

Computer Science Engineering

Bachelor Thesis

ShoalUp: Development of a

meeting Android

application

Author: Álvaro de Saavedra

Tutor: David Griol Barres

Leganés, September 2017

I

Acknowledgment

I’d like to start by thanking my tutor, David Griol, for his support and

motivation since the first moment when I asked him to be part of this project,

he encouraged me to do it and helped me in several ways sharing his ideas and

experience with me.

Second, I’d like to express my gratitude to my family, without them I

wouldn’t be here now, they helped me in so many ways, motivating me to

continue when I was down, calming me when I was anxious and just being

there to support me.

Ultimately, my special mention is for my grandad, who I know right now

is watching me from above smiling with pride. He always supported me,

motivated me to study and encouraged me to give my best at everything I do,

thank you grandpa, without you I wouldn’t be the person I am today.

II

Abstract

The project aims to develop an Android application for putting together

people with similar interests. The users will register and be able to create

“meetings” or “events”, informing potential attendants with the description,

location and date and time. On the other hand, the users will also be able to

discover this “events” and join them and talk with the people that are assisting.

The developed Android application allows people to scan a certain range

from the user position discovering potential meetups, filter by kind of activity,

i.e. sports, party, trips… and chose to join them or comment in the event.

The app implements a client-server structure, using REST services to

communicate, and a NoSQL management database system.

Every decision taken, from the OS to the technology stack selected will

be analyzed and justified and put in context, describing the available

technologies that could fit in this purpose and reasoning the election.

Also, this being a big personal project, several future features are

mentioned with the correspondent description and selection reasons.

Keywords: Client-server, Android, NoSQL, SQLite, Java, REST, API,

Google Maps, Google Places.

III

Introducción

El objetivo del proyecto es desarrollar una aplicación Android para

poner en contacto personas con intereses similares. Los usuarios se registrarán

y podrán crear “meetings” o “eventos”, informando a a los potenciales

asistentes con la descripción, localización y fecha y hora. Otros usuarios

podrán descubrir estos “eventos” y unirse pudiendo comunicarse con el resto

de asistentes.

La aplicación Android desarrollada permite escanear un rango concreto

desde la posición del usuario descubriendo posibles “quedadas”, filtrándolas

por actividad, i.e. deportes, fiesta, viajes… y elegir unirse o dejar un comentario

en el evento.

La aplicación implementa una estructura cliente-servidor, usando

servicios REST para la comunicación, y un sistema de gestión de bases de datos

NoSQL.

Todas las decisiones tomadas, desde el sistema operativo hasta el stack

tecnológico escogido serán analizadas y justificadas y puestas en contexto,

describiendo las tecnologías disponibles que podrían encajar para este

propósito y razonando la elección.

También, al ser un gran proyecto personal, diferentes características

futuras serán mencionadas con su correspondiente descripción y razones de

selección.

Palabras clave: Cliente-servidor, Android, NoSQL, SQLite, Java, REST,

API, Google Maps, Google Places.

