + I(X1;Y1|U1, U2, T )

R1 +R2 <I(X1, U2;Y1|U1, T ) + I(X2, U1;Y2|U2, T )

2R1 +R2 <I(X1, U2;Y1|T ) + I(X1;Y1|U1, U2, T ) + I(X2, U1;Y2|U2, T )

R1 + 2R2 <I(X2, U1;Y2|T ) + I(X2;Y2|U1, U2, T ) + I(X1, U2;Y1|U1, T )

(3.20)

for some probability mass function (pmf) PTPU1,X1|TPU2,X2|T , where |U1| ≤
|X1|+ 4, |U2| ≤ |X2|+ 4, and |T | ≤ 6.

Proof: See [27] and also [20, Sec. 6.5].

The Han-Kobayashi achievability bound can be extended to the Gaussian IC

with average power constraints and for Gaussian codebooks. However, this

task is in general very complicated. Etkin et al. [21] have shown that a very

simple Han–Kobayashi-type scheme can achieve rates within 1 bit/s/Hz of

the capacity of the Gaussian IC for all values of the channel parameters.

• Treating interference as noise (TIN) [20, Sec. 6.4.1]: The Han-

Kobayashi scheme reduces to TIN, if one sets the rate of the common

messages to zero, i.e., U1 = U2 = 0. TIN achieves all rate pairs satisfying

R1 < log

(

1 +
SNR1

1 + INR1

)

(3.21)

R2 < log

(

1 +
SNR2

1 + INR2

)

. (3.22)

• Simultaneous nonunique decoding [20, Sec. 6.4.1]: The Han-Kobayashi

scheme reduces to simultaneous nonunique decoding when U1 = X1 and

U2 = X2. In this case, all rate pairs (R1, R2) are achievable if they satisfy

R1 < log(1 + SNR1) (3.23)

R2 < log(1 + SNR2) (3.24)

R1 +R2 <min{log(1 + SNR1 + INR1), log(1 + SNR2 + INR2)}. (3.25)
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• Time division with power control [20, Sec. 6.4.1]: This approach

consists of orthogonalizing the users. Suppose a fraction of time, τ ∈ [0, 1],

is allocated to Tx1 for transmission with power P

τ . The Tx2 transmits in the

remaining (1− τ) fraction of time with power P

(1−τ) . With such a scheme,

all rate pairs (R1, R2) are achievable if they satisfy

R1 < τ log

(

1 +
SNR1

τ

)

(3.26)

R2 < (1− τ) log

(

1 +
SNR2

(1− τ)

)

. (3.27)

As mentioned before, Han-Kobayashi is the best known achievability strategy,

but it was unclear how close to capacity can such a scheme get and whether

there are other strategies that can perform better. Etkin et al. [21] demonstrated

that the Han-Kobayashi scheme is within 1 bit from a converse bound. Hence,

its gap to capacity does never exceed 1 bit. To obtain their result Etkin et al.

introduced the generalized degrees of freedom (GDoF) as a natural generalization

of the degrees of freedom or capacity pre-log of the point-to-point channel [39] to

scenarios with multiple users. We formally introduce the GDoF in Section 3.2.2.

Before, we introduce the normalized interference as α ,
log INR
log SNR . Based on α, we

can divide the interference into the following regions (a similar division was used

by Jafar and Vishwanath [29]):

• very weak interference (VWI) for α ≤ 1
2 ,

• weak interference (WI) for 1
2 < α ≤ 2

3 ,

• moderate interference (MI) for 2
3 < α ≤ 1,

• strong interference (SI) for 1 < α ≤ 2,

• very strong interference (VSI) for 2 < α.

3.2.2 Generalized Degrees of Freedom

Let us consider a symmetric setup of the Gaussian IC considered in (3.7), i.e.,

h11 = h22 = hd, h12 = h21 = hc. This implies that SNR1 = SNR2 = SNR and
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INR1 = INR2 = INR, and the channel model in (3.7) becomes

Y1,k = hdX1,k + hcX2,k + Z1,k

Y2,k = hdX2,k + hcX1,k + Z2,k. (3.28)

The GDoF is given by

D(α) = lim
SNR→∞:

INR=SNRα

Csym

log(1 + SNR)
(3.29)

where α = log INR
log SNR and Csym corresponds to the symmetric capacity of the

Gaussian IC, which in the symmetric setting is given by the maximum sum rate

R , R1 +R2.

The GDoF is a useful tool to characterize the channel capacity of the Gaussian

IC in the high-SNR regime. Furthermore, coding strategies that achieve the

maximum GDoF achieve capacity within a constant number of bits [9], [21]. For

the IC, the GDoF as a function of α is given by [21]

D(α) =































1− α 0 ≤ α ≤ 1
2

α 1
2 ≤ α ≤ 2

3

1− α
2

2
3 ≤ α ≤ 1

α
2 1 ≤ α ≤ 2

1 2 ≤ α.

As can be observed from Figure 3.3, α 7→ D(α) exhibits a W-shaped curve. This

curve is therefore known as the the W-curve.

A useful technique in the characterization of the GDoF is the deterministic

approach, which maps a Gaussian network to a deterministic channel, where

channel outputs are deterministic functions of their inputs [4], [5], [9].

3.3 Linear Deterministic Model

The general deterministic IC model was first explored by El Gamal and Costa

[19], in which a part of the interfering signal is completely invisible to the other

link. Then, Avestimehr et al. [5] introduced a linear deterministic model (LDM)

for wireless relay networks. The main idea of this model is to have a simple model

that still captures the key features of a wireless communication channels, but
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Figure 3.3: W curve.

simplifies the analysis by eliminating the randomness of noise from the setup. In

this model, the Txs send bit vectors, and depending on the channel strength, a

certain number of bits will be received at the Rxs. The model is an approximation

of the Gaussian IC under the following assumptions:

• the operation regime is at high-SNR, where the signal power is larger than

the noise power.

• at a given receiver, the attained signals from different transmitters are

received at different power levels.

Avestimehr et al. [5] motivate and explain their idea for the point-to-point

channel, the broadcast channel, the multiple access channel (MAC) and relay

networks. In order to introduce the LDM of the IC we are going to study in

Chapter 4, we first motivate the LDM on a simple point-to-point channel.

50



CHAPTER 3. INTERFERENCE CHANNEL

+
YX

Z

Figure 3.4: Point-to-point channel.

3.3.1 Linear Deterministic Point-to-point Channel

We consider the Gaussian point-to-point channel depicted in Figure 3.4. For the

sake of simplicity, we assume that the channel output is given by

Y = X + Z (3.30)

where X denotes the real-valued channel input with power constraint E
[

X2
]

= 1,

and Z corresponds to the additive Gaussian noise Z ∼ N (0, 1). The corresponding

LDM is presented in Figure 3.5. The real-valued channel input X is expanded

as a binary vector, which is interpreted as a succession of bits at different signal

levels. For example, in Figure 3.5 we have X = {b1, b2, b3}, where bi, i = 1, 2, 3

are bits. The most significant bit (b1) coincides with the highest signal level, the

least significant bit (b3) with the lowest signal level. In the deterministic model,

the noise is modeled as a truncation of the signal, and bits below the noise level

are discarded. For this example, the Rx can see only the n most significant bits of

X without any noise and the rest are not seen at all. Mathematically, the channel

output of the LDM of the point-to-point channel is given by

Y = SnX (3.31)

where S is a q × q down-shift matrix as defined in Section 1.3 and with the

correspondence n = log SNR. Thus, there is a correspondence between n and

SNR in dB scale. The capacity of the channel (3.31), which is C = n, is an

approximation of the capacity of the Gaussian point-to-point channel at high

SNR [14, Ch. 9].
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Figure 3.5: LDM for the point-to-point channel.

→ X1W1

Y1 → Ŵ1

→ X2W2

Y2 → Ŵ2

nd

nc
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n
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Figure 3.6: LDM for the IC.

3.3.2 Linear Deterministic IC

Bresler and Tse [9] proposed the LDM of the Gaussian IC. For simplicity, we shall

focus here on the symmetric case. The same model will also be used in Chapter 4.

The LDM of the IC is depicted in Figure 3.6, where the channel outputs at time

instant k are given by [9]

Y1,k = Snd
X1,k ⊕ Snc

X2,k (3.32)

Y2,k = Snd
X2,k ⊕ Snc

X1,k. (3.33)

The signal strengths or power of the channel coefficients for a normalized power

constraint E
[

|Xi|2
]

= 1, i = 1, 2, are given by

nd = ⌊log2 |hd|2⌋ = ⌊log2 SNR⌋ (3.34)

nc = ⌊log2 |hc|2⌋ = ⌊log2 INR⌋. (3.35)

Let q , max{nd, nc}. In (3.32) and (3.33), the channel inputs are the binary

vectors Xi,k ∈ F
q×1
2 and the channel outputs are Yi,k ∈ F

q×1
2 , i = 1, 2. The

operations of (3.32) and (3.33) are illustrated in Figure 3.7. In the figure, we
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observe the LDM of the IC for one time instant.1 Both Txs use the same

transmission strategy. In this case, nd = 5 and nc = 3 and q = max(5, 3) = 5.

Each Txi, i = 1, 2 sends a vector of 5 bits which is received by the corresponding

Rxi. Furthermore, each Tx interferes the communication, i.e., Tx2 interferes to

Rx1 and Tx1 interferes to Rx2. The number of bits that interfere to the intended

signal is given by the first nc most significant bits in Xi, i = 1, 2. For both

signals (communication and interfering signals), the down-shift matrix S (defined

in Section 1.3) is the matrix that mathematically shifts the input vectors Xi,

i = 1, 2 down according to nd and nc. Specifically, the down-shift matrix Snd
, in

this example 5 × 5, shifts Xi, i = 1, 2, down by q − nd elements, which in this

case corresponds to zero-shifted elements. The down-shift matrix Snc
shifts Xj ,

j = 1, 2, down by q − nc elements, which in this case corresponds to two-shifted

elements. Then, at the Rx side, the signals are received at different levels (see

Figure 3.7). At the Rxs, all received bits at the same signal level will be added

using a modulo-2 sum.

In the figure, we also see the matrix Ld (defined in Section 1.3) of dimension

5× 5 (LncY1 in the figure). This matrix is not directly in the channel model but

is used in the proofs of Chapter 4. This matrix selects the d lowest components of

a vector of dimension q, i.e., d = nc = 3 in this case. The normalized interference

level α for the LDM is α , nd

nc
.

3.3.3 Channel Capacity

The channel capacity of the linear deterministic IC was obtained by Bresler and

Tse [9] and by El Gamal and Costa [19]. For the sake of completeness, we next

present these results specialized to the symmetric setup.

Theorem 7 (Channel Capacity of the linear deterministic IC) The sum

capacity of the two-user linear deterministic IC is equal to the union of the set of

all sum rates R , R1 +R2 satisfying

R ≤ 2nd (3.36)

R ≤ (nd − nc)
+ +max(nd, nc) (3.37)

R ≤ 2max{(nd − nc)
+, nc}. (3.38)

1For the sake of simplicity, we omit the temporal index.
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Figure 3.7: LDM of the IC.
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Figure 3.8: Capacity normalized by 2nd of the linear deterministic IC.

Proof: The proof is given in [19, Sec. II]. For the achievability bounds, El

Gamal and Costa [19, Th. 1] use the Han-Kobayashi scheme [27] for a general IC.

Bresler and Tse [9, Section 4] use a specific Han-Kobayashi strategy for the special

case of the LDM. Jafar and Vishwanath [29] present an alternative achievability

scheme for the K-user deterministic IC, which particularized for the two-user IC

will be referenced in this thesis. For the sake of completeness, we present the

proofs of converse and achievability bounds of Theorem 7 in Sections 3.3.4 and

3.3.5, respectively.

Note that the bound (3.36) is only tight in the VSI region or in absence of

interference.

In Figure 3.8, we plot the channel capacity normalized by 2nd of the linear

deterministic IC. We observe that the normalized capacity coincides with the

W-curve of the Gaussian IC in Figure 3.3. Hence, the LDM provides insights on

the Gaussian IC at high SNR. Furthermore, Bresler and Tse [9] demonstrated that

the linear deterministic IC uniformly approximates the Gaussian channel within
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a constant number of bits. This result is presented in the following theorem.

Theorem 8 ([9, Th. 1]) The capacity of the two-user Gaussian IC with signal

and interference to noise ratios SNR and INR is within 42 bits per user of

the capacity of the linear deterministic IC with gains nd = ⌊log2 SNR⌋, nc =

⌊log2 INR⌋.

Proof: See [9].

3.3.4 Converse Bounds for the Linear Deterministic IC

In this section we present the proofs of the converse bounds in Theorem 7.

3.3.4.1 Proof of (3.36)

This bound corresponds to the bound derived in [49]. We begin by applying

Fano’s inequality [14, Th. 2.10.1]

N(R1 − ǫ1N ) ≤ I(W1;Y
N
1 |W2)

= H(YN
1 |W2)−H(YN

1 |W1,W2)

≤ H(Snd
XN

1 ) (3.39)

where ǫ1N → 0 as N → ∞. Here, the first step follows by giving W2 as extra

information and because W1 and W2 are independent of each other. The last step

follows because W2 determines XN
2 , so we can subtract its contribution from Y N

1 .

The entropy can be upper-bounded as

H(Snd
XN

1 ) ≤ Nnd. (3.40)

By symmetry, we obtain the same bound for the other user. By combining the

results for both users, dividing the result by N and taking the limit as N →∞,

we prove (3.36).

3.3.4.2 Proof of (3.37)

This bound was derived in [19]. It was also obtained independently by Kramer

[37]. We begin by applying Fano’s inequality to obtain

N(R1 − ǫ1N ) ≤ I(W1;Y
N
1 |W2)
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= H(YN
1 |W2)−H(YN

1 |W1,W2)

= H(Snd
XN

1 ) (3.41)

where ǫ1N → 0 as N → ∞. Here, the first step follows by giving W2 as extra

information and because W1 and W2 are independent of each other. The last step

follows because W2 determines XN
2 , so we can subtract its contribution from Y N

1 .

Likewise we have

N(R2 − ǫ2N ) ≤ I(W2;Y
N
2 )

= H(YN
2 )−H(YN

2 |W2)

= H(YN
2 )−H(Snc

XN
1 ) (3.42)

where ǫ2N → 0 as N →∞. The last step follows because W2 determines XN
2 , so

we can subtract its contribution from Y N
2 . Combining (3.41) and (3.42) yields

N(R1 +R2 − ǫ1N − ǫ2N ) ≤ H(Snd
XN

1 ) +H(Y N
2 )−H(Snc

XN
1 )

≤ H(Snd
XN

1 |Snc
XN

1 ) +H(YN
2 ) (3.43)

where the last step follows because H(F )−H(G) ≤ H(F |G) for any two random

variables F and G. The entropies in (3.43) can be upper-bounded as

H(Snd
XN

1 |Snc
XN

1 ) ≤ N(nd − nc)
+ (3.44)

H(YN
2 ) ≤ N max(nd, nc). (3.45)

By dividing (3.43) by N and taking the limit as N →∞, we obtain (3.37).

3.3.4.3 Proof of (3.38)

This bound is proved by using the genie-aided approach suggested by Etkin et al.

[21]. Specifically, the bound follows by giving the extra information (Snc
XN

1 ) to

Rx1. By Fano’s inequality, we have

N(R1 − ǫ1N ) ≤ I(W1;Y
N
1 )

≤ I(W1;Y
N
1 , Snc

XN
1 )

= I(W1; Snc
XN

1 ) + I(W1;Y
N
1 |Snc

XN
1 )

= H(Snc
XN

1 ) +H(YN
1 |Snc

XN
1 )−H(YN

1 |W1, Snc
XN

1 )

= H(Snc
XN

1 ) +H(YN
1 |Snc

XN
1 )−H(Snc

XN
2 ) (3.46)

57



CHAPTER 3. INTERFERENCE CHANNEL

where ǫ1N → 0 as N →∞. Analogously, by giving the extra information (Snc
XK

2 )

to Rx2, we obtain

N(R2 − ǫ2N ) ≤ H(Snc
XN

2 ) +H(YN
2 |Snc

XN
2 )H(Snc

XN
1 ) (3.47)

where ǫ2N → 0 as N →∞. Thus, (3.46) and (3.47) yield

N(R1 +R2 − ǫ1N − ǫ2N ) ≤ H(YN
1 |Snc

XN
1 ) +H(YN

2 |Snc
XN

2 ). (3.48)

The individual entropies can be upper-bounded as

H(YN
1 |Snc

XN
1 ) = H(Snd

XN
1 ⊕ Snd

XN
2 |Snc

XN
1 )

≤ N max{(nd − nc)
+, nc} (3.49)

H(YN
2 |Snc

XN
2 ) = H(Snd

XN
2 ⊕ Snd

XN
1 |Snc

XN
2 )

≤ N max{(nd − nc)
+, nc}. (3.50)

By dividing (3.48) by N and taking the limit as N →∞, we obtain (3.38).

3.3.5 Achievability Bounds for the Linear Deterministic IC

In this section, we present the proofs of the achievability bounds in Theorem 7.

We specialize the schemes presented by Jafar and Viswanath in [29, Sec. C] for the

symmetric K-user IC to the two-user IC. For all interference regions, we assume

that both Txs use the same transmission strategy.

3.3.5.1 Very Weak Interference

The symbols transmitted by both Txs (normalized by nd) are depicted in Figure 3.9.

Specifically, both Txs use uncoded transmission. Figure 3.10 depicts the signal

levels of the transmitted signals (normalized by nd) as observed at Rx1, when it is

affected by interference. At the Rx side we observe that the most significant nd(1−
α) levels are received without interference. Block B is affected by interference

and is treated as an erasure [57]. We thus obtain the individual rate

R1 = (nd − nc)
bits

ch. use . (3.51)

User 2 achieves the same rate. Thus, the sum rate R is given by

R = 2(nd − nc)
+ bits

sub-channel use . (3.52)

This coding scheme achieves (3.38) evaluated for VWI.
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Figure 3.12: Signal levels at Rx1 (WI).

3.3.5.2 Weak Interference

The symbols transmitted by both Txs (normalized by nd) are depicted in Fig-

ure 3.11. Specifically, we transmit a block of nd(1−α) bits in the most significant

levels. In the subsequent levels, we transmit a block of nd(1− α) zeros. Finally,

in the least significant levels, we transmit a block of nd(2α− 1) bits. Figure 3.12

depicts the normalized signal levels of the transmitted signal as observed by Rx1.

At the Rx side, we observe that the most significant nd(1 − α) (block B ), and

the least nd(2α− 1) levels (block A) are received without interference. Thus, we

achieve the rate

R1 = nd − nc + 2nc − nd

= nc. (3.53)
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Figure 3.14: Signal levels at Rx1 (MI).

User 2 achieves the same rate. Thus, the sum rate R is given by

R = 2nc
bits

sub-channel use . (3.54)

Observe that this rate coincides with the upper bound (3.38), evaluated for WI.

3.3.5.3 Moderate Interference

The symbols transmitted by both Txs (normalized by nd) are depicted in Fig-

ure 3.13. Specifically, we transmit in the most significant levels a block of nd

(

3α
2

)

bits (we divided this block into two sub-blocks A and B ). In the subsequent

levels, we transmit a block of nd(1 − α) bits. Next, we transmit a copy of the

first block but in a reverse order, i.e., first B and then A . Then, we transmit a

block of nd(1 − α) zeros. Finally, we transmit a block of nd(1 − α) bits in the

least significant levels. Figure 3.14 depicts the normalized signal levels of the

transmitted signals as observed by Rx1. Note that in this interference region the

interfering signal must also be decoded. At the Rx side, we have the following

procedure:

1. The block A (at the first nd(1− α) most-significant bits) and the block D

can be decoded interference free. Likewise, the block F of interfering bits

can be decoded interference free.

2. By subtracting the bits in block F , we can decode block C interference free.
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3. By subtracting the bits in block A , we can decode block E interference free.

4. By subtracting the bits in block E , we can decode the bits in block B

interference free.

This process is also valid at the other Rx, so the sum rate R achieved with this

scheme is

R = 2

(

3nc − 2nd

2
+ 2nd − 2nc

)

= 2nd − nc
bits

sub-channel use . (3.55)

Observe that this rate coincides with (3.37) evaluated for MI.

3.3.5.4 Strong Interference

The symbols transmitted by both Txs (normalized by nd) are depicted in Fig-

ure 3.15. Specifically, we transmit a block of nd

(

1− α
2

)

bits in the most significant

levels. In the subsequent levels, a block of nd(1− α) bits is transmitted. Next,

we transmit a block with a copy of the first block. Finally, we transmit a block

of nd(α − 1) zeros in the least significant levels. The transmitted signal levels

normalized by nd, as observed by Rx1, are depicted in Figure 3.16. As in the MI

region, for SI the interfering signal must also be decoded. At the Rx side, we have

the following procedure:
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1. The block A (at the least-significant bits) and part of B can be decoded

interference free. Likewise, the block C of interfering bits can also be

decoded interference free.

2. By subtracting the bits in block C , we can decode the rest of block B

interference free.

This process is also valid at the other Rx, so the sum rate R achieved using this

scheme is

R = 2
(

nc − nd + nd −
nc

2

)

= nc
bits

sub-channel use . (3.56)

Observe that this rate coincides with (3.37) evaluated for SI.
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4
Linear Deterministic Bursty

Interference Channel

4.1 Introduction

Interference is a key limiting factor for the efficient use of the spectrum in

modern wireless networks. It is, therefore, not surprising that the interference

channel (IC) has been studied extensively in the past; see, e.g., [20, Ch. 6] and

references therein. Most of the information-theoretic work developed for the IC

assumes that interference is always present. However, certain physical phenomena,

such as shadowing, can make the presence of interference intermittent or bursty.

Interference can also be bursty due to the bursty nature of data traffic, distributed

medium access control mechanisms, and decentralized networking protocols. For

this reason, there has been an increasing interest in understanding and exploring

the effects of burstiness of interference.
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Seminal works in this area were performed by Khude et al. in [32] for the

Gaussian channel and in [33] by using a model which corresponds to an approxi-

mation to the two-user Gaussian IC. They tried to harness the burstiness of the

interference by taking advantage of the time instants when the interference is not

present to send opportunistic data. Specifically, [32], [33] considered a channel

model where the interference state stays constant during the transmission of the

entire codeword, which corresponds to a quasi-static channel. Motivated by the

idea of degraded message sets by Körner and Marton [36], Khude et al. studied

the largest rate of a coding strategy that provides reliable communication at a

basic rate R and allows an increased (opportunistic) rate R+∆R when there is

no interference. The idea of opportunism was also used by Diggavi and Tse [16]

for the quasi-static flat fading channel and, recently, by Yi and Sun [69] for the

K-user IC with states.

Wang et al. [65] modeled the presence of interference using an independent and

identically distributed (IID) Bernoulli process that indicates whether interference

is present or not, which corresponds to an ergodic channel. They further assume

that the interference links are fully correlated. Wang et al. mainly studied the

effect of causal feedback under this model, but also presented converse bounds for

the non-feedback case. Mishra et al. considered the generalization of this model

to multicarrier systems, modeled as parallel two-user bursty ICs, for the feedback

[45] and non-feedback case [44].

The bursty IC is related to the binary fading IC, for which the four channel

coefficients are in the binary field {0, 1} according to some Bernoulli distribution.1

Vahid et al. [56], [57], [58], [59], [60] studied the capacity region of the binary

fading IC. Specifically, [58], [60] study the capacity region of the binary fading

IC when the transmitters do not have access to the channel coefficients, and [59]

study the capacity region when the transmitters have access to the past channel

coefficients. Vahid and Calderbank additionally study the effect on the capacity

region when certain correlation is available to all nodes as side information [56].

The focus of the works by Khude et al. [33] and Wang et al. [65] was on the

linear deterministic model (LDM), which was first introduced by Avestimehr [5],

1Note, however, that neither of the two models is a special case of the other. While a zero

channel coefficient of the cross link corresponds to intermittence of interference, the bursty IC

allows for non-binary signals. Conversely, in contrast to the binary fading IC, the direct links in

the bursty IC cannot be zero, since only the interference can be intermittent.
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but falls within the class of more general deterministic channels whose capacity

was obtained by El Gamal and Costa in [19]. The LDM maps the Gaussian IC to a

channel whose outputs are deterministic functions of their inputs. Bresler and Tse

demonstrated in [9] that the generalized degrees of freedom (first-order capacity

approximation) of the two-user Gaussian IC coincides with the normalized capacity

of the corresponding deterministic channel. The LDM thus offers insights on the

Gaussian IC.

4.1.1 Contributions

In this chapter, we consider the LDM of a bursty IC. We study how interference

burstiness and the knowledge of the interference states (throughout referred to as

channel state information (CSI)) affects the capacity of this channel. We point

out that this CSI is different from the one sometimes considered in the analysis

of ICs (see, e.g., [30]), where CSI refers to knowledge of the channel coefficients.

(In this regard, we assume that all transmitters and receivers have access to the

channel coefficients.) For the sake of compactness, we focus on non-causal CSI

and leave other CSI scenarios, such as causal or delayed CSI, for future work.

We consider the following cases: (i) only the receivers know the correspond-

ing interference state (local CSIR); (ii) transmitters and receivers know their

corresponding interference states (local CSIRT); and (iii) both transmitters and re-

ceivers know all interference states (global CSIRT). For each CSI level we consider

both (i) the quasi-static channel and (ii) the ergodic channel. Specifically, in the

quasi-static channel the interference is present or absent during the whole message

transmission and we harness the realizations when the channel experiences better

conditions (no presence of interference) to send extra messages. In the ergodic

channel the presence/absence of interference is modeled as a Bernoulli random

variable which determines the interference state. The interference state stays

constant for a certain coherence time T and then changes independently to a new

state. This model includes the IID model by Wang et al. as a special case, but

also allows for scenarios where the interference state changes more slowly.2 The

proposed analysis is performed for the two extreme cases where the states of each

2Note, however, that when the receivers know the interference state (as we shall assume in

this work), then the capacity of this model becomes independent of T and coincides with that

of the IID model.
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of the interfering links are independent, and where states of the interfering links

are fully correlated. Hence we unify the scenarios already treated in the literature

[33], [32], [65]. Nevertheless, some of our presented results can be extended to

consider an arbitrary correlation between the interfering states. The works by

Vahid and Calderbank [56] and Yeh and Wang [68] characterize the capacity

region of the two-user binary IC and the multiple-input multiple-output (MIMO)

X-channel, respectively. While [56], [68] consider a general spatial correlation

between communication and interfering links, they do not consider the correlation

between interfering links.

Our analysis shows that, for both the quasi-static and ergodic channels, for

all interference regions except the very strong interference region, global CSIRT

outperforms local CSIR/CSIRT. This result does not depend on the correlation

between the states of the interfering links. For local CSIR/CSIRT and the quasi-

static scenario, the burstiness of the channel is of benefit only in the very weak

and weak interference regions. For the ergodic case and local CSIR, interference

burstiness is only of clear benefit if the interference is either weak or very weak,

or if it is present at most half of the time. This is in contrast to local CSIRT,

where interference burstiness is beneficial in all interference regions.

Specific contributions of this chapter include:

• A joint treatment of the quasi-static and the ergodic model: Previous

literature on the bursty IC considers either the quasi-static model or the

ergodic model. Furthermore, due to space constraints, the proofs of some of

the existing results were either omitted or contain little details. In contrast,

this chapter discusses both models, allowing for a thorough comparison

between the two.

• Novel achievability and converse bounds: For the ergodic model, the achiev-

ability bounds for local CSIRT, and the achievability and converse bounds

for global CSIRT, are novel. In particular, novel achievability strategies are

proposed that exploit certain synchronization between the users.

• Novel converse proofs for the quasi-static model: In contrast to existing

converse bounds, which are based on Fano’s inequality, our proofs of the

converse bounds for the rates of the worst-case and opportunistic messages

are based on an information density approach (more precise, they are based
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on the Verdú-Han lemma). This approach does not only allow for rigorous

yet clear proofs, but it would also enable a more refined analysis of the

probabilities that worst-case and opportunistic messages can be decoded

correctly.

• A thorough comparison of the sum capacity of various scenarios: Inter alia,

the obtained results are used to study the advantage of featuring different

levels of CSI, the impact of the burstiness of the interference, and the effect

of the correlation between the channel states of both users.

4.2 Channel Model

Our analysis is based on the LDM, introduced by Avestimehr et al. [5] for some

relay network. This model is, on the one hand, simple to analyze and, on the

other hand, captures the essential structure of the Gaussian channel in the high

signal-to-noise ratio regime.

We consider a bursty IC where i) the interference state remains constant

during the whole transmission of the codeword of length N (quasi-static setup) or

ii) the interference state remains constant for a duration of T consecutive symbols

and then changes independently to a new state (ergodic setup). For one coherence

block, the two-user bursty IC is depicted in Figure 4.1, where nd and nc are the

channel gains of the direct and cross links, respectively. We assume that nd and

nc are known to both the transmitter and receiver and remain constant during

the whole transmission of the codeword. For simplicity, we shall assume that

nd and nc are equal for both users. Nevertheless, most of our results generalize

to the asymmetric case. More precisely, all converse and achievability bounds

generalize to the asymmetric case, while the direct generalization of the proposed

achievability schemes may be loose in some asymmetric regions.

