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Abstract
Average block entanglement in the 1DXX-model with uncorrelated random couplings is known to
grow as the logarithmof the block size, in similarity to conformal systems. In this workwe study
random spin chainswhose couplings present long range correlations, generated as gaussian fields with
a power-law spectral function. Ground states are always planar valence bond states, and their statistical
ensembles are characterized in terms of their block entropy and their bond-length distribution, which
follow power-laws.We conjecture the existence of a critical value for the spectral exponent, below
which the systembehavior is identical to the case of uncorrelated couplings. Above that critical value,
the entanglement entropy violates the area law and grows as a power law of the block size, with an
exponent which increases from zero to one. Interestingly, we show that XXZmodels with positive
anisotropy present the opposite behavior, and strong correlations in the couplings lead to lower
entropies. Similar planar bond structures are also found in statisticalmodels of RNA folding and
kinetic roughening, andwe trace an analogy between them and quantum valence bond states. Using
an inverse renormalization procedurewe determine the optimal spin-chain couplingswhich give rise
to a given planar bond structure, and study the statistical properties of the couplings whose bond
structuresmimic those found inRNA folding.

1. Introduction

Entanglement in disordered spin chains has receivedmuch attention recently [1–4]. Themain reason is that, as
opposed to on-site disordered systems [5], long-distance correlations are not destroyed in this case, but only
modified in subtle ways. Thus, for the 1DHeisenberg andXXmodels with uncorrelated random couplings, the
vonNeumann entropy of blocks of sizeℓ is known to violate the area law and grow as ℓ( )log , similarly to the
conformal case [6, 7]. The prefactor, nonetheless, is different. In our case, it is given by the central charge of the
associated conformal field theory (CFT)multiplied by ( )log 2 (but this is not always true [8]).Moreover, the
Rényi entropies do not satisfy the predictions of CFT [9], because thesemodels are not conformal invariant.

A very relevant tool of analysis is the strong disorder renormalization group (SDRG) devised byDasgupta
andMa [10], which shows that the ground state (GS) ofHeisenberg orXX chainswith strong disorder can be
written as a product of random singlets, inwhich all spins are paired upmaking SU(2) singlet bonds.
Furthermore, the renormalization procedure prevents the bonds from crossing, i.e., the bond structure will
always be planar. The paired spins are often neighbors, but not always. As it was shown [1, 11], the probability
distribution for the singlet bond lengths, ℓ( )PB falls as a power-law, ~ h-ℓ ℓ( )PB , with h = 2. Entanglement of
a block can be obtained just by counting the number of singlets whichmust be cut in order to isolate the block,
andmultiplying by the entanglement entropy of one bond, which is ( )log 2 . Interestingly, a similar behavior is
obtainedwhen the couplings are not random, butmodulated in a complex enoughway, e.g. aperiodically
[12–14].
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Under the SDRGflow, the variance of the couplings increases and its correlation length decreases, thus
approaching the so-called infinite randomness fixed point (IRFP) [11]. Themain question addressed in this
work is: is this fixed point unique? It is known that local correlations of the couplings can befine-tuned in order
to protect entanglement [16–18].Moreover, if the couplings present a diverging correlation length, wemay
expect new fixed points of the SDRG. It has been shown that a strong correlation in the noise can change the
universality class and induceGriffiths singularities [15]. In some cases, inhomogeneous non-random couplings
can present very large entanglement, for example, if they decay exponentially from the center, they give rise to
the rainbow phase, inwhich singlets extend concentrically [19–21]. Thus, it is natural to ask about the possible
fixed points of the SDRGwhenwe consider ensembles of couplings which present long-range correlations, but
are still random.

New candidates tofixed points can be found by observing the statisticalmechanics of the secondary
structure of RNA [22]. A simple yet relevantmodel is constituted by a closed 1D chainwith an even number of
RNAbases, whichwe call sites, which are randomly coupled in pairs with indices of different parity [23, 24].
Each pair constitutes an RNAbond, and the only constraint is that no bonds can cross. Therefore, the ensemble
of secondary structures of RNA can be described in terms of planar bond structures, just likeGSs of disordered
spin-chains.Wiese and coworkers [24] studied the probability distribution for the bond lengths, and found

~ h-( )P l lB , with h = - »( )7 17 2 1.44.
Furthermore, the studies of RNA folding included a very interesting second observable. The planar bond

structure can bemapped to the height function of a discretized interface [24].We can define the expected
roughness of windows of size ℓ ℓ( )W, , as the deviation of the height function over blocks of sizeℓ, which can be
shown to scale in RNA folding structures like » aℓ ℓ( )W , with a = - »( )17 3 2 0.56.
Interestingly, h a+ = 2.

