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Patŕıcia de Zea Bermudez

Departamento de Estat́ıstica e Investigação Operacional

Faculdade de Ciências da Universidade de Lisboa

and CEAUL

J. Miguel Maŕın
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Abstract

The paper proposes the use of data cloning (DC) to the estimation of general

asymmetric stochastic volatility (ASV) models with flexible distributions for the

standardized returns. These models are able to capture the asymmetric volatility, the

leptokurtosis and the skewness of the distribution of returns. Data cloning is a general

technique to compute maximum likelihood estimators, along with their asymptotic

variances, by means of a Markov chain Monte Carlo (MCMC) methodology. The main

aim of this paper is to illustrate how easily general ASV models can be estimated and

consequently studied via data cloning. Changes of specifications, priors and sampling

error distributions are done with minor modifications of the code. Using an intensive

simulation study, the finite sample properties of the estimators of the parameters are

evaluated and compared to those of a benchmark estimator that is also user-friendly.

The results show that the proposed estimator is computationally efficient and robust,

and can be an effective alternative to the exiting estimation methods applied to ASV

models. Finally, we use data cloning to estimate the parameters of general ASV models

and forecast the one-step-ahead volatility of S&P 500 and FTSE-100 daily returns.

Keywords: Asymmetric Volatility; Data Cloning; Non-Gaussian Nonlinear Time Series

Models; Skewed and Heavy-Tailed distributions
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1 Introduction

Complex parametric stochastic volatility models have been extensively proposed in the

literature to cope with the main empirical facts of financial time series. Very recent examples

are the models proposed by Mao et al. (2015, 2017) and Asai et al. (2017) that accommodate

a general asymmetric function for volatility. Asymmetric effects have been traditionally

modeled, either by considering a negative correlation between returns and future volatility

(Harvey and Shephard, 1996), or by allowing the parameters of the log-volatility equation

to differ depending on the sign of the lagged returns (Breidt, 1996; So et al., 2002).1 Mao

et al. (2015) combine these two sources of asymmetry and propose a quite flexible model for

financial returns.

On the other hand, heavy-tails in the distribution of returns are currently accepted as

an empirical fact that should be included in the volatility models. Although SV models

are able to generate more kurtosis than GARCH-type models, there is often higher kurtosis

in the returns than models imply. One way to cope with this is to assume a heavy-tailed

distribution for the standardized returns such as the Student-t distribution, which has been

shown to fit better the returns than other fat-tailed distributions (see, e.g, Liesenfeld and

Jung, 2000; Asai, 2008). Others show that the tail of a Student-t distribution is not heavy

enough for modeling financial returns and besides asymmetric volatility, asymmetrically

heavy-tailed distributions should also be considered for improving models’ fit (Nakajima

and Omori, 2012; Abanto-Valle et al., 2015).

Unfortunately, the extra flexibility of SV models makes parameter and volatility estima-

tion difficult due to the intractable form of the likelihood function. During the last decades

several methods have been proposed for the estimation of SV models, including generalized

method of moments (Melino and Turnbull, 1990; Sørensen, 2000), quasi-maximum likelihood

(Harvey et al., 1994), simulated maximum likelihood (Danielsson, 1994; Sandmann and

1For more examples on the negative correlation between returns and future volatility see Yu (2005), and
on the threshold stochastic volatility see Asai and McAleer (2004, 2005, 2011), Chen et al. (2008, 2013),
Elliott et al. (2011), Ghosh et al. (2015), Wu and Zhou (2015) and Wirjanto et al. (2016), among others.
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Koopman, 1998), approximate maximum likelihood (Fridman and Harris, 1998) and MCMC

procedures, among others (see, e.g., Jacquier et al., 1994; Shephard and Pitt, 1997; Kim

et al., 1998). Amidst all these estimation methods, one of the best alternatives is to use an

MCMC algorithm, although MCMC is very computationally demanding and requires hard

code, which makes its implementation difficult for practitioners and researchers. A very

recent paper by Barra et al. (2017), based on importance sampling weighted expectation

maximization, argues that this approach is computationally efficient and can be regarded as

an effective alternative to MCMC methods. However, it requires, again, heavy programming

and there is not free available software that implements the method.

In this paper we propose the use of data cloning for ASV models. Data cloning is a

general technique to obtain maximum likelihood estimators, along with their asymptotic

variances, by means of a MCMC procedure (Lele et al., 2007, 2010). Its main strength lies in

the easiness with which any changes in the model specification can be made. Furthermore,

the method is not very influenced by the selection of the prior (proper) distributions of the

parameters, assuming an appropriate number of clones (Lele et al., 2007, 2010).

For implementing data cloning, we use the free software dclone in a R framework and

for the Bayesian approach we use JAGS (Plummer, 2003). However, the major weakness

of the Bayesian MCMC implementation is the slow convergence and inefficiency in terms of

simulation, given that it is based on a single move Gibbs sampling algorithm in the same

way as WinBUGS (see Meyer and Yu, 2000; Yu, 2005, 2012, for WinBUGS implementation

of SV models). Data cloning improves the accuracy of the parameter estimates of the models

considered in the paper in comparison to that of the standard Bayesian approach, making it

an effective alternative estimation method for flexible and complex SV models.

