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Abstract

Expectiles are the solution to an asymmetric least squares minimization problem for

univariate data. They resemble some similarities with the quantiles, and just like them,

expectiles are indexed by a level α. In the present paper, we introduce and discuss

the main properties of the expectile multivariate trimmed regions, a nested family of

sets, whose instance with trimming level α is built up by all points whose univariate

projections lie between the expectiles of levels α and 1 − α of the projected dataset.

Such trimming level is interpreted as the degree of centrality of a point with respect to

a multivariate distribution and therefore serves as a depth function. We study here the

convergence of the sample expectile trimmed regions to the population ones and the

uniform consistency of the sample expectile depth. We also provide efficient algorithms

for determining the extreme points of the expectile regions as well as for computing the

depth of a point in R2. These routines are based on circular sequence constructions.

Finally, we present some real data examples for which the Bivariate Expectile Plot

(BExPlot) is introduced.

Keywords Algorithms, Bagplot, Data depth, Expectile, Trimmed regions
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1 Introduction

Expectiles were first introduced by Newey and Powell (1987) in the context of linear

regression as the solution to a minimization problem. They were so named because they

resemble some similarities with the quantiles of a random variable but unlike them, they are

based on quadratic loss functions, as it is the case of the expectation. They have received

high attention in different areas such as risk measurement, due to the fact that some of them

happen to be elicitable and coherent risk measures, as it was shown by Gneiting (2011),

Bellini et al. (2014), and Ziegel (2016).

Inspired by Tukey (1975), who employed the quantiles of the univariate projections of a

bivariate data cloud to produce a family of central (depth-trimmed) regions, Eilers (2010),

and later on Giorgi and McNeil (2016), suggested to use the expectiles to build the expectile

regions of a multivariate data set as the intersection of the halfspaces whose supporting

hyperspace is determined by the expectile of a univariate projection of the data. In fact, the

support functions of the expectile trimmed regions are given by the expectiles of the project

dataset. Just like Tukey’s central regions inspired the definition of the most popular depth

function, the so-called halfspace depth, the expectile regions induce the expectile depth.

Based on the extensive studies of depth functions, their properties, and applications

developed by Liu et al. (1999), Zuo and Serfling (2000), Dyckerhoff (2004), or Cascos

(2010), we present here the expectile depth and discuss its main properties. Together with

the expectile depth, we propose a novel exploratory data analytic tool, called the Bivariate

Expectile Plot (BExPlot), which can be used for data visualization as an alternative to the

Bagplot, see Rousseeuw et al. (1999).

Other multivariate generalizations of the expectiles have been considered by Breckling

and Chambers (1988), who proposed the so-called multivariate M -quantiles as the solution

to minimization problems similar to those giving rise to quantiles and expectiles. Since such

M -quantiles may happen to lie out of the convex hull of the dataset they were built from, in
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a posterior paper Breckling et al. (2001) presented an alternative definition of multivariate

M -quantiles which still lack to be equivariant under arbitrary affine transformations. Later

on, Maume-Deschamps et al. (2016) adapted the aforementioned notion of elicitability to the

multivariate setting by using several vector and matrix norms. This way, they introduced the

so-called euclidean (vector-valued) and matrix expectiles. More recently, Herrmann et al.

(2018) introduced another multivariate version of expectiles, the geometric expectiles, as the

unique solution of a convex risk minimization problem. The homogeneity and equivariance

under orthogonal transformations properties of geometric expectiles makes them appealing

multivariate risk measures.

The paper is organized as follows: in Section 2 we review the concept of (univariate)

expectile of a random variable, while Section 3 is devoted to multivariate expectile regions.

Specifically, we introduce the expectile regions together with their meain properties and

characterise the extreme points of the sample expectile regions. In Section 4 we present the

expectile depth and discuss how to compute its 2-dimensional empirical version. In Section 5

we study the consistency of the sample expectile regions with respect to the Hausdorff metric

and the uniform consistency of the sample expectile depth function. Finally, in Section 6 we

introduce the Bivariate Expectile Plot as an EDA tool, while the main contributions of the

paper are highlighted in Section 7. Two appendices are placed at the end of the manuscript,

the first of them describes two algorithms to compute the bivariate expectile regions and

depth, while the second contains the proofs of some mathematical results.

2 Univariate expectiles

Given a random variable X defined on a general probability space and with finite first

moment, E|X| < ∞, and given α ∈ (0, 1), the α-expectile of X was defined in Newey and

Powell (1987) as the minimizer of the quadratic expression

eα(X) := argmin
x

{
(1− α)E(X − x)2− + αE(X − x)2+

}
, (1)

3



where a+ = max{a, 0} and a− = −min{a, 0} for any a ∈ R. Observe that the α-quantile of

X is the minimizer of an expression that can be obtained from (1) deleting the squares.

Considering the first order condition obtained from (1), it is not hard to see that eα(X)

is the unique solution to the equation

− (1− α)E(X − eα(X))− + αE(X − eα(X))+ = 0 . (2)

The expressions below, which will turn out to be useful when interpreting and computing

expectiles, can be obtained from (2) after some elementary algebra

eα(X) = E[X] +
2α− 1

1− α
E(X − eα(X))+ (3)

=
(1− α)

∫ FX(eα(X))

0
F−1
X (t) dt+ α

∫ 1

FX(eα(X))
F−1
X (t) dt

α + (1− 2α)FX(eα(X))
, (4)

where FX stands for the cdf of X, while F−1
X is its quantile function.

