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Abstract: We present a method to obtain quantitatively accurate images of small obstacles or
inhomogeneities situated near the surface of a strongly scattering medium. The method uses
time-resolved measurements of backscattered light to form the images. Using the asymptotic
solution of the radiative transfer equation for this problem, we determine that the key information
content in measurements is modeled by a diffusion approximation that is valid for small source-
detector distances, and shallow penetration depths. We simplify this model further by linearizing
the effect of the inhomogeneities about the known background optical properties using the
Born approximation. The resulting model is used in a two-stage imaging algorithm. First, the
spatial location of the inhomogeneities are determined using a modification of the multiple
signal classification (MUSIC) method. Using those results, we then determine the quantitative
values of the inhomogeneities through a least-squares approximation. We find that this two-stage
method is most effective for reconstructing a sequence of one-dimensional images along the
penetration depth corresponding to null source-detector separations rather than simultaneously
using measurements over several source-detector distances. This method is limited to penetration
depths and distances between boundary measurements on the order of the scattering mean-free
path.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Subsurface imaging in strongly scattering media has several applications in biomedical optics and
geophysical remote sensing. This imaging problem is severely ill-posed due to the inherent lack
of measurements available and inherent mathematical instabilities associated with the inverse
problem. The main challenge with this problem is extracting useful information about targets
in the medium from measurements of backscattered light. Because light is strongly scattered
by the medium, effectively none of the backscattered light corresponds to direct information
about targets. Consequently, there is an overall loss of data fidelity which, in turn, affects image
resolution and stability to noise.
Much of the work done on subsurface imaging has to do with processing measurements

and filtering out unwanted parts to increase data fidelity and overall signal-to-noise ratio. For
example, polarization gating has been shown to distinguish between less scattered light and
diffusely scattered light [1–3]. Other examples include using the time [4–6], frequency [7], and
angle characteristics of backscattered light [8]. All these techniques discriminate between weakly
and strongly scattered light giving better image resolution. However, there is less known about
how well a particular imaging algorithm will perform in reconstructing subsurface images from
backscattered light measurements. For example, it may be the case that an appropriate imaging
method may alleviate the need for sophisticated technology requirements or may better identify
the issues surrounding limitations inherent in an imaging system.

In this work, we introduce a method for subsurface imaging of targets at shallow depths. This
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imaging method uses time-dependent backscattered light measurements to reconstruct point-like
targets in the medium. Rather than reconstructing images using multiple source-detector pairs,
we show that collecting a series of one-dimensional reconstructions at null source-detector
distances works better. The key point here is that this method is able to reconstruct quantitatively
accurate, high depth resolution images using only diffusive light at moderate sampling rates. This
imaging method has an inherent depth limitation due to the exponential decay of the signal due
to scattering and absorption by the surrounding medium. The method proposed here reconstructs
targets at depths of the order of a scattering mean-free path as OCT does [9], but uses only
diffusive light. Consequently, this imaging method opens opportunities for developing novel
imaging modalities. Imaging deeper into the tissue, beyond the ballistic limit, can be enhanced by
including a few angle-resolved measurements as it was shown in [8]. To keep the measurement
process as simple as possible, we use angle-averaged measurements here to form the images.
The method has two stages. In the first stage, the location of the targets is determined using

the MUSIC algorithm. MUSIC is an abbreviation of MUltiple SIgnal Classification and the
algorithm was first introduced by Schmidt in [11]. It has been used successfully in signal
processing [12] and imaging [13, 14]. We also refer to [15] for an analysis of MUSIC for
single-snapshot spectral estimation. More recently, a modified MUSIC algorithm was proposed
for diffuse optical tomography by Dileep et al. [16]. The algorithm proposed here is different
from that work in that it is adapted to null source-detector distances. In this case, only a single
data vector is available for imaging at each measurement location. This is a challenging setup for
MUSIC that relies on multiple measurement vectors collected at several detectors. We show,
however, that using a Prony-type idea [23] we can form a suitable data matrix from which the
locations of the targets can be determined with MUSIC. In the second stage, those target locations
are used to simplify the determination of the optical quantities associated to them. This second
stage is done through the solution of a relatively simple, low dimensional least-squares problem.
One key to the effectiveness of this imaging algorithm is due to the use of an asymptotic

model for backscattered light measurements developed by Rohde and Kim [17]. This asymptotic
theory introduces a slightly modified diffusion approximation that is valid at null source-detector
distances and at shallow penetration depths. It is this diffusion approximation that is used in the
two-stage imaging method described above.

