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Introduction

Massive MIMO combined with OFDM are key
techniques in the evolution of mobile com-
munications. In this context, to the best
of our knowledge, the channel estimation and
the equalizers have never been jointly consid-
ered. We propose an alternative low-complexity
method to compute the ZF equalizers, which
consists of exchanging the order of the interpola-
tion and computation of the equalizer. For mas-
sive MIMO, this strategy provides the same per-
formance and considerably lower number of op-
erations, compared to the traditional scheme.

Traditional Scheme

The received signal at k-th subcarrier is

y̆k = Hks̆k + w̆k.

The channel matrix at k-th subcarrier is

Hk =


[
h̃11

]
k
· · ·

[
h̃1U

]
k

...
. . .

...[
h̃NB1

]
k
· · ·

[
h̃NBU

]
k

 .
Interpolation of the channel matrices[

h̃vu

]
k

=
[
h̃vu

]
p

+
k

Nf

([
h̃vu

]
q
−
[
h̃vu

]
p

)
,

q = p+Nf , ∀ {q, p} ∈ Ap p < k < q, ∀k ∈ Ad.

Computation of the ZF matrices

GZF
k =

(
(Hk)

H
Hk

)−1

(Hk)
H
, ∀k ∈ A,

GZF
k =


[
gZF11

]
k
· · ·

[
gZF1NB

]
k

...
. . .

...[
gZFU1

]
k
· · ·

[
gZFUNB

]
k

 .

Simulation parameters

K 128 I 7

∆f 15 KHz Nf 8, 25

NB 10, 100 LCH 5

U 2 LCP 9

Chan. Model LTE EVA Constellation QPSK
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System Model

We consider a multiuser massive MIMO system in TDD mode

yv [n] =

U∑
u=1

hvu [n] ∗ xcp,u [n] + wv [n] ,

xcp,u [n] is the signal transmitted from the u-th UE.
wv [n] is the AWGN at the input of v-th antenna of the BS distributed
according to wv [n] ∼ CN (0, σ2

w).
hvu [n] denotes the multipath channel impulse response with LCH coef-
�cients from the single antenna of u-th user to the v-th antenna of the
BS

(
huv [n] ∼ CN (0, σ2

h [n]), n ∈ {1, 2, · · · , LCH}
)
.

Low-Complexity Scheme

Computation of ZF matrices

GZF
k =

(
(Hk)

H
Hk

)−1

(Hk)
H
, ∀k ∈ Ap.

Interpolation of the ZF matrices

[guv]
LZF
k =

[
gZFuv

]
p

+
k

Nf

([
gZFuv

]
q
−
[
gZFuv

]
p

)
,

q = p+Nf , ∀ {q, p} ∈ Ap p < k < q, ∀k ∈ Ad.

Average Square Error Distance

The ASED of two techniques is given by

εk = E
{∣∣[gLZFuv

]
k
−
[
gZFuv

]
k

∣∣2} , ∀k ∈ Ad.
Making use the asymptotic analysis

1

NB
(Hk)

H
Hk

NB�U−−−−−→ IU ,

we can lower-bound the ASED as

εk ≥ 1
N2

B

4(ρ−1)2(Nf−k)2k2(N2
f−2Nfk+2k2)

N2
f (N2

f +2Nf (ρ−1)k−2(ρ−1)k2)2

Hence, it shows that the ASED between two
techniques will decrease as NB is increased,
which means that the large number of antennas
at the BS helps to improve the performance of
our proposed low-complexity technique and get
it closer to the traditional one.

Complexity Analysis

The number of complex multiplications (NCM)
for the required matrix inversion is

CZF = K

(
3

2
NBU

2 +
1

3
U3

)
,

CLZF = Kp

(
3

2
NBU

2 +
1

3
U3

)
.

Simulation Results
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Figure 1: ASED (ε) for Nf = 8 and 25 (left); Complexity for U = 50 (right)
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Figure 2: Simulation results for Nf = 8, U = 2 and NB = 10. SER (left); SINR (right)
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Figure 3: SER for Nf = 8, U = 2 and NB = 100




