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Abstract In this paper we present a method that uses radial basis functions to approximate 
the Laplace–Beltrami operator that allows to solve numerically diffusion (and reaction–
diffusion) equations on smooth, closed surfaces embedded in R3. The novelty of the method 
is in a closed-form formula for the Laplace–Beltrami operator derived in the paper, which 
involve the normal vector and the curvature at a set of points on the surface of interest. 
An advantage of the proposed method is that it does not rely on the explicit knowledge 
of the surface, which can be simply defined by a set of scattered nodes. In that case, the 
surface is represented by a level set function from which we can compute the needed normal 
vectors and the curvature. The formula for the Laplace–Beltrami operator is exact for radial 
basis functions and it also depends on the first and second derivatives of these functions 
at the scattered nodes that define the surface. We analyze the converge of the method and 
we present numerical simulations that show its performance. We include an application that 
arises in cardiology.
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1 Introduction

Many problems in sciences and engineering require the solution to partial differential equa-
tions (PDEs) on a curved surface. These equations are formulated in terms of differential
operators acting on functions defined on the surface, such as the Laplace–Beltrami operator.
Problems of interest include image processing [25], phase changes of a material on a surface
[35], domain formation in vesicles [2], pattern formation on a growing biological surface [3],
modeling of surface active agents [20], ice accretion and water flow on cold surfaces such as
aircrafts [28], and restore a damaged pattern on a surface such as a vase [5].

Analytical solutions to PDEs on surfaces are usually not possible and, hence, there is a
great interest in developing numerical methods for these problems. Surface finite elements,
for example, use a polyhedral approximation of the curved surface based on triangulation
[10]. One of its advantages is that only the surface is discretized, rather than the entire
volume, thereby keeping the dimensionality of the original problem. Its main drawback is
the expensive task of generating a computational mesh over the surface, which is a burden
if additional nodes need to be considered in the mesh. Other methods solve the PDE on a
flat surface instead, and map the solution through a suitable parameterization of the surface
[34]. However, a parameterization of an arbitrary surface is not always practical, and it
may introduce artificial singularities (e.g. spherical coordinates introduce singularities at
the poles) [11]. Embedding techniques, on the other hand, solve the PDE in a small region
near the surface [19,24,30]. They use standard Cartesian grid methods and, thus, coordinate
singularities are avoided. These methods, however, may give problems when one extends
the boundary conditions or the initial data on the surface to the narrow band surrounding the
surface [30].

On the other hand, RBF methods [21,22] have been successfully used to find the solution
of PDEs in various geometries in R2 and R3 because they are geometrically flexible, easy to
implement, and can be highly accurate. For example, in [12,13,38] global RBF-based spatial
discretizations are used to solve PDEs thatmodel a variety of phenomena in geosciences, such
as mantle flows in spherical shells. In [29], the author combines global RBF and orthogonal
gradient methods to solve PDEs on more general surfaces. In [17], diffusion and reaction–
diffusion PDEs on surfaces arising in biology and chemistry are also solved with a global
RBF method. In that work, the surface gradient is approximated using collocation, while the
surface Laplacian is approximated by applying the estimated surface gradient twice. Also,
local RBF methods, where the solution is approximated within a small influence domain
instead of a global one, have been investigated to solve PDEs on curved surfaces [32]. Their
computational cost is much lower but the spectral accuracy associated to the global version
is lost. Local RBF methods are also known as RBF finite difference methods because RBFs
are used to create weights for finite difference like stencils with scattered nodes [4,33,36].

In this paper, we propose a global RBF approach to solve PDEs on surfaces only defined
by a cloud of points. An explicit representation of the surface is not needed. In the propose
method, the surface is represented by a level set function found by standardRBF interpolation.
This allows us to estimate the normal vector and the curvature at any point on the surface,
which are needed for the closed-form formula of the surface Laplacian operator. The formula
is exact for functions whose values depend only on the distance from an origin and, hence, the
formula is exact for RBFs. Error bounds for the approximation of surface Laplacian applied
to more general functions are also given. To show the convergence of the proposed method
we also compute numerically the spherical Laplacian of a function whose analytical solution
is known and, thus, we display the errors as function of the RBF shape parameter and of the
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number of points defining the surface. We also apply the method to a non-linear system of
PDEs that arise in cardiology, thus showing an application to a realistic problem.

The paper is organized as follows. In Sect. 2, we review the basic tools needed for RBF
interpolation and for representing surfaces using the level set formalism. In Sect. 3, we derive
formulas for the surface gradient and the surface Laplacian, and we give error bounds for
these formulas. In Sect. 4, we show numerical experiments that illustrate the performance of
our method. Finally, Sect. 5 contains our conclusions. In “Appendix A” we give the details
for the special case of Laplacian of an RBF on the surface of a unit sphere.