For the k-th block, the input-output relation of the channel is given by

Y1,k = Snd
X1,k ⊕B1,kSnc

X2,k (4.1)

Y2,k = Snd
X2,k ⊕B2,kSnc

X1,k. (4.2)

Let q , max{nd, nc}. In (4.1) and (4.2), Xi,k ∈ F
q×T
2 and Yi,k ∈ F

q×T
2 ,

i = 1, 2. The interference states Bi,k, i = 1, 2, k = 1, . . . ,K, are sequences of IID

Bernoulli random variables with activation probability p.
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→ X1W1 Y 1

→ X2W2 Y 2

nc

nc

B1

B
2

nd

nd

Figure 4.1: Channel model of the bursty interference channel.

Regarding the sequences BK
1 and BK

2 , we consider two cases: (i) BK
1 and BK

2

are independent of each other and (ii) BK
1 and BK

2 are fully correlated sequences,

i.e., BK
1 = BK

2 . For both cases we assume that the sequences are independent of

the messages W1 and W2.

4.2.1 Quasi-Static Channel

The channel defined in (4.1) and (4.2) may experience a slowly-varying change

on the interference state. In this case, the duration of each of the transmitted

codewords of length N = KT is smaller than the coherence time T of the channel

and the interference state stays constant over the duration of each codeword, i.e.,

K = 1, T = N . In the wireless communications literature such a channel is usually

referred to as a quasi-static channel [55, Sec. 5.4.1]. In this scenario, the rate pair

of achievable rates (R1, R2) is dominated by the worst case, which corresponds to

the presence of interference at both receivers. However, in absence of interference,

it is possible to communicate at a higher date rate, so planning a system for the

worst case may be too pessimistic. Assuming that the receivers have access to

the interference states, the transmitters could send opportunistic messages that

are decoded only if the interference is absent, in addition to the regular messages

that are decoded irrespective of the interference state. We make the notion of

opportunistic messages and rates precise in the subsequent paragraphs.

Let Ui,k indicate the level of CSI available at the transmitter side in coherence

block k, and let Vi,k indicate the level of CSI at the receiver side in coherence

block k:

1. local CSIR: Ui,k = ∅ and Vi,k = Bi,k, i = 1, 2, k = 1, . . . ,K,
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2. local CSIRT: Ui,k = Vi,k = Bi,k, i = 1, 2, k = 1, . . . ,K,

3. global CSIRT: Ui,k = Vi,k = (B1,k, B2,k), i = 1, 2, k = 1, . . . ,K.

We define the set of opportunistic messages according to the level of CSI at the

receiver as {∆Wi(·)} , {∆Wi(vi), vi ∈ Vi}, where Vi denotes the set of possible

interference states Vi. Specifically,

1. for local CSIR:

{∆Wi(·)} = {∆Wi(1),∆Wi(0)}, i = 1, 2,

2. for local CSIRT:

{∆Wi(·)} = {∆Wi(1),∆Wi(0)}, i = 1, 2,

3. for global CSIRT:

{∆Wi(·)} = {∆Wi(00),∆Wi(01),∆Wi(10),∆Wi(11)}, i = 1, 2.

Then, we define an opportunistic code as follows.

Definition 13 (Opportunistic code for the bursty IC) An
(

N,R1, R2, {∆R1(·)}, {∆R2(·)}
)

opportunistic code for the bursty IC con-

sists of:

1. Two independent messages W1 and W2 uniformly distributed over the mes-

sage sets Wi , {1, 2, . . . , 2NRi}, i = 1, 2.

2. Two independent sets of opportunistic messages {∆W1(·)} and

{∆W2(·)} uniformly distributed over the message sets ∆Wi(vi) ,

{1, 2, . . . , 2N∆Ri(vi)}, vi ∈ Vi, i = 1, 2.

3. Two encoders: fi : (Wi, {∆Wi(·)}, Ui) 7→Xi, i = 1, 2,.

4. Two decoders: gi : (Yi, Vi) 7→ (Ŵi,∆Ŵi(Vi)), i = 1, 2.

Here, Ŵi and ∆Ŵi(Vi) denote the decoded message and the decoded opportunistic

message, respectively. We set ∆Ri(1) = 0, i = 1, 2 (for local CSIR/CSIRT) and

∆Ri(11) = 0 (for global CSIRT).

To better distinguish the rates (R1, R2) from the opportunistic rates {∆Ri(·)},
i = 1, 2, we shall refer to (R1, R2) as worst-case rates, because the corresponding

messages can be decoded even if the channel is in its worst state (see also

Definition 14).
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Definition 14 (Achievable opportunistic rates) A rate tuple
(

R1, R2, {∆R1(·)}, {∆R2(·)}
)

is achievable if there exists a sequence of

codes
(

N,R1, R2, {∆R1(·)}, {∆R2(·)}
)

such that

Pr
{

Ŵ1 6= W1 ∪ Ŵ2 6= W2

}

→ 0 as N →∞ (4.3)

and

Pr
{

(Ŵ1,∆Ŵ1(V1)) 6= (W1,∆W1(V1))|V1 = v1
}

→ 0 as N →∞, v1 ∈ V1, (4.4)

Pr
{

(Ŵ2,∆Ŵ2(V2)) 6= (W2,∆W2(V2))|V2 = v2
}

→ 0 as N →∞, v2 ∈ V2. (4.5)

The capacity region is the closure of the set of achievable rate tuples [20, Sec. 6.1].

We define the worst-case sum rate as R , R1 + R2 and the opportunistic sum

rate as ∆R(V1, V2) , ∆R1(V1) + ∆R2(V2). The worst-case sum capacity C is the

supremum of all achievable worst-case sum rates, the opportunistic sum capacity

∆C(V1, V2) is the supremum of all opportunistic sum rates, and the total sum

capacity is defined as C +∆C(V1, V2). Note that the opportunistic sum capacity

depends on the worst-case sum rate.

Remark 4 The worst-case sum rate and opportunistic sum rates in the quasi-

static setting depend only on the collection of possible interference states: for

independent interference states we have B ∈ {00, 01, 10, 11}, and for fully corre-

lated interference states we have B ∈ {00, 11}. In principle, our proof techniques

could also be applied to analyze other collections of interference states.

Remark 5 In the CSIRT setting the transmitters have access to the interference

state. Therefore, in this setting the messages are strictly speaking not opportunistic.

Instead, transmitters can adapt their rate based on the state of the interference

links, which is sometimes referred to as rate adaptation in the literature.

4.2.2 Ergodic Channel

In this setup, we shall restrict ourselves to codes whose blocklength N is an integer

multiple of the coherence time T . A codeword of length N = KT thus spans K

independent channel realizations.
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Definition 15 (Code for the bursty IC) A
(

K,T,R1, R2

)

code for the bursty

IC consists of:

1. Two independent messages W1 and W2 uniformly distributed over the mes-

sage sets Wi , {1, 2, . . . , 2KTRi}, i = 1, 2.

2. Two encoders: fi : (Wi, U
K
i ) 7→XK

i , i = 1, 2.

3. Two decoders: gi : (Y
K
i , V K

i ) 7→ Ŵi, i = 1, 2.

Here, Ŵi denotes the decoded message, and UK
i and V K

i indicate the level of

CSI at the transmitter and receiver side, respectively, which are defined as for the

quasi-static channel in Section 4.2.1.

Definition 16 (Ergodic achievable rates) A rate pair (R1, R2) is achievable

for a fixed T if there exists a sequence of codes
(

K,T,R1, R2

)

(parameterized by

K) such that

Pr
{

Ŵ1 6= W1 ∪ Ŵ2 6= W2

}

→ 0 as K →∞. (4.6)

The capacity region is the closure of the set of achievable rate pairs. We define the

sum rate as R , R1 +R2, the sum capacity C is the supremum of all achievable

sum rates.

4.2.3 The Sum Capacities of the Non-Bursty and the Quasi-

Static Bursty IC

When the activation probability p is 1, we recover in both the ergodic and quasi-

static scenarios the deterministic IC. For a general deterministic IC the capacity

region was obtained in [19, Th. 1] and then by Bresler and Tse in [9] for a specific

deterministic IC. For completeness, we recall the sum capacity region for the

deterministic non-bursty IC in the following theorem (it was already presented in

Chapter 3).

Theorem 9 The sum capacity region of the two-user deterministic IC is equal
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to the union of the set of all sum rates R satisfying

R ≤ 2nd (4.7)

R ≤ (nd − nc)
+ +max(nd, nc) (4.8)

R ≤ 2max{(nd − nc)
+, nc}. (4.9)

Proof: Sections 3.3.4 and 3.3.5.

We can achieve the sum rates (4.7) and (4.9) over the quasi-static channel by

treating the bursty IC as a non-bursty IC. The following theorem demonstrates

that this is the largest achievable worst-case sum rate irrespective of the availability

of CSI and the correlation between B1 and B2.

Theorem 10 (Sum capacity for the quasi-static bursty IC) For 0 ≤ p ≤
1, the worst-case sum capacity of the bursty IC is equal to the supremum of the

set of sum rates R satisfying

• For p = 0,

R ≤ 2nd. (4.10)

• For 0 < p ≤ 1

R ≤ (nd − nc)
+ +max(nd, nc) (4.11)

R ≤ 2max{(nd − nc)
+, nc}. (4.12)

Proof: The converse bounds are proved in Appendix A.1.1. Achievability

follows directly from Theorem 9 by treating the bursty IC as a non-bursty IC.

Theorem 10 shows that the worst-case sum capacity does not depend on the

level of CSI available at the transmitter and receiver side. However, this is not

the case for the opportunistic rates as we will see in the next sections.

Remark 6 In principle, one could reduce the worst-case rates in order to increase

the opportunistic rates. However, it turns out that such a strategy is not beneficial

in terms of total rates Ri +∆Ri(Vi), i = 1, 2. In other words, setting ∆Ri(1) = 0,

i = 1, 2 (for local CSIR/CSIRT) and ∆Ri(11) = 0 (for global CSIRT), as we

have done in Definition 14, incurs no loss in total rate. Furthermore, in most

cases it is preferable to maximize the worst-case rate, since it can be guaranteed

irrespective of the interference state.
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4.3 Local CSIR

For the quasi-static and ergodic setups, described in Sections 4.2.1 and 4.2.2,

respectively, we derive converse and achievability bounds for the independent

and fully correlated scenarios when the interference state is only available at the

receiver side.

4.3.1 Quasi-Static Channel

4.3.1.1 Independent Case

We present converse and achievability bounds for local CSIR when B1 and B2 are

independent. The converse bounds are derived for local CSIRT, hence they also

apply to this case. Since converse and achievability bounds coincide, this implies

that local CSI at the transmitter is not beneficial in the quasi-static setup.

Theorem 11 (Opportunistic sum capacity for local CSIR/CSIRT)

Assume that B1 and B2 are independent of each other. For 0 < p < 1,

the opportunistic sum capacity region is the union of the set of rate tuples

(R, {∆R1(b1) + ∆R2(b2), bi ∈ {0, 1}}), where ∆R1(1) = ∆R2(1) = 0, and R,

∆R1(0) and ∆R2(0) satisfy (4.10)–(4.12) and

R+∆R1(0) + ∆R2(0) ≤ 2nd (4.13)

R+∆R1(0) ≤ (nd − nc)
+ +max(nd, nc) (4.14)

R+∆R2(0) ≤ (nd − nc)
+ +max(nd, nc). (4.15)

Proof: The converse bounds are proved in Appendix A.1.2 and the achiev-

ability bounds are proved in Appendix A.1.3.

Remark 7 The converse bounds in Theorem 11 coincide with those in [33,

Th. 2.1], particularized for the symmetric setting. Theorem 11, however, is

proven for local CSIRT, which is not considered in the model from [33]. The

proof included in Appendix A.1.2 is based on an information density approach

and provides a unified framework for treating local CSIR, local CSIRT and global

CSIRT, as will be shown in Section 4.5.

As discussed in Remark 6, one could reduce the worst-case sum rate R and

increase the opportunistic rates ∆R(V1, V2). However, in the case of one-shot

73



CHAPTER 4. LINEAR DETERMINISTIC BURSTY IC

Table 4.1: Opportunistic sum capacity for local CSIR when the worst-case sum rate is

maximized.

Rates VWI WI MI SI

C 2(nd − nc) 2nc 2nd − nc nc

∆C(00) 2nc 2(2nd − 3nc) 0 0

∆C(01)/∆C(10) nc 2nd − 3nc 0 0

transmission3 this is not desirable, since the worst-case sum rate is the only

rate that can be guaranteed irrespective of the interference state. Thus, one is

typically interested in the opportunistic sum capacity when the worst-case rate

R is maximized. For this case, the results of Theorem 11 are summarized in

Table 4.1 for the very weak interference (VWI), weak interference (WI), moderate

interference (MI) and strong interference (SI) regions. Observe that converse and

achievability bounds coincide. Further observe that opportunistic messages can

only be transmitted reliably for VWI or WI. In the other interference regions, the

opportunistic sum capacity is zero.

4.3.1.2 Fully Correlated Case

Assume now that the sequences B1 and B2 are fully correlated (B1 = B2). For local

CSIR, the correlation between B1 and B2 has no influence on the opportunistic

sum capacity region. Indeed, in this case the channel inputs are independent of

(B1, B2) and the opportunistic sum capacity region of the quasi-static bursty IC

depends on (B1, B2) only via the marginal distributions of Bi, i = 1, 2. Hence, it

follows that Theorem 11 as well as Table 4.1 apply also to the fully correlated

case and local CSIR scenario. For completeness, a proof of the converse part is

given in Appendix A.1.4. The achievability part is included in Appendix A.1.3.

3 With one-shot transmission we refer to the case where we transmit one codeword of length

N over the quasi-static channel. This is in contrast to the case discussed, e.g., in Section 4.3.3,

where we are interested in transmitting many codewords, each over N channel uses of independent

quasi-static channels.
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4.3.2 Ergodic Channel

4.3.2.1 Independent Case

For the case where the sequences BK
1 and BK

2 are independent of each other, we

have the following theorems.

Theorem 12 (Converse bounds for local CSIR) Assume that BK
1 and BK

2

are independent of each other. The sum rate R for the bursty IC is upper-bounded

by

R ≤ 2
1− p

1 + p
nd + 2

p

1 + p

[

(nd − nc)
+ +max(nd, nc)

]

(4.16)

and

R ≤















2(1− 2p)nd + 2p
[

(nd − nc)
+ +max(nd, nc)

]

p ≤ 1
2 ,

2(1− p) [(nd − nc)
+ +max(nd, nc)]

+ 2(2p− 1) [max{(nd − nc)
+, nc}] p > 1

2 .

(4.17)

Proof: Bound (4.16) coincides with [65, Eq. (3)]. Specifically, [65, Eq. (3)]

derives (4.16) for the considered channel model with T = 1 and feedback. The

proof for this bound under local CSIRT (without feedback) is given in Ap-

pendix A.2.1. Bound (4.17) coincides with [66, Lemma A.1]. Specifically, [66,

Lemma A.1] derives (4.17) for the model considered with T = 1. The proof of

[66, Lemma A.1] directly generalizes to arbitrary T .

Theorem 13 (Achievability bounds for local CSIR) Assume that BK
1 and

BK
2 are independent of each other. The following sum rate R is achievable over

the bursty IC:

R =



























2(1− 2p)nd + 2p
[

(nd − nc)
+ +max(nd, nc)

]

, p ≤ 1
2 ,

min {(nd − nc)
+ +max(nd, nc),

2(1− p) [(nd − nc)
+ +max(nd, nc)]

+ 2(2p− 1) [max{(nd − nc)
+, nc}]} , p > 1

2 .

(4.18)

Proof: The achievability scheme for VWI for all values of p, and for WI

and MI when 0 ≤ p ≤ 1
2 , is described in Appendix A.2.2.1. The achievability
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scheme for WI and 1
2 < p ≤ 1 is described in Appendix A.2.2.2. The scheme

for SI and 0 ≤ p ≤ 1
2 is summarized in Appendix A.2.2.3. For MI and SI when

1
2 < p ≤ 1, the achievability bound in the theorem corresponds to the one of the

non-bursty IC [29]. This also implies that in this sub-region we do not exploit the

burstiness of the IC.

Remark 8 The achievability schemes presented in Theorem 13 are similar to

those described in [58], [60]. They achieve the capacity region by applying point-

to-point erasure codes with appropriate rates at each transmitter and using either

treating-interference-as-erasure or interference-decoding at each receiver. Specif-

ically, we apply treating-interference-as-erasure in the VWI region and for all

values of p, and for all interference regions, except very strong interference (VSI),

and p ≤ 1
2 . Interference-decoding at each receiver is applied in the MI and SI

regions for p > 1
2 .

Remark 9 Wang et al. claim in [66, Lemma A.1] that the converse bound (18)

is tight for 0 ≤ p ≤ 1
2 without providing an achievability bound. Instead, they refer

to Khude et al. [33] for the inner bound which, alas, does not apply to the ergodic

setup. While it is possible to adapt the achievability schemes considered in [33] to

prove (4.18), a number of steps are required. For completeness, we include the

achievability schemes for the ergodic setup and 0 ≤ p ≤ 1
2 in Appendix A.2.2.1.

Table 4.2 summarizes the results of Theorems 12 and 13. We write the sum

capacities in bold face when the converse and achievability bounds match. In

Table 4.2, we define

CLMI , min

{

2[2(nd − nc) + p(3nc − 2nd)],

2

[

1− p

1 + p
nd +

p

1 + p
(2nd − nc)

]

}

(4.19)

CLSI , min

{

2pnc, 2

[

1− p

1 + p
nd +

p

1 + p
nc

]

}

(4.20)

where “L” stands for “local CSIR”.

76



CHAPTER 4. LINEAR DETERMINISTIC BURSTY IC

Table 4.2: Sum capacity for local CSIR.

Regions p ≤ 1
2 p > 1

2

VWI 2(nd − pnc) 2(nd − pnc)

WI 2(nd − pnc) 4(nd − nc) + 2p(3nc − 2nd)

MI 2(nd − pnc) 2nd − nc ≤ R ≤ CLMI

SI 2(1 − 2p)nd + 2pnc nc ≤ R ≤ CLSI

4.3.2.2 Fully Correlated Case

For local CSIR, the dependence between BK
1 and BK

2 has no influence on the

capacity region. Indeed, in this case the channel inputs are independent of

(BK
1 , BK

2 ) and decoder i has only access to Bi,k and (Snd
Xi,k ⊕ Bi,kSnc

Xj,k),

k = 1, . . . ,K, j = 3 − i and i = 1, 2. Furthermore, Pr{Ŵ1 6= W1 ∪ Ŵ2 6= W2}
vanishes as K →∞ if, and only if, Pr{Ŵi 6= Wi}, i = 1, 2, vanishes as K →∞.

Since Pr(Ŵi 6= Wi) depends only on BK
i , the capacity region of the bursty IC

depends on (BK
1 , BK

2 ) only via the marginal distributions of BK
1 and BK

2 . Hence,

Theorems 12 and 13 as well as Table 4.2 apply also to the case where BK
1 = BK

2 .

This is consistent with the observation by Sato [49] that “the capacity region is

the same for all two-user channels that have the same marginal probabilities.”

4.3.3 Quasi-Static vs. Ergodic Setup

In general, the sum capacities of the quasi-static and ergodic channels cannot be

compared, because in the former case we have a set of sum capacities (worst case

and opportunistic), whereas in the latter case only one is defined. To allow for a

comparison, we introduce for the quasi-static channel the average sum capacity as

C̄ , sup
(R,∆R1(0),∆R2(0))

{R+ (1− p)(∆R1(0) + ∆R2(0))} (4.21)

where the suprema is over all tuples (R,∆R1(0),∆R2(0)) that satisfy (4.10)–(4.15).

Intuitively, the average rate corresponds to the case where we send many messages

over independent quasi-static fading channels. By the law of large numbers,

a fraction of p transmissions will be affected by interference, the remaining

transmissions will be interference-free. Table 4.3 summarizes the average sum

capacity for the different interference regions.
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Table 4.3: Average sum capacities for local CSIR.

Regions p ≤ 1
2 p > 1

2

VWI 2(nd − pnc) 2(nd − pnc)

WI 2(nd − pnc) 4(nd − nc) + 2p(3nc − 2nd)

MI 2(nd − pnc) 2nd − nc

SI 2(1 − 2p)nd + 2pnc nc

By comparing Tables 4.2 and 4.3, we can observe that for p ≤ 1
2 and all

interference regions, and for p > 1
2 and VWI/WI, the average sum capacity in

the quasi-static setup coincides with the sum capacity in the ergodic setup. For

p > 1
2 , and MI/SI (where converse and achievability bounds do not coincide), the

average sum capacities in the quasi-static setup coincide with the achievability

bounds of the ergodic setup.

4.4 Local CSIRT

For the quasi-static and ergodic setups, we present converse and achievability

bounds when transmitters and receivers have access to their corresponding inter-

ference states. We shall only consider the independent case here, because when

BK
1 = BK

2 local CSIRT coincides with global CSIRT, which will be discussed in

Section 4.5.

4.4.1 Quasi-Static Channel

For the quasi-static channel, the converse and achievability bounds were already

presented in Theorem 11 in Section 4.3.1.1. Indeed, the converse bounds were

derived for local CSIRT, whereas the achievability bounds in that theorem were

derived for local CSIR. Since these bounds coincide for all interference regions and

all probabilities of 0 < p < 1 it follows that, for the quasi-static channel, availability

of local CSI at the transmitter in addition to local CSI at the receiver is not

beneficial. The converse and achievability bounds are then given in Theorem 11.
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4.4.2 Ergodic Channel

The converse bound (4.16) presented in Theorem 12 was derived for local CSIRT,

so it applies to the case at hand. We next present achievability bounds for this

setup that improve upon those for CSIR. The aim of these bounds is to provide

computable expressions showing that local CSIRT outperforms local CSIR in the

whole range of the α parameter. While the particular achievability schemes are

sometimes involved, the intuition behind these schemes can be explained with the

following toy example.

Example: Let us assume that nd = nc = T = 1, and suppose that at time k

the transmitters send the bits (B1,k, B2,k) ∈ {0, 1}2. If there is no interference,

then receiver i receives Xi,k. If there is interference, then receiver i receives

X1,k ⊕X2,k. Consequently, the channel flips X1,k if B1,k = X2,k = 1, and it flips

X2,k if B2,k = X1,k = 1. It follows that each transmitter-receiver pair experiences

a binary symmetric channel (BSC) with a given crossover probability that depends

on p and on the probabilities that (X1, X2) are one. Specifically, let

PX1|B1
(X1 = 1|B1 = 0) , p1 (4.22)

PX1|B1
(X1 = 1|B1 = 1) , p2 (4.23)

PX2|B2
(X2 = 1|B2 = 0) , q1 (4.24)

PX2|B2
(X2 = 1|B2 = 1) , q2 (4.25)

and define p3 , (1− p)p1 + pp2 and q3 , (1− p)q1 + pq2, which are the crossover

probabilities of the BSCs experienced by receivers 1 and 2, respectively, when they

are affected by interference. By drawing for each user two codebooks (one for

Bi,k = 0 and one for Bi,k = 1) IID at random according to the probabilities p1,

p2, q1, and q2, and by following a random-coding argument, it can be shown that

this scheme achieves the sum rate

R = (1− p)[Hb(p1) +Hb(q1)] + p[Hsum(p2, q3)−Hb(q3)]

+ p[Hsum(q2, p3)−Hb(p3)]. (4.26)

This expression holds for any set of parameters (p1, p2, q1, q2), and the largest

sum rate achieved by this scheme is obtained by maximizing over (p1, p2, q1, q2) ∈
[

0, 1
2

]4
.
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In the following, we present the achievable sum rates that can be obtained by

generalizing the above achievability scheme to general nd and nc. The achievability

schemes that achieve these rates are presented in Appendix A.3. The largest

achievable sum rates can then be obtained by numerically maximizing over the

parameters (p1, p2, q1, q2, . . .) (which depend on the interference region).

1. For the VWI region, we achieve the sum rate

R = 2(nd − pnc). (4.27)

2. For the WI region, we can achieve for any (p1, p2, q1, q2) ∈
[

0, 1
2

]4

R1 = (nd − nc) + (1− p)[(nd − nc) + (2nc − nd)Hb(p1)]

+ p(2nc − nd)(1−Hb(q3)) (4.28)

R2 = (nd − nc) + (1− p)[(nd − nc) + (2nc − nd)Hb(q1)]

+ p(2nc − nd)(1−Hb(p3)) (4.29)

where p3 = (1− p)p1 + pp2 and q3 = (1− p)q1 + pq2.

3. To present the achievable rates for MI, we need to divide the region into

the following four subregions:

(a) For 2
3 ≤ α ≤ 3

4 , we can achieve for any

(p1, p2, p̃1, p̃2, p̂1, q1, q2, q̃1, q̃2, q̂1) ∈
[

0, 1
2

]10
and (η1, γ1) ∈

[

1
2 , 1

]2

R1 =(nd − nc)

+ (1− p)
[(

3nc−2nd

2

)

(Hb(η1) +Hb(p̂1) +Hb(p1))

+
(

4nd−5nc

2

)

Hb(p̃1) + (nd − nc)
]

+ p
[

(

3nc−2nd

2

)

(

1 +Hsum(p2, γ̃)−Hb(γ̃) +Hsum(p̃2, q3)

−Hb(q3)−Hb(q̂3)
)

+
(

4nd−5nc

2

)

(1−Hb(q̃3))
]

(4.30)

where q3 = (1− p)q1 + pq2, q̃3 = (1− p)q̃1 + pq̃2, q̂3 = (1− p)q̂1, and
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γ̃ = p+ γ1(1− p), and

R2 =(nd − nc)

+ (1− p)
[(

3nc−2nd

2

)

(Hb(γ1) +Hb(q̂1) +Hb(q1))

+
(

4nd−5nc

2

)

Hb(q̃1) + (nd − nc)
]

+ p
[

(

3nc−2nd

2

)

(

1 +Hsum(q2, η̃)−Hb(η̃) +Hsum(q̃2, p3)

−Hb(p3)−Hb(p̂3)
)

+
(

4nd−5nc

2

)

(1−Hb(p̃3))
]

(4.31)

where p3 = (1− p)p1 + pp2, p̃3 = (1− p)p̃1 + pp̃2, p̂3 = (1− p)p̂1, and

η̃ = p+ η1(1− p).

Remark 10 After combining (4.30) and (4.31), η1 and γ1 appear only

through the functions Hb(η1)−Hb(p+ η1(1− p)) and Hb(γ1)−Hb(p+

γ1(1− p)), respectively. Hence, η1 and γ1 can be optimized separately

from the remaining terms.

(b) For 3
4 ≤ α ≤ 4

5 , we can achieve for any

(p1, p2, p̃1, p̃2, p̂1, q1, q2, q̃1, q̃2, q̂1) ∈
[

0, 1
2

]10
and (η1, γ1) ∈

[

1
2 , 1

]2

R1 =(nd − nc)

+ (1− p)
[

(

3nc−2nd

2

)

(Hb(p1) +Hb(η1) +Hb(p̂1))

+ ( 4nd−5nc

2 )Hb(p̃1) + (nd − nc)
]

+ p
[

(

3nc−2nd

2

)

(Hsum(p2, γ̃)−Hb(γ̃) + 1−Hb(q̂3))

+
(

4nd−5nc

2

)

(Hsum(p̃2, q3)−Hb(q3) + 1−Hb(q̃3))
]

(4.32)

where q3 = (1− p)q1 + pq2, q̃3 = (1− p)q̃1 + pq̃2, q̂3 = (1− p)q̂1, and

γ̃ = p+ γ1(1− p), and

R2 =(nd − nc)

+ (1− p)
[

(

3nc−2nd

2

)

(Hb(q1) +Hb(γ1) +Hb(q̂1))

+ ( 4nd−5nc

2 )Hb(q̃1) + (nd − nc)
]

+ p
[

(

3nc−2nd

2

)

(Hsum(q2, η̃)−Hb(η̃) + 1−Hb(p̂3))

+
(

4nd−5nc

2

)

(Hsum(q̃2, p3)−Hb(p3) + 1−Hb(p̃3))
]

(4.33)
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where p3 = (1− p)p1 + pp2, p̃3 = (1− p)p̃1 + pp̃2, p̂3 = (1− p)p̂1, and

η̃ = p+ η1(1− p). Remark 10 also applies to the parameters η1 and γ1

in (4.32) and (4.33).

(c) For 4
5 ≤ α ≤ 6

7 , we can achieve for any (p1, p2, p̂1, q1, q2, q̂1) ∈
[

0, 1
2

]6

and (η1, η
′, γ1, γ

′) ∈
[

1
2 , 1

]4

R1 =(nd − nc)

+ (1− p)
[

(

5nc−4nd

2

)

(1 +Hb(η
′))

+ (nd − nc) (1 +Hb(p1) +Hb(η1) +Hb(p̂1))
]

+ p
[

(

5nc−4nd

2

)

(

1−Hb(γ̃) +Hsum(p2, γ
′)−Hb(γ

′)

+Hsum(η
′(1− γ̃) + (1− η′)γ̃, q3)−Hb(q3)

)

+
(

6nd−7nc

2

)

(

Hsum(p2, γ̃)−Hb(γ̃)
)

+ (nd − nc)(1−Hb(q̂3))
]

(4.34)

where q3 = (1− p)q1 + pq2, q̂3 = (1− p)q̂1, and γ̃ = p+ γ1(1− p), and

R2 =(nd − nc)

+ (1− p)
[

(

5nc−4nd

2

)

(1 +Hb(γ
′))

+ (nd − nc)
(

1 +Hb(q1) +Hb(γ1) +Hb(q̂1)
)]

+ p
[

(

5nc−4nd

2

)

(

1−Hb(η̃) +Hsum(q2, η
′)−Hb(η

′)

+Hsum(γ
′(1− η̃) + (1− γ′)η̃, p3)−Hb(p3)

)

+
(

6nd−7nc

2

)

(

Hsum(q2, η̃)−Hb(η̃)
)

+ (nd − nc)(1−Hb(p̂3))
]

(4.35)

where p3 = (1− p)p1 + pp2, p̂3 = (1− p)p̂1, and η̃ = p+ η1(1− p).