Fundamental geometric interpretation of the expectiles At the light of the Choquet

integral of random variables (X − eα(X))− and (X − eα(X))+, it follows from (2) that the

α-expectile of X is the point such that the area between the graph of cdf of X and the

horizontal axis and to left of eα(X) is exactly α/(1 − α) times the area between the cdf of

X and horizontal line y = 1 and to the right of eα(X), that is,

(1− α)

∫ eα(X)

−∞
FX(x) dx = α

∫ +∞

eα(X)

(1− FX(x)) dx .

In an alternative but equivalent way, and as can be better seen in (4), the α-expectile of

a random variable is a convex combination of the gravity centres of its lower and upper tails

with regard to itself, such that the weight of the lower tail gravity centre corresponds to the

weight of the upper one in a proportion of (1− α) to α.

See Figure 1 for the 0.75-expectile of a standard normal random variable X. The vertical

line is x = e0.75(X) = 0.4363 and the area of the shaded region to its left is 3 = 0.75/(1−0.75)

times the area of the shaded region to its right.
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Figure 1: Geometric interpretation of the α-expectile

We take advantage of the fundamental geometric interpretation of the expectiles to pro-

vide two further explanations.

1. Gambler’s interpretation. If the monetary return of a gamble is modeled as X and a

gambler has to pay an amount x in order to play, the gambler’s gain will be given by

(X − x)+ while his loss is (X − x)−. The α-expectile of X is the price to play when

the expected gain is (1− α)/α times the expected loss. In a fair gamble, the expected

gain matches the expected loss, so the price to play is exactly e1/2(X) = E[X].

If a risk averse gambler refuses to play unless her expected gain is at least a > 1 times

the expected loss, the price she would be willing to pay is the (a + 1)−1-expectile of

X. On the other hand, a desperate gambler might agree to pay a price that makes the

expected losses not more than a > 1 times the expected gains, thus she would agree

to pay up to the a/(a+ 1)-expectile of X.

2. Actuarial interpretation. If X models the final payment of an insurance company for

one of its products at the moment it expires, the α-expectile of X is the premium
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(excluding administrative expenses) so that the policyholder’s expected saving (due to

the acquisition of the insurance product) is (1−α)/α times her expected expenditure,

once the premium is deduced from the final payment.

2.1 Properties of expectiles

We list below the properties of univariate expectiles that will be needed to introduce the

expectile regions and depth. Their proofs can be found in classical references, specifically

Bellini et al. (2014).

1. Most central expectile, e1/2(X) = EX.

2. Upper and lower expectiles, eα(X) = −e1−α(−X).

3. Translation equivariance, eα(X + a) = a+ eα(X) for a ∈ R.

4. Homogeneity, eα(λX) = λeα(X) for λ ≥ 0.

5. Monotonicity, if X ≤ Y a.s., then eα(X) ≤ eα(Y ).

6. Subadditivity, for 1/2 ≤ α < 1, eα(X + Y ) ≤ eα(X) + eα(Y ).

7. Superadditivity, for 0 ≤ α < 1/2, eα(X + Y ) ≥ eα(X) + eα(Y ).

8. Parameter continuity, eα is continuous in α.

9. Strict parameter monotonicity, eα is strictly increasing in parameter α.

2.2 Some specific expectiles

In order to obtain some insight about expectiles, we present next the expectiles of some

standard distribution models.
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Bernoulli random variable If X is a random variable such that P (X = 1) = p, and

P (X = 0) = 1− p , then,

eα(X) =
αp

1− α− p+ 2αp
.

Uniform random variable If X is a uniform random variable on (0, 1), then

eα(X) =
α−

√
α(1− α)

2α− 1
,

if α ̸= 1/2, while e0.5(X) = 1/2 .

Gaussian random variable The α-expectile of a univariate standard normal random

variable X is the unique solution to the equation

ϕ(eα(X))

eα(X)
+ Φ(eα(X)) =

α

2α− 1
, (5)

where ϕ is the standard normal density and Φ the standard normal cdf, if α ̸= 1/2, while

e0.5(X) = 0 . See Figure 2 for the graphs of the expectile and quantile functions of a standard

normal random variable.

Inverse expectile function The same way the expectile function plays a similar role to

the quantile function, the inverse expectile function is somehow analogous to the cumulative

distribution function (inverse quantile). This inverse expectile function will be a helpful tool

when we study the expectile depth in Section 4.

Any real value inside the interior of the convex hull of the support ofX corresponds to one

of its expectiles. After some elementary algebraic transformations in (2), it is straightfoward
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Figure 2: The 0.15-expectile (0.85-expectile) of a normal random variable approximately

coincides with its 0.25-quantile (0.75-quantile).

to see that any ess inf(X) < x < ess sup(X) is the e−1
X (x)-expectile of X with

e−1
X (x) =

(
1 +

E(X − x)+
E(X − x)−

)−1

=
E(X − x)−
E|X − x|

=
x− EX + E(X − x)+
x− EX + 2E(X − x)+

. (6)

Due to the relation between upper and lower expectiles (property 2. in Section 2.1),

the inverse expectile satisfies e−1
−X(−x) = 1 − e−1

X (x). Moreover by the strict parameter

monotonicity (property 9. in Section 2.1), the inverse expectile function is strictly increasing.

Characterization property The expectiles of a random variable (with finite first mo-

ment) characterize its distribution. In fact, after the relation between upper and lower

expectiles (property 2. in Section 2.1), only either the upper or lower expectiles are needed

to characterize the distribution. This is easily verified from the inverse expectile function
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e−1
X which, as seen in (6), determines E(X − x)+, the stop-loss function associated with X.

After the relation

E(X − x)+ =

∫ ∞

x

(1− FX(t)) dt

the stop-loss function is sometimes called integrated survival function of a random variable,

see Müller and Stoyan (2002), and immediately characterizes its distribution.

