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a b s t r a c t 

A new training algorithm for neural networks in binary classification problems is presented. It is based

on the minimization of an estimate of the Bayes risk by using Parzen windows applied to the final one- dimensional nonlinear transformation of 
the samples to estimate the probability of classification error. This leads to a very general approach to error minimization and training, where the 
risk that is to be minimized is defined in terms of integrated one-dimensional Parzen windows, and the gradient descent algorithm used to 
minimize this risk is a function of the window that is used. By relaxing the constraints that are typically applied to Parzen windows when used for 
probability density function estimation, for example by allowing them to be non-symmetric or possibly infinite in duration, an entirely new set of 
training algorithms emerge. In particular, different Parzen windows lead to different cost functions, and some interesting relationships with 
classical training methods are discovered. Experiments with synthetic

and real benchmark datasets show that with the appropriate choice of window, fitted to the specific prob- lem, it is possible to improve the 
performance of neural network classifiers over those that are trained

using classical methods.
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1. Introduction

Rosenblatt proposed the Perceptron Rule to train a two-class

linear discriminant in the late 1950s [1,2] . It can be considered as

the first Learning Machine (LM). In the field of Statistics, soft acti-

vations - called link functions - appeared as the result of consid-

ering different classes of likelihoods or probabilistic solutions (see

[3] , Ch. 4). This is the case of logistic and probit regressions, that

use a sigmoid or a Gaussian distribution as activation functions

for the linear combinations. Although several works presented the

chain rule approach to train multi-layer networks [4–6] that in-

clude other activations to build non-linear transformations of the

input samples, it was not until the Back-Propagation (BP) algorithm

was introduced in 1986 [7,8] that Multi-Layer Perceptrons (MLPs)

received a great deal of attention and found many practical ap-

plications, including ensemble forms [9–11] to increase their ex-

pressive capabilities. The appearance of Support Vector Machines

[12,13] that employ the kernel trick [14,15] and impose a hinge cost

diminished the interest in MLPs in the late 1990s and early 20 0 0s,

but the introduction of Deep Learning (DL) architectures and algo-

rithms [16–18] put them again in the focus of current research. 
∗ Corresponding author.
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Bayesian formulations [19] play a central role in analytical stud-

es of decision and classification [20,21] . However, for the impor-

ant class of discriminative (non-generative) LM classifiers, the only

ell-studied connection with Bayesian theory is to get estimates

f the “a posteriori” probabilities of the hypotheses at the output

f a LM trained by means of Bregman divergences [22] . Overviews

f this subject from the perspective of Machine Learning may be

ound in [23–25] . 

In this paper, we will establish a general and direct corre-

pondence between Bayesian risk minimization and LM classifier

raining for binary classification, via modeling the one-dimensional

utput of the neural network by means of the Parzen windows

ethod [26] to estimate probability densities. Addressing just bi-

ary cases is not a serious limitation, because binarizing multi-

lass problems provides better (ensemble) machine designs than

sing classical soft-max forms [10,27] . Using single machines for

ulti-class problems would impose a multi-threshold decision,

hich is difficult to design and will degrade performance, or it

ill require multi-dimensional kernels, creating serious difficulties

n their design. The direct connection between the windows that

re applied in the Parzen estimator and the cost or risk function

hat is minimized emerges immediately, showing that several well

nown cost functions are particular cases of the general framework
1
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1 Note that in this definition of the risk, the costs of taking correct decisions

in the classical Bayesian formulation have been neglected, which is a common as- 

sumption that does not limit the validity of the formulation.
hat is proposed. Some experiments show that this perspective can

elp to improve the performance of classical LM classifiers. 

We want to emphasize that this approach merges discrimi-

ative training with generative approaches concepts: The overall

raining process is carried out according to discriminative princi-

les, but the last step consists of modeling the non-linear transfor-

ation from input patterns to the output of the network by means

f unidimensional Parzen windows. This permits to combine some

dvantages of both families of techniques, such as high perfor-

ance and robustness against imbalanced situations. To avoid any

ind of confusion, we want to strongly remark that we are propos-

ng to apply Parzen windowing just at the output level of the

M classifier, in the definition of the cost to be minimized during

raining. This definition is independent of the classifier architec-

ure, whose internal layers can use any form of activations, even

ncluding radial basis functions. 

The rest of the paper is organized as follows. The basic for-

ulation of our approach and the gradient-type algorithms that

erve to optimize the estimated Bayesian objective are introduced

n Section 2 . Some characteristics of Parzen windows, focusing on

heir role in the training algorithm, are discussed in Section 3 . In

ection 4 , the learning rules obtained using some particular win-

ows are presented, and the equivalence of some of them with

lassical methods such as the perceptron rule is proved. A series

f experiments that illustrate the benefits of adopting some forms

f windows are presented in Section 5 . The main conclusions of

his work and some avenues for further research close our contri-

ution. 

. Training of neural network classifiers minimizing Bayesian

isk by Parzen windows

The basic problem of binary classification may be described

imply as follows. Given a training set T , 

 = { ( x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x N , y N ) } (1) 

onsisting of N pairs of labeled patterns, ( x i , y i ), where x i are

ectors and y ∈ { ±1} are target values that represent one of two

lasses, it is assumed that there is some unknown target function,

f : X −→ Y (2)

apping x to y that is to be learned from the training data. The

oal is then to find a function g ( x ) within a set of functions, F ,

or predicting y from x , where the function minimizes some error,

r is optimal according to some criterion. In this work, the set of

unctions (classifiers) that are considered are those that correspond

o a neural network with a single output and a threshold-based

ecision. Thus, each function in F is the soft output of the network

hat is a nonlinear function, 

 = g(x , w ) (3)

here w is a set of trainable parameters, and the decision rule of

he classifier is 

 

 = sgn (z) (4) 

he analytical expression of g ( x, w ) in terms of the parameters w

epends on the architecture of the neural network. The proposed

raining method is valid for every possible architecture, such as an

LP with one or several hidden layers, or a Radial Basis Function

RBF) network, just to mention the most common architectures;

nd with every possible activation function in the neurons of the

etwork (hyperbolic tangent, rectified linear units, Gaussian units

or RBF’s, etc.). But it can also be applied to a linear classifier, i.e.,

 = g(x , w ) = w 

T x . 
Once that the neural network architecture is fixed, and thus the

nalytical expression of g ( x, w ) is fixed, the neural network param-

ters that are to be found are those that minimize the following

implified Bayes’ risk 1 

 = c −1 Pr ( ̂  y = 1 | y = −1) Pr (y = −1) + c 1 Pr ( ̂  y = −1 | y = 1) Pr (y = 1)