(d) For 6
7 ≤ α ≤ 1 we can achieve for any (p1, p2, p̂1, q1, q2, q̂1) ∈

[

0, 1
2

]6
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and (η1, η
′, γ1, γ

′) ∈
[

1
2 , 1

]4

R1 =(nd − nc)

+ (1− p)
[

(6nc − 5nd)Hb(p1)

+ (nd − nc) (2 +Hb(η1) +Hb(η
′) +Hb(p̂1))

]

+ p
[

(nd − nc)
(

2−Hb(γ̃)−Hb(q̂3)

+Hsum(η
′(1− γ̃) + (1− η′)γ̃, q3)−Hb(q3)

)

+ (nd − nc) (Hsum(p2, γ
′)−Hb(γ

′))

+ (7nc − 6nd) (Hsum(p2, q3)−Hb(q3))
]

(4.36)

where q3 = (1− p)q1 + pq2, q̂3 = (1− p)q̂1, and γ̃ = p+ γ1(1− p), and

R2 =(nd − nc)

+ (1− p)
[

(6nc − 5nd)Hb(q1)

+ (nd − nc) (2 +Hb(γ1) +Hb(γ
′) +Hb(q̂1))

]

+ p
[

(nd − nc)
(

2−Hb(η̃)−Hb(p̂3)

+Hsum(γ
′(1− η̃) + (1− γ′)η̃, p3)−Hb(p3)

)

+ (nd − nc) (Hsum(q2, η
′)−Hb(η

′))

+ (7nc − 6nd) (Hsum(q2, p3)−Hb(p3))
]

(4.37)

where p3 = (1− p)p1 + pp2, p̂3 = (1− p)p̂1, and η̃ = p+ η1(1− p).

4. To present the achievable rates for SI, we divide the region into the following

four subregions:

(a) For 1 ≤ α ≤ 6
5 , we can achieve for any (p1, p2, q1, q2) ∈

[

0, 1
2

]4
and
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(η1, η
′, γ1, γ

′) ∈
[

1
2 , 1

]4

R1 =(nc − nd)

+ (1− p)
[

(5nd − 4nc)Hb(p1)

+ (nc − nd) (1 +Hb(η1) +Hb(η
′))

]

+ p
[

(nc − nd)
(

1−Hb(γ̃)

+Hsum(η
′(1− γ̃) + (1− η′)γ̃, q3)−Hb(q3)

)

+ (nc − nd) (Hsum(p2, γ
′)−Hb(γ

′))

+ (6nd − 5nc) (Hsum(p2, q3)−Hb(q3))
]

(4.38)

where q3 = (1− p)q1 + pq2 and γ̃ = p+ γ1(1− p), and

R2 =(nc − nd)

+ (1− p)
[

(5nd − 4nc)Hb(q1)

+ (nc − nd) (1 +Hb(γ1) +Hb(γ
′))

]

+ p
[

(nc − nd)
(

1−Hb(η̃)

+Hsum(γ
′(1− η̃) + (1− γ′)η̃, q3)−Hb(p3)

)

+ (nc − nd) (Hsum(q2, η
′)−Hb(η

′))

+ (6nd − 5nc) (Hsum(q2, p3)−Hb(p3))
]

(4.39)

where p3 = (1− p)p1 + pp2 and η̃ = p+ η1(1− p).

(b) For 6
5 ≤ α ≤ 4

3 , we can achieve for any (p1, p2, q1, q2) ∈
[

0, 1
2

]4
and

(η1, γ1) ∈
[

1
2 , 1

]2

R1 =
(

2nd − 3nc

2

)

+ (1− p)
[

(

2nd − 3nc

2

)

Hb(η1)

+ 2(nc − nd) + (3nd − 2nc)Hb(p1)
]

+ p
[

(nc − nd) (1−Hb(q3)) + (2nd − 3nc

2 ) (1−Hb(γ̃))

+ ( 5nc

2 − 3nd)
]

(4.40)
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where q3 = (1− p)q1 + pq2, and γ̃ = p+ γ1(1− p), and

R2 =
(

2nd − 3nc

2

)

+ (1− p)
[

(

2nd − 3nc

2

)

Hb(γ1)

+ 2(nc − nd) + (3nd − 2nc)Hb(q1)
]

+ p
[

(nc − nd) (1−Hb(p3)) + (2nd − 3nc

2 ) (1−Hb(η̃))

+ ( 5nc

2 − 3nd)
]

(4.41)

where p3 = (1 − p)p1 + pp2, and η̃ = p + η1(1 − p). Remark 10 also

applies to the parameters η1 and γ1 in (4.40) and (4.41).

(c) For 4
3 ≤ α ≤ 3

2 , we can achieve for any (p1, p2, q1, q2) ∈
[

0, 1
2

]4
and

(η1, γ1) ∈
[

1
2 , 1

]2
,

R1 =(nd − nc

2 )

+ (1− p)
[

(3nd − 2nc)(1 +Hb(p1))

+
(

3nc

2 − 2nd

)

(1 +Hb(η1))
]

+ p
[

(3nd − 2nc)(1−Hb(q3)) + ( 3nc

2 − 2nd)(1−Hb(γ̃)
]

(4.42)

R2 =(nd − nc

2 )

+ (1− p)
[

(3nd − 2nc)(1 +Hb(q1))

+
(

3nc

2 − 2nd

)

(1 +Hb(γ1))
]

+ p
[

(3nd − 2nc)(1−Hb(p3)) + ( 3nc

2 − 2nd)(1−Hb(η̃)
]

(4.43)

where q3 = (1− p)q1 + pq2, γ̃ = p+ γ1(1− p), p3 = (1− p)p1 + pp2 and

η̃ = p+ η1(1− p). Remark 10 also applies to the parameters η1 and γ1

in (4.42) and (4.43).

(d) For 3
2 ≤ α ≤ 2, we can achieve for any η1, γ1 ∈

[

1
2 , 1

]

R1 =(nc − nd) + (1− p)
[

(nd − nc

2 )(1 +Hb(η1))
]

+ p(nd − nc

2 )(1−Hb(γ̃)) (4.44)

R2 =
(

nc − nd) + (1− p)
[

(nd − nc

2 )(1 +Hb(γ1))
]

+ p
(

nd − nc

2

)

(1−Hb(η̃)) (4.45)
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where γ̃ = p+ γ1(1− p) and η̃ = p+ η1(1− p). Remark 10 also applies

to the parameters η1 and γ1 in (4.44) and (4.45).

In each region, we optimize numerically over the set of parameters, exploiting in

some cases that there is symmetry (except for α = 1 ) between the corresponding

parameters of both users.

4.4.3 Local CSIRT vs. Local CSIR

To evaluate the effect of exploiting local CSI at the transmitter side, we plot in

Figures 4.2–4.4 the converse and achievability bounds for local CSIR and local

CSIRT. For each interference region, we choose one value of α. We omit the VWI

region because in this region both local CSIR and local CSIRT coincide. We

observe that for all interference regions, except in the VWI region, local CSIRT

outperforms local CSIR. We further observe that the largest improvement is

obtained for p = 1
2 . This is not surprising, since in this case the uncertainty about

the interference states is the largest.
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Figure 4.2: Local CSIRT vs. local CSIR for α = 3

5
(WI).
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Figure 4.3: Local CSIRT vs. local CSIR for α = 7

10
(MI).
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Figure 4.4: Local CSIRT vs. local CSIR for α = 7
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(SI).
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4.4.4 Quasi-Static vs. Ergodic Setup

As observed in the previous subsection, for the ergodic setup local CSIRT out-

performs local CSIR in all interference regions (except VWI). In contrast, the

opportunistic rates achievable in the quasi-static setup for local CSIRT coincide

with those achievable for local CSIR. In other words, the availability of local CSI

at the transmitter is only beneficial in the ergodic setup but not in the quasi-static

one. This remains to be true even if we consider the average sum capacity rather

than the sum rate region. Intuitively, in the coherent setup, the achievable rates

depend on the input distributions of XK
1 and XK

2 , and adapting these distribu-

tions to the interference state yields a rate gain. In contrast, in the quasi-static

setup, we treat the two interference states separately: the worst-case rates are

designed for the worst case (where both receivers experience interference), and

the opportunistic rates are designed for the best case (where the corresponding

receiver is interference-free).

Given that the opportunistic rate region (R,∆R(V1, V2)) is not enhanced by

the availability of local CSI at the transmitter, it follows directly that the same

is true for the average sum capacity, defined in (4.21). Note, however, that it

is unclear whether (4.21) corresponds to the best strategy to transmit several

messages over independent uses of a quasi-static channel when the transmitters

have access to local CSI. Indeed, in this case transmitter i may choose the values

for Ri and ∆Ri(0) as a function of the interference state Bi, potentially giving rise

to a larger average sum capacity. Yet, the set of achievable rate pairs (Ri,∆Ri(0))

depends on the choice of (Rj ,∆Rj(0)) of transmitter j 6= i, which transmitter i

may not deduce since it has no access to the other transmitter’s CSI. How the

transmitters should adapt their rates to the interference state remains therefore

an open question.

4.5 Global CSIRT

We next present converse and achievability bounds for global CSIRT. In this

scenario, the transmitters may agree on a specific coding scheme that depends

on the realization of (BK
1 , BK

2 ). This allows for a more elaborated cooperation

between the transmitters and strictly increases the sum capacity compared to the

local CSIR/CSIRT scenarios.
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4.5.1 Quasi-Static Channel

In the quasi-static scenario with global CSIRT, the messages are, strictly speaking,

not opportunistic. Instead, transmitters can choose the message depending on

the true state of the interference links, so the strategy is perhaps better described

as rate adaptation. Nevertheless, the definitions of worst-case sum rate and

opportunistic sum rate in Section 4.2.1 still apply in this case. To keep notation

consistent, we use the definition of “opportunism” also for global CSIRT.

4.5.1.1 Independent Case

Assume first that the sequences B1 and B2 are independent of each other.

Theorem 14 (Opportunistic sum capacity for global CSIRT) Assume

that B1 and B2 are independent of each other. For 0 < p < 1, the

opportunistic sum capacity region is the union of the set of rate tuples

(R,∆R(00),∆R(01),∆R(10)) satisfying (4.10)–(4.12) and

R+∆R(00) ≤ 2nd (4.46)

R+∆R(01) ≤ (nd − nc)
+ +max(nd, nc) (4.47)

R+∆R(10) ≤ (nd − nc)
+ +max(nd, nc). (4.48)

Proof: The converse bounds are proved in Appendix A.1.4.1. The achiev-

ability bounds are achieved by the following achievability scheme: For B = [0, 0]

we use all the nd sub-channels of both parallel channels. For B = [0, 1] and

B = [1, 0] and the VWI/WI regions, we use all nd sub-channels and the receivers

decode them only if they are not affected by interference. For the MI/SI regions,

we treat the bursty IC as a non-bursty IC and use the achievability schemes of

the IC proposed in [29]. The details can be found in Appendix A.1.4.2.

Remark 11 The proofs of Theorems 11 and 14 merely require that the joint

distribution pb1b2 , Pr{B = [b1, b2]} satisfies p00 < 1, p01 > 0, p10 > 0 and

p11 > 0. Thus, these theorems also apply to the case where B1 and B2 are

dependent, as long as they are not fully correlated.

Table 4.4 summarizes the results of Theorem 14. Observe that for VWI and

WI opportunistic messages can be transmitted reliably at a positive rate, while

for MI and SI this is only the case if both links are interference-free.
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Table 4.4: Opportunistic sum capacity for global CSIRT when the worst-case sum rate

is maximized and B1 and B2 are independent.

Rates VWI WI MI SI

C 2(nd − nc) 2nc 2nd − nc nc

∆C(00) 2nc 2(nd − nc) nc 2nd − nc

∆C(01)/∆C(10) nc 2nd − 3nc 0 0

4.5.1.2 Fully Correlated Case

Next, we consider the case in which the interference states are fully correlated. In

this scenario, local CSIRT coincides with global CSIRT.

Theorem 15 (Opportunistic sum capacity for global CSIRT) Assume

that B1 and B2 are fully correlated. For 0 ≤ p < 1, the opportunistic sum capacity

region is the union of the set of rate pairs (R,∆R(00)) satisfying (4.10)–(4.12)

and

R+∆R(00) ≤ 2nd. (4.49)

Proof: For the converse bound, we note that the analysis in Ap-

pendix A.1.4.1 applies directly to the case where the states B1 and B2 are

fully correlated, with the only difference that there are only two possible cases

B = [0, 0] and B = [1, 1]. The result follows then from (A.59), (A.60) and (A.62).

For the achievability bound, we use an achievability scheme where the opportunis-

tic messages are only decoded in absence of interference at the intended receiver.

In this case, we have two parallel interference-free channels, for which the optimal

strategy consists of transmitting uncoded bits in the nd sub-channels.

Table 4.5 summarizes the results of Theorem 15. Observe that the worst-case

sum capacity C and the opportunistic sum capacity ∆C(00) when the channel

is interference-free do not depend on the correlation between B1 and B2. The

only difference between the independent and fully correlated case is that the

interference states [0, 1] and [1, 0] are impossible if B1 = B2.
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Table 4.5: Opportunistic sum capacity for global CSIRT when the worst-case sum rate

is maximized and B1 and B2 are fully correlated.

Rates VWI WI MI SI

C 2(nd − nc) 2nc 2nd − nc nc

∆C(00) 2nc 2(nd − nc) nc 2nd − nc

4.5.2 Ergodic Channel

4.5.2.1 Independent Case

When the sequences BK
1 and BK

2 are independent of each other, we have the

following theorems.

Theorem 16 (Converse bounds for global CSIRT) Assume that BK
1 and

BK
2 are independent of each other. The sum rate R for the bursty IC is upper-

bounded by

R ≤ 2(1− p)nd + p
[

(nd − nc)
+ +max(nd, nc)

]

(4.50)

and

R ≤ 2
[

p(1− p){(nd − nc)
+ +max(nd, nc)}

+ (1− p)2nd + p2 max{(nd − nc)
+, nc}

]

. (4.51)

Proof: The proof of (4.50) follows along similar lines as (4.16) but noting

that, for global CSIRT, XK
i depends on both BK

1 and BK
2 . The proof of (4.51) is

based on pairing the interference states according the four possible combinations

of (B1,k, B2,k). See Appendix A.2.3 for details.

Remark 12 The proof of Theorem 16 can be extended to consider an arbitrary

joint distribution pb1b2 , Pr{Bk = [b1, b2]}. In this case (4.50) is replaced by

R ≤ 2(p00 + p01)nd + (p10 + p11)
[

(nd − nc)
+ +max(nd, nc)

]

R ≤ 2(p00 + p10)nd + (p01 + p11)
[

(nd − nc)
+ +max(nd, nc)

]

and (4.51) becomes

R ≤ (p01+p10)[(nd−nc)
++max(nd, nc)]+2

[

p00nd + p11 max{(nd − nc)
+, nc}

]

.
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Theorem 17 (Achievability bounds for global CSIRT) Assume that BK
1

and BK
2 are independent of each other. The following sum rates R are achievable

over the bursty IC:

R = 2
[

p(1− p)(2nd − nc) + (1− p)2nd

+ p2 max{(nd − nc)
+, nc}

]

, (VWI/WI) (4.52)

R = 4ndpmin + 2nd(1− p)2 +
(

2nd − nc

)(

2p− p2 − 3pmin

)

, (MI) (4.53)

R = 2(nd + nc)pmin + 2nd(1− p)2 + nc

(

2p− p2 − 3pmin

)

, (SI) (4.54)

where pmin , min(p2, p(1− p)).

Proof: The sum rate (4.52) is achieved by using the optimal scheme for

the non-bursty IC when any of the two receivers is affected by interference [29],

and by using uncoded transmission when there is no interference. The sum rates

(4.53) and (4.54) are novel. See Appendix A.2.4 for details.

Remark 13 In contrast to the local CSIR scenario, the achievability schemes

presented in Theorem 17 differ noticeably from those in [59] for the binary IC.

Indeed, while both works exploit global CSIRT to enable cooperation between users,

[59] assumes that only delayed CSI is present. The achievability schemes presented

in Theorem 17 thus cannot be applied directly to the model considered in [59].

Table 4.6 summarizes the results of Theorems 16 and 17. We write the

sum capacity in bold face when converse and achievability bounds coincide. In

Table 4.6, we define

CGMI , min
{

2nd − pnc, 2
[

(1− p2)− (1− 2p)αp
]}

(4.55)

CGSI , min
[

ncp+ 2(1− p)nd, 2nd(1− p)2 + 2ncp
]

(4.56)

where “G” stands for “global CSIRT”.

4.5.2.2 Fully Correlated Case

We next discuss the case where the sequences BK
1 and BK

2 are fully correlated,

i.e., BK
1 = BK

2 .
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Table 4.6: Bounds on the sum capacity C for global CSIRT when BK
1 and BK

2 are

independent.

Regions Achievability Converse

VWI 2(nd − pnc)

WI 2[(1 − p2)nd + (1 − 2p)pnc]

MI 4ndpmin + 2nd(1 − p)2 + (2nd − nc)(2p − p2 − 3pmin) CGMI

SI 2(nd + nc)pmin + 2nd(1 − p)2 + nc(2p − p2 − 3pmin) CGSI

Theorem 18 (Converse bounds for global CSIRT) Assume that BK
1 and

BK
2 are fully correlated. The sum rate R for the bursty IC is upper-bounded by

R ≤ 2(1− p)nd + p{(nd − nc)
+ +max(nd, nc)} (4.57)

R ≤ 2
[

(1− p)nd + pmax{(nd − nc)
+, nc}

]

. (4.58)

Proof: The proof of (4.57) follows similar steps as in Appendix A.2.3.1 but

considering BK
1 = BK

2 = BK . The proof of (4.58) is given in Appendix A.2.5.

See also Remark 12.

Theorem 19 (Achievability bounds for global CSIRT) Assume that BK
1

and BK
2 are fully correlated. The following sum rates R are achievable over the

bursty IC:

R = 2
[

(1− p)nd + pmax{(nd − nc)
+, nc}

]

, (VWI/WI) (4.59)

R = 2(1− p)nd + p{(nd − nc)
+ +max(nd, nc)}, (MI/SI). (4.60)

Proof: The sum rates (4.59) and (4.60) are achieved by using the optimal

scheme for the non-bursty IC when the two receivers are affected by interfer-

ence [29], and by using uncoded transmission in absence of interference.

Table 4.7 summarizes the results of Theorems 18 and 19. For global CSIRT

and fully correlated BK
1 and BK

2 , converse and achievability bounds coincide.

Thus, (4.59) and (4.60) indicate the sum capacity.
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Table 4.7: Bounds on the sum capacity C for global CSIRT when BK
1 and BK

2 are fully

correlated.

Regions Bounds

VWI 2(nd − pnc)

WI 2[(1 − p)nd + pnc]

MI 2(1 − p)nd + p(2nd + nc)

SI 2(1 − p)nd + p(nc)

4.5.3 Quasi-Static vs. Ergodic Setup

Similar to the average sum capacity for local CSIR defined in Section 4.3.3, we

define the average sum capacity for global CSIRT when B1 and B2 are independent

as

C̄ =p2 sup
R
{R}+ p(1− p) sup

(R,∆R(01))

{R+∆R(01)}

+ p(1− p) sup
(R,∆R(10))

{R+∆R(10)}

+ (1− p)2 sup
(R,∆R(00))

{R+∆R(00)}

(4.61)

where the suprema are over all rate tuples (R,∆R(00),∆R(01),∆R(10)) that

satisfy Theorems 10 and 14. The intuition behind (4.61) is the same as that

behind (4.21) for local CSIR, but with global CSIRT the transmitters can adapt

their rates (Ri,∆Ri(Vi)) to the interference state. For example, the first term on

the right-hand side (RHS) of (4.61) corresponds to the interference state [1, 1], in

which case we transmit at total sum rate R; the second term corresponds to the

interference state [0, 1], in which case we transmit at total sum rate R +∆R(01);

and so on.

Table 4.8 summarizes the average sum capacity for the different interference

regions. The average sum capacities for VWI and WI coincide with the sum

capacities in the ergodic setup (see Table 4.6). In contrast, for MI and SI, the

average sum capacities are smaller than the sum capacities in the ergodic setup.

Similarly, in the fully correlated case, we define the average sum capacity as

C̄ , p sup
R
{R}+ (1− p) sup

(R,∆R(00))

{(R+∆R(00))} (4.62)
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Table 4.8: Average sum capacity when B1 and B2 are independent.

Regions Bounds

VWI 2(nd − pnc)

WI 2[(1 − p2)nd + (1 − 2p)pnc]

MI 2nd − pnc(2 − p)

SI 2nd(1 − p)2 + pnc(2 − p)

Table 4.9: Average sum capacity when B1 and B2 are fully correlated.

Regions Bounds

VWI 2(nd − pnc)

WI 2[(1 − p)nd + pnc]

MI 2(1 − p)nd + p(2nd + nc)

SI 2(1 − p)nd + p(nc)

where the suprema are over all rate pairs (R,∆R(00)) that satisfy Theorems 10

and 15. The corresponding results are summarized in Table 4.9.

We observe that the average sum capacities coincide with the sum capacities

of the ergodic setup.

4.6 Exploiting CSI

In this section, we study how the level of CSI affects the sum rate in the quasi-static

and ergodic setups.

For the quasi-static channel, Figures 4.5 and 4.6 show the total sum capacity

presented in Theorems 11, 14 and 15. Specifically, we plot the normalized total

sum capacity C+∆C
nd

versus α, comparing scenarios of local CSIR/CSIRT and

global CSIRT. We analyze separately the cases B = [0, 0] and B = [0, 1]. For the

case where B = [0, 0] and global CSIRT, the total sum capacity is 2nd for all

interference regions. For B = [0, 0] and local CSIR/CSIRT, the total sum capacity

is 2nd for VWI and VSI, but is strictly smaller in the remaining interference regions.

Hence, in these regions global CSIRT outperforms local CSIR/CSIRT. For the

case where B = [0, 1], the total sum capacity is equal to (nd − nc)
+ +max(nd, nc)
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Figure 4.5: Total sum capacity for B = [0, 0], for local CSIR/CSIRT and global CSIRT.

irrespective of the level of CSI.

We further observe that the opportunistic-capacity region for local CSIRT is

equal to that for local CSIR. Thus, local CSI at the transmitter is not beneficial.

As we shall see later, this is in stark contrast to the ergodic setup, where local

CSI at the transmitter-side is beneficial. Intuitively, in the ergodic case the

input distributions of XK
1 and XK

2 depend on the realizations of BK
1 and BK

2 ,

respectively. Hence, adapting the input distributions to these realizations increases

the sum capacity. In contrast, in the quasi-static case, the worst-case scenario

(presence of interference) and the best-case scenario (absence of interference) are

treated separately. Hence, there is no difference to the case of local CSIR.

For the ergodic setup, Figures 4.7–4.10 show the converse and achievability

bounds presented in Theorems 12, 13, 16 and 17. We further include the results

on local CSIRT presented in Section 4.4. Specifically, we plot the normalized

sum capacity C
nd

versus the probability of presence of interference p, comparing

scenarios of local CSIR, local CSIRT and global CSIRT when BK
1 and BK

2 are

independent of each other. The shadowed areas correspond to the regions where

achievability and converse bounds do not coincide.

Figure 4.7 reveals that in the VWI region the sum capacity is equal to

2(nd − pnc), irrespective of the availability of CSI (see Figure 4.7). Thus, in
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Figure 4.6: Total sum capacity for B = [0, 1], for local CSIR/CSIRT and global CSIRT.
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Figure 4.10: Sum capacity for local CSIR/CSIRT and global CSIRT when BK
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(SI).

this region access to global CSIRT is not beneficial compared to the local CSIR

scenario. In the VSI region, the sum capacity of the non-bursty IC is equal to 2nd,

which is that of two parallel channels without interference [5, Sec. II-A]. Therefore,

burstiness of the interference (and hence CSI) does not affect the sum capacity.

In the WI region, shown in Figure 4.8, the converse and achievability bounds

for local CSIR and global CSIRT coincide and it is apparent that global CSIRT

outperforms local CSIR. In theMI and SI regions, the converse and achievability

bounds only coincide for certain regions of p. Nevertheless, Figures 4.9 and 4.10

show that, in almost all cases, global CSIRT outperforms local CSIR. (For the

case presented in Figure 4.9
(

α = 7
10

)

, we also present the local CSIRT converse

bound (4.16), although it is looser for some values of p, with respect to the

one depicted for global CSIRT.) Local CSIRT outperforms local CSIR in all

interference regions (except VWI). We stress again the fact that this was not the

case in the quasi-static scenario, where both coincide.

We next consider the case where BK
1 and BK

2 are fully correlated. For this

scenario, [65], [66] studied the effect of perfect feedback on the bursty IC. For

comparison, the non-bursty IC with feedback was studied by Suh et al. in [54],

99



CHAPTER 4. LINEAR DETERMINISTIC BURSTY IC

where it was demonstrated that the gain of feedback becomes arbitrarily large

for certain interference regions (VWI and WI) when the signal-to-noise-ratio

increases. This gain corresponds to a better resource utilization and thereby a

better resource sharing between users. Specifically, [65], [66] (bursty IC) and [54]

(non-bursty IC) assume that noiseless, delayed feedback is available from receiver

i to transmitter i (i = 1, 2). For the symmetric setup treated in this chapter, [65,

Th. 3.2] or [66, Th. 3.2] showed the following:

Theorem 20 (Capacity for the bursty IC with feedback [65], [66]) The

sum capacity of the bursty IC with noiseless, delayed feedback is given by

C =















2nd − 2 p
1+pnc, α ≤ 1,

2 1−p
1+pnd + 2 p

1+pnc 1 < α ≤ 2,

2(1− p)nd + pnc, 2 < α.

(4.63)

Proof: See [65, Sec. IV and V], [66, Sec. IV and V, Appendices A, C, D].

Observe that (4.63) for α ≤ 2 coincides with (4.16). This implies that local

CSIRT can never outperform delayed feedback. Intuitively, feedback contains not

only information about the channel state, but also about the previous symbols

transmitted by the other transmitter, which can be exploited to establish a certain

cooperation between the transmitters. Figures 4.11–4.14 show the bounds on

the normalized sum capacity, C
nd

, comparing the scenarios of local CSIR versus

global CSIRT when the interference states are fully correlated, i.e., BK
1 = BK

2 .

They further show the sum capacity for the case where the transmitters have

noiseless delayed feedback [65]. The shadowed areas correspond to the regions

where achievability and converse bounds do not coincide.

Figure 4.11 reveals that feedback in the VWI region outperforms the non-

feedback case, irrespective of the availability of CSI. Wang et al. [65] have

further shown that feedback also outperforms the non-feedback case in the VSI

region. The order between global CSIRT and the feedback scheme is not obvious.

There are regions where global CSIRT outperforms the feedback scheme and vice

versa. Indeed, on the one hand, feedback contains information about the previous

interference states and previous symbols transmitted by the other transmitter,

permitting the resolution of collisions in previous transmissions. On the other

hand, global CSIRT provides non-causal information about the interference states,
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allowing a better adaptation of the transmission strategy to the interference

burstiness.

4.7 Exploiting Interference Burstiness

To better illustrate the benefits of interference burstiness, we show the normalized

sum capacity as a function of α, in order to appreciate all the interference regions.

In the non-bursty IC (p = 1), this curve corresponds to the well-known W-curve

obtained by Etkin et al. in [21]. We next study how burstiness affects this curve

in the different considered scenarios.

In the quasi-static setup, burstiness can be exploited by sending opportunistic

messages. We consider the total sum capacity for the case where the worst-case

rate R is maximized. For local CSIR/CSIRT, Theorem 11 suggests that the use

of an opportunistic code is only beneficial if the interference region is VWI or

WI. For other interference regions there is no benefit. In contrast, for global

CSIRT an opportunistic code is beneficial for all interference regions (except for

VSI where the sum capacity corresponds to that of two parallel channels without

interference).

Figures 4.15 and 4.16 illustrate these observations. Specifically, in Fig-

ures 4.15 and 4.16 we show the normalized total sum capacity achieved under local

CSIR/CSIRT and global CSIRT when the interference states are independent. We

observe that, for local CSIR, the opportunistic rates ∆R1(0) and ∆R2(0), are only

positive in the VWI and WI regions. In these regions, if only one of the receivers

is affected by interference the sum capacity is given by the worst-case rate R

plus one opportunistic rate of the user which is not affected by interference. In

absence of interference at both receivers, both receivers can decode opportunistic

messages. Hence, the total sum capacity is equal to C +∆C1(0) + ∆C2(0). For

global CSIRT we can observe that, when only one of the receivers is affected by

interference, we achieve the same total sum capacity as in the local CSIR/CSIRT.