The remainder of this paper is as follows. In Section 2, we give a description of the asymptotic
model used in the reconstruction method. Included in this section are some initial results that
use a standard `2 method for image reconstruction. Those poor results motivate the use of a
more sophisticated imaging algorithm that is described in Section 3. In Section 4, we state the
limitations of this imaging method and the sources for error. We show numerical results of the
new imaging method in Section 5. Section 6 contains our conclusions.

2. Modeling measurements

We use radiative transfer theory to describe light backscattered by a half space containing small,
point-like inhomogeneities located superficially below the surface of a strongly scattering medium.
Using the asymptotic solution of the radiative transfer equation in strongly scattering media, we
derive a model for measurements. This model is further simplified by linearizing the effect of
those inhomogeneities on the data using the Born approximation. We show that the minimum
`2-norm solution for image reconstruction is ineffective for this problem thereby motivating the
need for a more sophisticated imaging method.
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2.1. Radiative transfer

The specific intensity I (ŝ, r, t) gives the power flowing in direction ŝ at position r, and time t.
The radiative transfer equation

1
c
∂I
∂t
+ ŝ · ∇I + µa I + µs I = µs

∫
4π

f (ŝ · ŝ′)I (ŝ′, r, t)dŝ′ (1)

governs I in a medium that absorbs and scatters light. Here, c is the speed of light in the medium,
µa is the absorption coefficient, and µs is the scattering coefficient. The scattering phase function
is denoted by f . It gives the fraction of light incident in direction ŝ′ that is scattered in direction
ŝ. We have assumed that f is spherically symmetric so that it depends only on ŝ · ŝ′.

Consider the half space z > 0 with boundary z = 0. The refractive index inside the half space
is different from that outside of it. We seek to solve (1) subject to the initial condition

I |t=0 = 0 , (2)

and boundary condition
I |z=0 = T0δ(ŝ − ẑ)h(x, y, t) + R[I] (3)

prescribed over the hemisphere of directions that point into the medium corresponding to ŝ · ẑ > 0.
Here, T0 is the transmission coefficient for the pulsed beam, denoted by h(x, y, t), incident
normally on the boundary. In addition, R[I] is the internal reflection of light incident on the
boundary from inside the half space due to the refractive index mismatch. The initial-boundary
value problem comprised of (1) subject to initial condition (2), boundary condition (3), and
requiring that I → 0 as z → ∞ gives a complete mathematical description of the direct problem.
For measurements, we consider the time-resolved diffuse reflectance

r (x, y, t) = −
∫
NA

Tout [I](ŝ, x, y, 0, t)ŝ · ẑdŝ. (4)

Here, NA denotes the numerical aperture of the detector. It is a subset of directions satisfying
ŝ · ẑ < 0, corresponding to light exiting the half space. The operation Tout [I] denotes the light
incident on z = 0 from within the half space that is transmitted out of the half space across the
index mismatched boundary. These measurements give the spatial-temporal distribution of light
backscattered by the medium. Because we only consider backscattered light, the inverse problem
that forms the images is severely ill-posed.