(5) 

here c i is the cost of making an error when the correct class is

 . The probabilities Pr { y = i } may be estimated from the relative

umber of samples of each class in the training set, but estimating

he conditional probabilities can be more difficult. However, since

 is classified according to the decision rule ̂  y = sgn (z) , where the

utput of the neural network, z , is one-dimensional, then the con-

itional probabilities are 

r ( ̂  y = 1 | y = −1) =
∫ ∞ 

0

p(z| y = −1) dz (6) 

r ( ̂  y = −1 | y = 1) =
∫ 0

−∞ 

p(z| y = 1) dz (7) 

Because the conditional densities p ( z | y ) are unknown, a large

umber of training samples in each class may be necessary in or-

er to estimate them accurately. However, z is a one-dimensional

ariable, and all that is required are estimates of the integrals of

hose conditional densities, and not the densities themselves, so it

ay not be as critical to have a large training set. Therefore, we

onsider to use Parzen window estimates of the conditional densi-

ies p(z| y = i ) from the set of outputs { z n } associated to the labeled

raining set {( x n , y n )} to obtain an estimate of the Bayes risk (5) .

ote that this approach is notably different of using Parzen win-

ows to obtain estimates of the conditional distributions of the in-

ut, p(x | y = i ) or the joint input-output distributions, p ( x , y ), such

s in [28,29] . These distributions related with the input patterns

re multi-dimensional, while here Parzen method is applied to es-

imate conditional densities at the output of the neural network,

p(z| y = i ) , which are one-dimensional. Parzen window estimates

f these distributions are as follows 

̂ p (z| y = i ) = 

1 

N i 

∑ 

n ∈ S i 
k i (z − z n ) ; i ∈ {±1 } (8)

here 

 1 = { n : y n = 1 } and S −1 = { n : y n = −1 } (9)

nd where N i is the number of samples in S i and k i ( z ) is the Parzen

indow used to estimate p(z| y = i ) . Note that, in order to be a

alid window, it is necessary that k i ( z ) ≥0 and has unit area. Sub-

tituting the Parzen estimate of the conditional densities into the

onditional probabilities in Bayes’ risk gives 

r ( ̂  y = 1 | y = −1) = 

1

N −1 

∑ 

n ∈ S −1 

∫ ∞ 

0

k −1 (z − z n ) dz (10) 

r ( ̂  y = −1 | y = 1) = 

1

N 1 

∑ 

n ∈ S 1 

∫ 0
−∞ 

k 1 (z − z n ) dz (11) 

ince these probabilities involve integrals of the Parzen windows,

efine K i ( z ) to be the integral of the window, 

 i (z) = 

∫ z
−∞ 

k i (α) dα (12)

n example is given in Fig. 1 , where the Parzen window is a rect-

ngular pulse. Note that since k ( z ) has the form of a probability
2



Fig. 1. A Parzen window k ( z ) and the integrated window K ( z ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A linear window k 1 ( z ) (solid line) and its complement k −1 (z) (dashed line).
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density function, then K i ( z ) is a valid probability distribution func-

tion. 

The integrals in the conditional density estimates now be-

come∫ ∞ 

0

k −1 (z − z n ) dz = 

∫ ∞ 

−z n 

k −1 (α) dα = 1 − K −1 (−z n ) (13)

∫ 0
−∞ 

k 1 (z − z n ) dz = 

∫ −z n

−∞ 

k 1 (α) dα = K 1 (−z n ) (14)

and considering Pr (y = i ) = N i /N, the estimate of the Bayes risk

may now be expressed as 

ˆ R = 

∑ 

n ∈ S −1 

c̄ −1 [ 1 − K −1 (−z n ) ] + 

∑ 

n ∈ S 1 
c̄ 1 K 1 (−z n ) (15)

where c̄ i = c i /N for i = ±1 . 

Now, the goal is to minimize this estimate of the Bayes risk.

Since K i ( z ) is the integral of a Parzen window, then K i ( z ) is differ-

entiable along with ˆ R . Therefore, a gradient descent algorithm may

be used to minimize (15) , according to 

w (n + 1) = w (n ) − μ
∂ ˆ R 

∂w 

∣∣∣
w (n ) 

(16)

where μ is the step-size parameter and the batch expression of

gradient is 

∂ ˆ R 

∂w 

= 

N ∑ 

n =1

∂ ˆ R 

∂z n 

∂z n 
∂w 

(17)

The partial derivatives of z n with respect to w depend on the net-

work architecture, and the partial derivatives of ˆ R with respect to

z n depend on the windows. Differentiating ˆ R with respect to z n it

follows that 

∂ ˆ R 

∂z n 
= −y n ̄c y n k y n (−z n ) (18)

The update equation for instantaneous (sample-by-sample) gradi-

ent takes the form 

w (n + 1) = w (n ) + μy n ̄c y n k y n (−z n ) 
∂z n 
∂w 

∣∣∣
w (n ) 

(19)

Note that the form of the update, i.e., how much a given weight

vector is changed by a pattern x n of class i , depends explicitly on

the form of the window k i ( z ) being used. In terms of computa-

tional complexity, note that the difference with conventional cost

functions, such as MMSE, is (18) , which only requires to evaluate

the kernel function. Therefore, computational complexity is of the

same order than in conventional techniques. 

3. On window characteristics

In this section we will discuss some characteristics of the

Parzen windows and we will introduce a new related function, the

projection function, that makes easier to understand the role of

Parzen windows in the risk function and thus in the training al-

gorithm. 