2.3 Sample expectiles

Consider x1, x2, . . . , xn ∈ R a sample of univariate observations and 0 < α < 1. The

empirical α-expectile, denoted by eα(x1, . . . , xn) or shortly en,α, is the solution to equation

(3), which when written in the form of weighted sums adopts the expression

en,α = x+
2α− 1

n(1− α)

∑
xi>en,α

(xi − en,α)

=
1− α

αn+ nFn(en,α)(1− 2α)

⎛⎝nx+
2α− 1

1− α

∑
xi>en,α

xi

⎞⎠ , (7)

where, as usual, x stands for the sample mean, and Fn(·) denotes the empirical cdf.

Fortunately enough, en,α can be computed fast using a Newton-gradient algorithm im-

plemented as a built-in function in the R package expectreg, see Sobotka et al. (2014).

Let minxi ≤ x ≤ maxxi, according to (6), in order to find out to which sample expectile

does x correspond to, we only need to compute

e−1
n (x) =

nx− nx+
∑

xi>x(xi − x)

nx− nx+ 2
∑

xi>x(xi − x)
. (8)

3 Expectile trimmend regions

Following Eilers (2010) and the scenario set construction of Giorgi and McNeil (2016), for

any random vector X with finite first moment E∥X∥ < ∞, we define its expectile trimmed
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region of level 0 < α ≤ 1/2, denoted by Eα(X), as an intersection of closed halfspaces

supported by hyperplanes whose constant term is determined by a univariate expectile

Eα(X) :=
⋂

u∈Sd−1

{x ∈ Rd : ⟨x,u⟩ ≤ e1−α(⟨X,u⟩)} , (9)

where Sd−1 stands for the unit sphere in Rd and ⟨·, ·⟩ represents the standard inner product

in Rd.

Notice that for d = 1, the expectile region is the closed interval of real numbers

Eα(X) = [eα(X), e1−α(X)] .

As an intersection of closed halfspaces, the expectile regions are closed convex sets, and

thus characterized by means of their support functions, see e.g. Schneider (1993). The

support function of a closed convex non-empty set K ⊂ Rd evaluated at u ∈ Rd is defined as

h(K,u) := sup{⟨x,u⟩ : x ∈ K} .

If h(K, · ) is a support function, then it is clearly positively homogeneous and subadditive,

while the reverse does also hold as can be found in Schneider (1993, Th.1.7.1): given any

positively homogeneous and subadditive function h : Rd → R there exists a unique compact

and convex set K ⊂ Rd such that h is its support function.

From the homogeneity of subadditivity of univariate expectiles (properties 4. and 6. in

Section 2.1), we know that for any d-dimensional random vector with finite first moment X

and 0 < α ≤ 1/2 the map u ↦→ e1−α(⟨X,u⟩) is positively homogeneous and subadditive,

so it constitutes the support of a compact and convex set, which is in fact Eα(X). Hence,

alternatively to (9), the expectile trimmed regions can be characterized in terms of its support

function as

h(Eα(X),u) = sup{⟨x,u⟩ : x ∈ Eα(X)} = e1−α(⟨X,u⟩) . (10)

An important consequence of (10) is that, since e1−α(⟨X,u⟩) is the upper end-point of

the expectile region of ⟨X,u⟩ of level α, the expectile depth satisfies the strong (also weak)

projection property, see Dyckerhoff (2004, Th.3).
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3.1 Properties of the expectile trimmed regions

The expectile regions fulfill the usual properties for depth-trimmed regions considered in

Dyckerhoff (2004) and Cascos (2010), that is, if 0 < α ≤ 1/2 then it is not hard to see that

1. Most central point, E1/2(X) = {EX}.

2. Nesting, Eα(X) ⊂ Eβ(X) if 0 < β ≤ α ≤ 1/2.

3. Convexity, Eα(X) is convex.

4. Compactness, Eα(X) is compact.

5. Affine equivariance, Eα(AX +b) = AEα(X)+b for any matrix A ∈ Rk×d and b ∈ Rk.

6. Monotonicity, if X ≤ Y (componentwisely) a.s., then Eα(Y )⊕ Rd
+ ⊆ Eα(X)⊕ Rd

+.

7. Minkowski subadditivity, Eα(X + Y ) ⊆ Eα(X)⊕ Eα(Y ),

where the symbol ⊕ stands for the Minkowski or elementwise set addition, i.e., given K1, K2

two subsets of Rd, we have K1 ⊕K2 = {x+ y : x ∈ K1, y ∈ K2}.

Characterization property For any random vector with finite first moment X, u ∈ Rd,

and 0 < α ≤ 1/2, the support function of Eα(X) evaluated on u is the (1−α)-expectile of the

linear combination of its components ⟨X,u⟩, see (10). After the characterization property of

the upper expectiles, the distribution of every ⟨X,u⟩ is thus determined by {Eα(X)}0<α≤1/2.

Finally, and according to Cramér and Wold (1936), the family of all expectile regions of X

characterizes its distribution.

Continuity properties of the expectile regions In order to discuss some continuity

property for the expectile regions with respect to the trimming level α, we need to introduce

a notion of distance for compact and convex sets. If K1, K2 ⊂ Rd are compact and convex
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with support functions h(K1, · ) and h(K2, · ), the Hausdorff distance between K1, K2, see

Molchanov (2017, H.5), is

dH(K1, K2) := sup
u∈Sd−1

|h(K1,u) − h(K2,u)| .

Proposition 3.1. If lim
n

αn = α in (0, 1/2], then

lim
n

dH(E
αn(X),Eα(X)) = 0 .