The finite sample properties of the proposed estimators are studied by means of an

intensive Monte Carlo study and their performance is compared to that of a standard

Bayesian approach. The simulation results show that the parameters are estimated more

accurately with data cloning than with a standard Bayesian approach, and the differences
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between the estimates are quite significant for small samples. As the sample size increases

the standard Bayesian approach improves its performance, although it often remains less

accurate than data cloning when more complex distributions are used for the standardized

returns.

Finally, the estimation performance of the proposed estimator for parameters and

volatilities is illustrated by fitting three asymmetric stochastic volatility models to daily

S&P 500 and FTSE-100 returns. The results allow to identify which type of asymmetric

volatility best characterizes the data. We also provide one-day-ahead volatility forecasts and

evaluate them against estimates of realized volatility obtained from high frequency data.

The remainder of the paper is organized as follows. Section 2 describes the models studied

in the paper and the different sources of asymmetric volatility. Section 3 suggests data cloning

for the estimation of flexible and complex asymmetric stochastic volatility models. Section 4

investigates the finite sample performance of the proposed estimator, and compares it to that

of other Bayesian user-friendly procedure. An empirical application using two time series

of financial returns is presented in Section 5 and finally Section 6 provides some concluding

remarks.

2 Model description

Let yt be the return at time t, σ2
t its volatility, ht ≡ log σ2

t and ǫt be an independent

and identically distributed (IID) sequence with mean zero and variance one. The general

asymmetric autoregressive stochastic volatility (GA-SV) family of Mao et al. (2015) is given

by

yt = exp(ht/2)ǫt, t = 1, . . . , T (1)

ht − µ = φ(ht−1 − µ) +m(ǫt−1; θ) + ηt−1, (2)
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where the log-volatility disturbance ηt is a Gaussian white noise with variance σ2
η, m(ǫt; θ) is

any real parametric function of ǫt independent of ηt for all leads and lags and θ is the vector

of parameters of this function.2 The scale parameter µ is related with the marginal variance

of the returns, while φ controls the rate of decay (towards zero) of the autocorrelations of

power-transformed absolute returns, hence, the persistence of volatility shocks. Note that,

in equations (1) and (2), the standardized return at time t−1 is correlated with the volatility

at time t. Furthermore, if m(·; θ) is not an even function, then positive and negative past

standardized returns of the same magnitude have different effects on volatility (see Mao

et al., 2015, for more details).

In this paper, we consider the following specifications of m that correspond to the mostly

well-known forms of asymmetric volatility , and that are nested in the GA-SV family:

AARSV: m(ǫt−1; θ) = γ1ǫt−1,

TSV: m(ǫt−1; θ) = δI(ǫt−1 < 0),

TGA-SV: m(ǫt−1; θ) = δI(ǫt−1 < 0) + γ1ǫt−1 + γ2(|ǫt−1| − E(|ǫt−1|)).

The AARSV is the well-known asymmetric autoregressive SV model of Taylor (1994) and

Harvey and Shephard (1996). TSV stands for a threshold SV model where only a constant

δ is added (or not) to the model depending on the sign of past returns. I(·) is an indicator

function that takes the value one when the argument is true and zero otherwise. This model

is based on a restricted version of the threshold SV proposed by So et al. (2002), and TGA-

SV corresponds to the threshold generalized asymmetric stochastic volatility model proposed

by Mao et al. (2015), which includes also an EGARCH part as in Demos (2002) and Asai

and McAleer (2011).

2The Gaussianity of ηt when m(ǫt; θ) = 0 is justified in Andersen, Bollerslev, Diebold, and Ebens (2001)
and Andersen, Bollerslev, Diebold, and Labys (2001, 2003).
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3 Data cloning estimation

The data cloning method is a computational technique that allows to obtain maximum

likelihood (ML) estimators of parameters and their asymptotic variances, through a MCMC

method (see, e.g, Lele et al., 2007, 2010). It is based on the intuitive idea of running an

experiment several times and obtaining always the same observations. In this way, given

some observed data y = (y1, . . . , yn), a new dataset is built by means of making K clones

of the original observations: y(K) = (y, . . . ,y). The clones are assumed to be independent

of each other, and K is supposed to be large enough. Accordingly, the likelihood of y(K)

is equal to the K-th power of the likelihood of the original data [L(θ|y)]K , where θ is the

vector of parameters.

In general, with data cloning, a MCMC procedure is applied by taking the cloned

data y(K) and multiplying the corresponding likelihood [L(θ|y)]K by a given proper prior

distribution π(θ) of θ. Then, samples from the posterior distributions π(K)(θ|y) are

generated. The selection or elicitation of a proper prior distribution is not very relevant and

any distribution may be chosen. The mean of the posterior distribution of θ approximates

the ML estimator (θ̂), when the number of clones K increases. Nevertheless, as Lele et al.

(2010) point out, when the prior distribution is more informative, the convergence of the

mean of the posterior distribution to the ML estimator is faster and a smaller number of

clones K is needed. For K large enough, π(K)(θ|y) converges to a multivariate normal

distribution whose mean is equal to the ML estimator of θ, and the covariance matrix equals

1/K times the inverse of the Fisher information matrix of the ML estimator of θ (see the

appendix of Lele et al., 2007, for details).

As a summary, the data cloning algorithm consists of 3 steps:

Step 1: Generate a K-cloned data set y(K) = (y,y, . . . ,y) in such a way that the observed

data vector is repeated K times.