2 RBF Interpolation and RBF Surface Modeling

In this section,we review the basic concepts and definitions forRBF interpolation of functions
defined on surfaces in R3, and we summarize the level set formalism used to reconstruct
surfaces from point-clouds in R3. Both are key to the method explained in the next section.

2.1 RBF Interpolation

Let f : Σ → R be a continuous function sampled on a set of scattered points X = {xi }Ni=1
on a surface Σ embedded in R3. The basic RBF interpolant of f takes the form

s f (x) =
N∑

i=1

ciφ(ri (x)), (1)

where ri (x) = ∥ri (x)∥ = ∥x −xi∥ is the distance from a point x on the surface to the RBF
center xi . Here, ∥·∥ is the Euclidean norm, and φ(ri (x)) is some radial function which often
contains a shape parameter ϵ that affects the accuracy of the RBF interpolation (1). For given
data values fi = f (xi ), i = 1 . . . , N , the interpolation coefficients ci are obtained by solving
the linear system

A c = f, (2)

where the entries of the N × N interpolation matrix A are ai, j = φ(∥xi −x j∥). In (2), c =
[ c1 c2 · · · cN ]T and f = [ f1 f2 · · · fN ]T are N -dimensional columnvectors. This equation
implies that (1) interpolates f (x) at the set of points X. The interpolation matrix A is dense
and symmetric. A sufficient condition for the nonsingularity of this matrix is strictly positive
definiteness [27]. Furthermore, it is well known that large values of the shape parameter ϵ lead
to well-conditioned linear systems, although the resulting approximation may be inaccurate.
On the other hand, small values of ϵ lead to accurate results but the condition number of the
interpolationmatrix A is large and, hence, the interpolation coefficients ci may diverge [9,34].
To overcome this problem, the interpolation coefficients in the limit ϵ → 0 are computed in
[18,23] by means of the Laurent series of the inverse of the interpolation matrix A.

For a more detailed discussion on RBF interpolation see, for example, [6].

2.2 Modeling Surfaces with RBFs

In this paper, we assume that the surfaces are defined by point-clouds. Next, we summarize
the level set formalism used for reconstructing surfaces in these situations. The goal is to find
a continuously differentiable level-set function Ψ : R3 → R, such that its zero level-set
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Σ = {x ∈ R3 : Ψ (x) = 0} (3)

specifies the sought surface. Themain advantage of this approach is that one can represent the
surfaces on a Cartesian grid without having to parameterize them. This makes the level-set
method very flexible when, for example, the surfaces change with time. Furthermore, once
the level set function Ψ has been found, the unit normal vector and the curvature can be
easily computed at any point on the surface; see Sect. 3.3.

Given a set of points X = {xi }Ni=1 on the surface, we seek a smooth function Ψ that
satisfies the interpolant conditions Ψ (xi ) = 0, i = 1, . . . , N . In order to avoid the trivial
solution Ψ (x) = 0, M off-surface points {xi }N+M

i=N+1 are added to the data, such that Ψ (xi ) ̸=
0, i = N+1, . . . , N+M . We assign positive or negative values toΨ (xi ) depending whether
the nodes are on one side or the other of the surface. Thus, we model the surface implicitly
with a level-set function Ψ such that

Ψ (xi ) = 0, i = 1, . . . , N (on-surface nodes),
Ψ (xi ) ̸= 0, i = N + 1, . . . , N + M (off-surface nodes).

(4)

Then, the interpolant

sΨ (x) =
N+M∑

i=1

di φ(ri (x)) (5)

is found by imposing sΨ (xi ) = Ψ (xi ), i = 1, . . . , N + M . The sought surface Σ is then
defined by the zero-set of the interpolant (5), that is, the surface consists of all points x ∈
R3 satisfying sΨ (x) = 0. The coefficients di in (5) are found by solving (2) with f =
[Ψ (x1) Ψ (x2) · · · Ψ (xN+M ) ]T .

The problem of placing the off-surface nodes and the assignment of the valuesΨ (xi ), i =
N+1, . . . , N+M may not be trivial. A common practice is to generate pairs of extra points,
at either side of the surface, at a small distance along the normals of the surface, and to give
values to Ψ (xi ) proportional to the distance to the closest point on the surface. If the normal
vectors are not known explicitly, then they have to be estimated, a task which might be not
easy. Our experience have shown, however, that if the surface is smooth enough it suffices to
just add a fewoff-surface nodes at each side of the surfacewith valuesΨ (xi ) = ± 1 depending
whether they are at one side or the other to the surface. In the numerical experiments shown
below we have placed eight extra points outside the surface, and one extra point inside of it.
The exterior points are placed in the vertices of a box that contains the surface. The interior
point is located at the center of the box. We refer the reader to [7] for more details about the
reconstruction and representation of surfaces with RBFs.