2.2. Asymptotic solution in strongly scattering media

The strong scattering limit corresponds to when multiple scattering in the medium is dominant
and absorption is weak so that µs � µa . It is well understood that the diffusion approximation
accurately describes light that has propagated deep into a strongly scattering medium [18,19].
This approximation states that u(r, t) ∼

∫
4π I (ŝ, r, t)dŝ satisfies the diffusion equation

1
c
∂u
∂t
+ µau − ∇ · (D∇u) = 0, (5)

where D denotes the diffusion coefficient.
The challenge in using the diffusion approximation is that approximate boundary conditions

and sources must be used. For this reason, the conventional wisdom is that the diffusion
approximation is not valid near boundaries or sources. Rohde and Kim [17] have recently
developed an asymptotic theory for the radiative transfer equation in the strong scattering limit.
This theory includes a so-called boundary layer solution that corrects the error made by the
diffusion approximation near boundaries and sources. Using this asymptotic theory, we determine
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that the diffusion coefficient is D = 1/[3µs (1 − g)] with g denoting the anisotropy factor or
mean cosine of the scattering angle. Very often, µa is included in the diffusion coefficient so that
D = 1/[3µs (1 − g) + µa], but because µs � µa is assumed here, its role in D is negligible in
this asymptotic theory. The asymptotic approximation for the time-resolved diffuse reflectance
given by (4) is

r ∼ r0h + r1∂nu|z=0, (6)

with h denoting the same pulsed beam introduced in (3), and ∂nu|z=0 denoting the normal
derivative of the solution of (5) (evaluated on z = 0) subject to the initial condition

u|t=0 = 0, (7)

and boundary condition
u|z=0 = c0h(x, y, t). (8)

The coefficients, r0, r1, and c0 are constants that depend on fundamental quantities in the problem.
The main difference in this diffusion approximation, fromwhat is typically used, is the Dirichlet

boundary condition (8) instead of a Robin-type boundary condition, which is derived through a
boundary layer that fulfills boundary conditions and sources in the radiative transfer equation.
Effectively, the boundary layer solution relieves the diffusion approximation from having to
completely resolve boundary conditions and sources in the problem on its own, thereby allowing
for this simpler boundary condition (see [17] for details).
According to (6), each measurement is a linear combination of the known pulsed beam,

and the normal derivative of the solution of the diffusion equation evaluated at the boundary.
Consequently, the term proportional to ∂nu|z=0 is the only one that carries information about
the interior of the domain. Suppose that the background optical properties of the medium are
known. For that case, we can determine the coefficients r0 and r1, and since h is known we
can remove its contribution from the measurements. Even if the coefficients are not known
exactly, one can effectively remove the contribution due to h from the measurements using
r− (〈h, r〉/〈h, h〉) h, where 〈·, ·〉 denotes the inner product. This calculation removes the projection
of the measurements onto h, which effectively leaves only the portion of the data due to ∂nu|z=0.
Thus, in what follows, we take as measurements

r̃ = ∂nu|z=0 , (9)

with u satisfying (5) subject to initial condition (7) and boundary condition (8).
In what follows, we study perturbations of D and develop a method for recovering those

perturbations from measurements. One can consider perturbations of µa instead. However, we
discuss below in Section 4 that this method is not able to recover both D and µa simulatenously
because it is assumed throughout that µs � µa . It follows that any perturbations of µa are
negligible compared to those of D, especially in the presence of noise.

2.3. Born approximation

We will consider measurements in the frequency domain corresponding to the Fourier transform

U (r, ω) =
1
2π

∫
u(r, t)e−iωtdt , (10)

where U satisfies the equation

∇ · (D∇U) − (µa + iω/c)U = 0 (11)

in the half space z > 0, subject to

U |z=0 = c0H (x, y, ω), (12)
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with H (x, y, ω) denoting the Fourier transform of the pulsed beam, h(x, y, t). Let U0 denote the
solution to the homogeneous problem, with constant background diffusion coefficient D0,

∇2U0 − k2U0 = 0 (13)

in z > 0 and subject to boundary condition (12), where k2 = (µa + iω/c)/D0.
We model inhomogeneities in the medium, denoted by δD, as a perturbation to the constant

background diffusion coefficient, so D = D0 + δD. Substituting this into (11) yields, after
rearranging terms,

∇2(U −U0) − k2(U −U0) = −D−10 ∇ · (δD∇U) , (14)

subject to boundary condition
(U −U0) |z=0 = 0. (15)

The half-space Green’s function G for this problem satisfies

∇2G − k2G = −D−10 δ(r − r′) (16)

in z > 0, subject to
G |z=0 = 0. (17)