Aswewill show, the interface roughness is very similar to the entanglement entropy of blocks of sizeℓ, and
they are characterized by similar exponents. In the IRFP phase for random singlets, notice that the entropy is
characterized by a zero exponent, due to the logarithmic growth, and h = 2. Therefore, it is also true that
h a+ = 2.Wemay then ask, what is the validity of this scaling relation?Does the RNA folding case correspond
to some choice of the ensemble of coupling constants for a spin-chain? Canwe obtain other fixed points which
interpolate between the IRFP and the RNA folding cases?

Wemay keep inmind that the couplings in some spin chainmodels (e.g., theXXmodel) can bemapped into
modulations of the spacemetric [30]. Thus, we are obtaining, in a certain regime, the relation between the
statistical structure of the spacemetric and the statistical properties of entanglement of the vacuum, i.e., theGS
of the theory.

This article is organized as follows. Section 2 introduces ourmodel and the renormalization procedure used
throughout the text.Moreover, it discusses the consequences of the planarity of the pairing structures which
characterize the states. In section 3we establish our strategy to sample highly correlated values of the couplings,
and shownumerically the behavior of the entropy and other observables.We also discuss the differences of
behavior between theXX andXXZmodels. In section 4we focus on the relation between the RNA folding
problem and our disordered spin chains, and determine an inverse algorithm to compute a parentHamiltonian
for any planar state, exemplifying it with the RNA folding states. How generic are planar states is the question
addressed in section 5, showing that they are non-generic through the study of their entanglement entropy. The
article ends in section 6 discussing our conclusions and ideas for furtherwork.

2.Disordered spin chains and planar states

Let us consider a spin-1/2XX chainwithN (even) sites and periodic boundary conditions, whoseHamiltonian
is

å= +
=

+ +( ) ( )H J S S S S , 1
i

N

i i
x

i
x

i
y

i
y

1
1 1

where the Ji are the coupling constants, whichwewill assume to be positive and strongly inhomogeneous.More
precisely, we assume that neighboring couplings are very different. Notice that we do not impose them to be
random.

In order to obtain theGS, we can employ the SDRGmethod ofDasgupta andMa [10]. At each
renormalization step, we pick themaximal coupling, Ji, decimate the two associated spins, i and +i 1, and
establish a singlet bond between them. The neighboring sites are then joined by an effective coupling given by
second order perturbation theory:
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= - +˜ ( )J
J J

J
2i

i i

i

1 1

among the next neighbors of the link, -i 1and +i 2. It is convenient to use a set of auxiliary variables, that we
will call log-couplings: = - ( )t Jlogi i . Themain reason is that, for them, theDasgupta-Ma renormalization rule
becomes additive:

= + -- +˜ ( )t t t t . 3i i i i1 1

Once the SDRGprocedure isfinishedwe can read ourGS as a product state of singlet valence bonds

Y ñ = + -ñ - -+ñ
Î

∣ (∣ ∣ ) ( )
( ) 

1

2
, 4GS

i j
ij ij

,

where  denotes a set of N 2 pairing bonds among theN spins.Many properties of these GSs have been studied
in the last thirty years [1–4, 11, 19–21, 28]. One of themost salient of those properties is the fact that the pairing
 which results from the renormalization proceduremust be planar, i.e., it can be drawnwithout any two bonds
crossing. States of the form (4)which fulfill this requirementwill be called fromnowon planar states.

2.1. Planar pairings
Inmore formal terms, let (even)N be the number of nodes, and a bond is defined as an ordered pair
= ( )p pp ,1 2 , where Î p p, N1 2 are the nodes joined. In principle, ¹( ) ( )p p p p, ,1 2 2 1 .We define the covered

nodes by the bond as º + -( ) { }C p pp 1, , 11 2 . Notice that, if p1 and p2 are consecutive, = Æ( )C p . Given
two bonds, p and q, we say that Ìp q if Ì( ) ( )C Cp q . If neither Ì( ) ( )C Cp q or Ì( ) ( )C Cq p , we say that
the bonds cross. A planar bond structure is defined as a set of N 2 bondswhich do not cross. Thus, the bonds
form a nested graph. An important remark is that the two nodes joined by bondmust have different parity. See
figure 1 for an illustration.