See Appendix B.1 for the proof of Proposition 3.1.

In Section 4 we study the notion of depth induced by the expectile regions. Proposition 3.2

below about expectile regions together with Dyckerhoff (2017, Th.3.1) guarantee that such

depth is continuous.

Proposition 3.2. If α > β in (0, 1/2] then

Eα(X) ⊂ int Eβ(X) .

See Appendix B.2 for the proof of Proposition 3.2.

3.2 Sample expectile trimmed regions

For a sample x1,x2, . . . ,xn ∈ Rd and 0 ≤ α < 1/2, the sample α-expectile region is the

set Eα
n whose support function, see (10), is

h(Eα
n,u) = en,1−α(⟨x1,u⟩, . . . , ⟨xn,u⟩) ,

that is, it corresponds to the (1−α)-expectile of the (univariate) sample ⟨x1,u⟩, . . . , ⟨xn,u⟩.

Finally, according to (7), the sample α-expectile trimmed region can be written as the

convex hull of all linear combinations of the points from the data sample with some prescribed

weights

Eα
n = co

⎧⎨⎩x = Λα
n,s

⎛⎝nx+
1− 2α

α

∑
πu(i)>s

xi

⎞⎠ : u ∈ Sd−1 and Gu(x) = s

⎫⎬⎭ , (11)
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where co stands for the convex hull, Λα
n,s = α[(1−α)n+ s(2α− 1)]−1, πu is the permutation

from {1, 2, . . . , n} such that ⟨xπu(1),u⟩ ≤ . . . ≤ ⟨xπu(n),u⟩, and Gu(x) = s if and only if

⟨xπu(s),u⟩ ≤ ⟨x,u⟩ ≤ ⟨xπu(s+1),u⟩ .

Notice that for any u ∈ Sd−1 there is, at least, one extreme point of Eα
n in the supporting

hyperplane {x ∈ Rd : ⟨x,u⟩ = en,1−α(⟨x1,u⟩, . . . , ⟨xn,u⟩)}. In Appendix A.1 we present an

algorithm to compute all the extreme points of the expectile region of level α with respect

to a bivariate dataset and discuss its complexity.

4 Expectile depth function

The expectile depth associates to each point y ∈ Rd its degree of centrality with respect

to the distribution of the random vector X in terms of the expectile regions. Specifically,

the expectile depth of a point is the supremum all levels α such that the given point belongs

to the expectile region of level α,

ED(y;X) := sup{0 < α ≤ 1/2 : y ∈ Eα(X)} .

Conversely, the expectile region of level α consists of all the points whose depth is at least α,

Eα(X) = {y : ED(y;X) ≥ α}, and after the weak projection property, the expectile depth

of a point with respect to a random vector can be computed as the infimum of the depths

of the univariate projections of the point w.r.t. the projected random vector, that is,

ED(y;X) = inf
u∈Sd−1

ED(⟨y,u⟩; ⟨X,u⟩) .

An immediate consequence is that the expectile depth with respect to a random variable X

(for d = 1) is written in terms of the inverse expectile as ED(y;X) = min{e−1
X (y), e−1

−X(−y)}.

The expression for the expectile depth derived in Proposition 4.1 below will turn out to

be crucial when explicitly computing empirical expectile depths.
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Proposition 4.1. For any y ∈ Rd, the expectile depth function satisfies

ED(y;X) =

(
2− inf

u∈Sd−1

⟨EX − y,u⟩
E⟨X − y,u⟩+

)−1

.

See Appendix B.3 for the proof of Proposition 4.1.

4.1 Properties of the expectile depth

The expectile depth function satisfies the following properties that can be immediately

derived from those of the expectile regions presented in Section 3.1.

1. Affine invariance, the depth of a point y ∈ Rd is independent of the coordinate system.

For any matrix A ∈ Rd×d and b ∈ Rd

ED(Ay + b;AX + b) = ED(y;X) .

2. Continuity, the mapping y ↦→ ED(y;X) is continuous by Proposition 3.2 and Dycker-

hoff (2017, Th.3.1).

3. Maximality at centre, the expectile depth attains its unique maximum at the mean,

EX, in fact ED(EX;X) = 1/2.

4. Quasiconcavity, as a consequence of the convexity of the expectile regions,

ED(λx+ (1− λ)y;X) ≥ min{ED(x;X),ED(y;X)} for 0 ≤ λ ≤ 1 .

5. Vanishing at infinity. The expectile depth of a point y goes to zero as ∥y∥ → ∞.

Furthermore, the expectile depth is strictly monotone in the sense of Dyckerhoff (2017).

Proposition 4.2. Strict monotonicity of the expectile depth.

a) The expectile depth is strictly monotone in rays from the center of the distribution.

b) For 0 < α < 1/2 it holds Eα(X) = cl{y : ED(y;X) > α}.