3 Surface Derivative Operators

Next, we derive expressions for the surface gradient and the surface Laplacian operators
of the approximant of any given function expressed in terms of RBFs. We assume that the
surface embedded in R3 is smooth enough and has no boundaries. All the expressions are
given in Cartesian coordinates.
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3.1 Surface Gradient Operator

Let the unit outward vector perpendicular to a surface Σ at a given point x be denoted by
n = n(x). To make the notation simpler we will omit the dependence of the normal vector
on the position x. Then, the surface gradient operator ∇Σ is given by

∇Σ (·) = ∇(·) −(n · ∇(·))n = ∇(·) −Dn(·)n, (6)

where ∇ denotes the standard gradient operator in R3, and Dn(·) = n · ∇(·) denotes the
directional derivative along the normal vector n.

If the surface gradient operator (6) acts on an RBF φ(ri (x)), whose values only depend
on the distance ri (x) to the node xi , then we obtain using the chain rule

∇Σφ(ri ) = ∇φ(ri ) −Dn (φ(ri )) n = (∇ri −Dn(ri )n)
dφ(ri )
dri

. (7)

In (7), and in all that follows, we use ri = ri (x) to simplify the notation. Taking into account
that

∇ri =
ri
ri

and Dn(ri ) =
ri · n
ri

, (8)

we write the surface gradient of an RBF as

∇Σφ(ri ) = (ri −(ri · n)n)
1
ri

dφ(ri )
dri

. (9)

With this expression we are able to approximate the surface gradient of any function f
sampled at a set of points on the surface. Indeed, using the RBF interpolation (1) we readily
obtain

∇Σ f (x) ≈ ∇Σ s f (x) =
N∑

i=1

di ∇Σφ(ri (x)), (10)

with coefficients di found by solving (2).
Given a set of scattered points X = {xi }Ni=1 on the surface, each component ξ = x, y or

z of the gradient vectors at those points can be written in matrix form as
⎡

⎢⎢⎢⎢⎣

∇ξ
Σ f (x1)

∇ξ
Σ f (x2)

...

∇ξ
Σ f (xN )

⎤

⎥⎥⎥⎥⎦
≈ Gξ

Σ f, (11)

where the matrix
Gξ

Σ = Bξ A−1 (12)

is the product of the matrix Bξ = [B]ξi j = ∇ξ
Σφ(ri (x j )) and the inverse of the interpolation

matrix A. The entries of the matrix Bξ are just the ξ component of the surface gradient
vectors of the RBF functions φ(ri ) evaluated at the points x j . Equation (12) is also given in
[17].
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3.2 Surface Laplacian Operator

We now derive an RBF-based closed-form expression for the surface Laplacian of a function
defined on a surface. This operator can be computed as the surface divergence of the surface
gradient, that is,

∆Σ (·) = divΣ (∇Σ (·)) = ∇Σ · ∇Σ (·). (13)

Thus, using (6) the surface Laplacian of a function defined on a surface Σ can be written as

∆Σ (·) = ∇Σ · ∇(·) −∇Σ · (Dn(·)n)
= ∆(·) −Dn(∇(·)) · n −∇Σ · (Dn(·)n), (14)

where the first term represents the standard Laplacian operator in R3.
Next, we apply (14) to an RBF φ(ri ) whose center is at xi . For the first term in (14) we

obtain

∆φ(ri ) = ∆ri
dφ(ri )
dri

+ ∥∇ri∥2
d2φ(ri )

dr2i
= 2

ri

dφ(ri )
dri

+ d2φ(ri )

dr2i
, (15)

where we have used ∥∇ri∥2 = 1, and

∆ri = ∇ · ri
ri

= ri∇ · ri −ri · ∇ri
r2i

=
3ri −ri · ri

ri
r2i

= 2
ri
. (16)

For the second term in (14) we obtain

Dn(∇φ(ri )) · n = Dn (∇ri ) · n
dφ(ri )
dri

+ ∇ri · nDn(ri )
d2φ(ri )

dr2i

=
(

1 −(n · ri )2
r2i

)
1
ri

dφ(ri )
dri

+
(
(n · ri )2

r2i

)
d2φ(ri )

dr2i
, (17)

where we have used the expression (8), the fact that Dn(ri ) = n, and

Dn(∇ri ) · n = 1

r2i
(riDn(ri ) −Dn(ri )ri ) · n =

(

1 −(n · ri )2
r2i

)
1
ri
.

Finally, for the third term in (14) we obtain

∇Σ · (Dn(φ(ri ))n) = Dn(φ(ri ))∇Σ · n + n · ∇Σ (Dn(φ(ri ))) = κ
n · ri
ri

dφ(ri )
dri

, (18)

where κ = κ(x) = ∇Σ · n(x) is the curvature of the surface Σ at position x. Note that
n · ∇Σ (·) vanishes because it is the scalar product of two orthogonal vectors.