It is given by

G(r, r′) =
e−kr

4πD0r
−

e−kr
∗

4πD0r∗
, (18)

with r =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2 and r∗ =
√

(x − x ′)2 + (y − y′)2 + (z + z′)2. In
terms of G, the solution of (14) is given by

U −U0 =

∫
z′>0

G(r, r′) [∇ · (δD∇U)] dr′ . (19)

The operations and quantities within the brackets in (19) are to be evaluated with respect to r′.
We now apply the Born approximation, which gives

U ≈ U0 +

∫
z′>0

G(r, r′) [∇ · (δD∇U0)] dr′. (20)

Eq. (20) gives an explicit representation for the perturbation made by δD on the solution U in
terms of the half-space Green’s function G(r, r′). Since G is the only function of r in (20), we
find that the perturbed measurements in the frequency domain, R̃ = ∂zU |z=0, are given by

R̃ ≈ ∂zU0 |z=0 −

∫
z′>0

[
∇Gz (r, r′) · ∇U0

]
δD dr′, (21)

where we have used partial integration to obtain this result. In (21), Gz denotes the partial
derivative of G with respect to z.
We now write U0 in terms of the surface Green’s function G̃ satisfying

∇2G̃ − k2G̃ = 0 (22)

in z > 0, subject to boundary condition

G̃ |z=0 = δ(x − x ′)δ(y − y′). (23)
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It follows that U0 is given by the convolution U0 = G̃ ∗ c0H , which is an integral over the z = 0
plane. Using Green’s identities, we find that G̃ is related to the half-space Green’s function G
given in (18) according to G̃ = −D0Gz |z′=0+ .
Finally, we assume an infinitely narrow beam incident on the boundary at point (xs, ys, 0).

Thus, U0 is the solution to the homogeneous problem (13) subject to boundary condition
U0 |z=0 = δ(x − xs )δ(y − ys ). In other words, U0 = G̃ in (21) and the measurements become

R̃ ≈ ∂zU0 |z=0 + D0

∫
z′>0

[
∇Gz (rd, r′) · ∇Gz (r′, rs )

]
δD dr′. (24)

Note that R̃ = R̃(rd, rs ) depends on the source and detector positions rs = (xs, ys, 0) and
rd = (xd, yd, 0), respectively.

2.4. Linear system

Our aim is to reconstruct a small point-like diffusion perturbation δD assuming that we can
measure the difference ∂z (U −U0) |z=0 due to the perturbation for multiple sources and detectors.
Under the Born approximation the measurements given by (24) are linear in the unknown
perturbation δD. Thus, the inverse problem reduces to solving a system of linear equations. We
assume that the images are sparse, meaning that only a small number M of point-like diffusion
perturbations are present.

Specifically, if we discretize the region of interest using N grid points r′n we can write (24) as
the linear system

As x = bs (25)

for a fixed source rs . In (25),As is the model matrix that maps the unknown vector x = δD ∈ RN

to the data vector bs ∈ CD . If we use Nd detectors and n f frequencies to form the images, then
D = Nd · n f . The components (bs ) j of bs correspond to the difference ∂z (U − U0) |z=0/D0
measured at detector i at frequency ωl [ j ≡ j (i, l) = i + (l − 1)Nd , with i = 1, . . . , Nd , and
l = 1, . . . , n f , is double indexed]. Finally, the elements

As (i + (l − 1)Nd, n) = ∇Gz (ri, rn ;ωl ) · ∇Gz (rn, rs ;ωl ) (26)

of the model matrix come from the discretization of the integral in (24). In (26), i = 1, . . . , Nd ,
l = 1, . . . , n f , and n = 1, . . . , N .