Step 2: Generate random deviates from the posterior distribution by means of a MCMC
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algorithm, with any proper prior distribution π(θ) and the cloned data vector y(K) =

(y,y, . . . ,y). The K copies of y are assumed to be independent of each other.

Step 3: Compute sample means and variances of the MCMC chains generated from the

posterior distribution of the vector of parameters θ. The means of the posterior

distributions approximate the ML estimates of parameters, and K times the variances

of the posterior distributions coincide with the estimated asymptotic variances of the

ML estimators of the parameters.

One of the main advantages of using data cloning alternative is its easy and friendly

implementation in R, by means of the packages dclone (Solymos, 2010) and dcmle (Solymos,

2016)). The syntax adopted in dclone is similar to BUGS language.3

First, it is necessary to define the prior distributions of the models’ parameters. A

proper set of prior distributions can be assumed. We have considered weakly informative

prior distributions based on the literature on the estimation of SV models:

µ ∼ N(0, 103) 1+φ
2 ∼ Beta(1, 1) σ−2

η ∼ Gamma(10−3, 10−3)

γ1 ∼ N(0, 103) γ2 ∼ N(0.05, 103) δ ∼ N(0.05, 103)

ν ∼ Gamma(2, 0.1) λ ∼ Gamma(10−2, 10−2)

where ν and λ are the degrees of freedom and the asymmetry parameter of the skew-Student-t

distribution, respectively. In the simulations and the empirical application the standardized

returns are assumed to follow, for instance, a skew-Student-t distribution.

Second, we have determined the optimal number of clones to be used. The library

dclone includes several diagnosis measures, such as the function dcdiag that calculates

some statistics that assist the user in that choice. One of these statistics is the maximum

eigenvalue of the posterior covariance matrix provided by Lele et al. (2010), which gives

3See code example in Appendix A.
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us information about the degeneration of the posterior distribution; accordingly, if it is

close to zero, prior distributions have small influence on the results. In our simulations and

application, we use 15 clones. We have also experimented with a larger number of clones but

the improvement in the estimates of the parameters is irrelevant. Other measures related

with the selection of the optimal number of clones are: the mean squared error (MSE ) and

the R2 statistic. They are both based on a χ2 approximation, and they should converge to

zero when the number of clones increases. As before, the optimal number of clones selected

by these measures is 15.

3.1 Example of model implementation in data cloning

We use the wrapper included in the library dcmle in order to implement the SV models (see

Solymos, 2016). Furthermore, we consider a dcFit object that includes the parameters of the

model, the data, the name of the underlying instructions of a standard Bayesian program,

in this paper JAGS that is proposed by Plummer (2003), and the variable that controls the

number of clones. The corresponding code is:

library(dcmle)

DCloneObject = NULL

dataInitial = list(y=y, t_max=t_max, htmean0=htmean0, epsilon0=epsilon0)

parameters = c("mu", "gamma1", "phi", "sigeta2", "nu", "httot", "skew")

DCloneObject = new("dcFit")

DCloneObject@data = list(

y = dcdim(y),

t_max=t_max, htmean0=htmean0, epsilon0=epsilon0,
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Ncl=1)

DCloneObject@model = "Instructions.txt"

DCloneObject@multiply = "Ncl"

DCloneObject@unchanged = c("t_max", "htmean0", "epsilon0")

DCloneObject@params = parameters

Ncluster = makePSOCKcluster(3)

m1 = dcmle(DCloneObject, n.clones=15, cl=Ncluster)

stopCluster(elcluster)

The Appendix A provides an example that runs data cloning for a particular ASV model.

4 Simulation study

In this section we conduct simulation experiments in order to assess the performance of the

approximated ML estimators of the parameters of different asymmetric stochastic volatility

models via data cloning, hereafter called DC estimator. We consider three possible designs

for the Monte Carlo experiments depending on the error distribution of the standardized

returns. They are either assumed to follow a N(0, 1), a Student-t with v degrees of freedom

or a skew-Student-t distribution with parameters v and λ, where v corresponds to the degrees

of freedom and λ to the skewness parameter (see Fernández and Steel, 1998, for details on

the skew-Student-t distribution). Note that λ = 1 corresponds to a symmetric distribution,

while λ < 1 implies negative skewness. The number of replicates is 200 and the full set of

parameter values is (µ, φ, δ, γ1, γ2, σ
2
η, ν, λ) = (0, 0.98, 0.07, −0.08, 0.1, 0.05, 5, 0.9). Finally,

we consider four sample sizes T = 500, 1000, 2000 and 4000 and three asymmetric stochastic

volatility models; see Section 2.
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4.1 Finite sample properties of the data cloning and benchmark

estimators

Table 1 reports the Monte Carlo averages and standard deviations of DC and the Bayesian

parameter estimates when the errors are assumed to be Gaussian. The two estimators

provide quite similar parameter estimates for large T and for the AARSV model, although

the log-volatility intercept is, for the majority of the cases, estimated with more precision

by DC. The most relevant differences between DC and Bayesian methodology are observed

for small and moderate sample sizes. DC estimates of the parameters are often closer to

the true values of the parameters and have smaller standard errors. Regarding the TSV

and TGA-SV models, DC also provides more accurate estimates and more precision in the

estimation of the parameters for small and moderate sample sizes. Even for large sample

sizes some parameters are estimated with more precision when using the DC estimator. It

seems that there is a correlation between the complexity of the model and the performance

of the estimators, that is, the higher the complexity of the model, the larger the differences

between the Bayesian and DC estimators are, in favor of the DC estimator.