See Appendix B.4 for the proof of Proposition 4.2.
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4.2 Sample expectile depth function

Our goal is now to define the empirical expectile depth function w.r.t. to the sample

{x1, . . . ,xn} ⊂ Rd. To simplify the computations, we assume that the point y whose depth

is to be assessed is the origin of coordinates, in any other case, the depth is computed after

cetering the sample at the given point. The infimum in Proposition 4.1 is now

inf
u

∑
⟨xi,u⟩∑
⟨xi,u⟩+

,

and the sample expectile depth of the origin can thus be written as

EDn(0) =

(
2− inf

u

∑
⟨xi,u⟩∑
⟨xi,u⟩+

)−1

. (12)

In R2 we have u ∈ S1, and thus we can write u = (cos γ, sin γ) for some γ ∈ [0, π). We

can further assume that the sample average, x, lies on the negative part of the vertical axis

(rotate the sample if needed). Therefore, the infimum in EDn(0) turns into

inf
u

∑
⟨xi,u⟩∑
⟨xi,u⟩+

= inf
γ

∑
⟨xi, (cos γ, sin γ)⟩∑
⟨xi, (cos γ, sin γ)⟩+

= min
i

∥x∥
∥x(γ)∥

inf

{
⟨(0,−1), (cos γ, sin γ)⟩

⟨(cos β, sin β), (cos γ, sin γ)⟩+
: γi + π/2 < γ < γi+1 + π/2

}
= min

i

∥x∥
∥x(γ)∥

inf

{
− sin γ

cos(γ − β)
: γi + π/2 < γ < γi+1 + π/2

}
,

where γi is the angle between the line through the origin and point xi with respect to the

positive horizontal axis and x(γ) = ∥x(γ)∥(cos β, sin β) is the average of the sample points

in the halfspace with inner normal (cos(γ + π/2), sin(γ + π/2)).

As a standard constrained minimization procedure, we deduce the optimal solution at

each circular segment from the KKT conditions:

if
π

2
< β <

3π

2
then the solution is γ∗ = γi +

π

2
,

if − π

2
< β <

π

2
then the solution is γ∗ = γi+1 +

π

2
.

(13)
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In Appendix A.2 we present an efficient algorithm for computing the depth of a point

w.r.t. a bivariate sample, d = 2.

5 Consistency of the expectile regions and depth

We establish here the convergence of the sample expectile trimmed regions {Eα
n : n ≥ 1}

to the population one Eα(X) with respect to the Hausdorff metric. Furthermore, we show

that the sample expectile depth function is a uniformly consistent estimator of the population

expectile depth function.

Theorem 5.1. Given any d-dimensional random vector X with finite first moment, the

family of sample expectile regions {Eα
n}α and the sample expectile depth function EDn built

from a random sample of X satisfy:

a) For any compact set I ⊂ (0, 1/2) we have

sup
α∈I

dH(E
α
n,E

α(X))
a.s.−→ 0 .

b) It holds

sup
y∈Rd

|EDn(y)− ED(y;X)| a.s.−→ 0 .

See Appendix B.5 for the proof of Theorem 5.1.

6 The Bivariate Expectile Plot (BExPlot)

The BExPlot is a graphical representation for bivariate data inspired by the bagplot,

see Rousseeuw et al. (1999). It consists of a bullet located at the sample mean (singleton

representing the 1/2-expectile region), a shaded bag representing the 0.15-expectile region,

and a convex fence enclosing all data points that are contained inside the bag after expanding

it from the sample mean by a factor of 4. The points outside the fence (if any) are marked as
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possible outliers. As we present in Figure 3 left, the BExPlot can be plotted with expectile-

plots for each of the variables at margins.

Given a univariate dataset, the expectile-plot is similar to a boxplot. It represents the

minimum and maximum at the whiskers, contains a box raging from the 0.15-expectile to

the 0.85-expectile, and a mark on the average value (0.5-expectile). Observe that, as seen

in Figure 2, the 0.15- and 0.85-expectiles of a standard normal distribution approximately

coincide with its first and third quartiles, while the mean and the median also coincide,

resulting in an expectile-plot very similar to a boxplot when the underlying distribution is

normal. As in a boxplot, possible outliers are those points located farther than 1.5 times the

width of the box (distance between the 0.15- and the 0.85-expectiles) from the end-points of

the box.

All points marked as possible outliers in the expectile-plot of one of the marginals, will

be marked as possible outliers in the BExPlot. Any other point marked as possible outlier

in the BExPlot will correspond to an observation that would have been marked as possible

outlier in the expectile-plot obtained for some univariate projection of the dataset.

6.1 Single BExPlot

In Figure 3 left we have represented a BExPlot of time in the 200m race (horizontal axis)

and the distance of the long jump (vertical axis) for the 30 athletes that took part in the

Decathlon of the 1992 Barcelona Olympic Games. At margins we represent the expectile-

plots of the times at the 200m race and the long jump. The shaded region in the BExPlot

is the 0.15-expectile region. Only one point is out of the fence and appears marked as

possible outlier. It corresponds to an athlete marked as possible outlier in the long jump

expectile-plot.

The bagplot of the Barcelona92 dataset plotted with Wolf (2018), is represented in Fig-

ure 3 right. In this chart, two points are marked as possible outliers and the plots at margins
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Ffigure3:BExPlotandBagplotfforBarcelona1992

aretheboxplotsoffthe200mraceandthelongjump.

6.2 MultfipleBExPlots

InordertorepresenttheBExPlotsoffeachpafiroffmorethantwovarfiablesweusea

matrfix-typechartwhereeachcellcontafinstheBExPlotoffthevarfiablesthatcrossatfit,

whfileexpectfile-plotsarerepresentedatmargfins.Ffigure4fisbufiltoutoffFfisher’sclassficalIrfis

dataset,specfificallyvarfiablessepallength,sepalwfidth,andpetallengthoffspecfiesvfirgfinfica

areconsfidered.ItpresentsamatrfixoffBExPlotswfithexpectfile-plotsatmargfins.