Let us assume that the nodes are indexed counterclockwise.We can nowdefine for each node i a value si to be
either+1 or−1 depending onwhether it is the source or the sink of a bond, as shown infigure 1.Of course, the
sumof all the si around the full system should be zero:å == s 0k

N
k1 . The si can be considered as slopes of a height

function

åº
=

( )h s . 5i
k

i

k
1

Of course, this definition is not translation invariant, sincewe start counting at node 1. In order to avoid that,
let h0 denote the absoluteminimumof this height function. Then, we can define the absolute height function,
º -H h hi i 0. Itsmeaning is the following: it denotes the number of bonds passing above the link joining nodes

i and +i 1. By construction, this absolute height function has, at least, one zero.

2.2.Dyck language and catalan numbers
There is a close analogy between planar pairings and theDyck language [25]. ADyckword is a string of symbols
from the alphabet {+,−} such that the number of+ counted from the left is always greater or equal to the
number of−. Equivalently, they are the set of properly balanced parenthesis. Thismeans that their height
function hi, as defined in equation (5), is positive for all i. The difference between our planar pairings and the
Dyck language resides entirely in the periodic boundary conditions. If, in our circular planar structures, we break
at the absoluteminimumof the height function, the analogywithDyckwords becomes complete.

Howmany different planar states are there for a systemof fixed size =N M2 ? Let us denote this value by PM.
Disregarding the ordering of the sites in each bond, whichmerely contributes a general 2M factor, we can
provide a recursive relation. Site 1must be linked to an even site, k2 . Then it creates two regions, one of size
-k2 2 and the other -M k2 2 . Thus, we get

Figure 1. Illustrating the planar pairings. A set ofN=12 sites, coupled by a planar pairing. Each site gets a slope value, = +s 1i or−1.
The height function, hi is shown in the bottom row. Ablock ismarked, containing sites 3–6.
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å=
=

- - ( )P P P 6M
k

M

k M k
1

1

alongwith =P 12 , which is known in the literature as Segner’s recurrence [25], which gives rise to theCatalan
numbers:

=
+

( )⎜ ⎟⎛
⎝

⎞
⎠P

M

M

M

1

1

2
. 7M

2.3. Entanglement of planar states
Given a planar state of the form (4), we can easily compute the entanglement entropy of any blockB: using 2 as
the base for the logarithms, it coincides with the number of bondswhichmust be cut in order to separate it from
the rest of the system [1, 2, 4]

åº Î Å Î( ) [ ] ( )S B p B p B , 8
p

1 2

where⊕ stands for the exclusive or (xor) symbol, whichmeans that either Îp B1 or Îp B2 , but not both.We
can prove the following theoremwhich relates the height function and entanglement. Let [ ]i j.. denote the block
{ }i j, , . Then

= + --
Î -

( ) ( )[ ]
{ }

S B H H H2 min . 9i j i j
k i j

k.. 1
1

Themeaning of that equation is the following. -Hi 1 represents the bonds that enter the block from its left
end, andHj the bondswhich exit from its right. For an example, seefigure 1. The blockmarkedwith the dashed
box is [ ]B 3 .. 6 . The number of bonds entering from the left is =H 22 , and the number of bonds leaving from the
right is =H 26 . But not all those bonds contribute to the entropy. Some of them just fly over the block, andwe
can separate the blockwithout touching them. Let hF be the number of those flying bonds, in our example
hF=1, the bond from site 1 to site 8. The links entering from the left, -Hi 1 are either overflying (hF) or not (hL):

= +-H h hi F L1 . Similarly, on the right we have = +H h hj F R, and the block entropy is given by +h hL R.We
will proceed to prove that hF is given by theminimumof the height function inside the block. Since the bonds
which contribute to the entropy, hL and hR, do not fly over the block, theymust either end inside it (hL) or start
inside it hR. Since the bonds can not cut, the hL bonds from the leftmust have ended before any of the hR start. At
that verymoment, only the flying bondswill remain. Infigure 1, thismoment takes place between sites 5 and 6,
= =h h1, 1L R and the block entropy is S=2. Thus, theminimumvalue of the height function is, exactly, hF.

We have + - = + =-H H h h h S2i j F L R1 , as required.
Notice that we can rewrite expression (9) as = - + --( ) ( ) ( )[ ]S B H H H Hi j i j.. 1 min min , thus showing a

connection between the block entropy and the average variation of the heightwithin the block, i.e. the roughness
of the interface. Themain difference is that the entanglement entropy gives special relevance to the boundaries.