Table 2 shows the results of the Monte Carlo simulation when the standardized returns

follow a Student-t with five degrees of freedom. The degrees of freedom are jointly estimated

with the rest of the parameters in all asymmetric stochastic volatility models. For this

design, we observe an important improvement in the accuracy of the estimates provided

by DC in comparison to that of the Bayesian approach. Regarding the AARSV and TSV

models, we observe that Bayesian estimates σ2
η and v (the degrees of freedom of the Student-t

distribution) very inaccurately and imprecisely when considering small and moderate sample

sizes. Even for T = 4000 these estimates are much more accurate with DC than with the

standard Bayesian approach. Furthermore, the precision in the estimation of the parameters

is often higher with DC. Looking at the TGA-SV results, we observe that the Bayesian

method has an enormous difficulty in estimating γ2 and v. Once more, DC not only provides

more accurate estimates but also more precision in the estimation of parameters.
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Finally, Table 3 provides Monte Carlo averages and standard deviations of the parameter

estimates when the standardized returns are skew-Student-t. The simulation results for the

AARSV and TSV models show that for small and moderate sample sizes, the parameters

γ1, σ2
η and v are better estimated with DC. As the sample size increases, the Bayesian

estimator improves in precision and accuracy, but it underperforms in comparison to the

DC estimator, in particular, it is not able to estimate well σ2
η and the degrees of freedom

of the skew-Student-t distribution. Regarding the TGA-SV, the estimation precision of

DC estimator is higher than that of Bayesian, but since the model is quite complex, some

parameters are not estimated with the expected accuracy. In this case a larger sample size

is required.

5 Empirical application

We estimate the three asymmetric SV addressed in Section 2 using daily returns for two

major stock market indexes, namely: S&P 500 and FTSE-100. The S&P 500 returns span

the period between July 14, 2000 and May 21, 2018, while FTSE-100 returns range from

August 10, 2000 till June 18, 2018. The total number of observations for both series is 4500.

Figure 1 shows the time series of the returns. The samples cover the period of the global

financial crisis, which corresponds to a period of high volatility.

Table 4 presents the descriptive statistics of the returns. The empirical distribution of

the returns is lepkurtic and skewed to the left, which supports the use of the skew-Student-t

distribution to model the standardized returns.

5.1 Estimation results

We estimate the parameters and volatilities of the three asymmetric stochastic volatility

models using a standard Bayesian approach and DC. Given the descriptive statistics of the
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data, we assume that the standardized returns follow a skew-Student-t distribution.4

Table 5 and Figure 2 show the estimation results: parameters and volatility. For precision,

we estimate the constant of the log-volatility process as µ(1 − φ). Regarding the S&P 500

returns, we observe that DC generates often slightly smaller standard deviations of the

parameters than the standard Bayesian approach. The estimates of the parameters are

quite similar for the AARSV and the TSV models. This is expected given that the number

of observations involved in the estimation is quite large. The largest difference is obtained

for the estimation of the degrees of freedom of the skew-Student-t distribution. DC provides

smaller parameter and standard deviation estimates. Regarding the TGA-SV model, the

largest differences are in the estimation of the parameters δ and ν (again the degrees

of freedom of the skew-Student-t distribution). DC provides smaller estimated standard

deviations for these two parameters, which might indicate a more reliable estimation. In

terms of goodness-of-fit, we observe that the Deviance Information Criterion (DIC) is slightly

larger for the TGA-SV model. On the other hand, AARSV and TSV are identical in terms

of goodness-of fit. It is also the TGA-SV model that provides the highest estimates of the

volatility, specially in periods of high volatility.

Looking at the estimation results of the FTSE-100 returns, the largest differences are

observed in the estimation of the parameters: δ, γ2 and ν. DC estimates γ2 with more

precision than the standard Bayesian approach, but provides a smaller precision for the

parameter of the degrees of freedom of the skew-Student-t distribution. All the models are

similar in terms of goodness-of-fit. Finally, regarding the estimated volatility, we observe

that in the peak of volatility of the last global financial crisis, the TSV model estimates more

volatility than the other models, and this difference is slightly larger when using DC (see

Figure 2).

4See Fernández and Steel (1998) for the specification of the skew-Student-t distribution
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5.2 Forecasting results

We use a fixed rolling window scheme with 4400 observations. In total, for all models, we

obtain 100 out-of-sample one-step-ahead forecasts.

The models’ forecasting performance is evaluated using the model confident set (MCS)

procedure proposed by Hansen et al. (2011) and programmed in R by Catania and Bernardi

(2015). Hansen et al. (2011) procedure consists of a sequence of statistic tests to construct a

set of models called “Superior Set Model” (SSM). Models in the SSM have statistically the

same predictive ability and are ranked by the value of the loss function. The test statistic is

calculated for an arbitrary loss function and evaluates point forecasts.

Table 6 displays the SSM of the forecasting models under study. The loss functions are

the squared error (SE) and the Qlike of Patton (2011), which is robust to the presence of

noise in the volatility proxy.5 The results depend mainly on the loss function. The TGA-SV

model is always ranked first for the S&P 500 returns. None of the models are excluded

from the SSM, which implies they have a similar predictive ability. Nevertheless, depending

on the loss function the models are ranked differently when the estimation method is the

standard Bayesian approach. Regarding the FTSE-100 returns, the results are more stable.