NotficethatsomeoffthepossfibleoutlfiersdetectedfinsomeofftheBExPlotsfinFfigure4are

notdetectedfinanyoffthetwoexpectfile-plotsatfitsmargfins.Thfisfisbecausetheycorrespond

topossfibleoutlfiersthatwouldhavebeendetectedonunfivarfiateprojectfionsdfifferentffrom

themargfinals.
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6.3 BExPlotswfithconfidenceregfions

Ffinallyweshowanapproxfimatfionofftheconfidenceregfiononthemeanoffabfivarfiate

datasetbasedonexpectfileregfions. Atmargfinsanapproxfimatfionoffthe95%confidence

fintervalonthemeanoffeachvarfiablefisrepresentedfinanotchedexpectfile-plot.

Foranydfimensfiond,thelevelαsuchthattheα-expectfileregfionoffad-dfimensfional

standardnormaldfistrfibutfionmatchestheregfioncentredattheorfigfinandcontafinfingthe
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sample mean with probability β is computed. The empirical expectile region of such level α

will serve as an approximation of a confidence region on the mean with confidence level β.

After some elementary algebra, the trimming level is the solution, on α, to an equation

built from (5) substituting eα(X) by −
√
F−1
χ2
d
(β)/n, where F−1

χ2
d
is the quantile function of a

chi-squared random variable with d degrees of freedom. For d = 1 this expression is used to

compute the α that determines the notches, while for d = 2 the expression is used to compute

the α that determines the approximation to the confidence region presented together with

the BExPlot.

In Figure 5 we present a BExPlot of the Hemophilia dataset from Pokotylo et al. (2019).

The dataset contains data of AHF activity (variable x) and AHF antigen (variable y) on the

blood of two groups of women, 45 of them being Hemophilia A carriers (marked as + in the

chart) and 30 being non-carriers of Hemophilia A (marked as × in the chart).

The notches in the expectile-plots at margins represent an approximation of the 95%

confidence interval on each mean, while the dark grey region is the approximation of the

95% confidence region on the bivariate mean described above. Finally, the light grey region

represents, as in the previous examples, the 0.15-expectile region.

The dot marked as a possible outlier at both, the BExPlot and the expectile plot of

variable AHF antigen (y), corresponds to a non-carrier of Hemophilia A.

7 Highlights and conclusions

The main achievement of this paper is the introduction of a new notion of depth, namely

the expectile one and the construction of algorithms for its computation on bivariate datasets.

The paper starts with a review of the concept of univariate expectile function and a summary

of its main properties, while the inverse expectile function is introduced, and some emphasis

is placed on their empirical counterparts.

Expectile regions are presented in terms of halfspaces determined by univariate expec-
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tfiles.Duetotheffactthatexpectfilesareposfitfivelyhomogeneousandsubaddfitfiveffunctfions

fforspecfificvaluesoffα,werepresentanexpectfileregfionasthecompactconvexsetwhose

supportffunctfionfistheexpectfileffunctfionwfithrespecttoaunfivarfiateprojectfionoffthedata.

Somebasficpropertfiesofftheexpectfileregfions,aswellasotherrelatfivetocontfinufityand

dfistrfibutfioncharacterfizatfionaredfiscussed.Atthesametfimewepresenttheempfirficalex-

pectfileregfions,wfithanalgorfithmtodetermfinethefirextremepofintsfinthebfivarfiatesettfing,

andshowthefirconsfistency.

Alongwfiththeconceptoffexpectfileregfions,theexpectfiledepthfisfintroducedfinanat-

uralway. Wedfiscussthemafinpropertfiesofftheexpectfiledepthffunctfionandremarkthe

fimplficatfionsoffsomeoffthosepropertfiesonthetopologyofftheexpectfileregfions. Wedfiscuss

thesampleexpectfiledepthffunctfionandshowfitsunfifformconsfistency.Asecondalgorfithm
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to compute the expectile depth of a point w.r.t. a multivariate dataset is presented here.

Finally, we introduce the BExPlot as a practical tool for data visualization and outlier

detection in bivariate datasets which can be used to represent the bivariate interactions of

higher dimensional data. Unlike the bagplot, which is the most popular bivariate extension

of the boxplot, the BExPlot is centred in the mean of a dataset and this allows us to represent

an approximation of the confidence region on the mean together with the BExPlot.

Acknowledgements

We would like to thank Prof. Paul Eilers for presenting his work on expectiles to us and

helpful and encouraging comments. This research was partially supported by the Spanish

Ministry of Science and Innovation under grant ECO2015-66593-P.

22



A Algorithms

A.1 Algorithm for extreme points of the expectile regions in R2

We use the classical method of the circular sequence, which provides us with all possible

sortings of a bivariate data cloud with respect to their univariate projections in a fast way,

to develop an algorithm to compute the extreme points of the expectile trimmed region of a

bivariate data set. Notice that the first 5 steps in the algorithm below are standard in any

circular sequence routine, such as those in Ruts and Rousseeuw (1996); Dyckerhoff (2000);

Cascos (2007); Liu et al. (2012).

Basic guidelines of an algorithm to find the extreme points of Eα
n

Input:

• Data points xi = (xi,1, xi,2) ∈ R2, i = 1, . . . , n.

• Trimming level 0 < α ≤ 1/2.

Output:

• Extreme points of Eα
n supported by half-planes with outer normal (cos β, sin β) with

0 ≤ β ≤ π (northern boundary).

Steps:

Step 1. Store all data points in an n× 2-array and sort them according to the following rule:

xi < xj if and only if (xi,1 < xj,1) or (xi,1 = xj,1 and xi,2 > xj,2).