3. Correlated random spin chains

The statistical properties of theGSs ofHamiltonians of the form (1)when the couplings { }Ji are picked randomly
and uncorrelated have been determined in a series of papers [1–4, 10, 11, 28]. The SDRGprocedure converges to
the so-called IRFP. Along the RG, the variance of the effective couplings grow, and their correlation length
decreases. It has been shown that the average entanglement entropy of a block of sizeℓ follows the expression
[4, 28]:

p
p

» + ¢ℓ ℓ( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟S

c N
Y

N
c

3
log , 10eff

whereY(x) is a scaling function and ceff is, in our case, equal to ( )c log 2 , where c is the central charge of the
associatedCFT, i.e., the onewhich corresponds to the homogeneous (conformal) case, with all the Ji equal. In
our case, c=1. Surprisingly, expression (10) is very similar to the conformal expression [6]:

p
p

» + ¢ℓ ℓ( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟S

c N

N
c

3
log sin . 11CFT

The scaling functionY(x) is, in fact, rather similar to ( )xsin [4, 28].
Another relevant observable which helps characterize the IRFP is the bond-length probability, i.e., given a

singlet bond (i, j), determine the probability distribution for its length = -∣ ∣l i j ,PB(l). This value is directly
related to the two-point correlation function [11]. In the uncorrelated case, it is known to behave, for l N , as
a power-law: » h-( )P l lB , where h = 2 [11].
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3.1. Correlated couplings
Our aim is to characterize theGSs ofHamiltonian (1)when the couplings Ji are random, but present non-trivial
correlations. If these correlations are short ranged, theywill bewashed away by the renormalization procedure,
and return to the IRFP. Thus, wewill consider the case of long-range correlations.

Let us establish a procedure to obtain samples from sets of log-couplings { }ti which present long-range
correlations, by employing a suitable Fourier expansion:

å f= +( ) ( )t A jksin , 12j
k

k k

where k are a set of allowedmomenta, p=k n N2n , with Î -{ }n N1, , 1 .We do not includemoment zero,
since it would amount to a global constant whichwould be irrelevant for the SDRG. The valuesAk and fk are
chosen as independent randomvariables. The phase fk is taken to be uniformly distributed in p[ )0, 2 and

= g- ( )A k u , 13k k

where the uk are independent gaussian variates with zero average and variance one, and γ is afixed spectral
exponent.

If g = 0, allmomenta in expression (12) get the sameweight, andwe obtain again an uncorrelated set of ti. As
we increase γ, the largermomenta get less and less weight, andwe are left with only the lowestmomenta. This
implies that the set of ti have stronger correlations. Figure 2 (A) shows typical samples for increasing values of γ.

The ensemble of log-couplings presents zero correlations inmomentum space, but strong correlations in
real space for increasing γ. The correlation function is translation invariant by construction, and given by

åá ñ µ
p

g
( ) ( ) ( ) ( )


t x t

k
kx0

1
cos . 14

k N2
2

ForN= 1000,figure 2 (B) shows the correlation as a function of the distance, normalized to have amaximal
value of one. For g = 0, the correlation is identically zero for all >x 0. For g  ¥ it approaches a cosine
function. The value g = 1, whichwill have special relevance in the rest of the text, appearsmarked.We should

Figure 2. (A) samples of { }ti forN=128 and increasing values of γ. (B) real-space correlation function for several values of γ from
zero (black) to infinity (red), obtained analytically forN=1000, from expression (14). The value g = 1 appears remarked in blue.
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remark that, although equation (14)makes perfect sense for allfinite values ofN, the expression diverges in the
thermodynamic limit for5 g  1 2.

Figure 3 shows some sample planar pairings for different values of γ, in the range from g = 0 (no
correlations) to g = 3 (large correlations), alongwith their corresponding height diagrams.

3.2. Entanglement, roughness and bond-lengths
Figure 4 (A) shows the average over 105 realizations of the entanglement as a function of the block sizeℓon a
N= 1000 system for different values of γ. The upper part of the panel is devoted to g  1, while the lower one
showsmore detail for g  1. Notice that the functions ℓ( )S collapse for all values of g < 1.We propose afinite-
sizefit of the form:

p» cℓ ℓ( ) ( ( )) ( )S A N Y N , 15

where the scaling functionY(x) is determined via a Fourier series expansion in the same line as [4, 28]:

åa= + +
=

¥

( ) ( ) (( ) ) ( )Y x x n xsin sin 2 1 . 16
n

n
1

The best fit values of an are small and nearly independent of the spectral exponent γ.We have found
a » 0.051 and a » 0.0052 , both slowly decaying as γ increases. The inset of the top panel offigure 4 shows these
scaling functions for different values of γ.