Using these results we write the surface Laplacian of an RBF as

∆Σφ(ri ) =
(

1+ (n · ri )2
r2i

−κ (n · ri )
)

1
ri

dφ(ri )
dri

+
(

1 −(n · ri )2
r2i

)
d2φ(ri )

dr2i
. (19)

Hence,∆Σφ(ri (x)) only depends on the first and second derivatives of the RBF at the point x,
and on the normal vector and the curvature of the surface at that point. We derive expressions
for the normal vector and the curvature in the next subsection. Formula (19) is an important
result of the paper, and it simplifies to
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∆S2φ(ri ) =
1
4

(
4 −3r2i

ri

dφ(ri )
dri

+ (4 −r2i )
d2φ(ri )

dr2i

)

(20)

for the case in which Σ is the surface of the unit sphere S2. Equation (20) agrees with the
result given in [15] for the same case (see “Appendix A” for details).

As with the surface gradient operator, it is now straightforward to approximate the surface
Laplacian of a function defined on a surface using formula (19). Proceeding in a similar way
as for the surface gradient operator we obtain that

∆Σ f (x) ≈ ∆Σ s f (x) =
N∑

i=1

di ∆Σφ(ri (x)), (21)

with the coefficients di found from (2). The surface Laplacian at the points X = {xi }Ni=1 can
be written in matrix form as ⎡

⎢⎢⎢⎣

∆Σ f (x1)
∆Σ f (x2)

...

∆Σ f (xN )

⎤

⎥⎥⎥⎦
≈ LΣ f, (22)

where the matrix
LΣ = C A−1 (23)

is the product of the matrix C = [C]i j = ∆Σφ(ri (x j )) and the inverse of the interpolation
matrix A. The entries of the matrix C are just the surface Laplacian of the RBF functions
φ(ri ) at the points x j .

3.3 Computation of the Normal Vector and the Curvature

Next, we compute the normal vector n = n(x) and the curvature term κ = κ(x) of a surface
defined by a set of scattered points. Let us assume that our surface Σ is given by the zero-set
of a function Ψ (x), which has be found by RBF interpolation solving (5). Once the function

Ψ (x) =
N+M∑

i=1

di φ(ri (x)) (24)

is known, the outward-pointing unit normal vector to the surface Σ at a point x is simply
given by

n = ∇Ψ

∥∇Ψ ∥ , (25)

where the gradient of Ψ can be computed as

∇Ψ =
N+M∑

i=1

di
dφ(ri )
dri

ri
ri
. (26)

On the other hand, the curvature at a point x can be obtained from

κ = ∇Σ · n = ∇ · n −Dn(n) · n. (27)

To find an explicit formula for κ we use (25) to express the two terms in (27) as function of
Ψ . Indeed, using that

7



∇ · n = ∥∇Ψ ∥ ∇ · ∇Ψ −∇Ψ · ∇∥∇Ψ ∥
∥∇Ψ ∥2 = 1

∥∇Ψ ∥ (∆Ψ −Dn (∥∇Ψ ∥)) , (28)

and

Dn(n) · n = ∥∇Ψ ∥Dn (∇Ψ ) −Dn (∥∇Ψ ∥)∇Ψ

∥∇Ψ ∥2 · ∇Ψ

∥∇Ψ ∥
= 1

∥∇Ψ ∥ (Dn (∇Ψ ) · n −Dn (∥∇Ψ ∥)) , (29)

Equation (27) can be written as

κ = 1
∥∇Ψ ∥ (∆Ψ −Dn (∇Ψ ) · n) . (30)

Finally, using (15) and (17) we obtain

κ = 1
∥∇Ψ ∥

N+M∑

i=1

di

((

1+ (n · ri )2
r2i

)
1
ri

dφ(ri )
dri

+
(

1 −(n · ri )2
r2i

)
d2φ(ri )

dr2i

)

, (31)

with∇Ψ given by (26). This formula for the curvature depends on the normal vectors and on
the first and second derivatives of the RBFs at the points that define the surface. Its accuracy
only relies on the quality of the interpolation.

3.4 Error Estimates for the Approximations of the Surface Derivatives

In this section, we give error bounds for the RBF approximations to the surface differential
operators obtained previously. Given a smooth closed surface Σ in R3, and a function f :
Σ → R, we denote the exact surface gradient and the exact surface Laplacian of f on Σ

as ∇Σ f (x) and ∆Σ f (x), respectively. On the other hand, let ∇Σ s f (x) and ∆Σ s f (x) be the
approximations to these differential operators given by (10) and (21). Then, following [16]
we give bounds for the errors

∥∇Σ f (x) −∇Σ s f (x)∥L∞(Σ) and ∥∆Σ f (x) −∆Σ s f (x)∥L∞(Σ), (32)

where ∥·∥L∞(Σ) is the L∞-norm over Σ . Since (10) and (21) only depend on the RBF
interpolation, it is natural to expect that (32) only depends on the accuracy of the RBF
interpolation as well.

