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a b s t r a c t 

Boosting ensembles have deserved much attention because their high performance. But they are also sensitive to adverse conditions, such as noisy environments or 
the presence of outliers. A way to fight against their degradation is to modify the forms of the emphasis weighting which is applied to train each new learner. In this 
paper, we propose to use a general form for that emphasis function, which not only includes an error dependent and a proximity to the classification boundary dependent 
term, but also a constant value which serves to control how much emphasis is applied. Two convex combinations are used to consider these terms, and this makes 
possible to control their relative influence. Experimental results support the effectiveness of this general form of boosting emphasis.
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. Introduction

Boosting is the most celebrated family of algorithms to build

lassifier ensembles. Its key idea is to iteratively train each

earner paying more attention to examples that are difficult to

lassify by the previously available partial ensemble and, after it

o aggregate learner’s output to that of the partial ensemble

daboost [10] and 

eal Adaboost (RA) [20] were its original forms. These design

in- imize an exponential function of the margin product (targe

y output value) or an upper bound of it, respectively. Yet a huge

umber of modifications and extensions have appeared after them

19].  It is remarkable that the exact form of the emphasis –the ex

mple weighting factor for training– is not essential to get good
esults [5,6],  although different forms can lead to better or worse

erformances in a problem-dependent manner.

ne of the most valuable characteristics of boosting algorithms i

hat they oppose a serious resistance to overfitting [9,14,18,21].  

ut there are evidences of overfitting phenomena in some

articu- lar situations [7,8,15].  It was found that overfitting tend

o appear when dealing with very noisy problems or when there

re many outliers. It seems clear that to pay much attention to

rroneous samples under these circumstances can increase these

ifficulties. 

Several modifications have been introduced to deal with thi
rawback, for instance, [15,16,22,23].  Among these 

odifications, [11,12] proposed to combine the proximity to the 

lassification ∗
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oundary of each training example with an error measure in a

arametric form. In this way, it is possible to balance the empha-

is weighting among highly erroneous samples and examples that

re close to the classification boundary, that have a great risk of

ecoming misclassified. Experimental results showed the effective-

ess of this approach. 

A second step is taken in [1,2],  where the above mixed

mpha- sis is also applied to the K nearest neighbors of each

ample, and the overall weight for each sample is a convex

ombination of the individual and the average neighbor emphasis

 version in which the combination of the error and the

roximity terms is selected 

or each learner according to the minimization of the edge parame-

er, which is called DWK-RA (Dynamic Weighting K-neighbour Real

daboost), provides excellent experimental results. However, DWK-

A design requires a lot of computational effort, much of which is

ue to the cross validation of its many additional parameters: that 

f combining error and proximity (for each learner), that of com-

ining individual and neighbor emphases, and the value of K,  as

ell as the determination of the nearest neighbors for each sam-

le. 

In this contribution, we propose an alternative further step: In

luding a constant term with the combination of the error and

roximity emphases. This will serve to graduate the intensity o

hat mixed emphasis, limiting the increased attention which is

aid to the above mentioned types of examples, thus producing

ffects that are qualitatively similar to those of DWK-RA, but with

 much lower training computational cost. This kind of emphasis

as been successful in improving deep classifiers using auxiliary
achines [3],  allowing performance improvements much higher 
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Table 1

Characteristics of the benchmark problems.

Dataset Notation #Train C 1 /C −1 #Test C 1 /C −1 Dimension (D)

Abalone Aba 2507 1238 / 1269 1670 843 / 827 8

Breast Bre 420 145 / 275 279 96 / 183 9

Crabs Cra 120 59 / 61 80 41 / 39 7

Credit Cre 414 167 / 247 276 140 / 136 15

Diabetes Dia 468 172 / 296 300 96 / 204 8

German Ger 700 214 / 486 300 86 / 214 20

Hepatitis Hep 93 70 / 23 62 53 / 9 19

Image Ima 1300 736 / 564 1010 584 / 426 18

Ionosphere Ion 201 101 / 100 150 124 / 26 34

Kwok Kwo 50 0 30 0 / 20 0 10200 6120 / 4080 2

Ripley Rip 250 125 / 125 10 0 0 50 0 / 50 0 2

Waveform Wav 400 124 / 276 4600 1523 / 3077 21
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than simpler forms. However, let us remark from the beginning

that there is not any theoretical guarantee of getting this advan-

tage in all the practical situations: A relative overemphasis of ex-

amples that are near to the boundary can create even worse diffi-

culties than overfitting, and the need of empirically the values of

the emphasis parameters can lead to suboptimal designs. 