The first thing to note is that there are (conceptually) no con-

straints on the Parzen windows that may be used other than that

they are valid windows. Each window k i ( z ) may be different and

designed independently. 
.1. Complementary windows 

Consider the special case where the windows k i ( z ) are comple-

entary in the sense that 

 −1 (z) = k 1 (−z) (20)

ith complementary windows, it is only necessary to design one

indow, say k 1 ( z ), since the other is defined from the first by mir-

or symmetry. In this case, we design a single window, k ( z ), which

e call the Parzen kernel, and the pair of Parzen windows gener-

ted from this kernel is 

 t (z) = k (tz) , t = ±1 (21)

ith complementary Parzen windows, the estimate of the Bayes

isk may be expressed more concisely as 

ˆ 
 = 

∑ 

n

c̄ y n K(−y n z n ) (22)

here K ( z ) is the integrated Parzen kernel, and the update equa-

ion to minimize the risk using instantaneous gradient descent be-

omes 

 (n + 1) = w (n ) + μy n ̄c y n k (−y n z n ) 
∂z n 
∂w 

∣∣∣
w (n ) 

(23)

n addition, note that in the special case where we have a linear

lassifier, z = g(x , w ) = w 

T x , the update equation is 

 (n + 1) = w (n ) + μy n ̄c y n k (−y n z n ) x n (24)

.2. Asymmetrical windows 

When using Parzen windows to estimate a probability density

unction, it is customary to use a window that is symmetric since

here is no reason to bias it away from the sample. However, in

inimizing the Bayes risk, the purpose of the window is to es-

ablish a classification boundary that places the output z n for in-

ut pattern x n on the correct side of the decision threshold, z = 0 .

herefore, it may be appropriate to have a larger penalty assigned

o samples that are on the wrong side. This can be done with an

symmetrical kernel, such as 

 (z) = 

{ 

z + �

2�2 
, | z| ≤ �

0 , | z| > �

(25)

he two complementary windows obtained from this kernel,

 1 (z) = k (z) and k −1 (z) = k (−z) , are shown in Fig. 2 . If the kernel

as a finite support as in this case, note that when a sample is lo-

ated within a distance � of the boundary z = 0 , the contribution

o the Bayes risk increases as the sample moves in the direction of

he wrong side of the decision boundary and continues to increase

s it crosses the decision boundary where it becomes misclassified.

oreover, since the gradient is proportional to k y n (−z n ) , samples

hat are far away from the decision boundary, whether they are

orrectly or incorrectly classified, do not contribute to the adjust-

ent of the weights w . Therefore, this window results in an ad-

ustment of the decision surface (a change in w ) only for samples

hose output z n is within a distance � of z = 0 , and the stochas-

ic gradient descent algorithm for this kernel works to push these
3



Fig. 3. The projection function A ( z ) for a kernel that is a pulse.
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2 Although this window is useless for gradient descent minimization of the risk

function, given its special support, we analyze this case because of some interesting

properties of the risk function.
amples to the correct side of the decision boundary until they are

t a distance of � or greater away from the boundary. 

It is worthwhile commenting on the role of symmetry in the

ernel. Note that the shape of the kernel function determines the

ize of the update used in the weight update, which changes the

lassification boundary so that the sample is closer to or deeper in-

ide the correct decision region. With symmetric kernels, the size

f this correction depends only on the distance of the output z n 
rom zero, whether or not the sample is correctly classified. But

he use of asymmetric kernels allows for the size of the update to

e different for samples that are correctly compared to those that

re incorrectly classified. For example, using the kernel in Fig. 2 ,

he correction will be larger for those samples that are incorrectly

lassified, and the size of the correction increases linearly as the

ample moves away from the decision boundary. This capability to

enalize samples differently depending upon whether they are cor-

ectly or incorrectly classified can help to obtain a better classifier.

.3. Projection functions 

Since the integrated windows K i ( z ) are non-decreasing func-

ions of z and 0 ≤K i ( z ) ≤1, then they may be used to define a pro-

ection function A i ( z ) which is helpful to understand the role of

arzen windows in the proposed risk function (15) . Specifically, if

e define 

 i (z) = 1 − 2 K i (−z) (26)

hen A i ( z ) is a monotonically non-decreasing function and −1 ≤
 i (z) ≤ 1 . An example is given in Fig. 3 , which shows a kernel that

s a pulse and the corresponding projection function. Note that as

he width of k ( z ) in this example decreases and k ( z ) approaches an

mpulse, K ( z ) approaches a step function, and the projection func-

ion becomes the sign function, A (z) = sgn (z) . 

When the kernel is symmetric, then the associate projection

unction is odd 

 (z) = −A (−z) (27)

nd with complementary windows, these functions have the prop-

rty: 

 1 (z) = −A −1 (−z) (28)

It is interesting to mention that, because of their properties,

hese projection functions are analogous to some activation func-

ions used in the neurons of many neural networks. However, the

ole of these projection functions is completely different, because

hey are not used in the neural network itself but in the proposed

isk function associated to the training algorithm. The estimate of

ayes’ risk ˆ R may be expressed in terms of A i ( z ). Specifically, since

 i (−z) = 

1 

2 
[ 1 − A i (z) ] (29) 

hen (15) may be written as 

ˆ 
 = 

∑ 

n

c̄ y n | y n − A y n (z n ) | (30) 
herefore, we find that minimizing ˆ R is equivalent to minimizing

he absolute error between y n and the projection function evalu-

ted at network output z n , A y n (z n ) . Thus, A i ( z ) can be seen as a

unction projecting the output of the neural network towards the

esired label for the class of each pattern, and this projection de-

nes an error with respect to the label. Clearly, different projection

unctions lead to different errors and, in fact, one may define an

rror to minimize and then determine the corresponding associate

rojection. Some examples will be given in Section 4.4 . 

. Some particular windows

This section is dedicated to analyze the proposed risk func-

ion, which has to be minimized during training, for some specific

arzen windows. This analysis shows that the proposed framework

xpands a general family of training algorithms, with a different

isk ˆ R for every possible choice of the pair of Parzen windows k i ( z )

sed to estimate likelihoods p(z| y = i ) , for i = ±1 . And, more in-

eresting, that this general framework includes as particular cases

everal well known training rules when some specific windows are

elected. 

.1. An impulse 

Consider the special and simple case of complementary win-

ows with a Parzen kernel that is an impulse, k (z) = δ(z) . 2 In this

ase, the estimate of the likelihood p(z| y = i ) is a probability den-

ity function of the form 

̂ p (z| y = i ) = 

1 

N i 

∑ 

n ∈ S i 
δ(z − z n ) (31)

he integrated kernel K ( z ) is a step function, K(z) = u (z) , and the

isk is 

ˆ 
 = 

∑ 

n

c̄ y n u (−y n z n ) (32)

ote that for a misclassified sample y n z n < 0, and the misclassi-

ed sample contributes a value c̄ y n to the risk. On the other hand,

f a sample is correctly classified, then y n z n > 0 and it contributes

othing. Particular interest has the case when the costs are equal,

¯ 1 = c̄ −1 = 1 /N. Minimizing the risk ˆ R is then equivalent to mini-

izing the average misclassification error on the training samples,

ˆ 
 = 

1 

N 

∑ 

n

I [ sgn (z n ) � = y n ] (33) 