In [16], the authors give Sobolev-type convergence results for a wide variety of RBFs
interpolants. Let φ(r) be an RBF whose Fourier transform φ̂ decays at least algebraically,
meaning that

∥φ̂(ω)∥ ≤ C(1+ ∥ω∥2)−τ , (33)

where C is a constant and τ > 0 is a parameter that depends on the smoothness properties
of φ. Then, we can use Theorem 11 in [16] to bound the error

∥∇Σ f (x) −∇Σ s f (x)∥L∞(Σ) = ∥∇Σ ( f (x) −s f (x))∥L∞(Σ) ≤ C1∥ f −s f ∥W 1∞(Σ)

≤ C1hτ−5/2∥ f ∥Nφ(Σ) = O(hτ−5/2) (34)
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for the surface gradient as in [17], and the error

∥∆Σ f (x) −∆Σ s f (x)∥L∞(Σ) = ∥∆Σ ( f (x) −s f (x))∥L∞(Σ) ≤ C2∥ f −s f ∥W 2∞(Σ)

≤ C2hτ−7/2∥ f ∥Nφ(Σ) = O(hτ−7/2) (35)

for the surface Laplacian. In these expressions,

h = sup {min(dΣ (x, xi))} , with x ∈ Σ, xi ∈ X, (36)

is the the mesh norm, where dΣ (x, xi) denotes the geodesic distance between x and xi on
Σ . In (34) and (35), C1 and C2 are constants, and ∥ · ∥Wi∞(Σ) and ∥ · ∥Nφ(Σ) are the Sobolev
norm on Σ and the norm on the native space associated to the radial basis function φ(r)
retricted to Σ , Nφ(Σ), respectively.

Note that for the RBFs used in this paper (inverse multiquadrics) the Fourier transform
φ̂(ω) decays exponentially and, hence, τ is greater than (m+7/2) for anym > 0. Therefore,
according to (34) and (35) the convergence is spectral, i.e., it is faster than O(hm) for any
m > 0.

4 Numerical Experiments

4.1 Test Problem

To analyze the convergence properties of the method proposed in this paper (see Algorithm
1), we consider in Fig. 1 the direct problem

∆S2 f (x) = g(x) (37)

to compute the surface Laplacian of the function f (x) = x y+ z on the unit sphere S2, which
is g(x) = −2(z + 3 x y). In this case, the surface is explicitly known. A direct computation
gives the normal vectors n = r/r , and the curvature κ = 2 at any point on the surface (see
“Appendix A”, where these expressions are derived). We choose the inverse multiquadric
(IMQ) RBF φ(r) = 1/

√
1+ ϵ2 r2 with shape parameter ϵ for the computations.

Algorithm 1 Algorithm for computing ∆S2 f (x) in (37)

Require: Set of points {xi }Ni=1 on S2, and vector f = [ f (x1), . . . , f (xN )].
Choose the radial basis functions φ(r).
Construct the interpolation matrix A = [A]i, j = φ(∥xi −x j∥).
Construct the matrix C = [C]i j = ∆Σφ(ri (x j )) using (19) (or (20)).
Compute the surface Laplacian matrix LΣ = C A−1 .
Compute LΣ f to find g = [g(x1), . . . ,g(xN )].

We consider a set of scattered points X = {xi }Ni=1 randomly placed on Σ = S2, as it is
shown in Fig. 1d. We first evaluate how well the function g(x) is represented by an RBF
interpolant. In Fig. 1a, we display the interpolation error

EI = ∥sg(x j ) −g(x j )∥∞ with x j ∈ S2 (38)

as function of the shape parameter ϵ for different number of points N on the surface of the
sphere. To estimate (38) we have evaluated ∥sg(x j ) −g(x j )∥ on another set of 4000 points
{x j } randomly distributed on the sphere. As expected, the interpolation error decreases as
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Fig. 1 Test problem (37): the surface is defined explicitly. a Interpolation error (38) as a function of the shape
parameter ϵ, for different number of nodes N . b Error in the computation of the surface Laplacian (39) as
function of the shape parameter ϵ for different number of nodes N . c Error (39) as function of N for different
shape parameters ϵ. d Sphere with N = 500 randomly place nodes

ϵ diminishes, until certain value (not shown here) beyond which the matrix A becomes ill-
conditioned and the interpolation errors cannot be further reduced. The results show the
expected spectral convergence with respect to the shape parameter ϵ.