Step 2. Initialize an n-array called R such that Ri = i for all i. Entry Ri will represent the

relative position of point xi for the ordering given by the one-dimensional projection

under consideration (in each iteration of the main loop, Steps 7. to 11.).
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Step 3. Compute the angle γi,j of the line defined by each pair of points xi,xj and the positive

horizontal axis. Sort the angles in an increasing way in a matrix called ANG with
(
n
2

)
rows and 3 columns. The r-th row of ANG contains the r-th smallest angle γi,j, value

i, and value j. All rows with the same first entry (angle) are ordered in terms of their

second entries (x-coordinate), and all rows with the same first and second entries are

ordered in terms of their third entries (y-coordinate).

Step 4. Compute the univariate expectile of the x-coordinates of the data, eα(x1,1, . . . , xn,1),

and take s as the sum of those xi,1’s that are less than the expectile.

Step 5. Initialize an array called EXT to store the extreme points and establish 0 as the first

angle to be considered, ANG0,1 = 0. Entries ANG0,2 and ANG0,3 are left blank.

Step 6. First iteration of the main loop, set k = 1.

Step 7. Compute the candidate to extreme point x for the data sorting given by the array

R (data points ordered with respect to the univariate projection given by their scalar

product times (cosANGk−1,1, sinANGk−1,1)) and the natural number s as in (11).

Observe that the first time we go through this step, the extreme point supported by

the halfplane {(x, y) : x ≤ eα(x1,1, . . . , xn,1)} is obtained. Every other time a new

candidate is computed, only one point is added to the sum in equation (11) when s

decreases by one unit, while one point is subtracted when s increases by one unit. If

a new data sorting is considered (iteration k + 1) only one pair of points interchange

their relative positions in the R array, and thus, depending on s, at most one point is

subtracted, while another is added in the sum in Equation (11).

Step 8. Check if the point computed in Step 7. is indeed an extreme point for that s and

data sorting. It will be an extreme point as long as its univariate projection through

(cos β, sin β) for some ANGk−1,1 ≤ β ≤ ANGk,1 is the expectile of the corresponding

univariate projection of the dataset. This will hold as long as the univariate projection
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of the candidate through (cos β, sin β) lies between the univariate projections of the

s-th and the (s+ 1)-th data points in the current data sorting.

Step 9. Consider consecutive values of s and check if there are other extreme points for the

same data sorting and such values of s. That is, go to Step 7. with s′ = s + 1 and

while the candidate results as extreme in Step 8., try s′ + 1 in Step 7. Do the same

with s′ = s− 1 and s′ − 1.

Step 10. Consider the angle between the line through the mean and each extreme point and the

x-axis. Append the extreme points in increasing way with regard to those angles in

the array EXT. Update s as the value that corresponds to the last point in EXT.

Step 11. While k <
(
n
2

)
, interchange the values of positions ANGk,2 and ANGk,3 of array R.

Set k ← k + 1 and go to Step 7.

Remember that algorithm A.1 was designed to obtain the extreme points supported

by halfplanes with outer normal of the form (cos β, sin β) with 0 ≤ β ≤ π (the northern

boundary). In order to get the remaining points (the southern boundary) transform all

data points by reflecting them with respect to the line y = 0, apply the algorithm to the

transformed data points, and finally reverse the reflection process.

Complexity

1. Computing and ordering the
(
n
2

)
angles of all the pairs of points in Step 3. requires

O(n2 log n) operations.

2. The first computation of a univariate expectile, performed in Step 4., can be done in an

exact manner (alternatively to using a Newton-gradient algorithm). It would require

sorting all the x-coordinates of the data points, which is done in O(n log n) operations.

If all the possible values of s were to be considered, the complexity would increase at

most up to n2.
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3. The main loop (Steps 7. to 11.) is run
(
n
2

)
times, but the number of operations at each

iteration does not depend on the sample size n because only one point is being added

or subtracted. Since s varies in a bounded set of the form s± p for some value p (in all

of our numerical experiments we found that 0 ≤ p ≤ 3), then the complexity remains

O(n2 log n).

A.2 Algorithm for expectile depth in R2

In a similar way to Rousseeuw and Ruts (1996) for the algorithms of the halfspace and

simplicial depth, see Liu (1990), the current algorithms proceeds over the projection of the

data cloud on a circumference.

Input:

• Data points xi = (xi,1, xi,2) ∈ R2, i = 1, . . . , n.

• Point y for which the expectile depth is computed.

Output:

• Depth EDn(y) of point y with respect to the cloud xi = (xi,1, xi,2) ∈ R2, i = 1, . . . , n.

Steps:

Step 1. Center all data points w.r.t. point y.

Step 2. Compute the sample mean x, find its angle w.r.t. the positive horizontal axis, and

rotate the data cloud w.r.t. this angle so that x can be written as x = ∥x∥(0,−1)

after rotation.

Step 3. For each data point xi compute the angle γi between the positive horizontal axis and

the ray from the origin to xi.
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Step 4. Reflect through the origin those points whose angles are between π
2
and 3π

2
by sub-

tracting π to all the angles, so that the range of angles is [−π
2
, π
2
] and the algorithm

runs only on a semi-circle. The reflected points are tagged with value −1, the rest with

value +1.

Step 5. Store all data points in an n×4 array calledANG whose entries are the two coordinates

of each point, the corresponding angle and the corresponding tag, respectively. Sort

array ANG with regard to the angles.

Step 6. Set γ0 = −π/2 and i = 1.

Step 7. Compute the average of the points in the halfplane with inner normal u = (cos(γi +

π/2), sin(γi+π/2)), call it x(γi), and compute the angle between x(γi) and the positive

horizontal axis, call it βi .

Step 8. Apply the criteria for finding the minimum angle given by the KKT conditions, ac-

cording to (13), between γi−1 and γi and store this value in an array called MIN.