2.5. Initial imaging results

Typically, the linear system (25) is underdetermined and, hence, there are infinitely many δD
distributions that match the data vector bs . If there is only one source of illumination, the usual
method to form an image is to pick the minimum `2-norm solution. If data from multiple sources
are available, one can average over the different solutions obtained for each source. In the top row
of Fig. 1 we show the distribution of targets δD that we seek to reconstruct. They take values
between 0.1cm and 0.8cm. Note that in the right image there are two nearby targets located
at the same cross-range. The bottom row of Fig. 1 shows the reconstructions for these three
cases choosing the minimum `2-norm solution. The background medium characteristics are
µa0 = 0.05 cm−1, µs0 = 7.5 cm−1, and g = 0.8. In the reconstructions we have used Ns = 21
sources and Nd = 21 detectors located on the surface. Both are 0.3 cm apart. We have also
used information from n f = 16 frequencies, with central frequency 10 GHz and sampling rate
0.13 GHz. This means a 2 GHz bandwidth. In all the experiments shown in the paper the data
is contaminated by additive noise so that the signal-to-noise ratio (SNR) ranges between 30dB
and 35dB. These results show that the usual minimum `2-norm approach fails to provide good
images.
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Fig. 1. Top row: Exact distributions of perturbations δD to be reconstructed. Bottom row:
minimum `2-norm reconstructions using all source-detector pairs with a 2 GHz system
bandwidth.

Given the large distance between detectors, we regularize the problem by considering only
measurements corresponding to null source-detector distances. Thus, we use only data received
at the detector that is collocated with the source. Short source-detector distances in diffuse optical
imaging have been proposed in [6, 20, 21] to improve the images. The reconstructions in Fig. 2
are obtained by solving Nd one-dimensional problems where, at each measurement location,
we seek to recover the perturbation δD as a function of depth only. This strategy needs less
computational resources (and less measurements) but does not improve the quality of the images.
Indeed by comparing the images in the bottom row of Fig. 1 with those in Fig. 2 we observe that
the minimum `2-norm reconstructions are similar whether we use data from multiple sources
and multiple detectors or only null source-detector separation data.

3. Image reconstruction method

The starting point of the imaging method proposed here is the remark pointed out above; null
source-detector separation data are sufficient to image the obstacles or inhomogeneities when
cross-range resolution of the order of the scattering mean free path or larger is sufficient. In this
case, given the relatively large distance between detectors, these data are optimal in the sense
that they carry most of the information needed to find out how deep the inhomogeneities are.
The proposed imaging method consists of two steps. First, we recover the depth or range of the
obstacles below each measurement location using the MUSIC algorithm with null source-detector
separation data. By scanning the sample along the cross-range direction we determine the support
of all the obstacles. Once the support is found, we estimate in the second step the values of the
inhomogeneities using least-squares restricted to the recovered support. This two step strategy
performs remarkably well as it is shown in Section 5 through numerical experiments.
Next, we describe in more detail the reduced, one dimensional inverse problem for a source-

detector pair at a fixed location. We explain how to apply MUSIC to find the depth or range
of the unknown inhomogeneities. The method is similar to the one given in [22] for the
one-dimensional reflectivity imaging problem for the wave equation. The cross-range dependence
of the inhomogeneities is recovered by moving the source-detector pair across the sample.
For a fixed source-detector location, the multifrequency data vector b = [b1, b2, . . . , bn f ] has

7



-3 -2 -1 0 1 2 3

0.03

0.04

0.05

0.06

0.07

0.08

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-3 -2 -1 0 1 2 3

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 2. Minimum `2-norm reconstructions using collocated sources and detectors for the
same cases as shown in Fig. 1 with a 2 GHz system bandwidth.

components

bl =
∫
z>0
∇Gz (rd, r;ωl ) · ∇Gz (r, rs ;ωl )δD(r)dr , (27)

with rd = rs since we use null source-detector distances. We consider measurements at n f = 2S
equidistant frequencies ωl = ω0 ± l∆ω, l = 1, . . . , S, within a small bandwidth B = S ∆ω � ω0.
Given a one dimensional grid with N points in depth zn = z0 + (n − 1)∆z, n = 1, . . . , N ,

we denote by δDn the unknown perturbation in the diffusion coefficient at position zn . Thus,
discretizing (27), our one-dimensional discrete model is given by

bl ≈
N∑
n=1

Gzz (z0, zn ;ωl )Gzz (zn, z0;ωl )δDn∆z, (28)

for l = 1, . . . , n f . In (28), z0 = 0 and Gzz (z0, zn, ωl ) is the second-order partial derivative of the
one dimensional Green’s function