However, in absence of interference at both receivers, we achieve the trivial upper

bound corresponding to two parallel channels. The fully correlated scenario can be

considered as a subset of the independent scenario. Indeed, for the case B = [0, 0]

and B = [1, 1] we obtain the same total sum capacity as for the independent sce-

nario. The main difference is that in the fully correlated scenario the interference
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Figure 4.15: Normalized total sum capacity C+∆C

nd
as a function of α for local

CSIR/CSIRT when B1 and B2 are independent.

states B = [0, 1] and B = [1, 0] are impossible.

For the ergodic case, Figures 4.17 and 4.18 show the bounds on the normalized

sum capacity, C
nd

, as a function of α when BK
1 and BK

2 are independent. The

shadowed areas correspond to the regions where achievability and converse bounds

do not coincide. We further show the W-curve. Observe that for p ≤ 1
2 the sum

capacity as a function of α forms a V-curve instead of the W-curve. Further

observe how the sum capacity approaches the W-curve as p tends to one.

In Figure 4.19 we show the bounds on the normalized sum capacity, C
nd

, as

a function of α for global CSIRT when BK
1 and BK

2 are fully correlated. (For

local CSIR the sum capacity is not affected by the correlation between BK
1 and

BK
2 , so the curve for C

nd
as a function of α coincides with the one obtained in

Figure 4.17.) We observe that, for all values of p > 0, the sum capacity forms a

W-curve similar to the W-curve for p = 1. This is the case because, when both

interference states are fully correlated, the bursty IC is a combination of an IC

and two parallel channels.

We observe that for global CSIRT the burstiness of the interference is beneficial

for all interference regions and all values of p. For local CSIR, burstiness is

beneficial for all values of p for VWI and WI. However, for MI and SI, burstiness is
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Figure 4.16: Normalized total sum capacity C+∆C

nd
as a function of α for global CSIRT

when B1 and B2 are independent.
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as a function of α for global CSIRT when BK
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and BK
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only of clear benefit for p ≤ 1
2 . It is yet unclear whether burstiness is also beneficial

in these interference regions when p > 1
2 . To shed some light on this question, note

that evaluating the converse bound in [66, Lemma A.1], which yields (4.19), for

inputs XK
1 and XK

2 that are temporally independent, we recover the achievability

bound (4.18). Since for MI/SI and p ≥ 1
2 this bound coincides with the rates

achievable over the non-bursty IC, this implies that an achievability scheme

can only exploit the burstiness of the interference in this regime if it introduces

some temporal correlation (this observation is also revealed by considering the

average sum capacity for the quasi-static case). In fact, for global CSIRT the

achievability schemes proposed in Theorem 17 for MI and SI copy the same bits

over several coherence blocks, i.e., they exhibit a temporal correlation, which

cannot be achieved using temporally independent distributions. However, the

temporal pattern of these bits requires knowledge of both interference states, so

this approach cannot be adapted to the cases of local CSIR/CSIRT. In contrast,

for global CSIRT in the fully correlated case where converse and achievability

bounds coincide, it is not necessary to introduce temporal memory. This scenario

is simpler, since in this case the channel exhibits only two channel states, a

non-bursty IC and two parallel channels.
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4.8 Summary and Conclusions

In this thesis, we considered a two-user bursty IC in which the presence/absence

of interference is modeled by a block-IID Bernoulli process while the power of

the direct and cross links remains constant during the whole transmission. This

scenario corresponds, e.g., to a slow-fading scenario in which all the nodes can track

the channel gains of the different links, but where the interfering links are affected

by intermittent occlusions due to some physical process. While this model may

appear over-simplified, it yields a unified treatment of several aspects previously

studied in the literature and gives rise to several new results on the effect of the

CSI in the achievable rates over the bursty IC. Our channel model encompasses

both the quasi-static scenario studied in [16], [33] and the ergodic scenario (see,

e.g., [65], [59]). While the model recovers several cases studied in the literature, it

also presents scenarios which have not been previously analyzed. This is the case,

for example, for the ergodic setup with local and global CSIRT. Our analysis in

these scenarios does not yield matching upper and lower bounds for all interference

and burstiness levels. Yet, examining the obtained results, we observe that the

best strategies in these scenarios often require elaborated coding strategies for
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both users that feature memory across different interference. This fact probably

explains why no previous results exist in these scenarios. Furthermore, several

of our proposed achievability schemes require complex correlation among signal

levels. Thus, while the LDM in general provides insights on the Gaussian IC, the

proposed schemes may actually be difficult to convert to the Gaussian case.

In the quasi-static scenario, the highest sum rate R that can be achieved is

limited by the worst realization of the channel and thus coincides with that of the

(non-bursty) IC. We can however transmit at an increased (opportunistic) sum

rate R+∆R when there is no interference at any of the interfering links. For the

ergodic setup, we showed that an increased rate can be obtained when local CSI is

present at both transmitter and receiver, compared to that obtained when CSI is

only available at the receiver side. This is in contrast to the quasi-static scenario,

where the achievable rates for local CSIR and local CSIRT coincide. Featuring

global CSIRT at all nodes yields an increased sum rate for both the quasi-static

and the ergodic scenarios. In the quasi-static channel, global CSI yields increased

opportunistic rates in all the regions except in the very strong interference region,

which is equivalent to having two parallel channels with no interference.

Both in the quasi-static and ergodic scenarios, global CSI exploits interference

burstiness for all interference regions (except for very strong interference), irre-

spective of the level of burstiness. When local CSI is available only at the receiver

side, interference burstiness is of clear benefit if the interference is either weak or

very weak, or if the channel is ergodic and interference is present at most half of

the time. When local CSI is available at each transmitter and receiver and the

channel is ergodic, interference burstiness is beneficial in all interference regions

except in the very weak and very strong interference regions.

In order to compare the achievable rates of the quasi-static and ergodic setup,

one can define the average sum rate of the quasi-static setup for local CSIR/CSIRT

as R+(1−p)(∆R1(0)+∆R2(0)), with a similar definition for the average sum rate

for global CSIRT. The average sum rate corresponds to a scenario where several

codewords are transmitted over independent quasi-static bursty ICs. This, in turn,

could be the case if a codeword spans several coherence blocks, but no coding is

performed over these blocks. This is in contrast to the ergodic setup where coding

is typically performed over different coherence blocks. By the law of large num-

bers, roughly a fraction of p codewords experiences interference, the remaining
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codewords are transmitted free of interference. Consequently, an opportunis-

tic transmission strategy achieves the rate pR+ (1− p)(R+∆R1(0) + ∆R2(0)),

which corresponds to the average sum rate. Our results demonstrate that, for local

CSIR, the average sum capacity, obtained by maximizing the average sum rate

over all achievable rate pairs (R,∆R1(0) + ∆R2(0)), coincides with the achievable

rates in the ergodic setup for all interference regions. In contrast, for local CSIRT,

the average sum capacity is strictly smaller than the sum capacity in the ergodic

setup. For global CSIRT, average sum capacity and sum capacity coincide for

all interference regions when the interference states are fully correlated, and

they coincide for VWI and WI when the interference states are independent.

For global CSIRT, MI/SI, and independent interference states, the average sum

capacity is smaller than the sum capacity in the ergodic setup. In general, the

average sum capacity defined for the quasi-static setup never exceeds the sum

capacity in the ergodic setup. This is perhaps not surprising if we recall that the

average sum capacity corresponds to the case where no coding is performed over

coherence blocks. Interestingly, the average sum capacity is not always achieved

by maximizing the worst-case rate. For small values of p, it is beneficial to reduce

the worst-case rate in order to achieve a larger opportunistic rate.

In our work we considered both the case where the interference states of the

two users are independent and the case where the interference states are fully

correlated. In both ergodic and quasi-static setups, the results for local CSIR are

independent of the correlation between interference states. For other CSI levels,

dependence between the interference states helps in all interference regions except

very weak and very strong interference regions.
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5
Bursty Noncoherent Wireless

Networks

5.1 Introduction

The information-theoretical limits of wireless networks have mostly been studied

under the assumption that the nodes have perfect knowledge of the fading coef-

ficients. We made the same assumption in Chapter 4. For the fully-connected

wireless interference channel (IC), it has been shown that if the nodes in the

network have perfect knowledge of the fading coefficients then, irrespective of the

number of users in the network, each user can achieve 1/2 degrees of freedom

by using a transmission strategy called interference alignment [10]. However, it

is prima facie unclear whether perfect knowledge of the fading coefficients can

actually be obtained in practical systems.

In this chapter, we analyze the channel capacity of wireless networks when
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the nodes do not have this knowledge (noncoherent setting) and the interference

is bursty. This chapter is along the lines of the work by Lozano, Heath, and

Andrews [43], which demonstrates that in the absence of perfect knowledge of

the channel coefficients realizations, and under some simplifying assumptions,

the channel capacity for wireless networks is bounded in the signal-to-noise ratio

(SNR). Specifically, the main results in [43] are based on the analysis of a block-

fading channel that models the channel within a cluster and takes out-of-cluster

interference into account. Inter alia, [43] considers a fully cooperative system,

where all transmitters (Txs) and all receivers (Rxs) cooperate, resulting effectively

in multiple-input multiple-output (MIMO) transmission. It is assumed that the

number of Txs is greater than the number of time instants L over which the block-

fading channel stays constant. This precludes an accurate channel estimation. For

this scenario, Lozano et al. study the maximum achievable rate when the time-k

channel input is of the form
√
SNRUk, where the distribution of Uk does not

depend on the SNR. They demonstrate that, in the absence of perfect knowledge

of the channel coefficients realizations, this achievable rate is bounded in the SNR,

hence the transmission over such networks is highly power-inefficient.

However, one may argue that the rates achievable with inputs of the form√
SNRUk are bounded in the SNR because of the suboptimal input distribution.

In fact, it has been demonstrated by Lapidoth and Moser [40, Th. 4.3] that for a

memoryless channel and noncoherent setting, such inputs give rise to a bounded

information rate also in the point-to-point case. In other words, for noncoherent,

point-to-point, memoryless fading channels a more elaborate dependence between

the input distribution and the SNR is necessary in order to achieve an unbounded

information rate.1 Since the block-fading channel specializes to the memoryless

fading channel when L = 1, the observation that inputs of the form
√
SNRUk

yield a bounded information rate may perhaps not be surprising.

In this chapter, we explore whether the capacity of noncoherent wireless

networks is bounded in the SNR if we allow the input distribution to change

arbitrarily with the SNR and the interference is bursty. In contrast to the analysis

by Lozano et al. [43], we assume interference burstiness and that the nodes do not

cooperate. We further consider a memoryless flat-fading channel with an infinite

1However, in contrast to the case of perfect CSI, in its absence the capacity only grows

double-logarithmically with the SNR [40, Th. 4.2].
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Figure 5.1: Channel model.

number of interferers. The locations of these interferers enter the channel model

through the variance of the fading coefficients corresponding to the paths between

the interferers and the intended receiver. Without loss of generality, we order the

interferers with respect to the variances of the corresponding fading coefficients:

the fading coefficient of the first interferer has the largest variance, denoted by

α1, the fading coefficient of the second interferer has the second-largest variance,

denoted by α2, and so on. We model the presence/absence of the corresponding

interference links, as in Chapter 4, by an independent and identically distributed

(IID) Bernoulli process. We consider a noncoherent scenario where Tx and Rx

are cognizant of the statistics of the fading coefficients, but are ignorant of their

realization. We further assume that the Rx knows perfectly the interference states.

We demonstrate that the result by Lozano et al. continues to hold even if the

input distribution is allowed to change arbitrarily with the SNR and even if we

assume interference burstiness, provided that the variances {αℓ} decay at most

exponentially and all nodes use the same codebook.

5.2 Channel Model

A network consists of a number of users that are communicating with each other.

For simplicity, we assume that the set of transmitting nodes and the set of receiving

nodes are disjoint, and that they do not cooperate.

Since a characterization of all achievable rates in the network is unfeasible

when the number of nodes is large, it is common to study the sum-rate capacity of

the network. However, it is prima facie unclear whether a transmission strategy

that achieves the sum-rate capacity is also practical. Indeed, it may well be
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that the optimal transmission strategy consists of turning off all but one of the

transmitting nodes, thereby minimizing the interference. Such a strategy allows

only one node to transmit its message and is probably not desirable in practice.

In fact, practical constraints may demand that each node is offered roughly the

same transmission rate. In order to enforce such a solution, one could study the

sum-rate capacity of the network under the constraint that all transmitting nodes

transmit at the same rate, but obtaining an expression for such a capacity seems

again unfeasible. Alternatively, one may consider more elaborate rate allocation

strategies, such as the proportional fair strategy [31], but these may also be

difficult to analyze.

In this chapter, we simplify the original problem as follows: Firstly, we consider

the case where one transmitting node communicates with one receiving node and

the interfering nodes emit symbols that interfere with this communication. To

model a large network, we assume that there are infinitely many interfering nodes.

The presence of interference is modeled using an IID Bernoulli process B, i.e.,

B ∼ Ber(p), that indicates whether the interference links are present or not. We

further assume that the interference states remain constant during the whole

transmission and are known by the Rx. As performance measure we consider the

capacity of the channel between the transmitting and receiving node. Secondly, to

avoid transmission strategies for which the interfering nodes are turned off (which

would, in fact, maximize the capacity), we assume that all nodes (transmitting and

interfering) use the same codebook. This implies that each node is transmitting

at the same rate, while at the same time it keeps the analysis tractable.

Note that the above simplifications permit a mathematical analysis of the

channel capacity of the network, but they preclude strategies such as time-division

multiple access (TDMA), where the nodes do not use the same codebook, but

communicate nevertheless at the same rate.

We model the channel between the transmitting and receiving node by a

discrete-time memoryless flat-fading channel whose complex-valued output Yk

at time k ∈ Z (where Z denotes the set of integers) corresponding to the time-k

channel input Xk and the time-k interfering symbols Xℓ,k, ℓ = 1, 2, . . . is given by

Yk = HkXk +

∞
∑

ℓ=1

BℓHℓ,kXℓ,k + Zk. (5.1)

In (5.1), Zk models the time-k additive noise; Hk denotes the time-k fading
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coefficient of the channel between the Tx and Rx; Hℓ,k, ℓ = 1, 2, . . . denotes the

time-k fading coefficient of the link between the ℓ-th interfering node and the

receiver, and Bℓ denotes the state of the ℓ interfering link; see Figure 5.1. We

assume that {Zk, k ∈ Z}, {Hk, k ∈ Z}, {Hℓ,k, k ∈ Z}, and {Bℓ, ℓ = 1, 2, . . .}
are independent sequences of IID complex random variables. We further assume

that Zk ∼ NC(0, σ
2), Hk ∼ NC(0, 1), Hℓ,k ∼ NC(0, αℓ) for some αℓ > 0, and

Bℓ ∼ Ber(p). The variance αℓ is related to the path loss between interferer ℓ and

the receiving node. Furthermore, we make the following assumptions:

A1) We consider a noncoherent scenario where Tx and Rx are cognizant of the

statistics of the fading coefficients, but are ignorant of their realization.

However, the states of the interfering links, i.e., {Bℓ, ℓ = 1, 2, . . .}, are
known at the Rx side.

A2) We assume that the interferers do neither cooperate with each other nor

with the Tx and they all use the same codebook. Hence, {Xk, k ∈ Z}
and {Xℓ,k, k ∈ Z}, ℓ = 1, 2, . . . are independent and follow the same input

distribution QN .

A3) Without loss of generality (wlog), we assume that the interfering nodes are

ordered according to the variances of the corresponding fading coefficients,

i.e., αℓ ≥ αℓ′ for any ℓ < ℓ′. We further assume that there exists a 0 < ρ < 1

such that

αℓ+1

αℓ
≥ ρ, ℓ = 1, 2, . . . (5.2)

We finally assume that
∑∞

ℓ=1 αℓ < ∞. We believe that the assumption

(5.2) is reasonably mild. For example, suppose that the path loss grows

polynomially with the distance. Thus, (5.2) implies that the distance from

the interferers to the receiver decays at most exponentially.

5.3 Channel Capacity and Main Result

We notice that I(XN
1 ;Y N

1 , B∞
1 ) = lim

L→∞
I(XN

1 ;Y N
1 , BL

1 ).
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We define the capacity of the above channel (5.1) as2

C(P) , lim
N→∞

1

N
sup
QN

lim
L→∞

I(XN
1 ;Y N

1 , BL
1 ) (5.3)

where we assume that the sequences XN
1 and XN

ℓ,1, ℓ = 1, 2, . . . are independent,

and that each such sequence has distribution QN . Furthermore, the input se-

quences are independent of the interference state BL
1 . The channel interference

state is known at the receiver and it is considered as an additional channel output

[11]. The supremum in (5.3) is over all N -dimensional probability distributions

QN satisfying

1

N

N
∑

k=1

∫

|xk|2dQN (xN
1 ) ≤ P. (5.4)

The SNR is defined as

SNR ,
P

σ2
. (5.5)

By Fano’s inequality [14, Sec. 7.9], any encoding and decoding scheme with a

rate above C(P) has a decoding error probability that is bounded away from zero

as n tends to infinity. By demonstrating that C(P) is bounded in P, we therefore

demonstrate that there exists no encoding and decoding scheme that has a rate

that tends to infinity as P → ∞ and for which the decoding error probability

vanishes as N tends to infinity.

Our main result is the following.

Theorem 21 (Upper bound for the bursty case) Consider the channel

model introduced in Section 5.2. For every P > 0 and Bℓ ∼ Ber(p), ℓ = 1, 2, . . .

and 0 ≤ p ≤ 1, the channel capacity is upper-bounded by

C(P) ≤ 1− p

p
log

(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e
(5.6)

where ηmax is defined as

ηmax , max

(

1

α1
,
1

ρ

)

. (5.7)

2The logarithms used in this chapter are natural logarithms. The capacity has thus the

dimension “nats per channel use”.
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Proof: See Section 5.4.

For the non-bursty case, i.e., p = 1 the upper bound (5.6) becomes

C(P) ≤ 1

2
log ηmax + log (1 + ηmax) + log

π

e
(5.8)

We presented this result in [64, Section V].

Remark 14 The upper bound (5.6) depends on ηmax, which in turn depends on ρ

given by (5.2). One may wonder whether ordering the interfering nodes differently

(i.e., not according to the value of αℓ) would give rise to a larger ρ satisfying (5.2)

and therefore to a tighter upper bound on C(P). However, this is not the case.

It can be shown that the ordering used in this chapter yields the largest ρ, see

Appendix C.

5.4 Proof of Theorem 21

To obtain (5.6), we begin by deriving an upper bound on the mutual information

I(XN
1 ;Y N

1 , BL
1 ) as follows.

I(XN
1 ;Y N

1 , BL
1 ) = I(XN

1 ;Y N
1 |BL

1 )

= h(Y N
1 |BL

1 )− h(Y N
1 |XN

1 , BL
1 )

≤ h(Y N
1 |BL

1 )− h(Y N
1 |XN

1 , HN
1 , BL

1 )

= h(Y N
1 |BL

1 )− h(Y N
1 −HN

1 XN
1 |BL

1 ) (5.9)

where the first step follows because XN
1 and BL

1 are independent. The inequality

follows because conditioning reduces entropy.

For B = b = [b1, . . . , bL], we define the random variables

Yk(b) = HkXk +
L
∑

ℓ=1

bℓHℓ,kXℓ,k +
∞
∑

ℓ=L+1

BℓHℓ,kXℓ,k + Zk

=

L
∑

ℓ=0

bℓHℓ,kXℓ,k +

∞
∑

ℓ=L+1

BℓHℓ,kXℓ,k + Zk (5.10)

where, for compactness, we let b0 = 1, and X0,k = Xk, and

Ŷk(b) , Yk(b)−HkXk =

L
∑

ℓ=1

bℓHℓ,kXℓ,k +

∞
∑

ℓ=L+1

BℓHℓ,kXℓ,k + Zk. (5.11)

117



CHAPTER 5. BURSTY NONCOHERENT WIRELESS NETWORKS

Using these definitions, we rewrite (5.9) as

I(XN
1 ;Y N

1 , BL
1 )

≤
∑

b∈BL

Pr{B = b}h
(

Y N
1 (b)

)

−
∑

b̃∈BL

Pr{B = b̃}h(Ŷ N
1 (b̃)). (5.12)

where BL , {0, 1}L denotes the set of all binary sequences of length L. We

consider a partition of BL based on the position of the leading 1 in each sequence.

In particular, for m = 1, . . . , L+ 1, we define

BL(m) =







{

b : bm1 = [0m−1
1 , 1]

}

, 1 ≤ m ≤ L,

{0L1 }, m = L+ 1.
(5.13)

In words, BL(m) is the set of all sequences of length L whose leading 1 is in

the m-th position. The sets BL(m), m = 1, . . . , L + 1 are disjoint and define a

partition of BL, i.e., BL(m) ∩ BL(m
′) = ∅, m 6= m′, and

⋃L+1
m=1 BL(m) = BL.

To upper-bound (5.12), we will pair the sequences b and b̃ according to the

mapping described in the next proposition.

Proposition 1 There exists a one-to-one and onto mapping

fL : BL → BL, b 7−→ b̃, (5.14)

such that b ∈ BL 7→ b̃ = [0m−1
1 , 1, bL−m

1 ] ∈ BL(m), and ‖b‖1 = ‖b̃‖1.

Proof: We consider the Algorithm 1, which is described below

Data: Binary sequence b of length L with Hamming weight ‖b‖1 = W

Result: Binary sequence b̃ = [0m−1
1 , 1, bL−m

1 ] of length L and Hamming

weight ‖b̃‖1 = W .

if b = 0L1 then

b̃ = b

else
i← take the position of the right-most 1 in sequence b

m← L− i+ 1 (length of bLi )

b̃ = [0m−1
1 , 1, bL−m

1 ]

end

Algorithm 1: Mapping between binary sequences b and b̃.
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It generates a vector b̃ such that the conditions in the proposition hold.

In particular, the output of Algorithm 1 satisfies b̃ = [0m−1
1 , 1, bL−m

1 ] by con-

struction. The number of ones in the sequences b and b̃ is the same, since

the proposed algorithm just reorders the different positions of the original

vector to generate the output vector. Finally, note that the Algorithm 2 re-

covers the original sequence b from the corresponding b̃ for any b ∈ BL.

Data: Binary sequence b̃ of length L with Hamming weight ‖b̃‖1 = W

Result: Binary sequence b = [bLm+1, 1, 0
m−1
1 ] of length L and Hamming

weight ‖b‖1 = W .

if b̃ = 0L1 then

b = b̃

else
i← take the position of the left-most 1 in sequence b

m← i: (length of bi1)

b = [b̃Lm+1, 1, 0
m−1
1 ]

end

Algorithm 2: Mapping between binary sequences b̃ and b.

Thus, Algorithms 1 and 2 show that the correspondence of both sequences b

and b̃ is one-to-one and onto.

We apply the mapping described in Proposition 1 to pair up b and b̃ in (5.12).

In particular, since ‖b‖1 = ‖b̃‖1 it follows that Pr{B = b} = Pr{B = b̃} and

(5.12) becomes

I(XN
1 ;Y N

1 , BL
1 )

≤
∑

b

Pr{B = b}
[

h(Y N
1 (b))− h(Ŷ N

1 (fL(b)))
]

=
L
∑

m=1

∑

b:fL(b)∈BL(m)

Pr{B = b}
[

h(Y N
1 (b))− h(Ŷ N

1 (fL(b)))
]

. (5.15)

We now focus on the bracketed term of (5.15), to this end we first introduce

Lemma 1.

Lemma 1 Let f and g be arbitrary probability density function (pdf). If

−
∫

f(x) log f(x)dx is finite, then −
∫

f(x) log g(x)dx exists and

−
∫

f(x) log f(x)dx ≤ −
∫

f(x) log g(x)dx. (5.16)

119



CHAPTER 5. BURSTY NONCOHERENT WIRELESS NETWORKS

Proof: See [3, Lemma 8.3.1]. Inequality (5.16) is a consequence of the

nonnegativity of the relative entropy between f and g.

Based on Lemma 1, we obtain the following upper bound on (5.15).

h(Y N
1 (b))− h(Ŷ N

1 (fL(b)))

≤ N

[

(m− 1) log
(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e

]

+N

L
∑

ℓ=L−m+1

αℓP(bℓ + p)

(

2
ηmax

ρm−1σ2

)

+N

∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)

(5.17)

where ηmax is defined in (5.7).

Next, we prove (5.17). To this end, we first define the random variable

Ỹk(b,m) = H̃m,kX0,k +

L−m
∑

ℓ=1

bℓH̃ℓ+m,kXℓ,k +

∞
∑

ℓ=L−m+1

B̃ℓH̃ℓ+m,kXℓ,k + Z̃k

=

L−m
∑

ℓ=0

bℓH̃ℓ+m,kXℓ,k +

∞
∑

ℓ=L−m+1

B̃ℓH̃ℓ+m,kXℓ,k + Z̃k (5.18)

where for every ℓ = 1, 2, . . . the fading coefficients {H̃ℓ,k, k ∈ N} have the same

distribution as {Hℓ,k, k ∈ N} in (5.11) but are independent of {Hℓ,k, k ∈ N}.
Likewise, the additive noise terms {Z̃k, k ∈ N} have the same distribution as

{Zk, k ∈ N} but are independent of {Zk, k ∈ N}. Since XN
0,1 and XN

ℓ,1, ℓ = 1, 2, . . .

have the same distribution by assumption A2), we conclude that Ỹk(b,m) and

Ŷk(b̃) have the same distribution for b̃ ∈ BL(m). Hence,

h(Y N
1 (b))− h(Ŷ N

1 (fL(b)))

= h
(

Y N
1 (b)

)

− h(Ỹ N
1 (b,m))

= h
(

Y N
1 (b)|Ỹ N

1 (b,m)
)

− h(Ỹ N
1 (b,m)|Y N

1 (b))

≤
N
∑

k=1

[h(Yk(b)|Ỹk(b,m))− h(Ỹk(b,m)|Ỹ k−1
1 (b,m), Y N

1 (b))] (5.19)

where in the second step we use the identity h(A)−h(B) = h(A|B)−h(B|A). The

last step follows by applying the chain rule for entropy and because conditioning
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reduces entropy. To find an upper bound on (5.19), we first upper-bound the

conditional differential entropy h(Yk(b)|Ỹk(b,m)) by applying Lemma 1. Let

fYk|Ỹk
denote the true conditional pdf of Yk(b) given Ỹk(b,m). Lemma 1 allows

us to upper-bound the conditional differential entropy of Yk(b) given Ỹk(b,m)

by replacing fYk|Ỹk
by an auxiliary pdf gYk|Ỹk

. For any given Ỹk(b,m) = ỹk, we

choose

gYk|Ỹk
(yk|ỹk) =

√
β

π2|yk|
1

1 + β|yk|2
, yk ∈ C (5.20)

with β = 1/|ỹk|2. This is the density of a circularly-symmetric complex random

variable whose magnitude is Cauchy distributed. A similar pdf has been used

by Koch and Lapidoth [35] to obtain their result for frequency-selective fading

channels and in [64] to obtain the upper bound on the capacity of the non-bursty

case of the channel studied in this chapter.