The values of the exponentχ presentmore relevance. Figure 4(B) show these exponents, found by three
different strategies: (i) finite-size, using a full fit to expression (15) forN= 1000, (ii) local exponent,fitting the
entropy for small blocks to a form » cℓ ℓ( )S also forN= 1000, (iii) global exponent,fitting ( )S N 2 to a form
cN for different values ofN, up toN= 2000. The three expressions differ slightly for larger γ, although they keep

a general trend: for g c 1, is very close to zero, while for g  ¥we see c  1. This signals a volumetric
growth of the entropy ~ ℓS . The discrepancies between the values ofχmeasured by the different strategies, as
seen infigure 4(B), may be of numerical origin.

Interestingly, for g < 1, the ℓ( )S curves collapse and the bestfinite-size fit to thewhole function is not given
by the power-law expression (15), but expression (10), i.e. a logarithmic behavior alwayswith the same prefactor
1/3. In the immediate vicinity of g = 1 the best fit is still logarithmic, but the prefactor increases slightly, as we
can see infigure 4(B). The numerical evidence allows us to conjecture that the IRFP extends for all values
of g < 1.

Another interesting observable is provided by the study of the height functionwhich characterizes the state,
given by equation (5). Aswewill show, the profiles are fractals, of similar nature to the ones appearing in the
study of rough interfaces [26, 27]. Let us define the roughness, or widthW, of the interface for a given length scale
ℓ as the average deviation of the heights inwindows of that size. Then, the Family–VicsekAnsatz assumes that
~ aℓW . Figure 5(A) shows the roughness as a function of thewindow sizeℓ, taking 105 realizations for each

value of γ. The top frame shows a log–log plot, while in the bottomone only the x-axis is logarithmic. The
difference is notorious: for g > 1, the roughness follows a clear power law, with exponentαwhich grows up to
one (shown as a straight line). For g < 1, instead, the behavior is better fit by a logarithmic function

~ℓ ℓ( ) ( )W log . This provides further support to the conjecture that the behavior for g < 1corresponds to the
IRFP. Again, the value g = 1

Panel (B) offigure 5 depicts the probability distribution for the bond-length. A power-law is established, i.e.,
~ h-( )P l lB , and η is shown to depend on γ. For g  1, the curves appear to be parallel, i.e., show the same

exponent, and only differing in their prefactor6.
Figure 5(C) shows the values of the three exponents, entropy (χ), roughness (α) and bond-length

distribution (η) as a function of the correlation parameter γ. Notice thatχ is very similar toα, as suggested by
relation (9)which links the block entropy to the heightfluctuations. Both exponents growwith γ, starting near
zero for uncorrelated spin chains and saturating at a value close to 1. The bond-length exponent η behaves in the
opposite way, starting at h = 2 for uncorrelated spin chains and decreasing towards zero. The region for g  1
is peculiar: while the bond-length η exponent is still 2, the other two exponents are very close to zero, since the
true behavior is expected to be logarithmic.

5
Thus, in order to have awell-defined system in the thermodynamic limit, equation (13) should include a prefactor depending onN such

that equation (14)does not diverge for x=0. This prefactor would tend to zero as  ¥N for g  1 2.Wehave not included this
correction factor because our calculations are performed for constantN, where equation (13) provides a well-defined ensemble of couplings
as it stands.
6
Instead of using theminimal length of the bond, we can also employ their renormalized length, i.e., the number of linkswhichwere

decimated in its formation during the SDRGprocedure. As opposed to theminimal length, the renormalized length can be larger than L 2.
This alternative definition does not affect the computation of entropies, but it changes the heights and the bond-lengths. But the universal
features described in this chapter were not changed, and thuswe do not show specific results.

6
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The limit g  ¥ is also rather special. A look at the last panel of 3 shows that rainbow-like structures
becomemore andmore prominent. The limit in which only the lowestmomentummodulation survives gives
rise to a perfect rainbow state, which presents volumetric entanglement [19, 21], i.e., ~ ℓS . This explains the
limit c  1 for the entropy exponent for large γ. Similarly, the height function becomes a nearly perfect wedge,

Figure 3.Bond diagrams for different samples withN=256 and γ running (downwards) from g = 0 to g = 3. To their right, the
corresponding height profiles.