We note that there are different types of near-uniform node distributions with which the
interpolation errors could be further reduced; see, for example, [12,14,39] for details about
quasi-uniformly distributed maximal determinant node sets. However, we are interested in
the case in which the surface is defined by a set of scattered points, so we limit the discussion
to random point distributions.

It is apparent that for any fixed ϵ the error in the approximation of the surface Laplacian
of f (x) cannot be smaller than EI . In Fig. 1b, we show the error

E∆Σ = ∥LΣ f −g∥∞ (39)

as function of ϵ for different number of points N on the surface of the sphere.We also observe
the expected spectral convergence with respect to ϵ for all number of points N . Figure 1b
shows errors of the same order of magnitude as those in Fig. 1a. Finally, in Fig. 1c we observe
that the method converges spectrally in space as it was shown in Sect. 3.4.

We note that it is straightforward to solve the inverse problem associated to (37) if the
functiong(x) is given and we seek the function f (x). In that case, we just need to replace the
last line in Algorithm 1 by the computation of AC−1 g to obtain f = [ f (x1), . . . , f (xN )].
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So far, we have assumed that the surface over which we had to compute the surface
Laplacian was known and, thus, the normal vector n and the curvature κ could be computed
analytically; n = r/r and κ = 2 in Fig. 1. In the next numerical experiments the surface
is not explicitly known, but it is defined by a cloud of points. Therefore, the surface will be
found by interpolation by solving problem (5), and the normal vectors and the curvature will
be estimated using formulas (25)–(26) and (31), respectively; see Algorithm 2.

Algorithm 2 Algorithm for computing n and κ

Require: Set of points {xi }Ni=1 on Σ .

Add the off-surface points {xi }N+M
i=N+1 .

Construct the vector [f]i = [Ψ (xi )] = 0, 1,−1 for xi on, inside and outside of Σ .
Choose the radial basis functions φ(r).
Construct the interpolation matrix A = [A]i, j = φ(∥xi −x j∥), i, j = 1, ..., N + M .
Construct Ψ (x) defined in (24) by finding the coefficients d = A−1f .
Compute ∇Ψ (xi ) and ∥∇Ψ (xi )∥ from (26).
Compute n and κ using (25) and (31).
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Fig. 2 Test problem (37): the surface is defined by a cloud of points. a Error (40) of the estimated normal
vectors as function of ϵ for different number of nodes N . b Error (41) of the estimated curvature as function
of ϵ for different number of nodes N . c Error (39) as function of N for different shape parameters ϵ. d
Reconstruction of the sphere using the N = 600 surface points in Fig. 1. Seven of the M = 9 off-surface
additional points used for the reconstruction are depicted in red. We also show the estimated normal vectors
(Color figure online)
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In Fig. 2d we display the reconstruction of the surface of the unit sphere found by solving
(5) with the surface points X = {xi }Ni=1 shown in Fig. 1d. We also show the normal vectors
obtained from (25)–(26). In this example, we have considered an IMQwith ϵ = 2. In Fig. 2a,
b, we show the error of the estimated normal vectors

En = ∥cos(xi ,ni ) −1∥∞, xi ∈ X, (40)

and the error of the estimated curvature

Eκ = ∥κ(xi ) −2∥∞, xi ∈ X, (41)

as function of ϵ for different number of nodes N . We observe that both the normal vectors
and the curvature are estimated with high precision for small values of the shape parameter ϵ.
Still, the errors associated to the computation of the curvature are significant larger than those
associated to the normal vectors. Finally, in Fig. 2c we plot the error in the Laplace–Beltrami
operator computed with the approximate normals and curvature (compare it to the one using
the exact expressions from Fig. 1b).

4.2 A Bioelectric Cardiac Model

We now apply the proposed method to a bioelectric cardiac source model proposed by
Mitchell and Schaeffer [26], and used in [1] for shape reconstruction of cardiac ischemia.
This is a simple two-current model that is able to reproduce the restitution properties of
the cardiac tissue, as well as other complex electrophysiological behaviors such as spatial
variations of the action potential duration and arrhythmogenic factors like alternans and
discordant alternans. The model consists of two differential equations

dv
dt

= σ∆Σv + Jin(v, h)+ Jout (v)+ Jstim(t), (42)

and

dh
dt

= G(h, v) =

⎧
⎪⎨

⎪⎩

1 −h
τopen

, v < vcri t

−h
τclose

, v > vcri t

(43)

for the transmembrane voltage v = v(x, t), and the inactivation gate variable h = h(x, t).
Both equations are written in dimensionless form. The variables v and h have units of time
and they are scaled to vary between 0 and 1. In (42), the diffusive term represents the
transmembrane current im = σ∆Σv flowing through the cardiac cell membrane Σ ,