Using (5.20) in (5.16), we obtain that

h(Yk(b)|Ỹk(b,m)) ≤ 1

2
E
[

log |Yk(b)|2
]

+ 2 log π +
1

2
E

[

log |Ỹk(b,m)|2
]

+ E

[

log

(

1 +
|Yk(b)|2
|Ỹk(b,m)|2

)]

(5.21)

Next, we consider the second term in (5.19). By conditioning on {Xℓ,k}∞ℓ=1 and

{B̃ℓ}∞ℓ=L−m+1, the random variable Ỹk(b,m) is independent of (Ỹ k−1
1 (b,m), Y N

1 )

and has a Gaussian distribution. Hence,

h(Ỹk(b,m)|Ỹ k−1
1 (b,m), Y N

1 )

≥ h(Ỹk(b,m)|{Xℓ,k}∞ℓ=1, {B̃ℓ}∞ℓ=L−m+1)

= log(πe)

+ E

[

log

( L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

]

. (5.22)

Using (5.21) and (5.22) in (5.19) we have that

h
(

Y N
1 (b)

)

− h(Ỹ N
1 (b,m))

≤ 1

2
E
[

log |Yk(b)|2
]

− 1

2
E

[

log |Ỹk(b,m)|2
]

+ log
π

e

+ E

[

log
(

|Yk(b)|2 + |Ỹk(b,m)|2
)]
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− E

[

log

( L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

]

. (5.23)

For the fourth term in (5.23), Jensen’s inequality yields

E

[

log
(

|Yk(b)|2 + |Ỹk(b,m))|2
)]

≤ E

[

log
(

E

[

|Yk(b)|2 + |Ỹk(b,m)|2
∣

∣

∣
{Xℓ,k}∞ℓ=0, {Bℓ, B̃ℓ}∞ℓ=L−m+1

])]

= E

[

log

(

L−m
∑

ℓ=0

bℓαℓ|Xℓ,k|2 +
L
∑

ℓ=L−m+1

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L+1

|Bℓ|2αℓ|Xℓ,k|2 + σ2

+
L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)]

(5.24)

where in the last step we used (5.10) and (5.18), and we define α0 , 1, b0 = 1 and

X0,k = Xk to stress the equivalence between the two summations. Next, in (5.24)

we add and subtract
∑∞

ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2 to obtain

E

[

log
(

|Yk(b)|2 + |Ỹk(b,m))|2
)]

≤ E

[

log

(

L−m
∑

ℓ=0

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ|Xℓ,k|2 + σ2

+

L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

+

L
∑

ℓ=L−m+1

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L+1

|Bℓ|2αℓ|Xℓ,k|2

−
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ|Xℓ,k|2
)]

. (5.25)

We next recall assumption (5.2), namely that

αℓ+1

αℓ
≥ ρ, ℓ = 1, 2, . . . (5.26)

for some 0 < ρ < 1. Since α0 = 1 and the condition αℓ+1

αℓ
≥ ρ may not hold for

ℓ = 0, we define

ηmax , max

(

1

α1
,
1

ρ

)

. (5.27)
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It then follows that αℓ ≤ ηmaxαℓ+1 for ℓ = 0, 1, . . ., and using (5.26) iteratively

we conclude that

αℓ ≤
ηmax

ρm−1
αℓ+m, ℓ = 0, 1, . . . (5.28)

Applying (5.28) to the first two terms in (5.25) gives

L−m
∑

ℓ=0

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ|Xℓ,k|2

≤ ηmax

ρm−1

(

L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2
)

. (5.29)

Then, using (5.29) and that ηmax

ρm−1 ≥ 1, in (5.24), we obtain

E

[

log
(

|Yk(b)|2 + |Ỹk(b,m))|2
)]

≤ E

[

log

(

(

1 +
ηmax

ρm−1

)

(

L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

+

L
∑

ℓ=L−m+1

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L+1

|Bℓ|2αℓ|Xℓ,k|2

−
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ|Xℓ,k|2
)]

. (5.30)

By applying the identity log (A+B) = logA+log
(

1 + B
A

)

, by upper-bounding

log
(

1 + B
A

)

by B
A , where in our case we have

A ,

(

1 +
ηmax

ρm−1

)

(

L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

and

B ,

L
∑

ℓ=L−m+1

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L+1

|Bℓ|2αℓ|Xℓ,k|2 −
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ|Xℓ,k|2

and by defining

D ,

L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2
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in (5.30), we obtain

E

[

log
(

|Yk(b)|2 + |Ỹk(b,m))|2
)]

≤ E

[

log

(

(

1 +
ηmax

ρm−1

)( L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2

+
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

)]

+ E





∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

(

1 + ηmax

ρm−1

)

D





− E





∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

(

1 + ηmax

ρm−1

)

D





≤ E

[

log

(

(

1 +
ηmax

ρm−1

)( L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2

+

∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

)]

+ E





∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

(

1 + ηmax

ρm−1

)

D





+ E





∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

(

1 + ηmax

ρm−1

)

D





≤ E

[

log

(

(

1 +
ηmax

ρm−1

)( L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2

+

∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)

)]

+ E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

+ E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

(5.31)

where the second step follows by changing the sign of third expected value, and
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the last step follows because we lower-bound D ≥ σ2 and 1 + ηmax

ρm−1 ≥ ηmax

ρm−1 .

Combining (5.31) and (5.23) yields

h(Y N
1 (b))− h(Ỹ N

1 (b,m))

≤
N
∑

k=1

[

1

2
E

[

log |Yk(b)|2
]

− 1

2
E

[

log |Ỹk(b,m)|2
]

+ log

(

ηmax

ρm−1

)

+ log
π

e

+ E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

+ E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]]

. (5.32)

To upper-bound the first two terms on the right-hand side (RHS) of (5.32), we

note that, conditioned on Xℓ,k = xℓ, ℓ = 0, 1, . . ., both |Yk(b)|2 and |Ỹk(b,m)|2
have an exponential distribution with mean

L
∑

ℓ=0

bℓαℓ|xℓ|2 +
∞
∑

L+1

|bℓ|2αℓ|xℓ|2 + σ2

and
L−m
∑

ℓ=0

bℓαℓ+m|xℓ|2 +
∞
∑

L−m+1

|b̃ℓ|2αℓ|xℓ|2 + σ2,

respectively. Consequently, by [25, p. 571, 4.331.1]

E

[

log |Yk(b)|2
]

= E

[

log

(

L
∑

ℓ=0

bℓαℓ|Xℓ,k|2 +
∞
∑

ℓ=L+1

|Bℓ|2αℓ|Xℓ,k|2 + σ2

)]

− γ, (5.33)

E

[

log |Ỹk(b,m)|2
]

= E

[

log

(

L−m
∑

ℓ=0

bℓαℓ+m|Xℓ,k|2 +
∞
∑

ℓ=L−m+1

|B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

)]

− γ, (5.34)

where γ ≈ 0.577 denotes the Euler-Mascheroni constant. It follows that

E

[

log |Yk(b)|2
]

− E

[

log |Ỹk(b,m)|2
]

= E

[

log

∑L
ℓ=0 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2 + σ2

∑L−m
ℓ=0 bℓαℓ+m|Xℓ,k|2 +

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2

]

. (5.35)
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To upper-bound (5.35) we add and subtract
∑∞

ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2. We further

recall that D =
∑L−m

ℓ=0 bℓαℓ+m|Xℓ,k|2 +
∑∞

ℓ=L−m+1 |B̃ℓ|2αℓ+m|Xℓ,k|2 + σ2. This

yields

E

[

log |Yk(b)|2
]

− E

[

log |Ỹk(b,m)|2
]

= E

[

log

(

∑L−m
ℓ=0 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2 + σ2

D

+

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

D

−
∑∞

ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2
D

)]

. (5.36)

Then, by using (5.29) and that ηmax

ρm−1 ≥ 1, we obtain

E

[

log |Yk(b)|2
]

− E

[

log |Ỹk(b,m)|2
]

≤ E

[

log

(

ηmax

ρm−1
+

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

D

−
∑∞

ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2
D

)]

. (5.37)

By applying the identity log (A+B) = logA+log
(

1 + B
A

)

and by upper-bounding

log
(

1 + B
A

)

by B
A , where in this case

A ,
ηmax

ρm−1

and

B ,

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

D

−
∑∞

ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2
D

this can be upper-bounded as

E

[

log |Yk(b)|2
]

− E

[

log |Ỹk(b,m)|2
]

≤ log

(

ηmax

ρm−1

)

+ E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1D

]

126



CHAPTER 5. BURSTY NONCOHERENT WIRELESS NETWORKS

− E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1D

]

≤ log

(

ηmax

ρm−1

)

+ E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1D

]

+ E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1D

]

≤ log

(

ηmax

ρm−1

)

+ E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

+ E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

(5.38)

where the second step follows because by changing the sign of third expected value,

and the last step follows because we lower-bound the denominator by ηmax

ρm−1σ
2.

Combining (5.38) with (5.32) yields

h
(

Y N
1 (b)

)

− h(Ỹ N
1 (b,m))

≤
N
∑

k=1

[

1

2
log

(

ηmax

ρm−1

)

+ log

(

1 +
ηmax

ρm−1

)

+ log
π

e

+ 2E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

+ 2E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]]

. (5.39)

It remains to analyze the last two terms, i.e.,

S = 2

N
∑

k=1

E

[

∑L
ℓ=L−m+1 bℓαℓ|Xℓ,k|2 +

∑∞
ℓ=L+1 |Bℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

+ 2

N
∑

k=1

E

[

∑∞
ℓ=L−m+1 |B̃ℓ|2αℓ|Xℓ,k|2

ηmax

ρm−1σ2

]

. (5.40)

By the linearity of expectation, the power constraint (5.4), and E
[

|Bℓ|2
]

=

E

[

|B̃ℓ|2
]

= p, S can be upper-bounded as

S ≤ 2N

∑L
ℓ=L−m+1 bℓαℓP+

∑∞
ℓ=L+1 pαℓP

ηmax

ρm−1σ2

127



CHAPTER 5. BURSTY NONCOHERENT WIRELESS NETWORKS

+ 2N

∑L
ℓ=L−m+1 pαℓP+

∑∞
ℓ=L+1 pαℓP

ηmax

ρm−1σ2
. (5.41)

After simplifying the terms, we obtain

S ≤ N
L
∑

ℓ=L−m+1

αℓP(bℓ + p)

(

2
ηmax

ρm−1σ2

)

+N
∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)

. (5.42)

from which we obtain the upper bound

h(Y N
1 (b))− h(Ỹ N

1 (b,m))

≤ N

[

(m− 1) log
(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e

]

+N
L
∑

ℓ=L−m+1

αℓP(bℓ + p)

(

2
ηmax

ρm−1σ2

)

+N
∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)

(5.43)

where we used that log
(

1 + ηmax

ρm−1

)

= log
(

ρm−1+ηmax

ρm−1

)

≤ log
(

1+ηmax

ρm−1

)

. This proves

(5.17).

Back to (5.15), by using the upper bound (5.17), we obtain for any pair (b, b̃)

satisfying Proposition 1

1

N
I(XN

1 ;Y N
1 , BL

1 )

≤
L
∑

m=1

∑

b:fL(b)∈BL(m)

Pr{B = b}
[

(m− 1) log
(

ρ−
3
2

)

+
1

2
log(ηmax)

+ log(1 + ηmax) + log
π

e

+

L
∑

ℓ=L−m+1

αℓP(bℓ + p)

(

2
ηmax

ρm−1σ2

)

+
∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)]

. (5.44)

We next note that
∑

b:fL(b)∈BL(m) Pr{B = b} corresponds to the probability

of B being a sequence with m− 1 leading zeros followed by a one, so
∑

b:fL(b)∈BL(m)

Pr{B = b̃} = p(1− p)m−1.
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Consequently,

1

N
I(XN

1 ;Y N
1 , BL

1 )

≤
L
∑

m=1

p(1− p)m−1

[

(m− 1) log
(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e

]

+
L
∑

m=1

p(1− p)m−1

[

L
∑

ℓ=L−m+1

αℓP(bℓ − p)

(

2
ηmax

ρm−1σ2

)

+

∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)]

. (5.45)

To complete this bound, we have to analyze the behavior of (5.45) when L

tends to infinity. To this end, we analyze separately the terms in (5.45). For the

first term in (5.45),

L
∑

m=1

p(1− p)m−1

[

(m− 1) log
(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e

]

.

We observe that inside the brackets only the first term depends on L and when

L→∞, we have
∞
∑

m=1

p(1− p)m−1 =

∞
∑

t=0

p(1− p)t = 1

where it follows by [25, p. 8, 0.231.1], and

∞
∑

m=1

p(1− p)m−1(m− 1) =

∞
∑

t=0

p(1− p)tt =
1− p

p

where it follows by [25, p. 8, 0.231.2]. Then, when L→∞, the first term in (5.45)

yields

(1− p)

p
log

(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e
. (5.46)

Next, we show that the second term in (5.45) vanishes as L tends to infinity. The

second term in (5.45) is given by

L
∑

m=1

p(1− p)m−1

[

L
∑

ℓ=L−m+1

αℓP(bℓ + p)

(

2
ηmax

ρm−1σ2

)

+

∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)]

. (5.47)
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By reordering terms in (5.47), we have for any arbitrary δ ≥ 0,

2P

ηmaxσ2

L
∑

m=1

p[ρ(1− p)]m−1

[

L
∑

ℓ=L−m+1

αℓ(bℓ + p) + 2
∞
∑

ℓ=L+1

αℓp

]

≤ 4P

ηmaxσ2

(

L−δ−1
∑

m=0

p[ρ(1− p)]m
L
∑

ℓ=L−m+1

αℓ +
L−1
∑

m=L−δ

p[ρ(1− p)]m
∞
∑

ℓ=1

αℓ

)

+
4P

ηmaxσ2

L−1
∑

m=0

p[ρ(1− p)]m
∞
∑

ℓ=L+1

αℓp

=
4P

ηmaxσ2

L−δ−1
∑

m=0

p[ρ(1− p)]m
L
∑

ℓ=L−m+1

αℓ

+
4P

ηmaxσ2
[ρ(1− p)]L−δ 1− [ρ(1− p)]δ

1− ρ(1− p)

∞
∑

ℓ=1

αℓ

+
4P

ηmaxσ2

L−1
∑

m=0

p[ρ(1− p)]m
∞
∑

ℓ=L+1

αℓp

≤ 4P

ηmaxσ2

∞
∑

m=0

p[ρ(1− p)]m
∞
∑

ℓ=δ+2

αℓ

+
4P

ηmaxσ2
[ρ(1− p)]L−δ 1− [ρ(1− p)]δ

1− ρ(1− p)

∞
∑

ℓ=1

αℓ

+
4P

ηmaxσ2

∞
∑

m=0

p[ρ(1− p)]m
∞
∑

ℓ=L+1

αℓp

=
4P

ηmaxσ2

p

1− ρ(1− p)

∞
∑

ℓ=δ+2

αℓ

+
4P

ηmaxσ2
[ρ(1− p)]L−δ 1− [ρ(1− p)]δ

1− ρ(1− p)

∞
∑

ℓ=1

αℓ

+
4P

ηmaxσ2

p2

1− ρ(1− p)

∞
∑

ℓ=L+1

αℓ (5.48)

where the first step follows because we divided the first sum (over m) into two

sums, because we upper-bound bℓ + p by 2 and because we sum the αℓ over more

terms. The second step follows by computing the sum over m of the second term.

The third step follows because we increase the number of terms to be added in
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the first and last terms. The last step follows by computing the infinite sum over

m of the first term.

As L → ∞, the second and third terms on the RHS of (5.48) vanish, since

ρ(1− p) < 1 and
∑∞

ℓ=1 αℓ <∞ by assumption. Consequently,

lim
L→∞

L
∑

m=1

p(1− p)m−1

[

L
∑

ℓ=L−m+1

αℓP(bℓ + p)

(

2
ηmax

ρm−1σ2

)

+

∞
∑

ℓ=L+1

αℓpP

(

4
ηmax

ρm−1σ2

)]

≤ 4P

ηmaxσ2

p

1− ρ(1− p)

∞
∑

ℓ=δ+2

αℓ (5.49)

for any arbitrary δ ≥ 0. Next, by letting δ →∞, we obtain that (5.49) vanishes,

and consequently (5.47) also vanishes.

Finally, using (5.46) and that (5.47) vanishes as L → ∞, the limit of (5.45)

as L→∞ becomes

lim
L→∞

1

N
I(XN

1 ;Y N
1 , BL

1 )

≤ 1− p

p
log

(

ρ−
3
2

)

+
1

2
log(ηmax) + log(1 + ηmax) + log

π

e
. (5.50)

Since the RHS of (5.50) neither depends on the input distribution nor on N , it

follows from (5.3) that it is also an upper bound on the capacity C(P). This

proves Theorem 21.

5.5 Conclusions

Lozano, Heath, and Andrews demonstrated that, in the absence of perfect knowl-

edge of the realizations of the channel coefficients, the information rate achievable

over wireless networks with inputs of the form
√
SNRUk is bounded in the SNR

[43]. In our analysis we incorporated the possibility that the interference is inter-

mittent and allow the channel inputs to change arbitrarily with the SNR. Our

work is thus more general than [43] in the sense that we consider interference

burstiness and we optimize over all possible input distributions, but it is less

general in the sense that we do not allow the nodes to cooperate and we require all

131



CHAPTER 5. BURSTY NONCOHERENT WIRELESS NETWORKS

nodes to use the same codebook. Since in the presence of perfect knowledge of the

realizations of the channel coefficients, the most efficient transmission strategies,

such as interference alignment, rely on cooperation between the users, the former

constraint seems particularly restrictive. It is yet unknown whether cooperative

strategies can achieve rates that are unbounded in the SNR when a noncoherent

setting is assumed.
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6
Summary and Conclusion

In this dissertation we studied the effect of interference burstiness in communica-

tion channels. In particular, we investigated the impact of these phenomena on

channel capacity.

On the one hand, we studied the channel capacity of the bursty interference

channel (IC) as modeled by a linear deterministic model (LDM). For this simplified

model with only two users, we obtained a complete characterization of the channel

capacity under different scenarios of channel state information (CSI) that provides

an understanding of the effect of interference burstiness on the data transmission.

On the other hand, we extended our analysis to a more realistic wireless network

with an infinite number of users, as modeled by a noncoherent fading channel.

For this case, we performed an asymptotic analysis on the channel capacity.

Specifically, we showed that the capacity of this channel is bounded in the signal-

to-noise ratio (SNR), suggesting that such networks are highly power inefficient.

We next present a more detailed summary of our main contributions.
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Linear deterministic bursty interference channel

The effect of burstiness was studied in Chapter 4 for the two-user linear de-

terministic bursty IC. We modeled the presence/absence of interference by a

block-independent and identically distributed (IID) Bernoulli process. While the

LDM may appear over-simplified, it allowed us to unify several aspects previously

studied in the literature and gives rise to several new results on the effects of CSI

in the capacity of the bursty IC. We studied both the quasi-static and ergodic

setups. In the quasi-static setup, the highest sum rate R is limited by the worst-

case channel and coincides with that of the (non-bursty) IC. However, by using

opportunistic codes, we can transmit at a higher sum rate R + ∆R when the

channel realization is good, i.e., when at least one receiver (Rx) is not affected

by interference. For this setup, we derived matching converse and achievability

bounds. For the ergodic setup, we also derived converse and achievability bounds

on the channel capacity, that are matching in most cases. The main conclusions

of Chapter 4 are as follows:

• For the quasi-static setup, the achievable rates for local CSIR and local

CSIRT coincide. However, for the ergodic setup, having local CSIRT yields

an increased data rate compared to the one achieved by only having CSI

at the Rx side. Featuring global CSI at all nodes yields a sum rate that

outperforms the rates achieved by having only local CSI for both quasi-static

and ergodic setups.

• Regarding burstiness, global CSI exploits interference for all regions (except

for very strong interference) in both quasi-static and ergodic setups. When

local CSI is available only at the Rx side, interference burstiness is of clear

benefit if the interference is either weak or very weak, or if the channel is

ergodic and interference is present at most half of the time. Furthermore,

when the channel is ergodic and local CSI is available at each transmitter

and receiver, interference burstiness is beneficial in all interference regions

except the very weak and very strong interference regions.

• We compared the quasi-static and ergodic setups by using the average sum

capacity metric. We demonstrated that, for local CSIR, the average sum

capacity coincides with the achievable rates in the ergodic setup for all

interference regions. In contrast, for local CSIRT, the average sum capacity
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is strictly smaller than the sum capacity in the ergodic setup. For global

CSIRT, average sum capacity and sum capacity coincide for all interference

regions when the interference states are fully correlated, and they coincide

in the very weak interference (VWI) and weak interference (WI) regions

when the interference states are independent. For global CSIRT, moderate

interference (MI) and strong interference (SI), and independent interference

states, the average sum capacity is smaller than the sum capacity in the

ergodic setup.

Bursty noncoherent wireless networks

In Chapter 5, we studied a wireless network with an infinite number of users,

modeled by a noncoherent fading channel. To make the analysis tractable, we

considered a channel where two nodes are communicating and infinite number of

nodes interfere the communication. We modeled again the presence/absence of

interference as a Bernoulli process, with activation probability p. We assumed

a noncoherent setting where the realizations of the channel coefficients are not

available to transmitter (Tx) and Rx, and where they do not perform channel

estimation to obtain information on the fading coefficients. We assumed, however,

that the Rx knows the interference states of the interfering links, and that the

states remain constant during the whole codeword transmission. This study is

similar to the one performed by Lozano, Heath and Andrews [43] for non-bursty

wireless networks. Indeed, Lozano et al. demonstrated that, when Tx and Rx have

no knowledge of the realizations of the channel coefficients, the capacity of wireless

networks is bounded in the SNR, under the assumption that channel inputs are

of the form
√
SNRUk. In our analysis, we incorporated the effect of interference

burstiness and the possibility that the channel inputs change arbitrarily with the

SNR. The main conclusions of this chapter are thus as follows:

• We demonstrated that the result obtained by Lozano, Heath and Andrews

[43] continues to hold even if the channel inputs are allowed to change

arbitrarily with the SNR, and even if the interference is bursty, provided

that the variances of the path gains decay at most exponentially. Since

this last assumption is very mild, this suggests that noncoherent wireless

networks are highly power inefficient.
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• Our bound further showed that interference burstiness does not change

the behavior of channel capacity. While our upper bound on the channel

capacity grows as the channel becomes more bursty, it remains bounded in

the SNR. Thus, interference burstiness cannot be exploited to mitigate the

power inefficiency at high SNR.

• Possible strategies that could mitigate the power inefficiency of noncoherent

wireless networks and that have not been explored in this thesis are coop-

eration between users and improved channel estimation strategies. Indeed,

coherent wireless networks, in which users have perfect knowledge of the

fading coefficients, have a capacity that grows to infinity with the SNR.

Furthermore, for such networks, the most efficient transmission strategies,

such as interference alignment, rely on cooperation. Our results suggested

that these two strategies may be essential to obtain an unbounded capacity

in the SNR.
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Aaliyah. Song: Try Again





A
Appendix to Chapter 4

A.1 Proofs for the Quasi-Static Setup

We define pb = Pr{B = b}. Clearly, when B1, B2 are independent, we have

p00 = (1 − p)2, p11 = p2 and p01 = p10 = p(1 − p), and when B1, B2 are fully

correlated p00 = 1− p, p11 = p and p01 = p10 = 0.

The converse bounds in the quasi-static case are based on an information

density approach [62]. In particular, we define the information densities for the

bursty interference channel (IC)

i1(x
N
1 ,yN

1 ,b) , iXN
1 YN

1 |B(x
N
1 ;yN

1 |b) = log
PYN

1 |XN
1 ,B(y

N
1 |xN

1 ,b)

PYN
1 |B(y

N
1 |b)

(A.1)

i2(x
N
2 ,yN

2 ,b) , iXN
2 YN

2 |B(x
N
2 ;yN

2 |b) = log
PYN

2 |XN
2 ,B(y

N
2 |xN

2 ,b)

PYN
2 |B(y

N
2 |b)

. (A.2)
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Here and throughout the appendices, we use the notations XN
i = Xi, x

N
i = xi,

YN
i = Yi, and yN

i = yi to highlight the fact that, in the quasi-static setting, we

transmit N symbols in one coherence block.

We further consider the individual error events

Ei(Γi) ,

{

1

N
ii(x

N
i ,yN

i ,b) ≤ Γi

}

, i = 1, 2 (A.3)

and the joint error event

E12(Γ) ,

{

1

N

(

i1(x
N
1 ,yN

1 ,b) + i2(x
N
2 ,yN

2 ,b)
)

≤ Γ

}

. (A.4)

The proofs of the converse results are based on the following lemmas.

Lemma 2 (Verdú-Han lemma) Every (N,R, Pe) code over a channel PYN |XN

satisfies

Pe ≥ Pr
{ 1

N
iXNYN (XN ;YN ) ≤ R− γ

}

− e−γN (A.5)

for every γ > 0, where XN places probability mass 1
2NR on each codeword and

iXNYN (XN ;YN ) , log
P

YN |XN (yN |xN )

P
YN (yN )

.

Proof: See [62, (Th. 4)].

Lemma 3 Suppose that Pr{E12(Γ)
∣

∣B = b} → 0 as N →∞. Then, for each pair

b ∈ {0, 1}2, the threshold Γ must satisfy the following conditions:

• For B = [0, 0], Γ satisfies

Γ ≤ 2nd. (A.6)

• For B = [0, 1] and B = [1, 0], Γ satisfies (A.6) and

Γ ≤ (nd − nc)
+ +max(nd, nc). (A.7)

• For B = [1, 1], Γ satisfies (A.6) and (A.7), and

Γ ≤ 2max{(nd − nc)
+, nc}. (A.8)

Proof: See Appendix B.
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A.1.1 Proof of Theorem 10

In this section we prove the IC converse bounds for p > 0. This proof assumes

global CSIRT, hence the resulting bounds also apply to local CSIR and local

CSIRT. Let P (N)
e = Pr{(Ŵ1 6= W1 ∪ Ŵ2 6= W2)}, and let us denote by P

(N)
e1 and

P
(N)
e2 the error probabilities at decoders one and two, respectively:

P
(N)
e1 , Pr{Ŵ1 6= W1}, (A.9)

P
(N)
e2 , Pr{Ŵ2 6= W2}. (A.10)

Clearly, the error probabilities P
(N)
e , P

(N)
e1 and P

(N)
e2 are related by the following

sets of inequalities

max
(

P
(N)
e1 , P

(N)
e2

)

≤ P (N)
e ≤ P

(N)
e1 + P

(N)
e2 ≤ 2max

(

P
(N)
e1 , P

(N)
e2

)

. (A.11)

Using these inequalities we conclude that

P (N)
e ≥ 1

2

(

P
(N)
e1 + P

(N)
e2

)

. (A.12)

We now rewrite (A.9) and (A.10) as

P
(N)
e1 =

∑

b

pb Pr{Ŵ1 6= W1|B = b}, (A.13)

P
(N)
e2 =

∑

b

pb Pr{Ŵ2 6= W2|B = b} (A.14)

and apply the Verdú-Han lemma (Lemma 2) to each of the probability terms

Pr{Ŵi 6= Wi|B = b}, i = 1, 2, in (A.13) and (A.14). This yields

Pr{Ŵ1 6= W1|B = b}

≥ Pr
{ 1

N
i1(x

N
1 ,yN

1 ,b) ≤ R1 − γ1|B = b
}

− e−γ1N , (A.15)

Pr{Ŵ2 6= W2|B = b}

≥ Pr
{ 1

N
i2(x

N
2 ,yN

2 ,b) ≤ R2 − γ2|B = b
}

− e−γ2N . (A.16)

We set Γi = Ri − γi and Γ = Γ1 + Γ2 = R− γ1 − γ2. Then, using the definition

of Ei in (A.3), we can write (A.15) and (A.16) as

Pr{Ŵ1 6= W1|B = b} ≥ Pr{E1(Γ1)|B = b} − e−γ1N , (A.17)

Pr{Ŵ2 6= W2|B = b} ≥ Pr{E2(Γ2)|B = b} − e−γ2N . (A.18)
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Comparing the joint error event E12(Γ) in (A.4) with E1(Γ1) and E2(Γ2) in (A.3),

it can be shown that

E1(Γ1) ∩ E2(Γ2) ⊆ E12(Γ), (A.19)

Ec1(Γ1) ∩ Ec2(Γ2) ⊆ Ec12(Γ) ⇒ E12(Γ) ⊆ E1(Γ1) ∪ E2(Γ2). (A.20)

Using (A.20) and the union bound, we thus obtain

Pr{E12(Γ)|B = b} ≤ Pr{E1(Γ1) ∪ E2(Γ2)|B = b}
≤ Pr{E1(Γ1)|B = b}+ Pr{E2(Γ2)|B = b}.

(A.21)

Combining this result with (A.12), (A.17) and (A.18) gives

P (N)
e

≥ 1

2

(

P
(N)
e1 + P

(N)
e2

)

≥ 1

2

∑

b

pb
(

Pr{E1(Γ1)|B = b}+ Pr{E2(Γ2)|B = b} − e−γ1N − e−γ2N
)

≥ 1

2

∑

b

pb
(

Pr{E12(Γ)|B = b} − e−γ1N − e−γ2N
)

.

(A.22)

The remainder of this section is devoted to an analysis of Pr{E12(Γ)|B = b}.
Indeed, by (A.22) we have for any γ1, γ2 > 0 that

lim
N→∞

P (N)
e ≥ lim

N→∞

1

2
[p11ǫ11 + p00ǫ00 + p10ǫ10 + p01ǫ01] , (A.23)

where ǫb , Pr{E12(Γ)
∣

∣B = b}. When p > 0, the probability p11 is strictly positive

both when (B1, B2) are independent and when they are fully correlated. Since

pb does not depend on N , it follows that the only way that lim
N→∞

P
(N)
e = 0 is

that ǫ11 → 0 as N → ∞. The conditions on R under which this happens are

summarized in Lemma 3. Specifically, recalling that Γ = R− (γ1 + γ2), we obtain

from Lemma 3 that P
(N)
e → 0 only if

R− (γ1 + γ2) ≤ 2nd (A.24)

R− (γ1 + γ2) ≤ (nd − nc)
+ +max(nd, nc) (A.25)

R− (γ1 + γ2) ≤ 2max{(nd − nc)
+, nc}. (A.26)

Since γ1, γ2 > 0 are arbitrary, we obtain the converse bounds (4.11) and (4.12)

in Theorem 10 from (A.24)–(A.26) upon letting N → ∞ and then γ1 → 0 and

γ2 → 0.
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When p = 0, the only positive probability is p00. A necessary condition for

lim
N→∞

P
(N)
e = 0 is that ǫ00 → 0 as N → ∞. By following the same approach as

for the case p > 0, we obtain the converse bound (4.10) in Theorem 10.