I

Table of contents

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Motivation .. 1

1.3 Objectives ... 2

1.3.1 Thesis objectives .. 2

1.3.2 Application objectives ... 3

1.4. Planning .. 4

1.5 Means employed .. 9

1.6 Memory structure .. 10

CHAPTER 2: STATE OF THE ART .. 11

2.1. Problem analysis .. 11

2.2 Platform and mobile OS evaluation 19

2.3 Design and implementation patterns 21

2.4 Evaluation of available technologies 24

2.4.1 Database evaluation .. 24

2.4.2 Backend technologies evaluation 26

CHAPTER 3: ANALYSIS AND DESIGN ... 31

3.1 Analysis .. 31

3.1.1 Requirements .. 31

3.1.1.1 User .. 31

3.1.1.2 Events ... 32

3.1.2 Use cases .. 33

3.1.2.1 Registration .. 34

3.1.2.2 Login .. 35

3.1.2.3 Account recovery ... 36

3.1.2.4 Profile modification .. 37

3.1.2.5 Account deletion ... 38

3.1.2.6 Log out ... 39

3.1.2.7 Create event ... 40

II

3.1.2.8 Modify an event .. 41

3.1.2.9 Delete event .. 42

3.1.2.10 Show events ... 43

3.1.2.11 Find events .. 44

3.1.2.12 Filter events .. 45

3.1.2.13 Discover events .. 46

3.1.2.14 Join an event... 47

3.1.2.15 Leave a comment ... 48

3.2 Design .. 49

3.2.1 Application architecture ... 49

3.2.2 Diagram of components ... 50

3.2.3 Activity diagrams .. 50

3.2.3.1 Registration activity .. 50

3.2.3.2 Login activity .. 52

3.2.3.3 Event creation activity .. 53

3.2.3.4 Event retrieval activity ... 54

3.2.4 MongoDB schema .. 55

CHAPTER 4: IMPLEMENTATION ... 57

4.1 Login and registration ... 57

4.2. ShoalUp... 61

4.3 Evaluation ..69

CHAPTER 5: SOCIOECONOMIC ENVIRONMENT 70

5.1 Socioeconomic environment ... 70

5.2 Budget of the project .. 71

CHAPTER 6: REGULATORY FRAMEWORK ... 74

CHAPTER 7: CONCLUSIONS AND FUTURE WORK........................... 75

7.1 Conclusions .. 75

7.2 Future work ... 76

7.2.1 Near future work ... 76

7.2.2 Further future work .. 76

BIBLIOGRAPHY .. 78

III

Index of figures

Figure 1.1. Software Development Life Cycle ………………………………………………...5

Figure 1.2. Project planning Gantt chart ………………………………………………………..7

Figure 2.1. MeetUp activity filter …………………………………………………………………..13

Figure 2.2. MeetUp activity focused groups…………………………………………………..13

Figure 2.3. Fever App homepage……………………………………………………………………15

Figure 2.4. Eventbrite homepage…………………………………………………………………..16

Figure 2.5. Timpik homepage………………………………………………………………………..17

Figure 2.6. Party with a Local homepage………………………………………………………18

Figure 2.7. Coachsurfing Travel App homepage……………………………………………18

Figure 2.8. Native vs Web Apps...…………………………………………………………………20

Figure 2.9. Android vs iOS usage ………………………………………………………………….21

Figure 2.10. Android MVC pattern………………………………………………………………..22

Figure 2.11. Android MVC – MVP comparison………………………………………………23

Figure 2.12. MVVM pattern…………………………………………………………………………..23

Figure 2.13. SQL vs NoSQL queries……………………………………………………………….25

Figure 2.14. NoSQL vs SQL……………………………………………………………………………26

Figure 2.15. NodeJS event loop………………………………………………………………………28

Figure 2.16. Client – Server – Database interaction……………………………………...30

Figure 3.1. ShoalUp diagram of components…………………………………………………50

Figure 3.2. Registration activity diagram……………….………………………………………51

Figure 3.3. Login activity diagram…………………………………………………………………52

Figure 3.4. Event creation activity diagram…………………………………………………..53

Figure 3.5. Event finding activity diagram…………………………………………………….54

Figure 3.6. MongoDB user collection document schema……………………………..55

Figure 3.7. MongoDB event collection document schema……………………………55

IV

Figure 4.1. ShoalUp login screen…………………………………………………………………..57

Figure 4.2. ShoalUp registration form………………………………………………………….59

Figure 4.3. ShoalUp home screen…………………………………………………………………61

Figure 4.4. ShoalUp event creation………………………………………………………………63

Figure 4.5. Date and time picker examples…………………………………………………..64

Figure 4.6. ShoalUp Find Events screen……………………………………………………….64

Figure 4.7. ShoalUp event complete information………………………………………...64

Figure 4.8. ShoalUp discover screen…………………………………………………………….66

Figure 4.9. ShoalUp discover event full information……………………………………66

Figure 4.10. AddMarker() method example………………………………………………….67

Figure 4.11. ShoalUp profile information………………………………………………………67

V

Index of tables

Table 3.1. Use case structure…………………………………………………………………………33

Table 3.2. Use Case: Registration………………………………………………………………….34

Table 3.3. Use Case: Login…………………………………………………………………………….35

Table 3.4. Use Case: Account recovery…………………………………………………………36

Table 3.5. Use Case: Profile modification……………………………………………………..37

Table 3.6. Use Case: Account deletion………………………………………………………….38

Table 3.7. Use Case: Log out…………………………………………………………………………39

Table 3.8. Use Case: Create event…………………………………………………………………40

Table 3.9. Use Case: Modify event………………………………………………………………..41

Table 3.10. Use Case: Delete event………………………………………………………………..42

Table 3.11. Use Case: Show events…………………………………………………………………43

Table 3.12. Use Case: Find events………………………………………………………………….44

Table 3.13. Use Case: Filter events…………………………………………………………………45

Table 3.14. Use Case: Discover events………………………………………………………..…46

Table 3.15: Use Case: Join an event……………………………………………………………….47

Table 3.16. Use Case: Leave a comment………………………………………………………..48

Table 5.1. Project technology costs……………………………………………………………….72

Table 5.2. Project’s total budget……………………………………………………………………73

VI

CHAPTER 1. INTRODUCTION

1

CHAPTER 1

INTRODUCTION

 1.1 Introduction

In this section a brief introduction of the Bachelor Thesis will be put

down, the development of a social, meeting application for users to discover

events and people of their interest, with similar taste. Locating these

“meetings” in a map and being able to track them by zone, activity or close

location.