The rest of the paper is structured as follows. In Section 2,  we

present and justify the emphasis function we propose. We wil

consider binary problems, although the formulation can be easily 

extended to multiclass situations. Section 3 presents some experi

ments and discusses their results in comparison with those of RA-

type ensembles and a non-moderated version of the proposed em-

phasis. The main conclusions of our work close this contribution. 

2. The proposed emphasis function

According to the above, we will consider the emphasis 

p m 

(
x (n ) 

)
= α + (1 − α) 

[
β
(
t (n ) − o (n ) 

m −1

)2
4 

+ (1 − β) 
(
1 − o (n )2 

m −1 

)]

(1)

where p m 

is the weight for the example { x ( n ) , t ( n ) } (observation

vector and its target, ± 1) for training learner m , o (n ) 
m −1 

is the ag-

gregated output of the previous m − 1 learners for that example

(aggregation is carried out according to its standard RA form), and

α, β are non-trainable design parameters. Obviously, β is a convex

combination parameter, 0 ≤ β ≤ 1, which balances the contribu-

tion of the term corresponding to the error, 
(
t (n ) − o (n ) 

m −1

)2
, and the

term corresponding to the proximity to the boundary, 1 − o (n )2 
m −1 

. On

the other hand, we regulate the intensity of the resulting mixed

emphasis with a constant term: Since a factor in the emphasis

weights is irrelevant, we combine a constant term α with 1 − α 
times the convex combination of the error and proximity terms, in

order to allow a simple exploration: 0 ≤ α ≤ 1. Note that α = 0 

will reduce the emphasis to a convex combination of error and

proximity, β serving to balance their relative importance. This i

equivalent to the mixed emphasis which was introduced in
[11,12],  but using alternative analytical measures for error and
proximity. If 

we also take β = 1,  we have a quadratic error cost form of a

pure RA, which we will call Alternative RA (ARA). In general, α
and β can be established by means of a Cross Validation (CV
process. 

For the sake of clarity, let us insist: There are three components 

n (1) . The first is the constant term α: When it takes high val- 

es, the intensity of emphasis is reduced, and this can be beneficial 

hen solving some problems. The other two terms, that are com- 

ined with α in a convex manner, consider the error, t (n ) − o (n ) , 

hich is measured in the classical quadratic form, and the prox- 
(n )2 
mity to the border, 1 − o , which leads to pay more attention 

o samples that give near to zero outputs in the auxiliary machine, d
.e., to samples that are near the classification boundary; so, they

are critical for the performance of the resulting classification en-

emble. There is also a convex combination for these two terms. 

With respect to the auxiliary machine, or guide, which provides

he values of o(  n)  to be used in (1),  there are evidences of the 

d- vantage of using relatively powerful machines offering outputs

ot very different from those expected with the emphasized 

esign. Thus, using the partial ensemble which is available when 

raining each learner is an appropriate selection: This partial 

nsemble will be good enough in the final steps of the building 

rocess, and the similarity is obvious. 

Of course, many other error and proximity measures could be

mployed in (1),  and results would be better or worse depending

n the database under analysis. But we invoke [5] to defend tha

ur objective is to check if moderating the emphasis with α � = 0

an be beneficial, and not to explore how different measures work

n different problems. Note that the form of (1) i

omputationally efficient. 

. Experiments and their discussion

.1. Databases 

We will apply (1) for building boosting ensembles for 12 well

known databases that are frequently used as benchmark sets fo

his kind of experiments: Crabs and Ripley [17],  Kwok [13],  
nd 

he rest (Abalone, Breast, Credit, Diabetes, German, Hepatitis, Im- 

ge, Ionosphere, and Waveform), from [4].  Table 1 presents their 

ain characteristics. We will denote these databases by their 

hree first letters from now here. We remark that the practical 

eason to select these databases is to allow direct comparisons 

ith the results of the references that evaluated different 

mphasis forms, that used just the same databases. 