A.1.2 Converse Proof of Theorem 11

In this section, we analyze the opportunistic rate ∆R1(b1) + ∆R2(b2), bi ∈ {0, 1}
for local CSIRT and independent B1 and B2. Let us denote by P̂

(n)
e1(b1)

and P̂
(n)
e2(b2)

the error probabilities at decoders one and two, defined in (4.4) and (4.5), i.e.,

P̂ (n)
e1(b1)

, Pr{(Ŵ1,∆Ŵ1(B1)) 6= (W1,∆W1(B1))|B1 = b1}, (A.27)

P̂ (n)
e2(b2)

, Pr{(Ŵ2,∆Ŵ2(B2)) 6= (W2,∆W2(B2))|B2 = b2}. (A.28)

where b1 ∈ {0, 1} in (A.27) and b2 ∈ {0, 1} in (A.28).

Before we apply the Verdú-Han lemma, we have to deal with the fact that

(A.27) and (A.28) are conditioned on two different variables but we need to analyze

the probability of error jointly. To solve this problem, we expand the probability

of error (A.27) as

P̂ (n)
e1(b1)

=
∑

b2=0,1

Pr{B2 = b2}Pr
{

(Ŵ1,∆Ŵ1(B1)) 6= (W1,∆W1(B1))
∣

∣B = b
}

. (A.29)

Since, by assumption, Pr{B2 = b2} ∈ (0, 1), it follows that

Pr
{

(Ŵ1,∆Ŵ1(B1)) 6= (W1,∆W1(B1))|B1 = b1
}

→ 0 as N →∞

if, and only if,

Pr
{

(Ŵ1,∆Ŵ1(B1)) 6= (W1,∆W1(B1))|B = b
}

→ 0, b2 ∈ {0, 1} as N →∞. (A.30)

We shall lower-bound (A.29) by considering only one of the two terms in the

sum. Proceeding analogously for the second user and applying the Verdú-Han

lemma (Lemma 8), we obtain

P̂ (n)
e1(b1)

≥
(

Pr
{ 1

N
i1(x

N
1 ,yN

1 ,b) ≤ R1 +∆R1(B1)− γ1|B = b
}

− e−γ1N

)

Pr{B2 = b2}
(A.31)

where b2 = 0, 1,

P̂
(n)
e2(b2)

≥
(

Pr
{

1
N i2(x

N
2 ,yN

2 ,b) ≤ R2 +∆R2(B2)− γ2|B = b
}

− e−γ2N
)

Pr{B1 = b1}.
(A.32)
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where b1 = 0, 1. Let Γi = Ri + ∆Ri − γi, i = 1, 2 and Γ = R + ∆R1(B1) +

∆R2(B2)− (γ1 + γ2). Then, (A.31) and (A.32) can be written as

P̂ (n)
e1(b1)

≥
(

Pr{E1(Γ1)|B = b} − e−γ1N
)

Pr{B2 = b2}, (A.33)

P̂ (n)
e2(b2)

≥
(

Pr{E2(Γ2)|B = b} − e−γ2N
)

Pr{B1 = b1}. (A.34)

where b2 = 0, 1 in (A.33) and b1 = 0, 1 in (A.34).

Proceeding analogously as in (A.19)–(A.22), and using that Pr{Bi = bi} ≥
min{p, 1− p}, we obtain

P̂ (n)
e1(b1)

+ P̂ (n)
e2(b2)

≥
(

Pr{E1(Γ1)|B = b}+ Pr{E2(Γ2)|B = b} − e−γ1N − e−γ2N
)

min{p, 1− p}

≥
(

Pr{E12(Γ)|B = b} − e−γ1N − eγ2N
)

min{p, 1− p}.

(A.35)

Since γ1, γ2 > 0, the left-hand side (LHS) of (A.35) only tends to zero as N →∞
if Pr(E12(Γ)|B = b) → 0 as N → ∞. It thus follows from Lemma 3 that

P̂
(n)
e1(b1)

+ P̂
(n)
e2(b2)

→ 0 as N → ∞ only if conditions (A.6)-(A.8) are satisfied.

Letting γ1 → 0 and γ2 → 0 then gives the following constraints:

• For B = [1, 1]

R1 +∆R1(1) +R2 +∆R2(1) ≤ 2nd (A.36)

R1 +∆R1(1) +R2 +∆R2(1) ≤ (nd − nc)
+ +max(nd, nc) (A.37)

R1 +∆R1(1) +R2 +∆R2(1) ≤ 2max{(nd − nc)
+, nc}. (A.38)

• For B = [0, 0],

R1 +∆R1(0) +R2 +∆R2(0) ≤ 2nd. (A.39)

• For B = [0, 1], using that ∆R2(1) = 0,

R1 +∆R1(0) +R2 ≤ (nd − nc)
+ +max(nd, nc). (A.40)

• For B = [1, 0], using that ∆R1(1) = 0,

R1 +R2 +∆R2(0) ≤ (nd − nc)
+ +max(nd, nc). (A.41)

The constraints (A.39)–(A.41) yield (4.13)–(4.15). This proves Theorem 11.
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Figure A.1: Normalized signal levels at Rx1 for α ≤
1

2
.

A.1.3 Achievability Proof of Theorem 11

In this section, we present the achievability bounds in Theorem 11 for the regions

in which it is possible to transmit opportunistic messages, namely the very weak

interference (VWI) and weak interference (WI) regions. The presented bounds

are valid for local CSIR and local CSIRT.

A.1.3.1 Very Weak Interference

Transmitter 1 (transmitter (Tx)1) and transmitter 2 (Tx2) transmit in the most

significant levels a block of nd(1−α) bits, and they transmit in the least significant

levels a block of ndα bits. The same construction is used for both transmitters.

Figure A.1 depicts the signal levels of the transmitted signals (normalized by nd)

as observed at receiver 1 (receiver (Rx)1), when it is affected by interference. At

the receiver side, we have the following procedure:

• In presence of interference: decode block A in the desired signal which

is interference free, and treat the block B as noise. We thus obtain the

individual rate

R1 = (nd − nc)
+ bits

sub-channel use . (A.42)

145



APPENDIX A. APPENDIX TO CHAPTER 4

• In absence of interference: decode blocks A and B . We thus obtain the

individual rate

R1 +∆R1(0) = nd
bits

sub-channel use . (A.43)

where ∆R1(0) = nc
bits

sub-channel use corresponds to the opportunistic rate.

The bounds (A.42) and (A.43) coincide with the bounds of user 2. In order

to obtain the possible sum rates according to the interference states, we combine

(A.42) (which corresponds to B1 = 1) and (A.43) (which corresponds to B1 = 0)

to obtain the converse bounds (4.13)–(4.14).

A.1.3.2 Weak Interference

The symbol transmitted by Tx1 (normalized by nd) is depicted in Figure A.2a.

Specifically, we transmit in the most significant levels a block of nd(1− α) bits.

In the subsequent levels we transmit a block of nd(2α − 1) zeros, followed by

nd(2− 3α) opportunistic bits. Finally, in the least significant levels, we transmit

a block of nd(2α− 1) bits. The same construction is used for both transmitters.

Figure A.2b depicts the normalized signal levels of the transmitted signals as

observed by Rx1. At the receiver side, we have the following procedure:

• In presence of interference: The channel pushes the interference level by

nd − nc bits. Thus, the least significant 2nc − nd bits of the desired signal

(block A) align with the zeros of the interference signal and can be decoded

free from interference. Since (nd − nc) ≤ nc, the most significant nd − nc

bits (block B ) are also free from interference. Thus, we achieve the rate

R1 = nd − nc + 2nc − nd

= nc
bits

sub-channel use . (A.44)

• In absence of interference: The bits in blocks A , B , and D can be decoded

free from interference. Thus, we achieve the rate

R1 +∆R1(0) = nd − nc + 2nc − nd + 2nd − 3nc

= 2(nd − nc)
bits

sub-channel use (A.45)

where ∆R1(0) = 2nd − 3nc
bits

sub-channel use corresponds to the opportunistic

rate.
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By symmetry, the bounds (A.44) and (A.45) also apply for the achievable rates

of user 2. In order to obtain the possible sum rates according to the interference

states, we combine (A.44) (which corresponds to B1 = 1) and (A.45) (which

corresponds to B1 = 0) to obtain the achievability bounds in Theorem 11.

A.1.4 Converse Proof of Theorem 11 when B1 = B2

The proof of the converse bound (4.13) for local CSIR when B1 = B2 is similar

to the proof when B1 and B2 are independent; see Appendix A.1.2. However, to

prove the converse bound (4.14) for the case where B1 = B2 we cannot simply

reproduce the steps for the independent case. The reason is that, in the correlated

case, we only have the interference states [0, 0] and [1, 1], but the derivation of

(4.14) for the independent case follows from the analysis of the states B = [0, 1]

and B = [1, 0] (see (A.40) and (A.41) in Appendix A.1.2). To sidestep this

problem, we follow a slightly different approach. Specifically, we combine the

error probability of user 1 when B = [0, 0] with that of user 2 when B = [1, 1].

This approach yields a tighter converse bound compared to the one obtained by

simply considering B = [0, 0] in both probabilities.

Consider P̂
(n)
e1(b1)

and P̂
(n)
e2(b2)

defined in (A.27) and (A.28). Applying the Verdú-

Han lemma (Lemma 2) with Γ1 = R1 +∆R1(0)− γ1 and Γ2 = R2− γ2, and using

(A.29), we obtain the lower bounds

P̂ (n)
e1(0)

≥
(

Pr
{

E1(Γ1)|B = [0, 0]
}

− e−γ1N
)

Pr{B2 = 0} (A.46)

P̂ (n)
e2(1)

≥
(

Pr
{

E2(Γ2)|B = [1, 1]
}

− e−γ2N
)

Pr{B1 = 1}. (A.47)

Note that compared to the derivation in Section A.1.2, the two error events E1(Γ1)

and E2(Γ2) are conditioned on different interference states. In order to derive a

joint error event for E1(Γ1) and E2(Γ2), we use the next lemma.

Lemma 4 For local CSIR, the information density ii, i = 1, 2 depends only on

(xN
i ,yN

i ) and the corresponding state bi, i.e.,

i1(x
N
1 ;yN

1 , [b1, 0]) = i1(x
N
1 ;yN

1 , [b1, 1]) , i1(x
N
1 ,yN

1 , b1) (A.48)

i2(x
N
2 ;yN

2 , [0, b2]) = i2(x
N
2 ;yN

2 , [1, b2]) , i2(x
N
2 ,yN

2 , b2). (A.49)
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Figure A.2: (a) Normalized transmitted symbol at Tx1; (b) Normalized signal levels at

Rx1.
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Proof: We prove (A.48) for user 1. By the definition of the information

density (A.1), it follows that

i1(x
N
1 ,yN

1 , [b1, b2]) = log
PYN

1 |XN
1 ,B(y

N
1 |xN

1 , [b1, b2])

PYN
1 |B(y

N
1 |[b1, b2])

(A.50)

Evaluating i1 for B = [0, b2], b2 = 0, 1 and B = [1, b2], b2 = 0, 1 we obtain that

both cases are independent of b2. The identity (A.48) can be proven in the same

way.

We next analyze the probability terms in (A.46) and (A.47). It follows from

(A.48) in Lemma 4 that i1(x
N
1 ,yN

1 , [0, b2]) is independent of b2. Consequently,

Pr{E1(Γ1)
∣

∣B = [0, 0]} = E

[

1

{

1

N
i1(X

N
1 ,YN

1 , [0, 0]) ≤ Γ1

}]

= E

[

1

{

1

N
i1(X

N
1 ,YN

1 , [0, 1]) ≤ Γ1

}]

= Pr{E1(Γ1)
∣

∣B = [0, 1]}.

(A.51)

Analogously, using (A.49) in (A.47), we obtain

Pr{E2(Γ2)
∣

∣B = [1, 1]} = Pr{E2(Γ2)
∣

∣B = [0, 1]}. (A.52)

Adding (A.46) and (A.47), using (A.51) and (A.52), and lower-bounding Pr{B1 =

1} and Pr{B2 = 0} by min{p, 1− p}, we obtain

P̂ (n)
e1(0)

+ P̂ (n)
e2(1)

≥
(

Pr{E1(Γ1)|B = [0, 1]}+ Pr{E2(Γ2)|B = [0, 1]} − e−γ1N − e−γ2N
)

min{p, 1− p}

≥
(

Pr{E12(Γ)|B = [0, 1]} − e−γ1N − eγ2N
)

min{p, 1− p}
(A.53)

where Γ = Γ1 + Γ2. We next apply Lemma 3 with Γ = R+∆R1(0) + ∆R2(0)−
(γ1 + γ2). Since min{p, 1 − p} is strictly positive for 0 < p < 1, and since

−e−γ1N − e−γ2N → 0 as N →∞ for any fixed γ1, γ2 > 0, a necessary condition

for (A.53) going to zero is that Pr{E12(Γ)|B = [0, 1]} → 0 as N →∞. This is the

case if, and only if, (A.7) in Lemma 3 is fulfilled. Since γ1, γ2 > 0 are arbitrary,

we conclude the proof by letting γ1 → 0 and γ2 → 0 and using that ∆R2(1) = 0

to obtain

R1 +∆R1(0) +R2 ≤ (nd − nc)
+ +max(nd, nc). (A.54)
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Given the symmetry of the problem, a bound on ∆R2(0) follows by swapping the

roles of users 1 and 2, yielding in this case

R1 +R2 +∆R2(0) ≤ (nd − nc)
+ +max(nd, nc). (A.55)

Finally, combining (A.54) and (A.55), we obtain the bound (4.14) in Theorem 11

for the fully correlated scenario.

A.1.4.1 Converse Proof of Theorem 14

In this section, we analyze the opportunistic rates {∆R(b),b ∈ {0, 1}2} for global
CSIRT and independent B1 and B2. Let us denote by P̂

(n)
e1(b)

and P̂
(n)
e2(b)

the error

probabilities at decoders 1 and 2, defined in (4.4) and (4.5), namely,

P̂ (n)
e1(b)

, Pr{(Ŵ1, {∆Ŵ1(B)}) 6= (W1, {∆W1(B)})|B = b}, (A.56)

P̂ (n)
e2(b)

, Pr{(Ŵ2, {∆Ŵ2(B)}) 6= (W2, {∆W2(B)})|B = b}. (A.57)

where b ∈ {0, 1}2.
We shall follow analogous steps as in Section A.1.2 and set Γi = Ri+∆Ri(B)−

γi, i = 1, 2, and Γ = R+∆R(B)− (γ1+γ2). Proceeding analogously as in (A.19)–

(A.21), we obtain

P̂ (n)
e1(b)

+ P̂ (n)
e2(b)

≥ Pr{E12(Γ)|B = b} − e−γ1N − e−γ2N . (A.58)

By invoking Lemma 3 for fixed (but arbitrary) γ1, γ2 > 0, and letting then γ1 → 0

and γ2 → 0, we obtain that the right-hand side (RHS) of (A.58) vanishes as

N →∞ only if the following constraints are satisfied:

• For B = [1, 1],

R1 +∆R1(11) +R2 +∆R2(11) ≤ 2nd (A.59)

R1 +∆R1(11) +R2 +∆R2(11) ≤ (nd − nc)
+ +max(nd, nc) (A.60)

R1 +∆R1(11) +R2 +∆R2(11) ≤ 2max{(nd − nc)
+, nc}. (A.61)

• For B = [0, 0],

R1 +∆R1(00) +R2 +∆R2(00) ≤ 2nd. (A.62)
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• For B = [0, 1],

R1 +∆R1(01) +R2 +∆R2(01) ≤ (nd − nc)
+ +max(nd, nc). (A.63)

• For B = [1, 0],

R1 +∆R1(10) +R2 +∆R2(10) ≤ (nd − nc)
+ +max(nd, nc). (A.64)

This proves the converse bounds in Theorem 14.

A.1.4.2 Achievability Proof of Theorem 14

In this section, we present the achievability schemes for global CSIRT when B1

and B2 are independent. In contrast to the local CSIR/CSIRT case, we can adapt

our transmission strategy to the interference states.

When B = [0, 0], the capacity-achieving scheme consists of sending uncoded

bits in all nd level. We thus achieve the sum rate R+∆R(00) = 2nd
bits

sub-channel use .

When B = [0, 1] or B = [1, 0], the achievability schemes coincide with the

schemes described in Section A.1.3. In this case, we can only send opportunistic

messages when we have VWI or WI.

A.1.4.3 Very Weak Interference

Consider the achievability scheme depicted in Figure A.1. By (A.42) and (A.43),

R1 +∆R1(01) = R2 +∆R2(10) = nd
bits

sub-ch.use (A.65)

R1 +∆R1(10) = R2 +∆R2(01) = nd − nc
bits

sub-ch.use . (A.66)

This proves the achievability bounds in Theorem 14 for VWI.

A.1.4.4 Weak Interference

Consider the achievability scheme depicted in Figure A.2a. By (A.44) and (A.45),

R1 +∆R1(01) = R2 +∆R2(10) = 2(nd − nc)
bits

sub-ch.use (A.67)

R1 +∆R1(10) = R2 +∆R1(01) = nc
bits

sub-ch.use . (A.68)

Combining (A.67) and (A.68), we obtain the achievability bounds in Theorem 14

for WI.
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A.2 Proofs for the Ergodic Setup

A.2.1 Proof of (4.16) in Theorem 12

The bound (4.16) coincides with [65, Th. 3.1]. However, [65, Th. 3.1] derives (4.16)

for the considered channel model with T = 1 and feedback. In this section we

show that (4.16) also holds for general T in the no-feedback case. We follow along

the lines of the proof of [65, Thm 3.1]. We begin by applying Fano’s inequality to

obtain

N(R1 − ǫ1K) ≤I(W1;Y
K
1

∣

∣BK
1 )

=
K
∑

k=1

[

H(Y1,k

∣

∣Y k−1
1 , BK

1 )−H(Y1,k

∣

∣W1,Y
k−1
1 , BK

1 )
]

(a)
=

K
∑

k=1

[

H(Y1,k

∣

∣Y k−1
1 , B1,k, B

k−1
1 , BK

1,k+1)

−H(B1,kSnc
X2,k

∣

∣{B1,ℓSnc
X2,ℓ}k−1

ℓ=1 ,W1, B
K
1 )

]

=
K
∑

k=1

[

(1− p)H(Y1,k

∣

∣Y k−1
1 , B1,k = 0, Bk−1

1 , BK
1,k+1)

+ pH(Y1,k

∣

∣Y k−1
1 , B1,k = 1, Bk−1

1 , BK
1,k+1)

− pH(Snc
X2,k

∣

∣{B1,ℓSnc
X2,ℓ}k−1

ℓ=1 ,W1, B1,k = 1, BK
1,k+1, B

k−1
1 )

]

(b)

≤
K
∑

k=1

[

(1− p)H(Snd
X1,k|B1,k = 0) + pH(Y1,k|B1,k = 1)

− pH(Snc
X2,k

∣

∣{B1,ℓSnc
X2,ℓ}k−1

ℓ=1 , B
k−1
1 )

]

(A.69)

where ǫ1K → 0 as K →∞. Here, (a) follows because (W1, B
K
1 ) determine XK

1 , so

we can subtract the contribution of XK
1 in the second entropy and by evaluating

the entropy for different interference states. Step (b) follows because (Bk−1
1 ,Xk

2)

are independent of (BK
1,k,W1) (which in turn follows because XK

2 only depends on

(BK
2 ,W2), which is independent of (BK

1 ,W1)) and because conditioning reduces

entropy.
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Likewise, we have

N(R2 − ǫ2K) ≤ I(W2;Y
K
2

∣

∣BK
2 )

(a)

≤ I(W2;Y
K
1 ,Y K

2

∣

∣W1, B
K
1 , BK

2 )

= H(Y K
1 ,Y K

2

∣

∣W1, B
K
1 , BK

2 )

=
K
∑

k=1

H(Y1,k,Y2,k

∣

∣W1, B
K
1 , BK

2 ,Y k−1
1 ,Y k−1

2 )

(b)

≤
K
∑

k=1

H(Snc
X2,k, Snd

X2,k

∣

∣W1, B
K
1 , {B1,ℓSnc

X2,ℓ}k−1
ℓ=1 )

(c)

≤
K
∑

k=1

[

H(Snc
X2,k

∣

∣{B1,ℓSnc
X2,ℓ}k−1

ℓ=1 , B
k−1
1 )

+H(Snd
X2,k

∣

∣Snc
X2,k)

]

(A.70)

where ǫ2K → 0 as K → ∞. Here, (a) follows because W2, W1 and BK
1 are

independent. Step (b) follows because (W1, B
K
1 ) determines XK

1 , so we can

subtract its contribution from (Y1,k,Y2,k), because Y1,k⊕Snd
X1,k = B1,kSnc

X2,k

has a lower entropy than Snc
X2,k, and because conditioning reduces entropy. Step

(c) follows by the chain rule, and because conditioning reduces entropy.

Combining (A.69) and (A.70) yields

N(R1 + pR2)−N(ǫ1K + pǫ2K)

≤
K
∑

k=1

[

(1− p)H(Snd
X1,k|B1,k = 0)

+ pH(Y1,k|B1,k = 1) + pH(Snd
X2,k|Snc

X2,k)
]

.

(A.71)

By maximizing the individual entropies in (A.71) over all input distributions,

dividing both sides of (A.71) by N = KT , and by letting then K tend to infinity,

we obtain that

R1 + pR2 ≤ (1− p)nd + p[(nd − nc)
+ +max(nd, nc)]. (A.72)

By symmetry, the same bound also holds for R2+pR1. Thus, by averaging over

the two cases, it follows that (A.72) is also an upper bound on (R1+R2)(1+ p)/2.

The final result (4.16) follows by dividing (A.72) by 1+p
2 .
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A.2.2 Achievability Proof of Theorem 13

In this section, we describe the achievability schemes that yield the rates presented

in Theorem 13 for local CSIR. The bursty IC described in Section 4.2 is treated

here as a set of nd parallel sub-channels. We begin by considering VWI, WI and

moderate interference (MI) regions and then we consider the strong interference

(SI) region.

A.2.2.1 Scheme 1 (VWI; WI, MI for 0 ≤ p ≤ 1
2)

The achievability scheme is illustrated in Figure A.3a. In the figure, we present

the normalized received signal at Rx1, i.e., we represent graphically the time-k

channel output Y1,k given by (4.1), where the signal level from Tx1 corresponds to

Snd
X1,k and the signal level from Tx2 corresponds to Snc

X2,k, both normalized

by nd. In our scheme, the upper nd−nc sub-channels (block A in the figure) carry

uncoded data (rate 1 bits/sub-channel use), while in the lower nc channels (block

B in the figure) a capacity-achieving code of blocklength N = KT for a binary

erasure channel (BEC) with erasure probability p is used (with asymptotic rate

1− p bits/sub-channel use) [14, Sec. 7.1.5]. Block A is received free of interference

and can be directly decoded at the receiver. Block B is affected by interference

with probability (w.p.) p. Since the fading state Bi,k is known to the i-th receiver,

interfered slots are treated as erasures. Consequently, when K tends to infinity,

user i achieves the rate Ri = (nd − nc) + (1− p)nc. The sum rate R is thus given

by

R = 2(nd − pnc), nd ≥ nc. (A.73)

This scheme is tight for VWI and for WI and MI when p ≤ 1
2 .

A.2.2.2 Scheme 2 (WI, 1
2 < p ≤ 1)

We next consider the achievability scheme illustrated in Figure A.3b. In blocks A

and B uncoded data is transmitted (rate 1 bits/sub-channel use), block C carries

the deterministic all-zeros sequence (rate 0 bit/sub-channel use) and in block D a

capacity-achieving code for the BEC (with asymptotic rate 1− p bits/sub-channel

use) is used. As in Scheme 1, blocks A and B can be decoded without interference,

and block D is decoded by treating interfered symbols as erasures. The rate
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Figure A.3: Normalized signal levels at Rx1. (a) VWI; WI; MI, p ≤
1

2
; (b) WI, p > 1

2
.

achieved by this scheme at user i is Ri = (nd−nc)+(2nc−nd)+(1−p)(2nd−3nc),

so

R = 4(nd − nc) + p(6nc − 4nd),
2nd

3 ≥ nc ≥ nd

2 . (A.74)

A.2.2.3 Scheme 3 (SI, 0 ≤ p ≤ 1
2)

We use an achievability scheme similar to Scheme 1. Now, the upper 2nd − nc

sub-channels carry a capacity-achieving code for a BEC with erasure probability

p, and the lower nc − nd sub-channels carry uncoded data. Consequently, when

K tends to infinity, user i achieves the rate Ri = (nc − nd) + (1− p)(2nd − nc).

The sum rate R = R1 +R2 is thus given by

R = 2(1− 2p)nd + 2pnc, 2nd ≥ nc ≥ nd. (A.75)

This proves Theorem 13.

A.2.3 Proof of Theorem 16

In this section, we prove the converse bounds for global CSIRT and independent

BK
1 and BK

2 .
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A.2.3.1 Converse Bound (4.50) for Global CSIRT

By Fano’s inequality, we have

N(R1 − ǫ1K) ≤ I(W1;Y
K
1 |BK)

(a)
=

K
∑

k=1

[

H(Y1,k|Y k−1
1 ,BK)−H(B1,kSnc

X2,k|W1,Y
k−1
1 ,BK)

]

=
K
∑

k=1

[

(1− p)H(Y1,k|Y k−1
1 , B1,k = 0, Bk−1

1 , BK
1,k+1, B

K
2 )

+ pH(Y1,k|Y k−1
1 , B1,k = 1, Bk−1

1 , BK
1,k+1, B

K
2 )

− pH(Snc
X2,k|W1,Y

k−1
1 , B1,k = 1, Bk−1

1 , BK
1,k+1, B

K
2 )

]

≤
K
∑

k=1

[

(1− p)H(Snd
X1,k|B1,k = 0) + pH(Y1,k|B1,k = 1)

− pH(Snc
X2,k|W1,Y

k−1
1 , B1,k = 1, Bk−1

1 , BK
1,k+1, B

K
2 )

]

(A.76)

where ǫ1K → 0 as K →∞. Here, (a) follows because (W1,B
K) determines X1,k,

so we can subtract its contribution from the second entropy. Likewise,

N(R2 − ǫ2K) ≤I(W2;Y
K
2 |BK)

(a)

≤ I(W2;Y
K
1 ,Y K

2 |W1,B
K)

=
K
∑

k=1

H(Y1,k,Y2,k|W1,Y
k−1
1 ,Y k−1

2 ,BK)

(b)

≤
K
∑

k=1

H(B1,kSnc
X2,k, Snd

X2,k|W1,Y
k−1
1 ,BK)

(c)

≤
K
∑

k=1

[

(1− p)H(Snd
X2,k|, B1,k = 0)

+ pH(Snc
X2,k|W1,Y

k−1
1 , B1,k = 1, Bk−1

1 , BK
1,k+1, B

K
2 )

+ pH(Snd
X2,k|Snc

X2,k, B1,k = 1)
]

(A.77)

where ǫ2K → 0 as K → ∞. Here, step (a) follows because W2 and (W1, B
K
1 )

are independent. Step (b) follows because (W1,B
K) determines X1,k, so we can

subtract its contribution from Y1,k and Y2,k, and because conditioning reduces
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entropy. Step (c) follows by evaluating the entropies for different interference

states and because conditioning reduces entropy. Combining (A.76) and (A.77)

yields

N(R1 +R2)−N(ǫ1K + ǫ2K)

≤
K
∑

k=1

[(1− p) (H(Snd
X1,k|B1,k = 0) +H(Snd

X2,k|B1,k = 0))

+ pH(Y1,k|B1,k = 1) + pH(Snd
X2,k|Snc

X2,k, B1,k = 1)] .

(A.78)

By maximizing the entropies in (A.78) over all input distributions, dividing by

N = KT , and letting K tend to infinity, we obtain that

R ≤ 2(1− p)nd + pmax(nd, nc) + p(nd − nc)
+ (A.79)

which is (4.50).

A.2.3.2 Converse Bound (4.51) for Global CSIRT

Let bK denote the realizations of the interference states BK . We label the set of

time indices where the pair (b1,k, b2,k) takes the value (0,1) by A; (1,1) by B; (1,0)

by C; and (0,0) by D. We denote the length of each of these states by jA, jB, jC

and jD, respectively. For example,

A , {i = 1, . . . ,K : bk = [1, 1]}

and

jA =

K
∑

k=1

1{B = [1, 1]}.

These states are schematically shown in Figure A.4, where shaded areas correspond

to bi = 1.