7

New J. Phys. 18 (2016) 073025 J Rodríguez-Laguna et al



which explains the a  1behavior. In that extreme, the bond-length distribution is completely flat, since all
bond-lengths showup once for each realization, thus h = 0.

3.3. XXZmodel
It is interesting to askwhether the previous results extend to differentmodels. Let us consider the XXZmodel:

å= + + D
=

+ + +( ) ( )H J S S S S S S , 17
i

N

i i
x

i
x

i
y

i
y

i
z

i
z

1
1 1 1

with > =J 0i . In the homogeneous case, the system is known to be critical forD Î -( ]1, 1 and described by a
CFTwith c=1. In the disordered casewe can derive an SDRG rule [3]:

=
+ D
- +˜

( )
( )J

J J

J 1
. 18i

i i

i

1 1

Notice that, asD  - +( )1 , the renormalization rule diverges. In terms of the log-couplings = - ( )t Jlogi i we can
write it as:

= + - + + D- +˜ ( ) ( )t t t t log 1 . 19i i i i1 1

Figure 6 shows the average value of ℓ( )S for different values ofΔ and γ, using a small systemofN=1000
and 104 samples. For g = 0 (no correlations), we know that the average entropy profile only depends on the
central charge of the associatedCFT, which is c=1 in all cases. Therefore, all g = 0 curves are exactly equal, as
we see in thefigure. Interestingly, for g > 0, the dependence onΔ becomes very strong.Notice that forD > 0
the renormalized log-couplings are larger than in the XXmodel. Thus, itmay take a longer number of SDRG

Figure 4. (A)Average block vonNeumann entropy as a function of the block size for different values of γ andN=1000. Top panel:
g  1. Bottompanel: g  1. Notice that all curves collapse for g < 1. Inset: scaling function,Y(x) as in equation (16). (B) Fitting
exponentχ as a function of γ for the three strategies discussed in the text. Also, prefactor of a logarithmic growth law, in the region
where this thisfit is themost accurate.
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steps to renormalize them again. Therefore, the number of longer bondsmay be lower, alongwith the entropy
and height. Of course, the oppositemay be said ifD < 0. This effect ofΔ only takes place for correlated
couplings: forD > 0we see that increasing γ, in fact, decreases notably the entropy. The formation of rainbow-
like structures is inhibited, and high values of γ tend to produce dimerized structures ofminimal entropy. On the
other hand, forD < 0, an increase in γ enhances the effect strongly the entropy increase whichwe already
observed forD = 0, and giving rise to rainbow-like formations even for very low values of γ.

This result reinforces the idea that the behavior of the disordered system is not exclusively given by the
central charge of the associatedCFT [8]. For the XXZmodel, as we see, uncorrelated random couplings present a
behaviorwhich is independent ofΔ, but the inclusion of correlations lead to extremely different behaviors for
D > 0 andD < 0.

Figure 5. (A)Roughness of blocks, ℓ( )W , of different sizes, forN=1000 and different values of γ. The top frame is in log–log, while
the bottomone only the x-axis is logarithmic. This waywe can show that for g  1, the best fit is for a logarithmic growth of the
roughness. (B)Bond-length distribution, also forN=1000, using theminimal length.Notice that the lines are parallel for g = 0 and
g = 1, but shifted. They have the same scaling exponent, but different prefactor. (C):fitting exponents for the entropy (χ), roughness
(α) and bond-length (η) as a function of γ. Below the g = 1 line, it can be argued that the roughness and the entropy do not behave
like a power law, but instead they show logarithmic behavior.
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4. RNA folding and spin chains

As it was briefly discussed in the introduction, planar pairings also appear naturally in the study of the secondary
structure of foldedRNA strands [22]. Themodel developed byWiese and coworkers [23, 24]works in the
followingway: (1) a pair of sites with different parity are chosen randomly and paired; (2) further pairs are
chosen in the sameway, always under the constraint that no previous bonds can be crossed. In their seminal
work [24], the authors studied the roughness of the equivalent height function and the bond-length distribution,
showing that they both follow a power-law behavior, ~ aℓW and ~ h-( )P l lB . Then they proved that
a h+ = 2. If we assume the scaling equivalence of the roughness and the entropy, this result is also fulfilled in
uncorrelated random spin chains, wherewe have a = 0 (because of the logarithmic behavior of the entropy)
and h = 2 [1, 4]. On the other hand, this relation does not hold for correlated spin chains.