If the kernel is an impulse that is shifted away from the origin

y an amount a , 

 (z) = δ(z + a ) (34)

hen this results in an integrated kernel that is a shifted step func-

ion, K(z) = u (z + a ) , and the risk becomes 

ˆ 
 = 

∑ 

n

c̄ y n u (−y n z n + a ) (35)

ote that shifting the impulse by a > 0 has the effect of shifting

he estimated conditional density functions p ( z | y ) for each class to-

ards each other. The effect is to impose a form of margin in the

ense that correctly classified samples that are within a distance

 of the decision boundary z = 0 will contribute to the risk. The

ame effect can be obtained with other windows. 
4



Fig. 4. Linear kernel with finite support [ −1 , 1] and corresponding integrated ker- 

nel.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A linear ramp kernel.
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4.2. Step function 

Now consider the case in which the kernel is a unit step, k (z) =
u (z) (although not a valid Parzen window for probability density

function estimation, we will ignore this). The integrated kernel is

a ramp, K(z) = zu (z) , and if the costs are c̄ 1 = c̄ −1 = 1 then the

estimated risk is 

ˆ R = 

∑ 

n

| z n | u (−y n z n ) (36)

Note that with the decision rule ̂ y n = sgn (z n ) , when y n z n < 0 the

pattern is misclassified and its contribution to the risk is | z n |,

which is the distance of the output from the decision thresh-

old, z = 0 . On the other hand, when y n z n > 0 the pattern is cor-

rectly classified and contributes nothing to the risk. If an instan-

taneous gradient descent algorithm is used to minimize the risk

with μ = 1 , and for a linear classifier, i.e. z = g(x , w ) = w 

T x , then

w (n + 1) = w (n ) + y n x n ; when y n z n < 0 (37)

which we see is the well-known Perceptron Algorithm. 

4.3. Linear kernel 

When the kernel is linear over a finite interval and zero other-

wise, such as the one illustrated in Fig. 4 where k ( z ) is linear over

the finite interval [ −1 , 1] , 

k (z) = 

1 

2 
(z + 1) , z ∈ [ −1 , 1] (38)

then the integrated kernel is a quadratic function 

K(z) = 

1 

4 
(z + 1) 2 , z ∈ [ −1 , 1] (39)

that increases from zero to one along the interval [ −1 , 1] . 

For this kernel, it follows that the risk is 

ˆ R = 

∑ 

n : y n z n < 1

c̄ y n min { 1 , e 2 (n ) } (40)

where the sum is taken over all samples for which y n z n < 1, and

where 

e (n ) = 

1 

2 

(
y n − z n 

)
(41)

Thus, it follows that a finite linear kernel leads to a clipped least

squares minimization problem. If an instantaneous gradient de-

scent algorithm is used to minimize the risk, and for a linear clas-

sifier, the weight update equation has the form 

w (n + 1) = w (n ) − μc̄ y n e (n ) x n ; when | z n | ≤ 1 (42)

Note that the weights are only updated for those patterns whose

output is within a unitary distance of the decision threshold, z = 0 .

For training a neural network, note that if the support of the

kernel function is [ −1 , 1] as in this example, and if the activation

function of the neuron in the output layer saturates over this in-

terval as the common hyperbolic tangent function does, then this

kernel leads to a conventional least squares minimization. 
Other kernels may be formed by shifting and/or scaling the lin-

ar kernel, and these lead to different error minimization prob-

ems. For example, suppose the linear kernel is shifted to the origin

nd allowed to increase linearly, 

 (z) = max { 0 , z} (43)

his kernel, illustrated in Fig. 5 , is a ramp function and, again, as

ith the step, although not a valid kernel, from a practical point of

iew this is not a serious issue since the samples z n are bounded.

ith this kernel, one has a quadratic error for all misclassified

amples. 

.4. Minimization of L p norm 

The definition of projection functions A i ( z ) and the correspond-

ng risk equivalence (30) provide the proposed method with flex-

bility to define many different cost functions by selecting an ap-

ropriate projection function and, therefore, an appropriate kernel.

or example, suppose that it is desired to minimize an L p error of

he form 

 p = 

∑ 

n

c̄ y n | y n − z n | p (44)

f the neural network output is saturated, i.e. | z | ≤1, and the pro-

ection functions are defined to be 

 y n (z) = y n [ 1 − (1 − y n z) 
p ] (45)

ubstituting these projections into the risk (30) results in an L p 

rror. To determine the form of the corresponding windows, k t ( z ),

nd assuming that they have support in −1 ≤ z ≤ 1 , it follows that

n this support 

 t (z) = 

1

2 p 

(
1 − t 

)
+ 

1 

2 p 
t(1 + tz) p (46)

nd the windows are then found by differentiating with respect to

 , 

 t (z) = 

d

dz 
K t (z) = 

p

2 p 
(1 + tz) p−1 ; if | z| ≤ 1 (47)

learly, these windows are complementary. 

It is now interesting and worthwhile to look at two specific

ases: p = 1 and p = 2 . In the first case, when p = 1 , the kernel

s a pulse as shown in Fig. 3 with a = 2 , and the projection func-

ion is A (z) = z for z ∈ [ −1 , 1] as also shown in Fig. 3 . In the sec-

nd case, when p = 2 , the kernel is linear over the interval [ −1 , 1] ,

hich is the kernel shown in Fig. 4 . Finally, the kernels that pro-

uce L p error minimization in neural networks with output satu-

ated in [ −1 , 1] for p ∈ {1, 2, 3, 4} appear in Fig. 6 . 

. Some experiments and their discussion

A number of experiments have been designed to illustrate the

otential advantages in the approach of training neural net clas-

ifiers using specially designed kernel functions. The main pur-

ose of this section is to illustrate the flexibility of the proposed

ethod. The proposed cost function is independent of the archi-

ecture of the neural network. It has been implemented in a multi-

ayer perceptron with a single hidden layer, in a generalized radial
5



Fig. 6. Kernels to minimize L p error in neural networks with saturation of output 

in [ −1 , 1] . 

Fig. 7. Training set of the synthetic problem (circles for class −1 , squares for class 

+1 ).
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Fig. 8. Kernels under test for experiments with complementary windows.