All the models belong to the SSM regardless the loss function and confidence level chosen,

and the TSV is always ranked first followed by the TGA-SV model.

6 Conclusion

In this paper we propose the use of data cloning to the estimation of general asymmetric

stochastic volatility models that are able to capture the asymmetric volatility, the leptokur-

tosis and skewness of the distribution of standardized returns. Data cloning is used together

with a standard Bayesian approach, which improves the accuracy of the parameter estimates

5The SE is defined as (RVt+1 − σ̂t+1)
2
while the Qlike is defined as Qlike ≡ RVt+1

σ̂t+1
−

(
RVt+1

σ̂t+1

)
− 1.

RVt+1 corresponds to the realized volatility obtained with intradaily returns (5-minutes) calculated in
https://realized.oxford-man.ox.ac.uk/data.
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in comparison to the accuracy of the parameter estimates obtained from an alternative

Bayesian method, making it an effective alternative estimation method for flexible and

complex SV models. Furthermore and most important, it does not imply hard programming

and the R packages are freely available.

The models that are estimated in this paper incorporate different sources of asymmetric

volatility: the first models the asymmetric volatility through the correlation between the

standardized returns and log-volatility, the second allows the constant of the log-volatility

equation to change according to the sign of the returns, and the last model nests the first

two and also includes a magnitude effect similar to that of the EGARCH model.

We analyze the finite sample properties of the data cloning and Bayesian estimators and

show that data cloning leads to accurate estimates of the parameters specially for small

and moderate samples sizes. Additionally, and even for large sample sizes, it provides more

accurate estimates than those of a standard Bayesian approach when the models are quite

complex.

Finally, we use data cloning to estimate the parameters of three asymmetric SV models

and forecast the one-step-ahead volatility of S&P 500 and FTSE-100 daily returns. Data

cloning often provides estimates of parameters that have less variance, when compared to

those estimated with a standard Bayesian approach. Although for the FTSE-100 volatility

forecasting the results provided by the two estimation methods are similar, when we consider

the volatility forecasting of the S&P 500 returns, the estimation results are slightly different

depending on the loss function used. Nevertheless, for this series of returns the TGA-SV

model is always ranked first.
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Figures and Tables

Table 1: Simulation results

Monte Carlo results of a standard Bayesian approach and DC estimators of ASV model’s parameters with Gaussian errors.
Monte Carlo averages of estimates and standard deviations are reported (in parenthesis). The first column of each parameter
corresponds to the estimates obtained with a standard Bayesian approach, while the second column corresponds to the
estimates obtained with DC.

Parameters µ φ δ γ1 γ2 σ2
η

True 0 0.98 0.07 -0.08 0.10 0.05

AARSV

T = 500
Mean -0.105 -0.043 0.969 0.968 – – -0.082 -0.083 – – 0.068 0.060
Std.dev. (1.124) (0.624) (0.025) (0.017) – – (0.042) (0.041) – – (0.029) (0.027)

T = 1000
Mean -0.090 -0.021 0.975 0.974 – – -0.084 -0.085 – – 0.061 0.058
Std.dev. (0.501) (0.377) (0.011) (0.010) – – (0.028) (0.027) – – (0.018) (0.017)

T = 2000
Mean 0.023 0.024 0.977 0.977 – – -0.081 -0.081 – – 0.054 0.053
Std.dev. (0.265) (0.265) (0.018) (0.010) – – (0.006) (0.006) – – (0.017) (0.010)

T = 4000
Mean 0.000 -0.015 0.978 0.978 – – -0.081 -0.078 – – 0.052 0.051
Std.dev. (0.178) (0.198) (0.004) (0.003) – – (0.014) (0.014) – – (0.007) (0.006)

TSV

T = 500
Mean -0.376 0.402 0.945 0.947 0.100 0.101 – – – – 0.110 0.097
Std.dev. (2.507) (1.621) (0.044) (0.037) (0.087) (0.088) – – – – (0.064) (0.058)

T = 1000
Mean -0.238 0.240 0.967 0.967 0.084 0.084 – – – – 0.073 0.069
Std.dev. (1.981) (1.269) (0.016) (0.015) (0.057) (0.057) – – – – (0.028) (0.028)

T = 2000
Mean -0.027 0.170 0.974 0.974 0.079 0.080 – – – – 0.060 0.059
Std.dev. (1.163) (0.979) (0.008) (0.008) (0.040) (0.040) – – – – (0.016) (0.016)

T = 4000
Mean -0.029 0.055 0.978 0.977 0.075 0.075 – – – – 0.055 0.055
Std.dev. (0.771) (0.732) (0.005) (0.005) (0.027) (0.027) – – – – (0.010) (0.009)

TGA-SV

T = 500
Mean -0.383 0.163 0.954 0.958 0.109 0.110 -0.066 -0.067 0.122 0.113 0.079 0.069
Std.dev. (3.723) (3.623) (0.039) (0.033) (0.159) (0.161) (0.082) (0.083) (0.147) (0.136) (0.055) (0.048)