.2. Learners and training 

We will use one hidden layer (weak) Multi-Layer Perceptron

MLPs) as learners because they are unstable machines, and thi

akes them sensitive to differences in the emphasis function

hey are trained by the Back-Propagation algorithm to

inimize the weighted squared error between the desired outpu

nd what the network actually outputs, initializing all the

eights at random values from a [ −0.  2,  0.  2] uniform

istribution. The learning rate for both layers is set to be 0.01

hich has been experimentally proven to be enough to reach

onvergence. The number of hidden units, H,  is established by

eans of a 20-run × 5-fold CV, which also serves to determine

he values of α and β, that are explored from 0 to 1 in steps o

ize 0.1. An 80/20 early stopping mode is applied to stop training

The final results come from training the cross-validated 
esigns 50 times. 
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.3. Results and their discussion 

We will present performance results for five types of designs: 

• The proposed Controlled RA (CRA), where α and β are estab-

lished by means of CV;
• Two algorithms that do not include the moderation mechanism,

i.e., with α = 0:  β RA, which includes both error and proximity

terms –we repeat that it is a mixed emphasis scheme analo- 

gous to those in [11,12] ,– and the above mentioned ARA, which

corresponds to α = 0,  β = 1.  
• And, finally and for completeness, two schemes that include the

moderating constant α, but only one output-dependent empha-

sis term: That of error, α1RA ( β = 1 ), and that of proximity,

α0RA ( β = 0 ).

Table 2 shows the corresponding experimental results, average 

rror rates ± standard deviations in %, for 50 runs with the CV se-

ected parameters in each case. These parameters also appear in-

ide brackets (averages ± standard deviations for M , the number

f learners). We will discuss these results in an ordered form. 

∗ CRA vs. ARA: CRA performs better than ARA for 8 databases

(Bre, Dia, Ger, Ima, Ion, Kwo, Rip, and Wav) and it is not

worse than ARA for the other four, according to Wilcoxon

tests with 95% confidence level. 

We remark that the Wilcoxon tests results must be con-

sidered as merely indicative, since we are not dealing with

strictly independent experiments. It can be easily checked

that, in our cases, these results are much similar to those

offered by the simple rule-of-thumb of accepting perfor-

mance differences when the difference between error aver-

ages is higher than the average of typical deviations, a rule-

of-thumb we will apply here for other less relevant compar-

isons. 

The above results permit to conclude that CRA provides a

clear advantage with respect to the standard ARA. 
∗ β RA vs. ARA: β RA does not improves ARA for two databases

that show advantage for CRA (Ion and Wav) according to the

same Wilcoxon tests, and it improves ARA results for the

other six. Thus, β RA can be considered better than the stan-

dard ARA, but not as good as CRA. We emphasize that this

occurs even using a very simple CV mechanism, a fact that

affects to CRA more than to β RA, because CRA includes two

non-trainable parameters, α and β , and β RA only the sec-

ond. 

Together, the above results mean that both the constant and

the proximity to the boundary terms are useful to increase

performance in enough number of cases, although most of

the advantage usually comes from the second. 
∗ α1RA and α0RA: By constraining β to each of its two ex-

treme values, we get the effects that could be expected.

When using α1RA –a moderated version of ARA–, things be-

come clearly worse with respect to CRA for Cre and Rip. It

is remarkable that there is not significant degradation for

databases that used a high value of α in CRA (Dia, Ger, and

Hep). On the other hand, when applying α0RA –a combi-

nation of a moderation and a proximity to the boundary

terms–, there is more degradation for Cre, but none for Rip.

This indicates that a moderated emphasis according to the

proximity to the boundary can be occasionally better than a

moderated version of the traditional emphasis according to

the classification error, a new and interesting finding. 
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Table 3

Average error rate ± standard deviation (%) for standard RA and ARA for the 

databases of the experiments. CV values for α, β and H (number of hidden units)

are also included, as well as statistics (average ± standard deviation) of the num- 

ber of learners of the ensembles, M .

RA ARA

Aba ( M ) ( H ) 19 .4 ± 0.02 (31.2 ± 0.4) (4) 19 .2 ± 0.4 (28.7 ± 3.8) (8) 

Bre ( M ) ( H ) 2 .6 ± 0.4 (21.3 ± 4.2) (6) 2 .5 ± 0.4 (20.1 ± 6.2) (2) 

Cra ( M ) ( H ) 2 .5 ± 0 (11.1 ± 0.8) (2) 2 .5 ± 0 (89.0 ± 7.4) (2) 

Cre ( M ) ( H ) 10 .1 ± 0.7 (29.4 ± 6.5) (2) 7 .4 ± 1.3 (18.0 ± 1.8) (2) 

Dia ( M ) ( H ) 20 .6 ± 0.8 (33.2 ± 5.0) (2) 25 .8 ± 1.4 (35.9 ± 7.9) (6) 

Ger ( M ) ( H ) 22 .3 ± 0.7 (33.6 ± 5.9) (2) 25 .9 ± 1.5 (56.9 ± 12.3) (6) 