For global CSIRT, (XK
1 ,XK

2 ) may depend on BK = bK . We shall denote

by XA
i ,X

B
i ,X

C
i and XD

i the X1,k’s with indices in A,B,C and D. For example,

XA
i = {Xi,k : k ∈ A}. At time k, the interference states Bk = bk can be in one

of the 4 possible cases, as depicted in Figure A.4. The converse bound (4.51) is
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Figure A.4: Possible interference states.

proved as follows. We begin by applying Fano’s inequality to obtain

N(R1 +R2)−N(ǫ1K + ǫ2K)

≤ I(W1;Y
K
1 |BK) + I(W2;Y

K
2 |BK)

=
∑

b∈{0,1}K

P(B = bK)
[

I(W1;Y
K
1 |BK = bK) + I(W2;Y

K
2 |BK = bK)

]

(A.80)

where ǫ1K → 0 and ǫ2K → 0 as N →∞. For every bK , we have

I(W1;Y
K
1 |BK=bK) +I(W2;Y

K
2 |BK=bK)

= H(Y K
1 |BK= bK)−H(Y K

1 |W1,B
K=bK)

+H(Y K
2 |BK=bK)−H(Y K

2 |W2,B
K=bK)

(a)
= H(Y C

1 |BK=bK)+H(Y A

1 ,Y
B

1 |Y C

1 ,BK=bK)

+H(Y D

1 |Y A

1 ,Y B

1 ,Y C

1 ,BK=bK)

−H(Snc
XB

2 , Snc
XC

2 |BK=bK)

+H(Y A

2 |BK=bK) +H(Y B

2 ,Y
C

2 |Y A

2 ,BK=bK)

+H(Y D

2 |Y A

2 ,Y B

2 ,Y C

2 ,BK=bK)

−H(Snc
XA

1 , Snc
XB

1 |BK=bK)

(b)

≤ H(Y C

1 |BK=bK)+H(Y A

1 ,Y
B

1 |BK=bK) +H(Y D

1 |BK=bK)

−H(Snc
XB

2 , Snc
XC

2 |BK=bK)

+H(Y A

2 |BK=bK) +H(Y B

2 ,Y
C

2 |BK=bK) +H(Y D

2 |BK=bK)

−H(Snc
XA

1 , Snc
XB

1 |BK=bK)

(A.81)

where step (a) follows by the chain rule for entropy and because (W1,B
K)

determines XK
1 , so we can subtract its contribution from the second and fourth
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entropy. Step (b) follows because conditioning reduces entropy. We next upper-

bound (A.81) by combining the positive and negative entropies in areas B and C

for user 1 and user 2; and areas A and B for user 2 and user 1:

I(W1;Y
K
1 |BK=bK)+I(W2;Y

K
2 |BK=bK)

(a)

≤ H(Y C

1 |BK=bK) +H(Y A

1 ,Y B

1 |Snc
XA

1 , Snc
XB

1 ,B
K=bK)

+H(Y D

1 |BK=bK) +H(Y A

2 |BK=bK)

+H(Y B

2 ,Y C

2 |Snc
XB

2 , Snc
XC

2 ,B
K=bK) +H(Y D

2 |BK=bK)

≤ H(Y C

1 |BK=bK) +H(Y A

1 |Snc
XA

1 ,B
K=bK)

+H(Y B

1 |Snc
XB

1 ,B
K=bK) +H(Y D

1 |BK=bK)

+H(Y A

2 |BK=bK) +H(Y B

2 |Snc
XB

2 ,B
K=bK)

+H(Y C

2 |Snc
XC

2 ,B
K=bK) +H(Y D

2 |BK=bK)

(A.82)

where step (a) follows because H(F )−H(G) ≤ H(F |G) for any random variables

F and G. By maximizing the entropies in (A.82) over all input distributions, we

obtain

I(W1;Y
K
1 |BK=bK)+I(W2;Y

K
2 BK=bK)

≤ jAT [(nd − nc)
+ +max(nd, nc)]

+ 2jBT max{(nd − nc)
+, nd}

+ jCT [(nd − nc)
+ +max(nd, nc)] + 2jDT (nd).

(A.83)

By dividing (A.83) by N = KT , and taking the limit as K →∞, we obtain

R1 +R2

(a)

≤ lim
K→∞

1

KT

∑

bK

P{BK=bK}

×
[

I(W1;Y
K
1 |BK=bK) + I(W2;Y

K
2 |BK=bK)

]

= lim
K→∞

1

K

[

E
[

jA[(nc − nd)
+ +max(nd, nc)] + 2jB[max{(nd − nc)

+, nc}]
]

+ E
[

jC[(nd − nc)
+ +max(nd, nc)] + 2jDnd

]

]

(A.84)

where (a) follows because (ǫ1K + ǫ2K) → 0 as K → ∞. Next, we apply the

dominated convergence theorem (DCT) [47, Sec. 1.34] to interchange limit and
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expectation. By the law of large numbers, we have that jA
K → p(1− p), jB

K → p2,
jC
K → p(1− p), and jB

K → (1− p)2 almost surely as K →∞. By replacing these

probabilities in (A.84), we thus obtain

R ≤ 2p(1− p)[(nd − nc)
+ +max(nd, nc)]

+ 2p2 max{(nd − nc)
+, nc}+ 2(1− p)2nd. (A.85)

This yields (4.51).

A.2.4 Proof of Theorem 17

In this section, we present the achievability schemes for global CSIRT and inde-

pendent BK
1 and BK

2 . Let bK denote the realizations of the interference states

BK , and define jmin , min(jA, jB, jC). Consider the following achievable schemes.

A.2.4.1 Scheme 1 (MI, 0 ≤ p ≤ 1)

Both transmitters employ uncoded transmission in the first jmin indices of regions

A and C, respectively, and in the whole region D. Tx1 copies the first jmin indices

of region A in region B, while Tx2 copies the first jmin indices of region C in B,

aligned with those of user 1. The remaining indices are treated as a non-bursty

IC attaining rate ric = nd − nc

2 [29].

To illustrate the decoding process, Figure A.5 shows the different normalized

signals at the Rx1 when jA = jB = jC = jD = 1. Tx1 transmits the signals 1 , 3 ,

and 4 , in channel state A and B, C, and D, respectively. Similarly, Tx2 transmits

the signal 2 in states B and C. Rx1 has access to a clean copy of signal 1 in

region A, which can then be subtracted in state B to recover the interfering signal

2 . Since Tx2 transmits the same signal in state C, the interference can then be

canceled. Hence, signals 3 and 4 are recovered. For a given interference state

and general A and B, C, and D, the rate attained by user i with this scheme is

Ri(b
K) = nd

2jmin

K + nd
jD
K + ric

jA+jB+jC−3jmin

K . (A.86)

Averaging (A.86) over BK , and letting K →∞, we obtain for the sum rate

R = lim
K→∞

2E
[

nd
2jmin

K + nd
jD
K + ric

jA+jB+jC−3jmin

K

]

= 4ndpmin + 2nd(1− p)2 +
(

2nd − nc

)(

2p− p2 − 3pmin)
(A.87)
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Figure A.5: Normalized by nd signal levels at Rx1 for MI and jA = jB = jC = jD.

where we changed the order of limit and expectation by appealing to the DCT,

and used that, by the law of large numbers, JA

K → p(1−p), JB

K → p2, JC

K → p(1−p)

and JD

K → (1− p)2 almost surely as K →∞.

A.2.4.2 Scheme 2 (SI, 0 ≤ p ≤ 1)

Both transmitters employ uncoded transmission in the first jmin indices of states

A and C. Tx1 copies the lowest 2nd − nc sub-channels of the first jmin indices of

region A into the highest 2nd − nc sub-channels and uses uncoded transmission

in the lowest nc − nd sub-channels of the corresponding sub-region in B. Tx2

proceeds analogously but from region C to B. Both transmitters employ uncoded

transmission in region D and treat the remaining indices as a non-bursty IC [29]

with rate nc

2 .

To illustrate the decoding process, Figure A.6 shows the different normalized

signals at the Rx1 when jA = jB = jC = jD = 1. Tx1 transmits the signals ( 1 ,

2 ) , ( 1 , 3 ) , 5 and 6 in channel state A and B, C, and D, respectively. Similarly,

Tx2 transmits the signal ( 4 , 7 ) and ( 4 , 8 ) in states B and C, respectively.

Rx1 has access to a clean copy of signals 1 and 2 in region A, signal 1 can

then be subtracted in state B to recover the interfering signals 4 and 7 . In

state B, Rx1 has access to signal 3 . Since Tx2 transmits signal 4 in state C, the

interference can then be canceled. Hence, signal 5 can be recovered. Finally,

signal 6 is recovered without interference. For a given interference state, and
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Figure A.6: Normalized by nd signal levels at Rx1 for SI.

general jA, jB, jC, jD, the rate attained by user i with this scheme is

Ri(b
K) = (nd + nc)

2jmin

K + nd
jD
K + ric

jA+jB+jC−3jmin

K . (A.88)

Averaging (A.88) over BK , and letting K →∞, we obtain for the sum rate

R = lim
K→∞

2E
[

(nd + nc)
2jmin

K + nd
jD
K + ric

jA+jB+jC−3jmin

K

]

= 2(nd + nc)pmin + 2nd(1− p)2 + nc

(

2p− p2 − 3pmin

)

. (A.89)

where we changed the order of limit and expectation by appealing to the DCT,

and used that, by the law of large numbers, JA

K → p(1−p), JB

K → p2, JC

K → p(1−p)

and JD

K → (1− p)2 almost surely as K →∞.

A.2.5 Proof of Theorem 18

The converse bound (4.57) for global CSIRT follows similar steps as in Ap-

pendix A.2.3.1 but considering BK
1 = BK

2 = BK . We next present the converse

bound (4.58) for global CSIRT when BK
1 = BK

2 . This bound follows by giving
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the extra information (BKSnc
XK

1 ) to Rx1. By Fano’s inequality, we have

N(R1 − ǫ1K) ≤ I(W1;Y
K
1 |BK)

≤ I(W1;Y
K
1 , BK

Snc
XK

1 |BK)

= I(W1;B
K
Snc

XK
1 |BK) + I(W1;Y

K
1 |BK

Snc
XK

1 , BK)

= H(BK
Snc

XK
1 |BK) +H(Y K

1 |BK
Snc

XK
1 , BK)

−H(Y K
1 |W1, B

K
Snc

XK
1 , BK)

= H(BK
Snc

XK
1 |BK) +H(Y K

1 |BK
Snc

XK
1 , BK)

−H(BK
Snc

XK
2 |BK)

(A.90)

where ǫ1K → 0 as K → ∞. Analogously, by giving the extra information

(BKSnc
XK

2 ) to Rx2, we obtain

N(R2 − ǫ2K) ≤ H(BK
Snc

XK
2 |BK) +H(Y K

2 |BK
Snc

XK
2 , BK)

−H(BK
Snc

XK
1 |BK) (A.91)

where ǫ2K → 0 as K →∞. Thus, (A.90) and (A.91) yield

N(R1 +R2)−N(ǫ1K + ǫ2K)

≤ H(Y K
1 |BK

Snc
XK

1 , BK) +H(Y K
2 |BK

Snc
XK

2 , BK)

=

K
∑

k=1

[

H(Y1,k|Y k−1
1 , BK

Snc
XK

1 , BK)

+H(Y2,k|Y k−1
2 , BK

Snc
XK

2 , BK)
]

≤
K
∑

k=1

[H(Y1,k|BkSnc
X1,k, Bk) +H(Y2,k|BkSnc

X2,k, Bk)]

≤
K
∑

k=1

[

(1− p) (H(Snd
X1,k|Bk = 0) +H(Snd

X2,k|Bk = 0))

+ p(H(Y1,k|Snc
X1,k, Bk = 1) +H(Y2,k|Snc

X2,k, Bk = 1))
]

(A.92)

where we have used that conditioning reduces entropy. By maximizing the

entropies in (A.92) over all input distributions, dividing by N = KT , and letting

K tend to infinity, we obtain that

R ≤ 2(1− p)nd + 2pmax{(nd − nc)
+, nc}. (A.93)

This proves (4.58).
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A.3 Achievability for Local CSIRT

In this appendix we present the achievability schemes for local CSIRT.

A.3.1 Very Weak Interference

The sum rate (4.27) coincides with that of local CSIR, which in this interference

region is equal to the sum rate of global CSIRT. The achievability scheme presented

in Section A.2.2.1 is thus optimal for local CSIRT and VWI.

A.3.2 Weak Interference

We follow a random-coding argument where the codebooks of Tx1 and Tx2 are

drawn independent and identically distributed (IID) at random according to the

distribution depicted in Figure A.7. Specifically, we divide the transmitted signal

by Tx1 into three regions. For each symbol (corresponding to a coherence block)

we denote the bits in regions A , B and C by XA
1 , XB

1 and XC
1 , respectively. In

each region the bits are IID, but they follow a different distribution.

• Regions A and C : The bits XA
1 and XC

1 are IID with marginal probability

mass function (pmf)

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 . (A.94)

• Region B : The bits XB
1 are IID with marginal pmf

PX1|B1
(1|0) = p1 (A.95)

PX1|B1
(1|1) = p2 (A.96)

PX1
(1) = p3 = (1− p)p1 + pp2. (A.97)

We further assume that XA
1 ,XB

1 and XC
1 are mutually independent. For Tx2,

the input distributions coincide with that of Tx1 in the corresponding regions

but with probabilities qi instead of pi, with i = 1, 2. Evaluating I(X1;Y1|B1) for
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Figure A.7: Normalized signal levels at Rx1 (WI).

these distributions, it follows that user 1 achieves the rate

R1 =(1− p)[(nd − nc)Hb(
1
2 ) + (2nc − nd)Hb(p1) + (nd − nc)]

+ p(nd − nc)Hb(
1
2 ) + p(2nc − nd)

[

Hsum(p2,
1
2 )−Hb(q3)

]

+ p(2nd − 3nc)(Hsum(
1
2 ,

1
2 )−Hb(

1
2 ))

+ p(2nc − nd)(Hsum(
1
2 , q3)−Hb(q3))

=(nd − nc) + (1− p)[(nd − nc) + (2nc − nd)Hb(p1)]

+ p(2nc − nd)(1−Hb(q3)).

(A.98)

Similarly, for user 2, we obtain (4.29).

A.3.3 Moderate Interference

We follow along similar lines to obtain the achievable rates for MI. However, in

contrast to WI, for MI we need to consider different input distributions, depending

on the value of α. In the proofs, we shall make use of the following auxiliary

results, which can be proven by direct evaluation of the entropies considered.

Lemma 5 Let X and X̃ be two binary random variables with joint pmf

PXX̃(0, 0) = PXX̃(1, 1) = η
2 , and PXX̃(0, 1) = PXX̃(1, 0) = 1−η

2 . Then,

H(X|X̃) = H(X̃|X) = Hb(η). (A.99)
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Lemma 6 Let X, X̃ and B be binary random variables with joint pmf

PXX̃B(0, 0, 0) = PXX̃B(1, 1, 0) = η1

2 (1 − p), PXX̃B(0, 1, 0) = PXX̃B(1, 0, 0) =
1−η1

2 (1 − p), PXX̃B(0, 0, 1) = PXX̃B(1, 1, 1) = η2

2 p, and PXX̃B(0, 1, 1) =

PXX̃B(1, 0, 1) =
1−η2

2 p. Then,

H(X̃|X,B) = (1− p)Hb(η1) + pHb(η2) (A.100)

and

H(X̃|X) = Hb

(

(1− p)η1 + pη2
)

. (A.101)

Lemma 7 Let X1 and X̃1 be two binary random variables with joint pmf

PX1X̃1
(0, 0) = PX1X̃1

(1, 1) = η1

2 and PX1X̃1
(0, 1) = PX1X̃1

(1, 0) = 1−η1

2 . Simi-

larly, let the pair of binary random variables X2 and X̃2 be independent of X1

and X̃1 have the same joint pmf but with parameter η2. Further let Z ∼ Ber(pz).

Then,

H(X1|X̃1 ⊕ X̃2, X2) = H(X̃1 ⊕ X̃2|X1, X2) = Hsum(η1, η2) (A.102)

and

H(X1 ⊕ Z|X̃1 ⊕ X̃2, X2) = Hsum(pz, η1(1− η2) + η2(1− η1)). (A.103)

To derive the achievable rates for MI, we again follow a random-coding

argument where the codebooks are drawn IID at random. We next describe the

input distributions for different values of α:

A.3.3.1 MI, 2
3 < α ≤ 3

4

Consider the regions shown in Figure A.8 for the received signal at Rx1. For the

transmitted signal X1, we denote the bits in region j by X
j
1 , j = {A, . . . , F}. In

each of these regions we consider the following input distributions:

• Regions A and Ã : We group the bits XA
1 and XÃ

1 in pairs, and we let each

of these pairs (X1, X̃1) be IID and have the distribution from Lemma 6 with
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η2 = 1, i.e., their marginal pmf is

PX1X̃1|B1
(0, 0|0) = PX1X̃1|B1

(1, 1|0) = η1
2

(A.104)

PX1X̃1|B1
(0, 1|0) = PX1X̃1|B1

(1, 0|0) = 1− η1
2

(A.105)

PX1X̃1|B1
(0, 0|1) = PX1X̃1|B1

(1, 1|1) = 1

2
(A.106)

PX1X̃1|B1
(0, 1|1) = PX1X̃1|B1

(1, 0|1) = 0 (A.107)

PX̃1|X1
(1|1) = η̃ = p+ η1(1− p). (A.108)

where 1
2 ≤ η1 ≤ 1.

• Regions B and F : The bits XB
1 and XF

1 are IID with marginal pmf

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 . (A.109)

• Region C : The bits XC
1 are IID with marginal pmf

PX1|B1
(1|0) = p1 (A.110)

PX1|B1
(1|1) = p2 (A.111)

PX1(1) = p3 = (1− p)p1 + pp2. (A.112)

• Region D : The bits XD
1 are IID with marginal pmf

PX1|B1
(1|0) = p̃1 (A.113)

PX1|B1
(1|1) = p̃2 (A.114)

PX1(1) = p̃3 = (1− p)p̃1 + pp̃2. (A.115)

• Region E : The bits XE
1 are IID with marginal pmf

PX1|B1
(1|0) = p̂1 (A.116)

PX1|B1
(1|1) = 0 (A.117)

PX1(1) = p̂3 = (1− p)p̂1. (A.118)

Furthermore, we assume that X
j
1 , j = {A, . . . , F} are independent. For user

2, the input distributions coincide with that of user 1 in the corresponding
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regions, but with parameters qi instead of pi, q̃i instead of p̃i, q̂1 instead of p̂1,

and γi instead of ηi. From the random-coding argument, we know that the

rate R1 = 1
N I(XK

1 ;Y K
1 |B1) is achievable. Since the distributions considered

are temporally IID, it suffices to evaluate I(X1;Y1|B1) for one coherence block,

obtaining

TR1 =I(X1;Y
A
1 |B1) + I(X1;Y

Ã
1 |Y A

1 , B1) + I(X1;Y
E
1 |Y A

1 ,Y Ã
1 , B1)

+ I(X1;Y
C
1 |Y A

1 ,Y Ã
1 ,Y E

1 , B1) + I(X1;Y
B
1 |Y A

1 ,Y Ã
1 ,Y E

1 ,Y C
1 , B1)

+ I(X1;Y
D
1 |Y A

1 ,Y Ã
1 ,Y E

1 ,Y C
1 ,Y B

1 , B1)

+ I(X1;Y
F
1 |Y A

1 ,Y Ã
1 ,Y E

1 ,Y C
1 ,Y B

1 ,Y D
1 , B1)

=(1− p)[H(XA
1 |B1 = 0) +H(XÃ

1 |XA
1 , B1 = 0) +H(XE

1 |B1 = 0)

+H(XC
1 |B1 = 0) +H(XB

1 |B1 = 0) +H(XD
1 |B1 = 0)

+H(XF
1 |B1 = 0)]

+ p[H(XA
1 |B1 = 1) +H(XÃ

1 ⊕XÃ
2 |XA

1 , B1 = 1)−H(XÃ
2 )

+H(XE
1 ⊕XE

2 |B1 = 1)

−H(XE
2 ) +H(XC

1 ⊕XC
2 |XE

1 ⊕XE
2 , B1 = 1)

−H(XC
2 |XE

2 ) +H(XB
1 |B1 = 1) +H(XD

1 ⊕XD
2 |B1 = 1)

−H(XD
2 ) +H(XF

1 ⊕XF
2 |B1 = 1)−H(XF

2 )].

(A.119)

By Lemma 6, we have that

H(XÃ
1 |XA

1 , B1 = 0) = T 3nc−2nd

2 Hb(η1). (A.120)

Furthermore, by Lemma 7, we have that

H(XC
1 ⊕XC

2 |XE
1 ⊕XE

2 , B1 = 1) = H(XC
1 ⊕XC

2 |XE
2 , B1 = 1)

= T 3nc−2nd

2 Hsum(p2, γ̃) (A.121)

because for the bits XC
1 , PXC

1 |B1
(1|1) = 0. Similarly, we have

Hsum(X
Ã
1 ⊕XÃ

2 |XA
1 , B1 = 1) = T 3nc−2nd

2 Hsum(1,
1
2 ) = T 3nc−2nd

2 . (A.122)

The terms in the other regions follow analogously. Therefore, using (A.119) we

obtain the rate
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R1 =(nd − nc) + (1− p)
[

(

3nc−2nd

2

)

(Hb(η1) +Hb(p̂1) +Hb(p1))

+
(

4nd−5nc

2

)

Hb(p̃1) + (nd − nc)
]

+ p
[

(

3nc−2nd

2

)

(1 +Hsum(p2, γ̃)−Hb(γ̃) +Hsum(p̃2, q3)−Hb(q3)−Hb(q̂3))

+
(

4nd−5nc

2

)

(1−Hb(q̃3))
]

.

(A.123)

Similarly, user 2 achieves the rate (4.31).

A.3.3.2 MI, 3
4 ≤ α ≤ 4

5

We use a similar transmission strategy as for the case where 2
3 ≤ α ≤ 3

4 (Sec-

tion A.3.3.1), but where the regions have different sizes; see Figure A.9. Following

the same steps as in Section A.3.3.1, we obtain the achievable rates (4.32) for R1

and (4.33) for R2.
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A.3.3.3 MI, α = 6
7
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Figure A.10: Normalized signal levels at Rx1 for α = 6

7
MI

In this subsection we consider the particular case α = 6
7 . The proposed achievabil-

ity scheme features two nested regions with a certain correlation. In particular,

we consider the division of the bit-pipes for the transmitted signal Tx1 in the

subregions shown in Figure A.10. The input distributions considered in each

of these regions are described next (for Tx2, we shall consider the same input

distributions parameterized by qi, q̂1, γ1 and γ′, instead of pi, p̂1, η1 and η′):

• Regions A and Ã : The bits XA
1 and XÃ

1 are grouped in IID pairs with the

marginal pmf given by (A.104)–(A.108).

• Regions B and B̃ : The bits XB
1 and XB̃

1 are grouped in IID pairs with

marginal pmf

PX1X̃1|B1
(0, 0|0) = PX1X̃1|B1

(1, 1|0) =
η′

2
(A.124)

PX1X̃1|B1
(0, 1|0) = PX1X̃1|B1

(1, 0|0) =
1− η′

2
(A.125)

PX1X̃1|B1
(0, 0|1) = PX1X̃1|B1

(1, 1|1) =
η′

2
(A.126)

PX1X̃1|B1
(0, 1|1) = PX1X̃1|B1

(1, 0|1) =
1− η′

2
(A.127)

PX̃1|X1
(1|1) = η′ (A.128)
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where 1
2 ≤ η′ ≤ 1.

• Region C : The bits XC
1 are IID with marginal pmf

PX1|B1
(1|0) = p1 (A.129)

PX1|B1
(1|1) = p2 (A.130)

PX1(1) = p3 = (1− p)p1 + pp2. (A.131)

• Region D : The bits XD
1 are IID with marginal pmf

PX1|B1
(1|0) = p̂1 (A.132)

PX1|B1
(1|1) = 0 (A.133)

PX1(1) = p̂3 = (1− p)p̂1. (A.134)

• Region E : The bits XE
1 are IID with marginal pmf

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 . (A.135)

Furthermore, we assume that X
j
i , i=1,2, j = {A,B,C,D,E} are mutually in-

dependent. For the input distributions described above, we obtain for user 1

that

TR1 =I(X1;Y
A
1 |B1) + I(X1;Y

Ã
1 |Y A

1 , B1) + I(X1;Y
D
1 |Y A

1 ,Y Ã
1 , B1)

+ I(X1;Y
B
1 |Y A

1 ,Y Ã
1 ,Y D

1 , B1) + I(X1;Y
B̃
1 |Y A

1 ,Y Ã
1 ,Y D

1 ,Y B
1 , B1)

+ I(X1;Y
C
1 |Y A

1 ,Y Ã
1 ,Y D

1 ,Y B
1 ,Y B̃

1 , B1)

+ I(X1;Y
E
1 |Y A

1 ,Y Ã
1 ,Y D

1 ,Y B
1 ,Y B̃

1 ,Y C
1 , B1)

=(1− p)[H(XA
1 |B1 = 0) +H(XÃ

1 |XA
1 , B1 = 0) +H(XD

1 |B1 = 0)

+H(XB
1 |B1 = 0) +H(XB̃

1 |XB
1 , B1 = 0) +H(XC

1 |B1 = 0)

+H(XE
1 |B1 = 0)]

+ p[H(XA
1 |B1 = 1) +H(XÃ

1 ⊕XÃ
2 |XA

1 , B1 = 1)

−H(XÃ
2 ) +H(XD

1 ⊕XD
2 |B1 = 1)

−H(XD
2 ) +H(XB

1 ⊕XB
2 |XD

1 ⊕XD
2 , B1 = 1)−H(XB

2 |XD
2 )

+H(XB̃
1 ⊕XB̃

2 |XB
1 ⊕XB

2 ,XD
1 ⊕XD

2 , B1 = 1)−H(XB̃
2 )

+H(XC
1 ⊕XC

2 |XÃ
1 ⊕XÃ

2 ,XA
1 , B1 = 1)−H(XC

2 |XÃ
2 )

+H(XE
1 ⊕XE

2 |B1 = 1)−H(XE
2 )].

(A.136)
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We next evaluate the different terms in (A.136) by applying Lemmas 6 and 7 to

obtain

H(XÃ
1 |XA

1 , B1 = 0) = T (nd − nc)Hb(η1) (A.137)

H(XB̃
1 |XB

1 , B1 = 0) = T (nd − nc)Hb(η
′) (A.138)

H(XÃ
1 ⊕XÃ

2 |XA
1 , B1 = 1) = T (nd − nc)Hsum(1,

1
2 )

= T (nd − nc). (A.139)

Similarly, using Lemma 7, and since for XD
1 we have that PX1|B1

(0|1) = 1, we

obtain

H(XB̃
1 ⊕XB̃

2 |XB
1 ⊕XB

2 ,XD
1 ⊕XD

2 , B1 = 1)

= H(XB̃
1 ⊕XB̃

2 |XB
1 ⊕XB

2 ,XD
2 , B1 = 1)

= T (nd − nc)Hsum(q3, η
′(1− γ̃) + (1− η′)γ̃).

(A.140)

Combining (A.137)–(A.140) with (A.136) yields

R1 =(nd − nc)

+ (1− p)
[

(6nc − 5nd)Hb(p1)

+ (nd − nc) (2 +Hb(η1) +Hb(η
′) +Hb(p̂1))

]

+ p
[

(nd − nc)
(

2−Hb(γ̃)−Hb(q̂3)

+Hsum(η
′(1− γ̃) + (1− η′)γ̃, q3)−Hb(q3)

)

+ (6nc − 5nd) (Hsum(p2, γ
′)−Hb(γ

′))
]

.

(A.141)

Following along similar lines, it can be shown that user 2 achieves the rate

R2 =(nd − nc)

+ (1− p)
[

(6nc − 5nd)Hb(q1)

+ (nd − nc) (2 +Hb(γ1) +Hb(γ
′) +Hb(q̂1))

]

+ p
[

(nd − nc)
(

2−Hb(η̃)−Hb(p̂3)

+Hsum(γ
′(1− η̃) + (1− γ′)η̃, p3)−Hb(p3)

)

+ (6nc − 5nd) (Hsum(q2, η
′)−Hb(η

′))
]

.

(A.142)
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A.3.3.4 MI, 4
5 < α < 6

7

We consider the input distribution depicted in Figure A.11a with:

• Regions A and Ã : The bits (XA
1 ,XÃ

1 ) are IID, with marginal pmf given

by (A.104)-(A.108).

• Regions B and B̃ : The bits (XB
1 ,XB̃

1 ) are IID, with marginal pmf given

by (A.124)-(A.128).

• Region C : The bits XC
1 are IID with marginal pmf

PX1|B1
(1|0) = p1 (A.143)

PX1|B1
(1|1) = p2 (A.144)

PX1(1) = p3 = (1− p)p1 + pp2. (A.145)

• Region D : The bits XD
1 are IID with marginal pmf

PX1|B1
(1|0) = p̂1 (A.146)

PX1|B1
(1|1) = 0 (A.147)

PX1
(1) = p̂3 = (1− p)p̂1. (A.148)

• Region E : The bits XE
1 are IID with marginal pmf

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 (A.149)

Furthermore, we assume that Xj
1 , j = {A,B,C,D,E} are independent. For Tx2,

the input distributions coincide with that of Tx1 in the corresponding regions, but

with parameters qi instead of pi, q̂1 instead of p̂1, γi instead of ηi and γ′ instead

of η′. Following similar steps as in the previous sections, we obtain (4.34) for R1

and (4.35) for R2.

A.3.3.5 MI, 6
7 < α < 1

The transmission strategy is similar to the one for 4
5 < α < 6

7 (Section A.3.3.4),

but with different sizes for the regions A - E , see Figure A.11b. Following similar

steps as in previous sections, we obtain (4.36) for R1 and (4.37) for R2.
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Figure A.11: Normalized signal levels at Rx1. (a) (MI) for 4

5
≤ α ≤

6

7
; (b) (MI) for

6
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≤ α ≤ 1.
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A.3.4 Strong Interference

To obtain the achievable rates for SI, we again need to consider different input

distributions, depending on the value of α.

A.3.4.1 SI, 1 ≤ α ≤ 6
5

We consider the input distribution depicted in Figure A.12a with:

• Regions A and Ã : The bits (XA
1 ,XÃ

1 ) are IID, with marginal pmf given

by (A.104)–(A.108).