T = 1000
Mean -0.635 -0.267 0.970 0.970 0.107 0.108 -0.066 -0.066 0.121 0.117 0.066 0.063
Std.dev. (2.912) (2.517) (0.015) (0.014) (0.105) (0.106) (0.056) (0.056) (0.089) (0.083) (0.032) (0.030)

T = 2000
Mean 0.029 0.148 0.975 0.975 0.075 0.075 -0.079 -0.080 0.122 0.116 0.056 0.055
Std.dev. (1.702) (1.563) (0.008) (0.007) (0.065) (0.066) (0.031) (0.031) (0.059) (0.056) (0.016) (0.015)

T = 4000
Mean -0.049 -0.001 0.978 0.978 0.074 0.074 -0.079 -0.079 0.107 0.103 0.053 0.052
Std.dev. (1.241) (1.203) (0.004) (0.004) (0.047) (0.048) (0.024) (0.024) (0.040) (0.038) (0.008) (0.008)



Table 2: Simulation results

Monte Carlo results of a standard Bayesian approach and DC estimators of ASV model’s parameters with Student-t standardized
returns. Monte Carlo averages of estimates and standard deviations are reported (in parenthesis). The first column of each
parameter corresponds to the estimates obtained with a standard Bayesian approach, while the second column corresponds
to the estimates obtained with DC.

Parameters µ φ δ γ1 γ2 σ2
η ν

True 0 0.98 0.07 -0.08 0.10 0.05 5.00

AARSV

T = 500
Mean 0.029 -0.006 0.961 0.965 – – -0.092 -0.088 – – 0.093 0.063 9.500 6.100
Std.dev. (0.974) (0.714) (0.036) (0.039) – – (0.040) (0.037) – – (0.054) (0.036) (4.785) (3.657)

T = 1000
Mean 0.001 -0.005 0.974 0.974 – – -0.083 -0.082 – – 0.064 0.055 6.484 5.422
Std.dev. (0.484) (0.369) (0.014) (0.011) – – (0.027) (0.026) – – (0.028) (0.022) (2.185) (1.148)

T = 2000
Mean 0.023 0.005 0.977 0.977 – – -0.082 -0.081 – – 0.057 0.053 5.769 5.294
Std.dev. (0.266) (0.264) (0.007) (0.007) – – (0.016) (0.016) – – (0.015) (0.013) (1.151) (0.822)

T = 4000
Mean -0.008 -0.053 0.979 0.978 – – -0.082 -0.078 – – 0.053 0.056 5.296 5.074
Std.dev. (0.190) (0.199) (0.004) (0.004) – – (0.012) (0.011) – – (0.009) (0.008) (0.559) (0.443)

TSV

T = 500
Mean 0.239 0.593 0.933 0.950 0.071 0.073 – – – – 0.145 0.095 10.667 6.857
Std.dev. (2.655) (2.025) (0.060) (0.039) (0.100) (0.097) – – – – (0.093) (0.063) (5.463) (5.747)

T = 1000
Mean -0.147 0.158 0.960 0.964 0.092 0.093 – – – – 0.089 0.075 6.495 5.285
Std.dev. (1.857) (1.357) (0.026) (0.018) (0.060) (0.059) – – – – (0.043) (0.032) (2.722) (1.408)

T = 2000
Mean -0.013 0.405 0.974 0.976 0.075 0.062 – – – – 0.062 0.058 5.466 5.069
Std.dev. (1.298) (0.888) (0.009) (0.005) (0.043) (0.041) – – – – (0.017) (0.011) (0.825) (0.717)

T = 4000
Mean 0.010 0.035 0.977 0.978 0.073 0.074 – – – – 0.056 0.054 5.248 5.069
Std.dev. (0.860) (0.660) (0.005) (0.004) (0.029) (0.030) – – – – (0.010) (0.008) (0.554) (0.461)

TGA-SV

T = 500
Mean -0.790 -1.157 0.953 0.955 0.106 0.101 -0.079 -0.076 -0.015 0.071 0.089 0.052 13.511 8.975
Std.dev. (4.411) (5.884) (0.069) (0.129) (0.163) (0.154) (0.069) (0.063) (0.187) (0.160) (0.063) (0.059) (6.657) (10.436)

T = 1000
Mean -1.090 -1.129 0.972 0.975 0.092 0.076 -0.077 -0.078 0.028 0.100 0.054 0.040 9.651 7.079
Std.dev. (3.023) (2.763) (0.012) (0.011) (0.100) (0.088) (0.046) (0.038) (0.159) (0.130) (0.031) (0.030) (5.866) (6.162)

T = 2000
Mean -0.447 -0.678 0.976 0.976 0.072 0.082 -0.083 -0.077 0.037 0.081 0.050 0.049 8.556 5.828
Std.dev. (1.298) (1.494) (0.007) (0.006) (0.069) (0.045) (0.029) (0.024) (0.136) (0.098) (0.022) (0.016) (5.182) (2.908)

T = 4000
Mean -0.330 -0.593 0.979 0.978 0.077 0.070 -0.080 -0.083 0.071 0.081 0.048 0.054 6.254 5.548
Std.dev. (1.298) (1.857) (0.004) (0.004) (0.048) (0.061) (0.019) (0.019) (0.094) (0.076) (0.017) (0.015) (2.600) (1.482)



Table 3: Simulation results

Monte Carlo results of a standard Bayesian approach and DC estimators of ASV model’s parameters with Skew-Student-t standardized
returns. Monte Carlo averages of estimates and standard deviations are reported (in parenthesis). The first column of each parameter
corresponds to the estimates obtained with standard Bayesian approach, while the second column corresponds to the estimates
obtained with DC.