Jin(v, h) =
h(1 −v)v2

τin
(44)

represents sodium and calcium currents going inwards the membrane Σ ,

Jout (v) = − v

τout
(45)

represents potassium currents going outwards the membrane, and Jstim is the external stimu-
lus current. There are six parameters in themodel: the conductivity of the cardiac tissue σ , the
four phases of the cardiac action potential τin , τclose, τout , and τopen , and the change-over volt-
age vcri t . In the simulations presented below, we set these parameters to σ = 10−3 cm2/ms,
τin = 0.2ms, τclose = 150ms, τout = 10ms, τopen = 130ms, and vcri t = 0.13. We refer
the interested reader to [1,26] for more details about this model.
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Equations (42)–(43) are supplemented with initial conditions

v(x, t = 0) = 0 and h(x, t = 0) = 1 ∀ x ∈ Σ,

meaning that the membrane is initially at rest. Finally, to activate the current through the
cardiac cell membrane we apply the stimulus current

Jstim(x, t) = H(tstim −t)e
(x−xs )2

δ2 , t ≥ 0. (46)

Here, H(t) denotes the Heavisade function, tstim the time when the stimulus ends, xs the
position where the stimulus is applied, and δ its spatial width.

4.2.1 Time Stepping

Given a set of sampled pointsX = {xi }Ni=1 on the surface Σ , we introduce the N ×1 column
vectors v j and h j whose i-th entries are the values of the transmembrane voltage v and the
inactivation gate variable h at node xi and time t j , respectively. Using the method explained
above, we approximate the diffusive term im(·, t j ) = σ∆Σv j in (42) by im(·, t j ) ≈ σ LΣv j
applying (22).

To integrate the equations in time we use the classical fourth order Runge–Kutta scheme.
Thus, we define the column vectors

F(v j ,h j , t j ) = σ LΣv j + J in(v j ,h j ) −J out (v j )+ J stim(t j )

and G(v j ,h j ) that represent the values of the right hand sides of (42) and (43) at the set of
sampled points X, respectively, and we apply

v j+1 = v j +
∆t
6

(
KF

1 + 2KF
2 + 2KF

3 +KF
4

)
(47)

h j+1 = h j +
∆t
6

(
KG

1 + 2KG
2 + 2KG

3 +KG
4

)
(48)

at each time step, with

KF
1 = F

(
v j ,h j , t j

)
, KF

2 = F
(
v j +

∆t
2
KF

1 ,h j +
∆t
2
KG

1 , t j +
∆t
2

)

KF
3 = F

(
v j +

∆t
2
KF

2 ,h j +
∆t
2
KG

2 , t j +
∆t
2

)
,

KF
4 = F

(
v j + ∆tKF

1 ,h j + ∆tKG
1 , t j + ∆t

)
,

and similar expressions for KG
1 , K

G
2 , K

G
3 , and K

G
4 .

4.2.2 Simulations on a 3-D Synthetic Cardioid

We first consider scattered nodes randomly distributed on the surface of a synthetic 3D heart
muscle defined by

Σ =
{
(x, y, z) ∈ R3 : (x −z2)2 + y2 + z2 −1 = 0

}
. (49)

This cardioid models the surface of a heart muscle allowing us a detailed study of the method
because both the normal vector and the curvature at any point of its surface are analytically
known.
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Fig. 3 3-D synthetic cardioid. a N = 800 nodes randomly place on its surface, and M = 9 off-surface nodes
(red points). b RBF interpolant of the surface (Ψ (x) = 0). c Normal vectors and color map of curvature term
of the reconstructed surface (Color figure online)

Fig. 4 Heartbeat cycle of 3-D synthetic cardioid. a Electric cardiac stimulus applied at t = 0 . b–f Trans-
membrane voltages v(x, t) at t = 40, 100, 200, 300, and 400ms, respectively

In Fig. 3a, we show the points X = {xi }Ni=1 that define the surface of the cardioid Σ ,
and the additional points off the surface needed for the interpolation of Σ . We have used
N = 800 points randomly distributed on the surface, and M = 9 off-surface points (one
inside and eight outside the surface). Using these points, and an IMQ with ϵ = 4 as RBF, we
first compute the coefficients di in (24) to represent the level set functionΨ (x). In Fig. 3b we
show the zero-level set of Ψ (x) that represents the cardioid. Once a suitable representation
of the surface of the heart muscle has been found, the unit normal vectors and the values of
curvature are estimated using Algorithm 2; see Fig. 3c.