Table 1

Average results obtained in the synthetic dataset (accuracy rate in %, and standard

deviation).

k U ( z ) k L ( z ) k T ( z ) k A ( z )

MLP 87.69 ( ±0.041) 91.53 ( ±0.005) 87.75 ( ±0.065) 89.70 ( ±0.110) 

RBF 91.79 ( ±0.019) 91.81 ( ±0.025) 91.64 ( ±0.029) 91.55 ( ±0.013) 
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asis function network, allowing different variances for each in-

ut dimension [30] , where centers, variances and weights are ran-

omly initialized and updated by gradient descent, and in a con-

olutional neural network. Moreover, several kernel functions have

een tested on the same data sets to demonstrate that an appro-

riate choice for this kernel, given the characteristics of the specific

roblem at hand, can improve the performance of the method. 

.1. A synthetic toy problem 

The first block of experiments deals with a synthetic problem

hat allows to illustrate the advantage of selecting an appropriate

ernel function. In particular, a two-dimensional dataset composed

f a mixture of two Gaussians for each class is considered. Cen-

ers for class −1 are [ −0 . 7 , 0 . 3] and [0.4, 0.25], with variance 0.03.

enters for class +1 are [ −0 . 25 , 0 . 7] and [0.4, 0.75], with variance

.04. Bayes rule has an accuracy rate of 92%. Training set consists

f 250 patterns, which are shown in Fig. 7 . 

The performance of two neural networks has been tested: 

• A multilayer perceptron with a single hidden layer with 10 neu-

rons, and a single neuron in the output layer, with hyperbolic

tangent activation functions in the neurons of both the hidden

and the output layers.
• A generalized radial basis function network with 10 Gaussian

neurons in the hidden layer and a single neuron in the output

layer with a hyperbolic tangent activation to saturate the net-

work output.

For the proposed cost function, complementary windows are

onsidered, and the four kernels shown in Fig. 8 are tested. Su-

erscripts denote uniform (U), linear (L), triangle (T), and absolute

alue (A), respectively. All of them have support [ −1 , 1] , which is
he range of the output z if a hyperbolic tangent activation func-

ion is used to saturate the output, as in this case. It is interesting

o remind that for networks with such a saturated output and with

 −1 = c 1 , estimated risk (15) is equivalent to the conventional L 1 

ost function if k U ( z ) is used, and to L 2 cost function, or Minimum

ean Squared Error (MMSE), if k L ( z ) is used. 

A brief discussion about the effect of a given kernel in the train-

ng algorithm is appropriate. From equation (18) , the intensity in

he gradient that is associated to a given pattern x n is proportional

o k y n (−z n ) . For the linear kernel, as it was already discussed in

ection 3.2 , this intensity is proportional to the difference between

he desired label, y n = ±1 , and the network output for this pat-

ern, z n . Therefore, this kernel emphasizes the role in the update of

isclassified patterns, proportionally to their distance to y n . Choos-

ng the uniform kernel, the intensity is the same for all patterns,

ndependently of their output. The triangle kernel will emphasize

he contribution of patterns whose output is close to the decision

hreshold, and the absolute value kernel will do the contrary, in-

reasing the contribution of patterns that are very well fitted (with

n output close to the desired label) or very poorly fitted (with an

utput far away on the wrong side of the threshold). 

Results obtained averaging 200 independent runs, with random

nitialization of the network parameters, are shown in Table 1 . For

ach run, the same initial parameters were used with the four

ernels under test. In this ideal scenario, where samples of the

raining set represent accurately the underlying distribution of the

roblem at hand, the best results are obtained using the linear ker-

el. This was expected because it is well known that, under these

ircumstances, MMSE asymptotically converges to the Bayesian so-

ution [31] . Therefore, with this kernel both the MLP ad the RBF

btain results that are close to the Bayesian limits. The difference

n performance using different kernels is higher for MLP than for

BF in this case. The different performance of MLP and RBF is ex-

lained by the different projection that these networks perform

rom input patterns to network outputs, which is where the cost

unction is computed. Obviously, for this specific example the RBF

s better suited than the MLP. 

To illustrate that in some cases other kernels can be more ade-

uate, 40 outliers were introduced in the training set by changing

he label y n of 20 patterns of each class. The average results for

00 independent runs in this new scenario are shown in Table 2 . 

In this case, performance is obviously lower than above and the

inear kernel exhibits the worst performance for both networks,

LP and RBF. The outliers, whose output tends to be on the wrong
6



Table 2

Average results obtained in the synthetic dataset with outliers in the training set

(accuracy rate in % along with standard deviation).

k U ( z ) k L ( z ) k T ( z ) k A ( z )

MLP 87.41 ( ±0.054) 79.77 ( ±0.412) 87.74 ( ±0.089) 87.40 ( ±0.642) 

RBF 82.70 ( ±0.769) 80.46 ( ±0.184) 90.24 ( ±0.740) 81.04 ( ±1.071) 

Table 3

Characteristics of the benchmark databases.

Database Dimension N 0 / N 1 train N 0 / N 1 test

Abalone 8 1269/1238 827/843

Hand 62 1900/1923 891/906

Image 18 1027/821 293/169

Kwok 2 20 0/30 0 4080/6120

Ripley 2 125/125 50 0/50 0

Wave 21 1306/2694 341/659
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side of the decision threshold with a high distance with respect to

the desired label, can be pushing the gradient towards the wrong

side with a relatively high intensity. The uniform kernel is less sen-

sitive to the outliers than the linear one, because the intensity in

the gradient is the same for all patterns, independently of the dif-

ference between the desired label and the network output for a

given pattern. This better behavior of the L 1 norm than the L 2 

norm in the presence of outliers was also expected. But, interest-

ingly, there is even a better option. The triangle kernel is that pro-

viding the best results in this scenario. Using this kernel, the train-

ing algorithm is emphasizing patterns whose output is close to the

decision threshold. Taking into account the overlapping between

the samples of both classes, this is the option that is less sensi-

tive to the presence of outliers far away from the threshold in this

scenario. With respect to the absolute value kernel, it would be

appropriate for instance for problems where outliers are concen-

trated in the region which is close to the boundary, when focusing

on samples far away to this boundary can be the best option. This

is not the case in this example, but later we will show that in some

real problems this kernel can be useful. 