• Regions B and B̃ : The bits (XB
1 ,XB̃

1 ) are IID, with marginal pmf given

by (A.124)–(A.128).

• Region C : The bits XC
1 are IID with marginal pmf

PX1|B1
(1|0) = p1 (A.150)

PX1|B1
(1|1) = p2 (A.151)

PX1(1) = p3 = (1− p)p1 + pp2. (A.152)

Furthermore, we assume that Xj
1 , j = {A,B,C} are independent. For Tx2, the

input distributions coincide with that of Tx1 in the corresponding regions, but

with parameters qi instead of pi, γ1 instead of η1 and γ′ instead of η′. Following

similar steps as in previous sections, we obtain the achievable rate pair (4.38) and

(4.39).

A.3.4.2 SI, 6
5 ≤ α ≤ 4

3

We consider the input distribution depicted in Figure A.12b with the following

distributions:

• Regions A and Ã : The bits (XA
1 ,XÃ

1 ) are IID, with marginal pmf given

by (A.104)–(A.108).

• Regions B and D : The bits XB
1 and XD

1 are independent and temporally

IID with marginal pmf

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 . (A.153)

176



APPENDIX A. APPENDIX TO CHAPTER 4

0

α− 1

α

α− 1

α− 1

5− 4α

6− 5α

α− 1

Tx1 Tx2

α

1
Ã
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Figure A.12: Normalized signal levels at Rx1. (a) (SI) for 1 ≤ α ≤
6

5
.; (b) (SI) for

6

5
≤ α ≤

4

3
.
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• Region C : The bits XC
1 are IID with marginal pmf

PX1|B1
(1|0) = p1 (A.154)

PX1|B1
(1|1) = p2 (A.155)

PX1
(1) = p3 = (1− p)p1 + pp2. (A.156)

Furthermore, we assume that X
j
1 , j = {A,B,C,D} are independent. For Tx2,

the input distributions coincide with that of Tx1 in the corresponding regions, but

with parameters qi instead of pi, q̂1 instead of p̂1 and γ1 instead of η1. Following

similar steps as in previous sections, we obtain the achievable rate pair (4.40) and

(4.41).

A.3.4.3 SI, 4
3 ≤ α ≤ 3

2

We consider the input distribution depicted in Figure A.13a with the following

distributions:

• Regions A and Ã : The bits (XA
1 ,XÃ

1 ) are IID, with marginal pmf given

by (A.104)–(A.108).

• Regions B , C , E and F : The bits XB
1 , XC

1 , XE
1 and XF

1 are independent

and temporally IID with marginal pmf

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 . (A.157)

• Region D : The bits XD
1 are IID with marginal pmf

PX1|B1
(1|0) = p̂1 (A.158)

PX1|B1
(1|1) = p̂1 (A.159)

PX1(1) = p̂3 = p̂1. (A.160)

Furthermore, we assume that Xj
1 , j = {A,B,C,D,E, F} are independent. For

Tx2, the input distributions coincide with that of Tx1 in the corresponding regions,

but with parameters qi instead of pi and γ1 instead of η1. Following similar steps

as in previous sections, we obtain an achievable rate pair for 4
3 < α ≤ 3

2 which is

given by (4.42) and (4.43).
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A.3.4.4 SI, 3
2 ≤ α ≤ 2

We consider the input distribution depicted in Figure A.13b with the following

distributions:

• Regions A and Ã : The bits (XA
1 ,XÃ

1 ) are IID, with marginal pmf given

by (A.104)–(A.108).

• Region B : The bits are IID with marginal pmf

PX1|B1
(1|0) = PX1|B1

(1|1) = 1
2 . (A.161)

Furthermore, we assume that X
j
1 , j = {A,B} are independent. For Tx2, the

input distributions coincide with that of Tx1 in the corresponding regions, but

with parameters qi instead of pi, q̂1 instead of p̂1 and γ1 instead of η1. Proceeding

as in the previous sections we obtain the achievable rate pair (4.44) and (4.45).
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Figure A.13: Normalized signal levels at Rx1. (a) (SI) for 4

3
≤ α ≤

3

2
; (b) (SI) for

3

2
≤ α ≤ 2.
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B
Proof of Lemma 3 in Appendix A.1

B.1 Proof of Lemma 3

In this appendix, we prove the Lemma 3. To this end, we first introduce definitions

and properties that will be used in the proof of the lemma.

Definition 17 (Sup-entropy rate) The sup-entropy rate H(Y ) is defined as

the limsup in probability of 1
N log 1

P
Y N (Y N )

. Analogously, the conditional sup-

entropy rate H(Y |X) is the limsup in probability (according to {PXNY N }) of
1
N log 1

P
Y N |XN (Y N |XN )

.

Lemma 8 (Sup-entropy rate properties) Suppose (X,Y) takes values in

(X ,Y). The sup-entropy rate has the following properties:

H(Y |X) < H(Y ) (B.1)

0 ≤ H(Y ) < log |Y| (B.2)

181



APPENDIX B. PROOF OF LEMMA 3 IN APPENDIX A.1

where |Y| denotes the cardinality of Y .

Proof: Property (B.1) follows directly from properties (c) and (d) of [62,

Th. 8]. Property (B.2) is equal to property (e) in [62, Th. 8].

We recall the information densities i1(x
N
1 ,yN

1 ,b) and i2(x
N
2 ,yN

2 ,b) defined in

(A.1) and (A.2), respectively. By decomposing the logarithms and applying the

Bayes rule to both probability terms, we obtain

ii(x
N
i ,yN

i ,b) = logPYN
i
|XN

i
,B(y

N
i |xN

i ,b)− logPYN
i
|B(y

N
i |b)

= logPXN
i
|YN

i
,B(x

N
i |yN

i ,b)− logPXN
i
|B(x

N
i |b).

(B.3)

To shorten notation, we shall omit the arguments and write ii , ii(x
N
i ,yN

i ,b),

i = 1, 2 wherever the arguments are clear from the context.

Recall the error events Ei(Γi) ,
{

1
n ii ≤ Γi

}

, i = 1, 2, and E12(Γ) ,
{

1
n i1 +

1
n i2 ≤ Γ

}

, with Γ = Γ1 + Γ2, as defined in (A.3) and (A.4), respectively.

We first note that

E1 ∩ E2 ⊆ E12 (B.4)

E1 ∩ E2 = E1 \ {E1 ∩ Ec2} ⊇ E1 \ {Ec2} (B.5)

where (B.4) follows because the conditions 1
N i1 ≤ Γ1 and 1

N i2 ≤ Γ2 imply that
1
N (i1 + i2) ≤ Γ1 +Γ2. Then, (B.5) follows by applying basic set operations. Using

(B.4) and (B.5), and computing the probability of the corresponding events, we

obtain

Pr{E12} ≥ Pr{E1} − Pr{Ec2}. (B.6)

For clarity of exposition, we define

ǫb , Pr

{

1

N
(i1 + i2) ≤ Γ

∣

∣

∣
B = b

}

(B.7)

and analyze the necessary conditions on Γ such that ǫb → 0 as N →∞. We next

consider separately the four possible realizations of B = b.
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B.1.1 Case B = [0, 0]

When B = [0, 0], the channel corresponds to two parallel channels with no

interference links. Then, the underlying distribution of the probability (B.7) is

PXN
1 ,XN

2 ,YN
1 ,YN

2 |B(x
N
1 ,xN

2 ,yN
1 ,yN

2 |b)
= PXN

1 |B(x
N
1 |b)PXN

2 |B(x
N
2 |b)1{yN

1 = Snd
xN
1 }1{yN

2 = Snd
xN
2 } (B.8)

as the outputs yN
1 and yN

2 must coincide with the corresponding inputs according

to the deterministic model. To prove the constraint (A.6), we use (B.3) in (B.7)

to obtain

ǫ00 = Pr

{

− 1

N
logPXN

1 |B(X
N
1 |B)− 1

N
logPXN

2 |B(X
N
2 |B) ≤ Γ

∣

∣

∣
B = [0, 0]

}

(B.9)

where we used that, according to (B.8), logPXN
i
|YN

i
,B(X

N
i |YN

i ,B) = 0 with

probability (w.p.) 1, for i = 1, 2.

We consider now the conditional sup-entropy rates H(XN
i |B), i = 1, 2. Ac-

cording to (B.2) in Lemma 8, we have that H(XN
i |B) < nd, i = 1, 2. With these

considerations, if we set Γ = 2nd +2δ for some arbitrary δ > 0 in (B.9), we obtain

ǫ00 ≥Pr
{

− 1

N
logPXN

1 |B(X
N
1 |B)− 1

N
logPXN

2 |B(X
N
2 |B

≤ 2nd + 2δ
∣

∣

∣
B = [0, 0]

}

≥Pr
{

− 1

N
logPXN

1 |B(X
N
1 |B)− 1

N
logPXN

2 |B(X
N
2 |B)

< H(XN
1 |B) +H(XN

2 |B) + 2δ
∣

∣

∣
B = [0, 0]

}

≥Pr
{

− 1

N
logPXN

1 |B(X
N
1 |B) < H(XN

1 |B) + δ
∣

∣

∣
B = [0, 0]

}

− Pr

{

− 1

N
logPXN

2 |B(X
N
2 |B) ≥ H(XN

2 |B) + δ
∣

∣

∣
B = [0, 0]

}

(B.10)

where the last step follows from (B.6).

Recalling the definitions of the conditional sup-entropy rates H(XN
i |B) we

have that, for any δ > 0,

lim
N→∞

Pr
{

− 1

N
logPXN

i
|B(X

N
i |B) ≥ H(XN

i |B) + δ
∣

∣

∣
B = [0, 0]

}

= 0, i = 1, 2. (B.11)

This implies that the first probability on the right-hand side (RHS) of (B.10)

tends to 1 as N →∞, and the second probability on the RHS of (B.10) tends to
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0 as N →∞. We conclude that for any Γ > 2nd the lower bound in (B.10) tends

to 1 as N →∞. Thus, ǫ00 → 0 as N →∞ only if Γ ≤ 2nd.

B.1.2 Case B = [0, 1]

When B = [0, 1], the channel corresponds to a two-user IC where only one of

the transmitters interferes its non-intended receiver. In this case, the underlying

distribution in (B.7) is given by

PXN
1 ,XN

2 ,YN
1 ,YN

2 |B(x
N
1 ,xN

2 ,yN
1 ,yN

2 |b)
= PXN

1 |B(x
N
1 |b)PXN

2 |B(x
N
2 |b)1{yN

1 = Snd
xN
1 }1{yN

2 = Snd
xN
2 ⊕ Snc

xN
1 }

(B.12)

We next prove the constraints (A.6) and (A.7) in Lemma 3.

B.1.2.1 Proof of Constraint (A.6)

We lower-bound the probability ǫ01 by that of 2 parallel channels and follow the

steps in Appendix B.1.1. Indeed, by using (B.3) in (B.7) and lower-bounding

logPXN
i
|YN

i
,B(X

N
i |YN

i ,B) ≤ 0, i = 1, 2, we obtain that

ǫ01 ≥ Pr

{

− 1

N
logPXN

1 |B(X
N
1 |B)− 1

N
logPXN

2 |B(X
N
2 |B) ≤ Γ

∣

∣

∣
B = [0, 1]

}

. (B.13)

The RHS of (B.13) coincides with (B.9) conditioned in B = [0, 1]. The proof then

follows the one in Appendix B.1.1, with the probabilities and sup-entropy rates

conditioned on B = [0, 1] instead of B = [0, 0].

B.1.2.2 Proof of Constraint (A.7)

According to (B.12), the following identities hold w.p. 1:

(i1) YN
2 ⊕ Snd

XN
2 = Snc

XN
1

(i2) PYN
2 |XN

2 ,B(Y
N
2 |XN

2 , [0, 1]) = PSncX
N
1 |B(Y

N
2 ⊕ Snd

XN
2 |B = [0, 1])

(i3) PYN
1 |XN

1 ,B(Y
N
1 |XN

1 , [0, 1]) = 1
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Using (B.3) in (B.7) and the identities (i1)–(i3), we obtain

ǫ01 = Pr

{

1

N
logPYN

1 |XN
1 ,B(Y

N
1 |XN

1 ,B)− 1

N
logPYN

1 |B(Y
N
1 |B)

+
1

N
logPYN

2 |XN
2 ,B(Y

N
2 |XN

2 ,B)− 1

N
logPYN

2 |B(Y
N
2 |B) ≤ Γ

∣

∣

∣
B = [0, 1]

}

= Pr

{

− 1

N
logPSnd

XN
1 |B(Snd

XN
1 |B)

+
1

N
logPSncX

N
1 |B(Snc

XN
1 |B)− 1

N
logPYN

2 |B(Y
N
2 |B) ≤ Γ

∣

∣

∣
B = [0, 1]

}

(B.14)

We next define L̃d , LdSnd
and apply the chain rule of probability to obtain

logPSnd
XN

1 |B(Snd
xN
1 |b)

= logPSncX
N
1 |B(Snc

xN
1 |b) + logP

L̃(nd−nc)+
XN

1 |SncX
N
1 ,B(L̃(nd−nc)+x

N
1 |Snc

xN
1 ,b).

(B.15)

Using (B.15) in (B.14) and canceling the term logPSncX
N
1 |B(Snc

XN
1 |B), we obtain

ǫ01 =Pr

{

− 1

N
logP

L̃(nd−nc)+
XN

1 |SncX
N
1 ,B(L̃(nd−nc)+X

N
1 |Snc

XN
1 ,B)

− 1

N
logPYN

2 |B(Y
N
2 |B) ≤ Γ

∣

∣

∣
B = [0, 1]

}

.

(B.16)

Consider the sup-entropy rates H
(

L̃(nd−nc)+X
N
1 |Snc

XN
1 ,B

)

and H
(

YN
2 |B

)

.

By (B.1) and (B.2) in Lemma 8, we have that

H
(

L̃(nd−nc)+X
N
1 |Snc

XN
1 ,B

)

≤ H
(

L̃(nd−nc)+X
N
1 |B) < (nd − nc)

+ (B.17)

H
(

YN
2 |B

)

< max(nd, nc). (B.18)

Let Γ = (nd − nc)
+ +max(nd, nc) + 2δ for some arbitrary δ > 0. It follows

that Γ ≥ H
(

L̃(nd−nc)+X
N
1 |Snc

XN
1 ,B) +H

(

YN
2 |B

)

+ 2δ, so (B.16) can be lower-
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bounded as

ǫ01

≥ Pr

{

− 1

N
logP

L̃(nd−nc)+
XN

1 |SncX
N
1 ,B(L̃(nd−nc)+X

N
1 |Snc

XN
1 ,B)− 1

N
logPYN

2 |B(Y
N
2 |B)

< H
(

L̃(nd−nc)+X
N
1 |Snc

XN
1 ,B) +H

(

YN
2 |B

)

+ 2δ
∣

∣

∣
B = [0, 1]

}

≥ Pr

{

− 1

N
logP

L̃(nd−nc)+
XN

1 |SncX
N
1 ,B(L̃(nd−nc)+X

N
1 |Snc

XN
1 ,B)

< H
(

L̃(nd−nc)+X
N
1 |Snc

XN
1 ,B) + δ

∣

∣

∣
B = [0, 1]

}

− Pr

{

− 1

N
logPYN

2 |B(Y
N
2 |B) ≥ H

(

YN
2 |B

)

+ δ
∣

∣

∣
B = [0, 1]

}

(B.19)

where the second step follows from (B.6). By the definition of the conditional

sup-entropy rate, it follows that the first probability on the RHS of (B.19) tends

to 1 as N →∞, and the second probability on the RHS of (B.19) tends to 0 as

N →∞. This implies that ǫ01 → 0 as N →∞ only if Γ ≤ (nd−nc)
++max(nd, nc)

and proves conditions (A.6) and (A.7) in Lemma 3.

Remark 15 Given the symmetry of the problem, the constraints (A.6) and (A.7)

for B = [1, 0] are proven by swapping the roles of users 1 and 2, and following

the same steps as for B = [0, 1].

B.1.3 Case B = [1, 1]

This scenario corresponds to a non-bursty IC. The underlying distribution in (B.7)

is given by

PXN
1 ,XN

2 ,YN
1 ,YN

2 |B(x
N
1 ,xN

2 ,yN
1 ,yN

2 |b)
= PXN

1 |B(x
N
1 |b)PXN

2 |B(x
N
2 |b)1{yN

1 = Snd
xN
1 ⊕ Snc

xN
2 }1{yN

2 = Snd
xN
2 ⊕ Snc

xN
1 }
(B.20)

where the last step follows from the deterministic model since, for given xN
1

and xN
2 , the outputs yN

1 and yN
2 are given by the equations appearing in the

corresponding indicator functions. We next obtain the constraints (A.6)–(A.8) in

Lemma 3.
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B.1.3.1 Proof of Constraint (A.6)

To prove this constraint, we lower-bound the probability ǫ11 by that of 2 parallel

channels. Indeed, using (B.3) in (B.7), we obtain that

ǫ11 = Pr

{

1

N

(

logPXN
1 |YN

1 ,B(X
N
1 |YN

1 ,B)− logPXN
1 |B(X

N
1 |B)

+ logPXN
2 |YN

2 ,B(X
N
2 |YN

2 ,B)− logPXN
2 |B(X

N
2 |B)

)

≤ Γ
∣

∣

∣
B = [1, 1]

}

≥ Pr

{

− 1

N
logPXN

1 |B(X
N
1 |B)− 1

N
logPXN

2 |B(X
N
2 |B) ≤ Γ

∣

∣

∣
B = [1, 1]

}

(B.21)

where the inequality follows because logPXN
i
|YN

i
,B(X

N
i |YN

i ,B) ≤ 0, i = 1, 2. As

this expression coincides with (B.9) conditioned on B = [1, 1], the proof then

follows the one in Appendix B.1.1, with the probabilities and sup-entropy rates

conditioned on B = [1, 1] instead of B = [0, 0].

B.1.3.2 Proof of Constraint (A.7)

We next lower-bound the probability ǫ11 by that of an interference channel, in

which only one of the transmitters interferes its non-intended receiver. Using the

information densities i1 and i2 in (B.3), we have that

i1 + i2

= logPYN
1 |XN

1 ,B(y
N
1 |xN

1 ,b)− logPYN
1 |B(y

N
1 |b) + logPYN

2 |XN
2 ,B(y

N
2 |xN

2 ,b)

− logPYN
2 |B(y

N
2 |b)

= logPYN
1 |XN

1 ,XN
2 ,B(y

N
1 |xN

1 ,xN
2 ,b)− logPYN

1 |XN
2 ,B(y

N
1 |xN

2 ,b)

+ logPYN
2 |XN

2 ,B(y
N
2 |xN

2 ,b)− logPYN
2 ,B(y

N
2 |b)

− log
PXN

1 |YN
1 ,XN

2 ,B(x
N
1 |yN

1 ,xN
2 ,b)

PXN
1 |YN

1 ,B(x
N
1 |yN

1 ,b)

(B.22)

where the second step follows from adding and subtracting

1

N
log

PYN
1 |XN

1 ,XN
2 ,B(y

N
1 |xN

1 ,xN
2 ,b)

PYN
1 |XN

2 ,B(y
N
1 |xN

2 ,b)

and simplifying the resulting terms via the Bayes rule and using that

PXN
1 |XN

2 ,B(x
N
1 |xN

2 ,b) = PXN
1 |B(x

N
1 |b) since XN

1 and XN
2 are independent condi-

tioned on B.
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According to the underlying distribution (B.20), the following identities hold

w.p. 1:

(i1) YN
1 ⊕ Snc

XN
2 = Snd

XN
1

(i2) YN
2 ⊕ Snd

XN
2 = Snc

XN
1

(i3) PYN
1 |XN

2 ,B(Y
N
1 |XN

2 ,B = [1, 1]) = PSnd
XN

1 |B(Y
N
1 ⊕ Snc

XN
2 |B = [1, 1])

(i4) PYN
2 |XN

2 ,B(Y
N
2 |XN

2 ,B = [1, 1]) = PSncX
N
1 |B(Y

N
2 ⊕ Snd

XN
2 |B = [1, 1])

(i5) PYN
1 |XN

1 ,XN
2 ,B(Y

N
1 |XN

1 ,XN
2 ,B = [1, 1]) = 1

(i6) PXN
1 |YN

1 ,XN
2 ,B(X

N
1 |YN

1 ,XN
2 ,B = [1, 1]) = 1.

Using (B.22) and the identities (i1)–(i6), we obtain for (B.7)

ǫ11 = Pr

{

− 1

N
logPSnd

XN
1 |B(Snd

XN
1 |B) +

1

N
logPSncX

N
1 |B(Snc

XN
1 |B)

− 1

N
logPYN

2 |B(Y
N
2 |B) +

1

N
logPXN

1 |YN
1 ,B(X

N
1 |YN

1 ,B) ≤ Γ
∣

∣

∣
B = [1, 1]

}

.

(B.23)

Using (B.15) in (B.23), canceling the term logPSncX
N
1 |B(Snc

XN
1 |B), and using

that logPXN
1 |YN

1 ,B(X
N
1 |YN

1 ,B) ≤ 0, we obtain the lower bound

ǫ11 ≥ Pr

{

(

− 1

N
logP

L̃(nd−nc)+
XN

1 |SncX
N
1 ,B(L̃(nd−nc)+X

N
1 |Snc

XN
1 ,B)

− 1

N
logPYN

2 |B(Y
N
2 |B)

)

≤ Γ
∣

∣

∣
B = [1, 1]

}

.

(B.24)

The RHS of (B.24) coincides with (B.16) conditioned on B = [1, 1]. The proof

then follows the one in Appendix B.1.2.2, with the probabilities and sup-entropy

rates conditioned on B = [1, 1] instead of B = [0, 1].
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B.1.3.3 Proof of Constraint (A.8)

We begin this proof by using (B.3) to write

i1 + i2

= log
PXN

1 |YN
1 ,B(x

N
1 |yN

1 ,b)

PXN
1 |B(x

N
1 |b)

+ log
PXN

2 |YN
2 ,B(x

N
2 |yN

2 ,b)

PXN
2 |B(x

N
2 |b)

(a)
= log

PXN
1 |YN

1 ,SncX
N
1 ,B(x

N
1 |yN

1 , Snc
xN
1 ,b)

PXN
1 |SncX

N
1 ,B(x

N
1 |Snc

xN
1 ,b)

+ log
PXN

1 |SncX
N
1 ,B(x

N
1 |Snc

xN
1 ,b)

PXN
1 |B(x

N
1 |b)
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(B.25)

where (a) follows by adding and subtracting

1

N
log
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and by rearranging terms. Step (b) follows by applying the Bayes rule and by

decomposing the logarithm terms.

We analyze the second and the seventh terms in (B.25). To this end, we define

n− , min{(nd − nc)
+, nc} and n+ , max{(nd − nc)

+, nc} and apply the chain

rule of probability to obtain
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(B.26)

and
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The probabilities (B.26) and (B.27) were simplified by re-

calling the underlying distribution (B.20). Indeed, we have

w.p. 1 that PSn−
YN

1 |SncX
N
1 ,B(Sn−

YN
1 |Snc

XN
1 ,B) = 1 and

PSn−
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N
2 |Snc
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2 ,B) = 1, since Sn−Y
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i , i = 1, 2 is not af-

fected by interference, so it is determined by Snc
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i , i = 1, 2. Similarly, we have

that PSncX
N
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1 |XN
1 ,B) = 1 and PSncX

N
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We next note that, for the underlying distribution in (B.20), the following

identities hold w.p. 1:
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We combine these identities with (B.7), (B.25)–(B.27) to obtain
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(B.28)

where in the last step we canceled the terms logPSncX
N
1 |B(Snc

XN
1 |B)

and logPSncX
N
2 |B(Snc

XN
2 |B) and we used that, w.p. 1,

logPSncX
N
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1 ,B(Snc
XN
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1 ,B) ≤ 0 and logPSncX

N
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2 |YN
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By (B.1) and (B.2) in Lemma 8, the conditional sup-entropy rates satisfy

H(Ln+Y
N
i |Snc

XN
i , Sn−Y

N
i ,B) ≤ H(Ln+Y

N
i |B) < max{(nd − nc)

+, nc} (B.29)

where i = 1, 2.

Then, setting Γ = 2max{(nd − nc)
+, nc} + 2δ for some arbitrary δ > 0, we
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obtain from (B.6) that (B.28) can be lower-bounded by
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(B.30)

By the definition of H(Ln+Y
N
1 |Snc

XN
1 ,Sn−Y

N
1 ,B), the fist probability on

the RHS of (B.30) tends to 1 as N → ∞. Similarly, by the definition of

H(Ln+
YN

2 |Snc
XN

2 ,Sn−
YN

2 ,B), the second probability on the RHS of (B.30)

tends to 0 as N →∞. This demonstrates that if Γ > 2max{(nd−nc)
+, nc}, then

the lower bound in (B.28) tends to 1 as N →∞. Thus, ǫ11 → 0 as N →∞ only

if

Γ ≤ 2max{(nd − nc)
+, nc}. (B.31)
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C
Appendix to Chapter 5

In this appendix, we demonstrate that ordering the interferers according to αℓ

gives rise to the largest ρ satisfying (5.2),

αℓ+1

αℓ
≥ ρ. (C.1)

To this end, we assume that 1 , α0 ≥ α1 ≥ α2 ≥ . . . and show that the ratios

αℓ1

αm1

,
αℓ2

αm2

,
αℓ3

αm3

, . . . (C.2)

are largest if ℓi = i+ 1 and mi = i.

To prove this result, we note that, if mi ≤ mj and ℓi ≥ ℓj , then

min

{

αℓi

αmi

,
αℓj

αmj

}

≤ min

{

αℓj

αmi

,
αℓi

αmj

}

. (C.3)

Indeed, since the coefficients {αℓ} are ordered, it follows that αmi
≤ αmj

and
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αℓi ≥ αℓj . Consequently,

αℓj

αmj

≤ min

{

αℓj

αmi

,
αℓi

αmj

}

(C.4)

from which (C.3) follows.

Using (C.3), we can then show that the minimum of the ratios

α1

α0
,
α2

α1
,
α3

α2
, . . . (C.5)

is not smaller than the minimum of the ratios

αℓ1

αm1

,
αℓ2

αm2

,
αℓ3

αm3

, . . . (C.6)

for any {ℓi} and {mi}. Indeed, for any sequences {ℓi} and {mi} we can find a

pair of indices (i, j) such that mi ≤ mj and ℓi ≥ ℓj when {ℓi} and {mi} are given

by

ℓi = i+ 1

mi = i

or any permutation thereof. However, if mi ≤ mj and ℓi ≥ ℓj , then the minimum

of the ratios is not reduced by swapping ℓi ↔ ℓj . Since we can repeat this process

until both sequences of indices are ordered, it follows that the ratios (C.5) have

the largest minimum. This proves the claim.
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Errata

Chapter 3: Interference Channel

• Equations (3.15)–(3.17) should read: (missing 1
2
factor)

R1 ≤ 1
2
log(1 + SNR1) (3.15)

R2 ≤ 1
2
log(1 + SNR2) (3.16)

R1 +R2 ≤ 1
2
min{log(1 + SNR1 + INR1), log(1 + SNR2 + INR2)}. (3.17)

• Equations (3.18)–(3.19) should read: (missing 1
2
factor)

R1 ≤ 1
2
log(1 + SNR1) (3.18)

R2 ≤ 1
2
log(1 + SNR2). (3.19)

• Equations (3.21)–(3.22) should read: (missing 1
2
factor)

R1 < 1
2
log

(

1 +
SNR1

1 + INR1

)

(3.21)

R2 < 1
2
log

(

1 +
SNR2

1 + INR2

)

. (3.22)

• Equations (3.23)–(3.25) should read: (missing 1
2
factor)

R1 < 1
2
log(1 + SNR1) (3.23)

R2 < 1
2
log(1 + SNR2) (3.24)

R1 +R2 < 1
2
min{log(1 + SNR1 + INR1), log(1 + SNR2 + INR2)}. (3.25)

• Equations (3.26)–(3.27) should read: (missing 1
2
factor)

R1 < 1
2
τ log

(

1 +
SNR1

τ

)

(3.26)

R2 < 1
2
(1− τ) log

(

1 +
SNR2

(1− τ)

)

. (3.27)

• Equations (3.29) should read: (missing 1
2
factor)

D(α) = lim
SNR→∞:

INR=SNRα

Csym

1
2
log(1 + SNR)

(3.29)

• After equation (3.31) p. 51, should read:
where S is a q × q down-shift matrix as defined in Section 1.3 and with the correspondence

n = 1
2
log SNR.

• Equations (3.34)–(3.35) should read: (missing 1
2
factor)

nd = ⌊log2 |hd|
2⌋ = ⌊ 1

2
log2 SNR⌋ (3.34)

nc = ⌊log2 |hc|
2⌋ = ⌊ 1

2
log2 INR⌋. (3.35)

1



• Theorem 8 should be read: (for real valued two-user Gaussian IC)

Theorem 8 [9, Th. 2] The capacity of the real-valued two-user Gaussian IC with signal and

interference to noise ratios SNR and INR is within 18.6 bits per user of the capacity of the linear

deterministic IC with gains nd = ⌊ 1
2
log2 SNR⌋, nc = ⌊ 1

2
log2 INR⌋.

2