Parameters µ φ δ γ1 γ2 σ2
η ν λ

True 0 0.98 0.07 -0.08 0.10 0.05 5.00 0.90

AARSV

T = 500
Mean -0.671 -0.036 0.951 0.970 – – -0.087 -0.081 – – 0.108 0.061 9.794 6.518 0.902 1.005
Std.dev. (1.840) (0.997) (0.017) (0.062) – – (0.034) (0.046) – – (0.034) (0.087) (5.296) (5.069) (0.030) (0.034)

T = 1000
Mean -0.229 0.141 0.973 0.976 – – -0.084 -0.083 – – 0.066 0.052 6.255 4.946 0.902 0.899
Std.dev. (1.036) (0.488) (0.013) (0.008) – – (0.025) (0.024) – – (0.026) (0.013) (2.331) (0.960) (0.020) (0.019)

T = 2000
Mean -0.025 0.175 0.977 0.977 – – -0.084 -0.082 – – 0.056 0.056 5.536 5.326 0.899 0.901
Std.dev. (0.436) (0.368) (0.007) (0.004) – – (0.019) (0.013) – – (0.014) (0.010) (0.864) (0.929) (0.016) (0.015)

T = 4000
Mean 0.028 0.056 0.978 0.979 – – -0.081 -0.079 – – 0.054 0.051 5.253 5.024 0.900 0.903
Std.dev. (0.246) (0.214) (0.005) (0.004) – – (0.012) (0.012) – – (0.008) (0.008) (0.555) (0.424) (0.009) (0.008)

TSV

T = 500
Mean 0.486 0.955 0.918 0.937 0.075 0.074 – – – – 0.164 0.126 9.896 6.095 0.903 0.907
Std.dev. (2.869) (1.567) (0.117) (0.067) (0.099) (0.091) – – – – (0.120) (0.115) (4.810) (3.516) (0.028) (0.021)

T = 1000
Mean 0.075 0.202 0.963 0.966 0.083 0.091 – – – – 0.085 0.063 6.270 4.927 0.897 0.897
Std.dev. (2.085) (1.427) (0.022) (0.019) (0.066) (0.058) – – – – (0.037) (0.023) (2.383) (0.992) (0.021) (0.021)

T = 2000
Mean 0.063 -0.255 0.973 0.975 0.076 0.087 – – – – 0.065 0.063 5.390 4.892 0.898 0.894
Std.dev. (1.327) (1.003) (0.009) (0.009) (0.042) (0.034) – – – – (0.018) (0.021) (0.900) (0.614) (0.013) (0.014)

T = 4000
Mean 0.102 0.290 0.977 0.978 0.072 0.066 – – – – 0.057 0.053 5.160 4.985 0.899 0.899
Std.dev. (0.908) (0.850) (0.005) (0.004) (0.031) (0.037) – – – – (0.010) (0.007) (0.504) (0.430) (0.010) (0.011)

TGA-SV

T = 500
Mean -0.190 -0.052 0.954 0.963 0.090 0.114 -0.091 -0.069 0.031 0.104 0.088 0.039 11.576 7.989 0.899 0.891
Std.dev. (3.830) (3.448) (0.030) (0.022) (0.174) (0.169) (0.081) (0.073) (0.187) (0.175) (0.066) (0.038) (6.611) (9.536) (0.029) (0.016)

T = 1000
Mean -1.066 -1.053 0.970 0.974 0.098 0.098 -0.082 -0.088 0.051 0.069 0.057 0.041 9.068 6.019 0.899 0.903
Std.dev. (3.251) (2.936) (0.015) (0.010) (0.098) (0.085) (0.047) (0.049) (0.155) (0.178) (0.037) (0.022) (5.731) (4.785) (0.018) (0.016)

T = 2000
Mean -0.471 -0.421 0.977 0.977 0.076 0.095 -0.082 -0.063 0.080 0.151 0.048 0.036 7.105 4.733 0.900 0.900
Std.dev. (2.022) (1.530) (0.007) (0.004) (0.065) (0.063) (0.036) (0.023) (0.128) (0.059) (0.023) (0.021) (4.506) (0.791) (0.013) (0.014)

T = 4000
Mean -0.338 -0.363 0.978 0.979 0.079 0.083 -0.077 -0.074 0.096 0.116 0.047 0.044 5.696 4.793 0.900 0.904
Std.dev. (1.420) (1.362) (0.004) (0.005) (0.048) (0.044) (0.024) (0.020) (0.086) (0.047) (0.020) (0.018) (2.383) (0.566) (0.010) (0.008)



Figure 1: Daily returns in percentage

Table 4: Descriptive statistics of returns

Data Mean Std. Dev. Skewness Kurtosis
S&P 500 0.0135 1.1912 -0.2013 11.5699
FTSE-100 0.0039 1.1517 -0.1691 9.7571



Table 5: Estimates obtained using DC and a standard Bayesian approach

Bayesian approach DC

Series Param AARSV TSV TGA-SV AARSV TSV TGA-SV
S&P 500

µ(1− φ) -0.010 -0.143 -0.030 -0.011 -0.141 -0.031
(0.002) (0.012) (0.017) (0.003) (0.013) (0.016)