Wemay askwhat is the range of validity of the relation c h+ = 2 (or a h+ = 2). Extending the results of
[3, 4]we can provide a proof of that statement in the case of uncorrelated bonds. Indeed, let us consider a block
of sizeℓ and let us number the sites from1 toℓ. The bond at site iwill be cut by the block if it goes left and its
length is larger or equal than i, or if it goes right and its length is larger thanℓ−i. So, we have an estimate for the
average entropy:

å å» + > - =
= =

ℓ ℓ( ) ( ( ) ( )) ( ) ( )
ℓ ℓ

 S P l i P l i P l i
1

2
. 20

i
B B

i
B

1 1

This equation implies a double integration. If ~ h-( )P l lB , it leads to ~ h- +ℓ( )S l 2, as we desired. As it
follows fromfigure 5(C), this is not true for the planar state ensembles generatedwith correlated couplings. In
fact, in the rainbow limit, we have c h+  1, which suggests a strong correlation between the bonds.

4.1. The inverse problem
How strong is the connection between the RNA folding and disordered spin chains? Canwe obtain an ensemble
of couplings { }Ji such that theGSs ofHamiltonian (1) correspond to the planar states obtained in RNA folding?
This question leads us to the study of themore general inverse SDRGproblem.

If we regard the SDRG as amapping between sets of couplings and planar pairings, wemight be able to
reverse the algorithm, and obtain the set of couplings which give rise to a certain planar pairing. In other terms, a
parent 1DHamiltonian for a given planar state. In this sectionwewill show that (1) every planar state has a (non-
unique) parent 1DHamiltonian and (2) an explicit algorithm to obtain the optimal set of couplings, in a sense to
be determined later.

The aim is to obtain the logarithmic couplings, { }ti , given the set of bonds, { }pi . Our proposed algorithm
works as follows (see figure 7 for an illustration):

• Sort the bonds in order of increasing length.

• Consider the bonds of length one, fix their internal log-couplings to 0. In thefirst row offigure 7, we put a zero
under links 3–4 and 10–11.

Figure 6.Average entropy, using 104 realizations andN=1000 for theGS of theXXZmodel. Different panels showdifferent values of
Δ, while colors denote different values of γ. The horizontal linewill help the reader realize that, for g = 0, all entropy profiles are
equal.
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• Flank these zeroes with log-couplings of value 1 at both sides. See the second rowoffigure 7, where the arrows
in the new values point to the zerowhich theyflank.

• Now consider the bonds of length three. Find the effective log-couplingwhichwould appear as their
renormalization value (whichmust be 2). Flank themwith log-couplings of value + =2 1 3 at both sides, as
in the third row offigure 7.

• Consider the rest of the bonds in order of increasing lengths. For each of them, find their renormalization value
andflank themwith log-couplings of value one unit higher.

• Log-couplingsmay never decrease along the procedure. If two values collide, take the larger.

This procedure yields couplingswhich, by construction, always give rise to the desired bond structure.
Moreover, because the value of each bond is computed using the SDRG itself, we ensure a certain optimality
condition: among the sets of couplings yielding the desired state, our choice will always require theminimal span
of coupling values. For example, thisHamiltonianwill yield the largest possible gap.

Figure 8(A) shows the couplings which give rise to a give instance of the RNA folding problemwithN=100.
We have run 106 simulations of the RNA folding algorithm and obtained the optimal couplings for different
system sizes up toN=1000. Figure 8(B) shows the (translation invariant) correlation function for the log-
couplings in theN=50, 100 and 200 cases. The values present long range correlations, but not a clear power-
law behavior.Moreover, the couplings field { }ti is not gaussian. In the inset offigure 8(B)we show the histogram,
in logarithmic scale, for ti. Themarginal probability distribution is not gaussian. Instead, it is a power-law, with
an empirical exponent close to-4 3.

5.Generic planar states

Sincewe have determined that all planar states have a 1DparentHamiltonian, wemay still ask howdense are
planar states within theHilbert space. In other terms, how generic they are.We can define an ensemble of planar
states forN sites under the condition that all possible planar pairings have the same probability. In order to
sample that ensemble, we just apply a correction to the RNA folding sampling strategy. In the RNA folding
algorithm, the pair of sites (i, j)whichwill constitute the next bond is chosenwith equal probabilities among
thosewhich do not cut any previous bond. But, following that procedure, not all planar pairings are sampled
with the same probability. This can be corrected if the probabilities for each pair (i, j) are not equal, but
proportional to the number of planar pairings which are consistent with the presence of that bond.