5.2. Balanced datasets 

The second block of experiments are carried out for a number

of well known datasets where conventional designs have shown

a relatively good performance. The reason for this selection is to

show that even in this scenario, the proposed cost function along

with an appropriate choice of the kernel function can improve the

classification performance using the same network architecture. In

particular, the proposed method has been tested on six binary

problem databases. Two synthetic, Kwok and Ripley , from [32] to
Table 4

Accuracy rates obtained using multilayer perceptron with linear activatio

with three different cost functions: L 1 norm, L 2 norm (MMSE), and prop

Database MLP-L ( L 1 ) MLP-T ( L 1 ) MLP-L ( L 2 ) 
( H ) ( H ) ( H )

Abalone 77.05 ( ±0.32) 80.53 ( ±0.60) 81.10 ( ±0.09

(75) (50) (75)

Hand 90.72 ( ±0.09) 95.05 ( ±0.17) 97.46 ( ±0.29

(2) (30) (50)

Image 92.13 ( ±1.98) 97.19 ( ±0.26) 97.00 ( ±0.49

(8) (30) (8)

Kwok 80.27 ( ±0.02) 80.22 ( ±0.01) 88.50 ( ±0.04

(4) (30) (8)

Ripley 89.35 ( ±0.31) 88.60 ( ±0.81) 90.65 ( ±0.54

(50) (50) (8)

Wave 87.94 ( ±0.26) 92.39 ( ±0.12) 92.75 ( ±0.19

(4) (8) (8)
33] , respectively, and four real data sets, Abalone, Hand, Image , and

ave , from the UCI repository [34] . Table 3 shows the main char-

cteristics of the benchmark databases. The number of patterns of

ach class in all these datasets is relatively balanced. 

For this set of experiments, non complementary windows are

onsidered, to analyze also non-symmetric situations. In particular,

indows used in Parzen estimators for both classes are derived by

hifting the clipped linear kernel of Eq. (25) with � = 1 , which is

hown in Fig. 2 . More specifically, in these experiments the win-

ows are 

 1 (z) = k (z − δ1 ) , k −1 (z) = k (−z + δ−1 ) (48)

ncluding a shift of δ1 in k 1 ( z ) means that once that a sample of

lass 1 is at a distance 1 − δ1 of the threshold (on the right side),
t does not contribute to update weights. Equivalently, samples of

lass −1 that are at a distance of at least equal to 1 − δ−1 (on the

ight side) produce no updates in the weights. 

Experiments were performed using different shifts for kernels

f Parzen estimators, with the best shifting parameters δ−1 and δ1 
elected by cross-validation (CV) among the following values: 

−1 , δ1 ∈ { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 } . (49)

he figure of merit is the probability of error, so equal costs are

onsidered for errors in both classes, i.e., c −1 = c 1 . The proposed

ethod has been tested with MLPs with a single hidden layer of

 neurons and a single neuron in the output layer. The activation

unction for the neurons in the hidden layer was the hyperbolic

angent function, and for the neuron in the output layer, two dif-

erent options were tested: 

• A linear activation function
• A hyperbolic tangent activation function

The difference between these two architectures, which are de-

oted by “MLP-L” and “MLP-T”, respectively, is that the second in-

ludes saturation of its output, making −1 ≤ z k ≤ +1 . 

Table 4 presents the results (accuracy rate in percentage) ob-

ained using the proposed cost function and the conventional er-

or cost functions for L 1 and L 2 norms. In all cases, the cost func-

ion is minimized by means of gradient descent. The result for the

est combination of shifts δ−1 and δ1 is provided in the case of
he algorithms we propose, MLP-L(P) and MLP-T(P), which include

arzen windowing. Results are obtained averaging 100 indepen-

ent realizations (networks trained from different initial parame-

ers). The initial parameters are identical for all methods in each

ealization. MLPs with 2, 4, 8, 12, 16, 30, 40, 50 and 75 hidden

eurons have been trained. The best network size for each method

nd each database has been selected by cross-validation. 

First of all, note that the proposed algorithms never are worse

han the conventional methods, and in some cases they are slightly
n (MLP-L) and hyperbolic tangent activation function (MLP-T), and

osed method. Cross-validated values for H , δ−1 and δ1 are shown. 

MLP-T ( L 2 ) MLP-L (P) MLP-T (P)

( H ) (H, δ−1 , δ1 ) (H, δ−1 , δ1 )

) 81.85 ( ±0.30) 81.63 ( ±0.18) 82.07 ( ±0.39) 

(16) (8, 0, 0.1) (16, 0, 0.1)

) 97.53 ( ±0.28) 97.05 ( ±0.24) 97.54 ( ±0.28) 

(50) (30, 0.1, 0.2) (50, 0, 0)

) 97.56 ( ±0.36) 97.82 ( ±0.31) 97.88 ( ±0.28) 

(16) (16, 0.3, 0.1) (16, 0.4, 0.2)

) 88.19 ( ±0.05) 88.52 ( ±0.09) 88.51 ( ±0.09) 

(16) (4, 0.2, 0.2) (4, 0.5, 0.5)

) 90.29 ( ±0.08) 93.30 ( ±0.17) 93.24 ( ±0.26) 

(8) (75, 0.1, 0.5) (4, 0, 0.5)

) 92.55 ( ±0.17) 92.88 ( ±0.11) 92.90 ( ±0.11) 

(4) (16, 0.3, 0.2) (8, 0.5, 0.4)
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Fig. 9. Evolution of percentage of accuracy (PAC) as a function of the number of

neurons in the hidden layer for dataset Wave. The following markers are used for

each method: MLP-L ( L 1 ) circle; MLP-T ( L 1 ) star; MLP-L ( L 2 ) triangle; MLP-T ( L 2 ) 
pentagon; MLP-L (P) square; MLP-T (P) diamond.

Fig. 10. PAC as a funcion of shifts for Ripley as a function of δ−1 for δ1 = 0 (circle), 

δ1 = 0 . 1 (star), δ1 = 0 . 2 (triangle), δ1 = 0 . 3 (pentagon), δ1 = 0 . 4 (square), and δ1 = 

0 . 5 (diamond).

b  

t  

r  

m  

t  

l  

d  

s  

o  

s  

d  

d  

o  

t

 

p  

F  

d  

v  

i  

t

Fig. 11. PAC as a funcion of shifts for Abalone as a function of δ−1 for δ1 = 0 (circle), 

δ1 = 0 . 1 (star), δ1 = 0 . 2 (triangle), δ1 = 0 . 3 (pentagon), δ1 = 0 . 4 (square), and δ1 = 

0 . 5 (diamond).

Table 5

Description of the databases used for experiments.