Finally, we approximate the surface Laplacian operator by the matrix LΣ (23) using an
IMQ with ϵ = 3, and we integrate the model Eqs. (42)–(43) following the time stepping
(47)–(48). Figure 4 displays a cycle of a heartbeat at different elapsed times. We show the
transmembrane voltage v(x, t) on the surface of the heart, at t = 0, 40, 100, 200, 300, and
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Fig. 5 Real heart surface obtained from a CT. a N = 902 nodes sampled on its surface. b RBF interpolant
of the heart surface. c Normal vectors and curvature of the reconstructed surface
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Fig. 6 Heartbeat cycle of realistic cardioid. a Electric cardiac stimulus applied at t = 0. b–e Transmembrane
voltages v(x, t) at t = 60, 150, 300, and 400ms, respectively. f Time dependence of transmembrane voltage
v(xp, t) and the h-gate variable h(xp, t) at a point xp on the surface

400 ms. At t = 0, the stimulus (46) with tstim = 0 ms and δ = 0.2 cm is applied at the upper
part of the heart muscle (Fig. 4a). The stimulus is responsible for the electric impulse that
initiates the cardiac cycle by creating an action potential. The cardiac tissue is then excited
and, as a result, a cardiac electric wave propagates through the surface of the heart (Fig. 4b,
c). For a while, all the cardiac tissue remains excited (Fig. 4d) and, finally, the heart muscle
relaxes in preparation for the next stimulus (Fig. 4e, f).

4.2.3 Heart Surface from a CT

In the second numerical experiment we use data sampled on the surface of a realistic heart
model. The surface nodes shown in Fig. 5a are obtained from a computerized tomography
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(CT) of a 43 years old patient [8]. We depict the result of the RBF interpolation of the surface
in Fig. 5b, and the normal vectors and the curvature of the surface in Fig. 5c. We have used
N = 980 points on the surface of the heart, and exactly the same RBFs as in the previous
numerical experiment.

Figure 6 displays the transmembrane voltage v(x, t) on the surface of the heart at t =
0, 60, 150, 300, and 400ms. We also show the transmembrane voltage v(x = xp, t), and the
h-gate variable h(x = xp, t), at a point xp on the surface as function of time in Fig. 6f. The
times at which the cardiac tissue experiences the different stages of a heartbeat correspond
to those in [26], showing the success of the methodology proposed here for approximating
the solution of this type of PDEs. We stress, again, that in these simulations the surface of
the heart muscle is defined by the set of points where the data (the voltages) are measured.
Neither the normal vectors nor the curvature at these points were assumed to be known.

5 Conclusions

In this paper, we have given an RBF-based closed formula for the Laplace–Beltrami operator
which can be employed when the surface is defined by a cloud of points. The formula only
depends on the positions of those points, the coefficients of the RBF surface reconstruction,
and the first and second derivatives of the RBF at those points. If an explicit representation of
the surface is available and, therefore, the normal vectors to the surface and its curvature can
be computed analytically, the convergence analysis guarantees that the convergence of the
formula is faster than algebraic. Our numerical experiments confirm these results. In the case
where the surface is defined by a cloud of points, the accuracy of the approximations mainly
depend on the errors made in the RBF surface reconstruction. As a realistic application that
shows the usefulness of the proposed method, we have applied the formula for the Laplace–
Beltrami operator for solving a PDE model for the electrical behavior on a cardiac surface.

Acknowledgements This work has been supported by Spanish MICINN Grant FIS2016-77892-R. We thank
the anonymous reviewer for his or her careful reading of our manuscript and his or her many insightful
comments and suggestions.

Appendix A: Laplace–Beltrami Operator of an RBF on the Unit Sphere

We show that the expression for the Laplace–Beltrami operator of an RBF defined on a
general surface (19) reduces to (20), when the given nodes {xi }, i = 1, . . . , N , are located
on the unit sphere.

Let Ψ (x) = x2 + y2 + z2 −1 be the function whose zero level set defines the unit sphere

S2 = {x ∈ R3 : Ψ (x) = 0} (50)

implicitly. Then,∇Ψ (x) = 2x, so using (25) we obtain that n(x) = x. Similarly, we find that
∆Ψ (x) = 6 and Dn (∇Ψ (x)) = (x · ∇) 2x = 2x, so the curvature is just κ(x) = 2. Then,
using (19) it follows that

∆S2φ(ri (x)) =
(

1+ (x · ri )2
r2i

−2 x · ri
)

1
ri

dφ(ri )
dri

+
(

1 −(x · ri)2
r2i

)
d2φ(ri )

dr2i
. (51)
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Since xi , x ∈ S2, ∥xi∥ =∥x∥ = 1, so from the lawof cosines ∥xi∥2 = ∥ri−x∥2 = r2i +∥x∥2−
2ri∥x∥ cos(ri , x) we find that ri = 2 cos(ri , x) and, hence, x · ri = ∥x∥ri cos(ri , x) = r2i /2.
Using this result in (51) we finally obtain (20).
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