Let us consider a certain empty patch of length n in a planar pairing which is under construction, i.e., a set of
contiguous spinswhich have not been paired yet. Aswe know, there are Pn possible ways to create a planar
pairing on that empty patch. The spinwith index 1must be pairedwith some spin inside the patch, let us refer to
its index as k. Then, after bond ( )k1, is established, the number of different possible planar pairings will be

- -P Pk n k2 . Thus the probability withwhich bond ( )k1, should be taken is just - -P P Pk n k n2 , which is known to
be less than one by construction, as we see in equation (6). Repeating this procedure, we can sample the planar
pairing ensemblewith equal probabilities.

We have found numerically the average block entropy as a function of the block sizeℓ for this ensemble of
states, and found that it grows as ~ cℓ ℓ( )S , with c » 0.54. The precise value is not very relevant, but it allows
us to conclude that planar states are highly non-generic quantum states, because for generic states we should
obtain ~ℓ ℓ( )S , i.e., a volumetric growth of the entropy.

Figure 7. Illustration of the inverse algorithm to obtain the optimal log-couplings which give rise, via the SDRG, to a given planar
bond structure. Each row corresponds to one of the steps of the algorithm. The log-couplings which have not been assigned yet appear
as a ‘−’. The arrowswhich appear close to a new value point to the bondwhich has created (ormodified) that value.
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6. Conclusions and furtherwork

In this article we have applied the SDRG to study theGS properties of a strongly disordered randomXX spin-1/2
chainwith long-range correlations between its couplings. The states can be described as valence bond states with
planar bond structures, and they can have arbitrarily large entanglement entropy. Concretely, we have chosen
the couplings such that their logarithm is expressed as a Fourier series with random coefficients, falling as a
power-law of themomentum g-k . For g < 1 the behavior corresponds to the IRFP found for uncorrelated
coupling constants. Nonetheless, for g > 1, the block entropy behaves as a power-law of the block size, ~ cℓS ,
withχ a function of the exponent γwhich seems to interpolate smoothly between c = 0 and c = 1as g  ¥.
The bond length probability, which is related to the correlator, is also characterized by a power-law, ~ h-( )P l lB ,
with h = 2 for γ�1 and falling to h ~ 0 for g  ¥. This extreme, g  ¥, corresponds to the case where
only the lowestmomentum p=k N2 contributes to the correlation between the couplings, and the state
becomes a rainbow state. Aswe have shown, the planar states can bemapped to a 1D interface, whose roughness
behaves approximately like the entanglement entropy, as it is suggested by expression (9). Remarkably, the
systemdescribed constitutes a family of local 1DHamiltonians whoseGSs violate the area law to any desired
degree.

Interestingly, these results aremodel dependent. For the XXZmodel we have found a strong difference
depending on the sign of the anisotropy. IfD > 0, the increase in the correlation exponent γ leads to a lower
value of the entropy. On the other hand, ifD < 0 the entropy increases faster with γ than in the XX case. This
result allows reinforces the idea [8] that the central charge is not the only determinant of the behavior of a
disordered system.

Figure 8. (A)The optimal couplings which give rise to a given planar pairing obtained from theRNA folding algorithmwithN=100.
(B)The correlation function for the log-couplings at different points for =N 50, 100 and 200, using 106 realizations. Inset: histogram
for the log-coupling values for =N 100, 500 and 1000, alsowith 106 realizations. Notice the power-law inertial range, with an
exponent close to-4 3 (straight line).
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Wehave also considered the inverse renormalization problem: given a (planar) valence bond state, to obtain
its (1D) parentHamiltonian. In this waywewere able to study the ensemble of random spin chains whoseGSs
would correspond to the planar structures which showup in other physical situations, such as the RNA folding
problem. These engineered random spin chains present a behavior of the entanglement entropy and the
correlators which do not correspond to any value of γ.

All these results point to the idea that the phase diagramof random spin chains with large correlations
between the couplings is far richer than expected.

Inhomogeneous spin chains can bemapped, in some cases, tomodels which represent themotion of
fermionicmatter on a curved spacetime [29], where themetric is given by the coupling constants. Thus, our
study shows that the statistical properties of themetric showup as statistical properties of the entanglement of
the vacuum, i.e., theGS of the correspondingHamiltonian.Moreover, we can alsofind, using the inverse
renormalization algorithm, the optimal spatial geometry which gives rise to a certain vacuumentanglement.
These resultsmay shed light on the relation between entanglement and space-time [30].
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