Database Number of patterns Dimensionality Imbalance Ratio

Ecoli067vs5 220 6 10.00

Glass2 214 9 10.39

Led7digit 443 7 10.97

Cleveland0vs4 177 13 12.62

Shuttlec2vsc4 129 9 20.5

Yeast5 1484 8 32.78

Yeast6 1484 8 39.15

Abalone19 4174 8 128.87
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etter (Image, Wave) or even clearly better (Ripley). 3 This supports

he potential usefulness of our conceptual proposal, with no risk of

educing classification performance. With respect to the displace-

ents δ−1 and δ1 , and the advantage of asymmetry, it can be seen

hat, in general, their values are similar, except in Image and Rip-

ey. This seems to be related with the intrinsic asymmetry of these

atabases. More analysis is needed to fully understanding this is-

ue. The sensitivity of all the designs with respect to the number

f hidden units in the MLPs is relatively low in all cases, and it

hows well-known variations. Fig. 9 shows the effects of selecting

ifferent values of H for the six methods when applied to the Wave

ataset. There are underfitting effects for very low values of H , and

verfitting effects when H is higher than their CV values. Overfit-

ing is higher for the conventional L 1 methods. 

The sensitivity with respect to values of δ−1 and δ1 for the
roposed methods is in general higher and problem-dependent.

ig. 10 shows the PAC curves for MLP-T(P) with the Ripley

atabase. The algorithm performance decreases with increasing

alues of δ−1 , and, in general, higher values of δ1 are better. This
s exactly true for δ−1 = 0 . Things are different for Abalone. Low
3 It is worth to mention that the accuracy figures for Ripley can be higher than

heir theoretical limit because the sampling effects.

n  

s

 

r  
nd similar values for δ−1 and δ1 are more appropriate, as it can

e seen in Fig. 11 . 

Overall, we can conclude that the proposed framework can offer

erformance advantages if the window selection, including its pa-

ameters, is appropriate: A simple cross-validation process seems

o be enough for this purpose. 

.3. Imbalanced datasets 

The classification of imbalanced data has attracted a great at-

ention in the last years. A problem is said to be imbalanced when

he number of patterns of each class are very different. In a binary

lassification problem, learning from imbalanced data has the diffi-

ulty of representing the minority class, which can be shadowed in

he thicker cloud of samples of the majority class. Moreover, there

re many applications where the importance of detecting the mi-

ority class is even higher than the importance of detecting the

ajority class. Medical diagnosis or fraud detection are typical ex-

mples. 

Different techniques have been used to deal with classification

f imbalanced data: standard algorithms modified to compensate

mbalance; preprocessing techniques that modify the data set to

alance it (removing samples of the majority class, or introducing

ynthetic samples of the minority class); or ensembles of classifiers

o improve the accuracy of individual classifiers. A detailed review

f several of these methods can be found in [35,36] . 

The Bayesian formulation of the proposed method provides a

imple mechanism to deal with imbalanced classification prob-

ems. It allows to specify different costs for errors classifying each

lass, c −1 and c 1 , and at the same time to take into account the

umber of patterns of each class that are available in the training

et. 

We have tested the proposed method with several imbalanced

eal-world databases obtained from KEEL data-set repository [37] .
8



Table 6

Average success probability pS  for the best method in [36] and the proposed method using four different 
kernels.

Database Best in [36] k U ( z ) k L ( z ) k T ( z ) k A ( z )

Ecoli067vs5 89.00 86.14 ( ±0.44) 88.36 ( ±1.59) 86.34 ( ±0.64) 86.93 ( ±0.32) 

Glass2 80.45 82.08 ( ±3.82) 81.78 ( ±5.26) 81.49 ( ±4.17) 83.43 ( ±1.25) 

Led7digit 88.80 85.86 ( ±0.80) 87.85 ( ±0.90) 85.83 ( ±1.39) 85.12 ( ±1.62) 

Cleveland0vs4 82.80 82.83( ±0.68) 79.40 ( ±6.33) 82.62 ( ±2.47) 83.03 ( ±1.45) 

Shuttlec2vsc4 100 99.68 ( ±0.16) 100 ( ±0) 100 ( ±0) 99.51 ( ±0.19) 

Yeast5 96.61 97.60 ( ±0.22) 97.75 ( ±0.18) 97.64 ( ±0.02) 97.64 ( ±0.02) 

Yeast6 86.78 86.23 ( ±0.54) 87.36 ( ±0.90) 86.37 ( ±0.90) 85.61 ( ± 1.08) 

Abalone19 70.81 79.50 ( ±0.64) 78.36 ( ±1.02) 79.33 ( ±0.84) 80.10 ( ±2.38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7

Probability of error for each class: positive, negative, average between positive and

negative. Average results for the 10 digits.

Conv k U ( z ) k L ( z ) k T ( z ) k A ( z )

P e | +1 (%) 1.698 1.098 1.157 1.263 1.061

P e |−1 (%) 0.115 0.386 0.349 0.336 0.377

(P e | +1 + P e | +1 ) / 2 (%) 0.906 0.742 0.753 0.800 0.719
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Data and information about these data sets can be found in the

website http://www.keel.es/dataset.php . Data sets in [37] are orga-

nized in different k -fold partitions for training and test data. Here,

we have worked with the 5-fold partition provided in KEEL-dataset

repository, thus making easier to compare results. Results obtained

for these 5 folds will be averaged. From this repository we have

chosen several datasets with different values of imbalance ratio

(defined as the ratio between the number of samples of the ma-

jority/minority classes). Table 5 shows the main characteristics of

the tested databases, which are sorted according to the imbalance

ratio. 

The figure of merit for these imbalanced problems will be the

average probability of a successful classification of samples of both

classes, measured as 

p S = 

Pr ( ̂  y = 1 | y = 1) + Pr ( ̂  y = −1 | y = −1)

2 
(50)

This figure of merit assigns the same importance to errors in both

classes, independently of the number of patterns of each class.

In the proposed Bayesian risk, this situation corresponds to select

costs satisfying the relationship 

c 1 = c −1 
Pr (y = −1) 

Pr (y = 1) 
(51)

Table 6 compares the average results obtained with the pro-

posed method using complementary windows and the four kernels

shown in Fig. 8 . The neural network architecture is an MLP net-

work with a hidden layer of 4 neurons, and an output layer with a

single neuron, using hyperbolic tangent nonlinearities in both lay-

ers. For each one of the 5 folds available for each dataset, 100 in-

dependent runs, with random parameter initialization, have been

averaged. As a baseline result, Table 6 also includes the best re-

sult provided by all the methods compared in [36] . This work com-

pares the performance obtained using ensembles of classifiers (10–

40 classifiers), which is one of the methodologies providing better

results in imbalanced problems [35] , along with several prepro-

cessing techniques used to balance data sets before constructing

the ensemble, like random undersampling of the majority class or

Synthetic Minority Over-sampling Technique (SMOTE) [38] . 