Step 9. While i < n, set i→ i+1, go to Step 7. and update x(γi) by adding or subtracting the

point whose coordinates are (ANGi,1,ANGi,2), according to the tag it was labeled

with in Step 4.

Step 10. With the minimum of those values stored in MIN compute the depth according to

equation (12) and return it.

Complexity The sorting of the n angles in Step 5. has complexity O(n log n). The main

loop (Steps 7. to 9.) is repeated n times, but each updating of x(γi) only involves the

addition or subtraction of a point, so its complexity is O(n) and does not affect the overall

complexity of algorithm A.2, which remains O(n log n).
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B Mathematical proofs

B.1 Proof of Proposition 3.1

Fix u ∈ Sd−1 and consider a sequence αn such that limn αn = α for some 0 < α ≤ 1/2, since

the expectiles are continuous w.r.t. the parameter α, see property 8. in Section 2.1, then we

have that

lim
n

e1−αn(⟨X,u⟩) = e1−α(⟨X,u⟩) .

Now, according to Schneider (1993, Th.1.8.12), the pointwise and uniform convergence

of support functions on Sd−1 are equivalent, thus lim
n

dH(E
αn(X),Eα(X)) = 0.

B.2 Proof of Proposition 3.2

Since the expectile regions are nested, we have that if α > β, then Eα(X) ⊂ Eβ(X). Assume

now that the assertion we want to prove is not valid, that is, there exists y ∈ Eα(X) such

that it does not belong to the interior of Eα(X), so it lies on its boundary, y ∈ ∂Eβ(X). As

a consequence there is a sequence {yn}n completely contained in the complement of Eβ(X)

such that lim
n

yn = y.

Since each yn does no lie in Eβ(X) and by the strict parameter monotonicity of expectiles,

see property 9. in Section 2.1, it holds

⟨yn,u⟩ > e1−β(⟨X,u⟩) > e1−α(⟨X,u⟩) for some u ∈ Sd−1,

and therefore for such u,

⟨y,u⟩ = lim
n
⟨yn,u⟩ ≥ e1−β(⟨X,u⟩) > e1−α(⟨X,u⟩),

which contradicts the fact that y ∈ Eα(X).
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B.3 Proof of Proposition 4.1

An explicit expression for the expectile depth can be obtained from its definition as a supre-

mum, the formula for the inverse expectile function in (6), and elementary algebra,

ED(y;X) = sup {α : y ∈ Eα(X)}

= sup
{
α : ⟨y,u⟩ ≤ e1−α(⟨X,u⟩) for all u ∈ Sd−1

}
= sup

{
α : e−1

⟨X,u⟩(⟨y,u⟩) ≤ 1− α for all u ∈ Sd−1
}

= inf
u∈Sd−1

(
1− e−1

⟨X,u⟩(⟨y,u⟩)
)

= inf
u∈Sd−1

(
1− E⟨y −X,u⟩+ E⟨X − y,u⟩+

E⟨y −X,u⟩+ 2E⟨X − y,u⟩+

)
=

(
2 + sup

u∈Sd−1

⟨y − EX,u⟩
E⟨X − y,u⟩+

)−1

=

(
2− inf

u∈Sd−1

⟨EX − y,u⟩
E⟨X − y,u⟩+

)−1

.

B.4 Proof of Proposition 4.2

a) Without loss of generality, consider a random vector centred at the origin of co-

ordinates, EX = 0, any x ∈ Rd, and 0 < λ < 1, we just have to show that

ED(λx;X) > ED(x;X).

After the strong projection property, α = ED(x;X) = ED(⟨x,u⟩, ⟨X,u⟩) for some

u ∈ Sd−1, now the strict monotonicity of inverse expectile function guarantees that

ED(⟨λx,u⟩, ⟨X,u⟩) > α. Finally, ED(⟨λx,u⟩, ⟨X,u⟩) is a lower bound of ED(λx;X).

b) As shown in Dyckerhoff (2017, Th.3.2), part b) is equivalent to the continuity of the

map α ↦→ Eα(X) w.r.t. the Hausdorff metric proved in Proposition 3.1.
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B.5 Proof of Theorem 5.1

a) Following Holzmann and Klar (2016, Th.2), for any fixed u ∈ Sd−1 and α ∈ (0, 1/2), the

sample expectiles e1−α(⟨x1,u⟩, . . . , ⟨xn,u⟩) converge a.s. to e1−α(⟨X,u⟩). In terms

of the support functions of the expectile regions, {h(Eα
n,u) : n ≥ 1} converge a.s. to

h(Eα(X),u).

According to Molchanov (2017, Prop.1.8.17) the almost sure pointwise (on u) con-

vergence of support functions of random compact convex sets to the support function

of a deterministic set implies the almost sure convergence of the random sets to the

deterministic one in the Hausdorff metric. In conclusion, {Eα
n : n ≥ 1} converges a.s.

to Eα(X) in the Hausdorff metric.

Following Dyckerhoff (2017, Th.4.7), the strict monotonicity condition of the expectile

depth shown in part b) of Proposition 4.2 and the almost sure convergence of {Eα
n : n ≥

1} in the Hausdorff metric for any fixed α imply the almost sure uniform convergence of

{Eα
n : n ≥ 1} in the Hausdorff metric on a compact set α ∈ I ⊂ (0, 1/2). In conclusion,

sup
α∈I

dH(E
α
n,E

α(X))
a.s.−→ 0.

b) After property 2. in Section 4.1, the map y ↦→ ED(y;X) is continuous. Together with

the result in part a), Dyckerhoff (2017, Th.4.6) has shown that this implies the almost

sure uniform convergence of the sequence of depths {EDn( · ;X) : n ≥ 1} .
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