φ 0.976 0.979 0.976 0.977 0.980 0.978
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

δ 0.285 0.010 0.280 0.014
(0.024) (0.032) (0.026) (0.030)

γ1 -0.173 -0.179 -0.169 -0.174
(0.012) (0.018) (0.011) (0.019)

γ2 -0.104 -0.106
(0.031) (0.032)

σ2
η 0.018 0.025 0.019 0.016 0.024 0.017

(0.004) (0.004) (0.004) (0.003) (0.004) (0.004)
v 15.338 19.780 29.679 12.765 15.830 24.521

(4.279) ( 7.626) (12.540) (2.429) (4.323) (11.764)
λ 0.982 0.997 0.983 0.983 0.997 0.983

(0.009) (0.010) (0.010) (0.009) (0.010) (0.010)

DIC 89.929 89.929 89.930
FTSE-100

µ(1− φ) -0.006 -0.130 -0.019 -0.006 -0.128 -0.019
(0.002) (0.011) (0.014) (0.002) (0.010) (0.018)

φ 0.983 0.981 0.982 0.983 0.981 0.983
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

δ 0.257 0.035 0.252 0.028
(0.021) (0.030) (0.020) (0.035)

γ1 -0.143 -0.129 -0.145 -0.134
(0.009) (0.016) (0.010) (0.015)

γ2 0.031 0.002
(0.021) (0.032)

σ2
η 0.010 0.017 0.009 0.010 0.018 0.010

(0.002) (0.004) (0.002) (0.002) (0.003) (0.003)
v 37.075 41.067 31.412 42.751 60.400 42.478

(13.712) (16.118) (10.759) (27.071) (49.903) (32.139)
λ 0.976 0.990 0.976 0.975 0.990 0.976

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

DIC 89.929 89.929 89.929

Note: Standard errors are in parentheses. The values of the DIC are divided by 106.



Table 6: Model confidence set results

The table reports the rankings of volatility forecasters with different loss
functions. – means that the model does not belong to the SSM. The statistical
tests are done at 95% and 80% confidence levels. We use 5000 bootstrap samples.

Series Models Loss functions
Bayesian approach DC
95% 80% 95% 80%

SE QLIKE SE QLIKE SE QLIKE SE QLIKE
S&P 500 AARSV 2 3 2 3 3 3 3 3

TSV 3 2 3 2 2 2 2 2
TGA-SV 1 1 1 1 1 1 1 1
p-value 0.888 0.652 0.880 0.652 0.728 0.356 0.728 0.348

FTSE-100 AARSV 3 3 3 3 3 3 3 3
TSV 1 1 1 1 1 1 1 1
TGA-SV 2 2 2 2 2 2 2 2
p-value 0.568 0.536 0.568 0.547 0.425 0.462 0.439 0.458



Bayesian

DC

Figure 2: Estimated volatilities and volatility scatter plots



Appendix A

data{

for (indexclon in 1:Ncl){

for (i in 1:t_max) {

zero[i,indexclon] <- 0

}

}

}

model{

# Prior distributions

mu ~ dnorm(0, 0.001)

phistar ~ dbeta(1, 1)

tau_eta ~ dgamma(0.001, 0.001)

gamma1 ~ dnorm(0, 0.001)

nu ~ dgamma(2,0.1)

skew ~ dgamma(0.01,0.01)

phi <- 2*phistar - 1

sigeta2 <- 1/tau_eta

# Cloning process

for (indexclon in 1:Ncl){

# Initial values

htmean[1,indexclon] <- mu + phi*(htmean0-mu) + gamma1*epsilon0

ht[1,indexclon] ~ dnorm(htmean[1,indexclon], tau_eta)



ysigma2[1,indexclon] <- 1/exp(ht[1,indexclon])

# zero trick to define a skew-t

z[1,indexclon] <- ifelse(y[1,indexclon] >= 0,

y[1,indexclon]/skew, y[1,indexclon]*skew)

loglik[1,indexclon] <- logdensity.t(z[1,indexclon], 0, ysigma2[1,indexclon], nu) +

log(2) - log(skew + 1/skew)

lambda[1,indexclon] <- 10000 - loglik[1,indexclon]

zero[1,indexclon] ~ dpois(lambda[1,indexclon])

# Full iterations

for (t in 2:t_max) {

htmean[t,indexclon] <- mu + phi*(ht[t-1,indexclon]-mu) +

(gamma1*y[t-1,indexclon]/exp(ht[t-1,indexclon]/2))

ht[t,indexclon] ~ dnorm(htmean[t,indexclon], tau_eta)

ysigma2[t,indexclon] <- 1/exp(ht[t,indexclon])

# zero trick to create a skew-t

z[t,indexclon] <- ifelse(y[t,indexclon] >= 0, y[t,indexclon]/skew, y[t,indexclon]*skew)

loglik[t,indexclon] <- logdensity.t(z[t,indexclon], 0, ysigma2[t,indexclon], nu) +

log(2) - log(skew + 1/skew)

lambda[t,indexclon] <- 10000 - loglik[t,indexclon]

zero[t,indexclon] ~ dpois(lambda[t,indexclon])

}

}

for (t in 1:t_max) {

httot[t] <- mean(ht[t,])

}



}
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