The proposed method obtains the best results in 5 of the 8

datasets, and ties in another one. It can be seen that for each

dataset the best kernel is different. Interestingly, the greatest ad-

vantage is obtained in the dataset in [36] with the highest imbal-

ance ratio, which is Abalone19. In the comparison, it is important

to consider that the results provided by the proposed method have

been obtained using a single classifier, instead of an ensemble of

classifiers, and without any previous data preprocessing to balance

the training set, while, in [36] , up to 8 different approaches using

different preprocessing techniques were tested. In our approach,

problems are balanced by choosing appropriate Bayesian cost pa-

rameters c −1 and c 1 . 
.4. Deep neural networks 

The proposed risk function can be used with any kind of neu-

al network, including deep networks, such as convolutional neu-

al networks (CNNs). In balanced problems, the conventional train-

ng algorithms for CNNs provide state of the art results, specially

or image classification, and the proposed method is only able of

roviding similar results. However, in imbalanced problems, the

roposed Bayesian formulation can be helpful. To show the pos-

ible advantages, we have tested the proposed method in the well

nown MNIST dataset [39] , where the one against the rest prob-

em provides 10 binary imbalanced problem that can be used as

n illustrative example. The positive class is given by a digit, and

he negative class by the remaining 9 digits, thus giving 10 differ-

nt problems, one per reference digit. Average imbalance ratio is

herefore 9/1. 

A CNN with two convolutional layers followed by max pool-

ng, the first one with 32 features in 5 ×5 patches, and the second

ne with 64 features in patches of the same size. One additional

idden layer of 1024 neurons with rectifier linear units (ReLU) is

sed. Dropout has been used to reduce the risk of overfitting, with

ropping probability of 20%. Two linear neurons (one per class) in

he output layer were used for conventional training based on the

ross-entropy cost function, which is the usual set up for this kind

f networks. With the proposed method, a single linear neuron is

sed in the output layer. 

Table 7 compares the probability of error for each class along

ith the average of these two probabilities. Probabilities are given

n %, and the average results obtained in the identification of the

0 digits are shown. Costs are chosen according to (51) . 

It can be seen that the traditional training method tends to

verfit the majority class in detriment of the minority class. How-

ver, the Bayesian formulation of the proposed method allows to

ompensate relatively the different number of samples of each

lass by introducing appropriate costs. In this problem, k A ( z ) and

 

U provide the best results. Table 8 shows results for each individ-

al digit, and it can be seen that the same behavior happens for

ll digits. 

The degradation of performance to detect the minority class in-

reases as the imbalance ratio increases. Table 9 shows the average

esults obtained when half of the samples of the reference digit are

emoved from the training set, thus leading to an average imbal-

nce ratio of 18/1, and Table 10 when, in the same manner, the

verage imbalance ratio is increased to 90/1. 
9

http://www.keel.es/dataset.php


Table 8

Probability of error for each class: positive, negative, average between positive and negative. Results for each individual 
digit.

Method 0 1 2 3 4 5 6 7 8 9

0.848 0.776 1.631 1.491 1.137 1.465 1.701 2.177 2.289 3.463

Conv 0.096 0.092 0.118 0.118 0.137 0.081 0.090 0.116 0.159 0.139

0.472 0.434 0.874 0.805 0.637 0.773 0.895 1.146 1.224 1.801

0.617 0.423 1.129 0.757 0.703 1.020 1.263 1.469 1.335 2.265

k U ( z ) 0.230 0.174 0.370 0.497 0.320 0.379 0.233 0.367 0.741 0.547

0.424 0.298 0.750 0.627 0.511 0.699 0.748 0.918 1.038 1.406

0.704 0.471 1.216 0.891 0.794 1.076 1.315 1.420 1.386 2.294

k L ( z ) 0.174 0.182 0.328 0.433 0.282 0.342 0.213 0.351 0.566 0.622

0.439 0.326 0.772 0.662 0.538 0.709 0.764 0.886 0.976 1.458

0.663 0.520 1.308 0.901 0.983 1.093 1.341 1.654 1.561 2.607

k T ( z ) 0.215 0.167 0.322 0.415 0.321 0.295 0.210 0.353 0.624 0.442

0.439 0.343 0.815 0.658 0.652 0.694 0.775 1.003 1.092 1.524

0.577 0.414 1.153 0.713 0.723 0.897 1.253 1.391 1.258 2.235

k A ( z ) 0.227 0.187 0.363 0.421 0.383 0.384 0.234 0.409 0.614 0.543

0.402 0.300 0.758 0.567 0.553 0.641 0.743 0.900 0.936 1.389

Table 9

Probability of error for each class: positive, negative, average between positive and

negative. Average results for the 10 digits when average imbalance ratio increases

to 18/1.

Conv k U ( z ) k L ( z ) k T ( z ) k A ( z )

P e | +1 2.833 1.365 1.458 1.583 1.354

P e |−1 0.083 0.474 0.452 0.409 0.452

(P e | +1 + P e | +1 ) / 2 1.458 0.919 0.955 0.996 0.903

Table 10

Probability of error for each class: positive, negative, average between positive and

negative. Average results for the 10 digits when average imbalance ratio increases

to 90/1.

Conv k U ( z ) k L ( z ) k T ( z ) k A ( z )

P e | +1 7.785 2.804 3.050 3.241 2.632

P e |−1 0.029 0.544 0.530 0.457 0.466

(P e | +1 + P e | +1 ) / 2 3.907 1.674 1.790 1.849 1.549
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. Conclusions

A new principled procedure to train neural networks for solving

inary classification problems has been proposed. The method is

ased on minimizing Bayes’ risk estimates that are constructed by

eans of using Parzen windows to model the distributions of the

M outputs under each hypotheses. There are many alternatives to

elect these windows and their characteristics. Some of these al-

ernatives are equivalent to classical training methods, such as the

erceptron rule. 

Experimental evidence permits to conclude that an appropriate

esign of windows can allow performance improvements, with a

ontrollable risk of degradation with respect to conventional train-

ng algorithms. No difficulties appear for selecting window param-

ters, and very simple cross-validation methods are enough for

t. Additionally, the hybrid character of the proposed approach,

hich combines discriminative and generative procedures, pro-

ides them superiority when dealing with imbalanced problems,

ithout needing any re-balancing technique. 

There are several research lines to extend this work, such as

ooking for rules to select an appropriate window, or to revise the

ctivation functions of conventionally trained MLs from the same

erspective we use here with Parzen windows. We are actively

orking along these directions. 
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