G(z, z′;ωl ) =
e−kl |z−z

′ |

4πD0 |z − z′ |
−

e−kl |z+z
′ |

4πD0 |z + z′ |
(29)

with respect to z evaluated at z = zn . In (29), kl =
√

(µa0 + iωl/c)/D0.
We seek to recover the vector δD = [δD1, δD2, . . . , δDN ] from the multifrequency data vector

b = [b1, b2, . . . , bn f ], with n f = 2 S � N . We assume that the vector δD is sparse, meaning that
only a few components are different from zero. Eq. (28) can be re-written as

Ax = b, (30)

with x = δD, and
A(l, n) = G2

zz (z0, zn ;ωl ) (31)

for n = 1, . . . , N , and l = 1, . . . , n f . Since A ∈ Cn f ×N with n f � N , the linear system (30) is
underdetermined meaning that there infinitely many obstacle configurations that match the data.
If we pick the one whose `2-norm is minimal the results are bad as it was is illustrated in Fig. 2.
The key idea so as to form better images is to determine first the support of the unknown

vector x by using MUSIC. The MUSIC algorithm, however, needs multiple measurement vectors
to compute the left nullspace space of a suitable data matrix, usually referred to as the noise
subspace. Since we only have one data vector b ∈ C2 S , the use of MUSIC is not straightforward.
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Still, following the Prony-type idea [23] we form the S × S data matrix

B =

*........
,

b1 b2 . . . bS

b2 b3 . . . bS+1

. . . . . . . . . . . .

bS bS+1 . . . b2S

+////////
-

(32)

to extract valuable information from the single vector b. The main observation is that if the
illuminations are sufficiently diverse we can find the support of the inhomogeneities with high
precision using the MUSIC algorithm; the support is just the zero set of the orthogonal projections
of the column vectors of the matrix A onto the noise subspace.
Accordingly, we compute the SVD of the data matrix

B = UΣV ∗ =
S∑
j=1

σ ju j v
∗
j . (33)

If the unknown vector x = [δD1, δD2, . . . , δDN ] has M nonzero components, with M < S, and
the data is noiseless, then there are M nonzero singular values σ1 > σ2 > · · · > σM > 0. The
remaining singular values σ j , j = M + 1, . . . , S, are essentially zero. The first M singular vectors
u j span the the range or column subspace of B, also referred to as the signal subspace, while the
remaining N − M singular vectors u j span the noise subspace.
Then, the support of δD can be found from the peaks of the imaging functional

IMUSIC
n =

‖ ãn ‖`2∑N
j=M+1 | ã

∗
n u j |

2
, n = 1, . . . , N, (34)

with imaging vectors ãn ∈ CS defined as

ãn = [G2
zz (z0, zn, ω1),G2

zz (z0, zn, ω2), . . . ,G2
zz (z0, zn, ωS )]t . (35)

Once the support is recovered, the problem becomes overdetermined, and the nonzero values
of δD can be easily found by solving the corresponding linear system (30) restricted to the given
support with a least squares method.

4. Limitations and sources of error

We make here a few remarks concerning the limitations of the proposed method.
The first limitation concerns the range and is due to the exponential decay of the Green’s

function with depth. For an infinite SNR, this exponential decay is not an issue, but for a finite
noise level we can only image at depths for which the reflectance measurements remain above
the noise. This typically restricts the depth to be of the order of the scattering mean free path.

The second remark is about the resolution in cross-range, or in other words, the minimal spacing
between consecutive measurements in cross-range. The proposed method uses null source-
detector separation measurements and a one-dimensional approximation, which mainly assumes
that what is recorded at a particular source-detector cross-range is only due to perturbations at
that cross-range. The one-dimensional approximation is no longer valid if we consider small
measurement separations in cross-range. The typical cross-range distance for which the modeling
error using this assumption can be neglected is of the order of the scattering mean free path or
larger.
A finite SNR also places additional limitations on the value of the perturbation that can be

detected. In particular, the perturbation must be large enough to be detected over the noise in
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Fig. 3. Top row: Results from the first stage of the imaging algorithm showing MUSIC
reconstructions of the support of δD for the same cases shown in Fig. 1. Bottom row: Results
from the second stage of the imaging algorithm in which δD quantities are recovored over
the support results from the first stage by a least-squares approximation. Here, we have used
a 2 GHz system bandwidth.