Hep ( M ) ( H ) 8 .9 ± 1.8 (22.2 ± 3.9) (17) 7 .2 ± 1.2 (22.2 ± 3.9) (18) 

Ima ( M ) ( H ) 3 .0 ± 0.4 (21.2 ± 3.1) (11) 4 .1 ± 0.6 (32.5 ± 3.4) (15) 

Ion ( M ) ( H ) 4 .9 ± 0.9 (13.4 ± 4.5) (5) 4 .3 ± 0.8 (29.8 ± 6.2) (7) 

Kwo ( M ) ( H ) 11 .7 ± 0.01 (29.3 ± 0.1) (15) 11 .8 ± 0.2 (18.7 ± 1.5) (6) 

Rip ( M ) ( H ) 9 .7 ± 0.01 (28.9 ± 0.9) (48) 9 .3 ± 0.3 (37.1 ± 6.4) (43) 

Wav ( M ) ( H ) 11 .7 ± 0.4 (30.1 ± 6.1) (2) 11 .5 ± 0.3 (40.1 ± 6.3) (6) 
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% ER
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Fig. 1. Building average error rate (%), % ER, curves vs. number of learners, M,  for 
CRA ( α = 0.  9,  β = 0.  3)  (continuous line), β RA ( β = 0.  1) (dotdash line) and ARA 

(dotted line) in Dia.
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Fig. 2. Test average error rate (%), % ER, curves vs. number of learners, M , for CRA

( α = 0 . 9 , β = 0 . 3 ) (continuous line), β RA ( β = 0 . 1) (dotdash line) and ARA (dotted 

line) in Dia.
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3.4. Some deeper perspectives 

To appreciate the differences of results for different emphasi

methods, Table 3 shows the performance of ARA and standard RA

(the latter are taken from [2],  Table 2 ). It appears that the

winner method is problem-dependent: ARA for Cre, Hep, Ion, and

Rip, and RA for Dia, Ger, and Ima. 

Comparing the results of CRA with the best method in [2]

DWK-RA, there are also clear differences for Cre (advantage of CRA

and for Ger, Hep, and Ima (advantage of DWK-RA) (we insist in

the 

higher computational load that designing DWK-RA ensembles re

quires, as discussed in the fourth paragraph of the Introduction)

These differences could be attributed to the different proximity

and error measures that are used in both families of methods. Bu

it must be noticed that DW (Dynamic Weighting) techniques select

the proximity and hybrid emphasis terms for each learner, by max

imizing the edge value –see [11] –, and this is an implicit advan

tage, and it also eliminates the need of cross-validating the

combi- nation parameter. 

To check if this simplification of the CV processes has any in

fluence in the results, it is useful to visualize the convergence of 

the algorithms we are introducing. Figs. 1 and 2 present the train

ing and test error evolution with the number of learners in Dia

for the algorithms we are introducing in this paper with their op
timal CV parameterization: CRA with α = 0.  9,  β = 0.  3,  β RA 

with 
= 0 . 1 , and ARA. Notice that both CRA and β RA reach (approx.)

heir best training performance for 2 learners, and they keep this

erformance when the number of learners increases. This will pro-

oke stopping problems, and, consequently, difficulties in selecting

heir parameters by CV. In fact, an omniscient design of CRA (i.e.,

y selecting its non-trainable parameters according to the test re-

ults) leads to α = 0 . 3 , β = 0 . 6 with the same value of H ( H = 2 )

nd similar numbers of learners (19.3 ± 0.5) . . . But with a much

etter performance: 19.1 ± 0.4%. It is true that the omniscient de-

ign is invalid, but it serves to establish the potential limits of any

V process. Thus, it is obvious that improved stopping and CV pro-

esses will further increase the quality of the proposed designs,

lthough the computational load will also increase. However, given

he performance results of the different techniques we are explor-

ng here, it can be concluded that CRA is a very good boosting

lgorithm which needs a relatively moderate computational effort

or its design. This means that introducing an emphasis control pa-

ameter, such as α, is an efficient and effective possibility to build

oosting ensembles. 

. Conclusions

Including a constant term into the emphasis weights to con-

truct boosting ensembles can be useful to obtain better perfor-

ance. Experimental results for a number of benchmark databases

upport that this option is an effective possibility: Obtaining ad-

antage requires not more than an easy and computationally af-

ordable cross-validation process. 

Further steps along this research direction will be dedicated to

nalyzing the sensitivity of the performances with respect to α and
 and, subsequently, establishing complementary rules for improv-

ng these designs. 
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