measurements. Otherwise, the MUSIC algorithm will not be able to distinguish it from noise. In
the examples used here, we have considered perturbations between δD = 0.1 cm and 0.8 cm to
ensure that they are detectable. Otherwise, the imaging method would not be able to recover
these targets at all.
Finally, using the proposed method we can reconstruct either scattering or absorption pertur-

bations, but not both simultaneously. This is so, because scattering and absorption coefficients
typically differ by two orders of magnitude. Thus, absorption perturbations can be successfully
reconstructed only when the scattering perturbations are negligible and the SNR is large enough.

5. Results

We consider here the same distribution of targets as shown in the top row of Fig. 1. We use
Ns = 21 sources and detectors that are 0.3 cm apart, and n f = 16 frequencies with central
frequency 10 GHz and sampling rate 0.13 GHz corresponding to a 2 GHz bandwidth. The SNR
is between 30dB and 35dB.
To recover in a first step the supports of the targets, we use the MUSIC algorithm described

in Section 3. The results are shown in the top row of Fig. 3. The supports are not recovered
exactly. In fact, we do not recover the two nearby targets in the right image of this figure. The
reconstruction of the actual values of δD are obtained by solving the linear system (30) restricted
to the support determined by MUSIC. The results of this second step are shown in the bottom
row of Fig. 3. Both the locations and the quantitative values of δD are quite accurate, and much
better than the ones shown in Fig. 1 and Fig. 2 obtained with a minimum `2-norm approach.

The resolution in depth is determined by the bandwidth B used to form the images, and it is of
the order of c/B (in [22], numerical results suggest a 0.1 c/B range resolution for MUSIC). For
a 2 GHz bandwidth, this means a poor c/B = 15 cm depth resolution. Hence, in the previous
numerical experiments, we could not resolve two obstacles at the same cross-range. Certainly,
this limitation can be overcome with a larger bandwidth as it is illustrated in Fig. 4, where we
use a 2 THz bandwidth with sampling rate 0.13 THz. More precisely, in Fig. 4 we present the
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Fig. 4. Reconstructions of δD using a broader bandwidth of 2 THz with sampling rate 0.13
THz. The left plot shows the minimum `2-norm solution using all source-detector pairs.
The middle plot shows the minimum `2-norm solution using null source-detector separation
data. The right plot shows the MUSIC + least-squares reconstruction.

reconstructions corresponding to the target distribution shown in the right image of Fig. 1 that
has two nearby targets located at the same cross-range. In the left plot of Fig. 4, we show the
minimum `2-norm solution using all pairs of sources and detectors. In the middle plot, we show
the minimum `2-norm solution using null source-detector separation measurements. Although
there is a small improvement with respect to Figs. 1 and 2, where a smaller 2 GHz bandwidth
was used, these reconstructions are very similar to those ones. Finally, the right plot of Fig. 4
shows the image obtained with the proposed, two-stage method using a 2 THz bandwidth. As
expected, we observe that the image improves by increasing the bandwidth and the two nearby
perturbations are now well resolved by the proposed method. Moreover, the reconstructed δD is
almost exact, with an `∞-norm error equal to 2.710−12 and in `2-norm error equal to 3.310−12.

6. Conclusions

We have presented a method for imaging small obstacles near the surface of a diffusive medium.
The proposed method is effective and simple as it only uses backscattered light gathered at
a few points on the surface. It relies on null source-detector separation measurements, and
assumes that the obstacles are well separated in cross-range. This implies that one-dimensional
reconstructions can be carried out to accurately resolve the inhomogeneities in depth if large
enough bandwidths are available. Under the same conditions we have shown that minimum
`2-norm reconstructions completely fail. The proposed method is limited to penetration depths
of the order of one scattering mean-free path.
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