Below, the motivation for selecting this topic, objectives, structure of the

memory and temporal planning, as well as the resources and expenses of the

project will be described.

1.2 Motivation

The mobile device usage has increased exponentially during the last

decade, smartphones have a star role in people’s everyday life, using them not

just for communicating like before but for paying, reading, navigate the web…

The smartphone application development is in constant expansion,

discovering new apps every day satisfying different purposes and necessities.

This was one of the main motivations for me to learn a mobile app

programming language, I wanted to know how to design and create apps from

scratch, to forge my ideas that could appease actual community deficits.

The subject of the app was clear for me from the beginning, the modern

society’s mindset is more open as time passes, is perceptible that people want

to meet new people more often, experience new things, innovate… But more

important than that, they don’t want to do it alone. I myself like to do sports

quite often like padel or soccer, but sometimes I don’t know people that are

able to synchronize their schedule with mine.

CHAPTER 1. INTRODUCTION

2

I wanted to develop a useful that people could use, and to help people

with the same hobbies, travelling, sports, party… taste to get to meet each

other and do things that otherwise they couldn’t do, either because they don’t

want to do it alone, like travelling or because they can’t actually do it, playing

a soccer match.

1.3 Objectives

This section is split into two, the objectives of the thesis, and the

objectives of the app itself, i.e. the requirements to be completed in order for

it to be considered successful.

1.3.1 Thesis objectives

The main objective of the thesis was to develop a functional, application

that allows users to create events for other users to communicate and join. The

technology stack, the design wasn’t defined yet, the developer had to make

and discuss the decisions taken.

 Selection of technology stack: one of the objectives of the thesis was

to increase the analytic capacity, boosted by the task of researching

the available technologies and reasoning which one will better fit for

achieving the goal. Important facts were taken into account, like the

actual knowledge of some technology, for example, Java. The

complexity of learning another language, the limitations and

benefits of choosing one over the other, SQL vs NoSQL, backend

languages, Java, PHP, Python, Node… The selection of the target

mobile OS was simpler, due to the fact that for developing an iOS

application a license is required, as well as an Apple computer, along

with the fact that Android Studio uses Java as the main

programming language and the information researched of Android

vs iOS that will later be explained, lead to the decision of

implementing the app for Android.

 Learn to code mobile applications: overcome the challenge of

learning how to implement an app from scratch, design, learn how

the components work, the interactions between client and server.

Also learn how to use the Android SDK, Android Studio, not just

for this project but for future ones, understanding how the graphic

CHAPTER 1. INTRODUCTION

3

part (XML) and the logic (Java) are associated, how to implement

version control in order to always have a backup, and to

acknowledge this function when working in bigger teams.

1.3.2 Application objectives

Despite being a big project, some limitations had to be established in

order to set a feasible limit according to the magnitude of the Bachelor Thesis.

 Ease of use: the functioning of the application has to be transparent

for the user, letting them just the responsibility of creating and

managing their events.

 Follow, as accurately as possible, the 10 usability heuristics for user

interface design [1]:

o Visibility of system status: informing the user of

actions happening by giving feedback in time.

o Match between system and the real world: displaying

the information in a logical, structured way; using

common, familiar words to define everything within the

system.

o User control and freedom: give the users the

maximum freedom regarding application navigation and

content managing, always having the possibility to go

back to a previous state.

o Consistency and standards: same actions lead to the

same result. Words have to be relatable to the action

performed.

o Error prevention: an error prevention design is

required in order to avoid, as far as possible the error

appearance on the execution. Descriptive error messages

and action confirmations are also helpful.

o Recognition rather than recall: minimize the memory

requirements to the user by making the application’s

state visible to the user, in which screen he is; also all the

required information for each action has to be given not

CHAPTER 1. INTRODUCTION

4

forcing the user to remember data from different

sections.

o Flexibility and efficiency of use: use accelerators for

speeding up the navigation process, adapting the user

experience for both new and experienced users.

o Aesthetic and minimalist design: display only the

most relevant information; otherwise the irrelevant data

might distract the user from the most important parts.

o Help users recognize, diagnose, and recover from

errors: display a message informing of the error and, if

possible, the required steps to solve it in an

understandable language.

o Help and documentation: if required, provide the

necessary documentation to be consulted, well-

structured and easily accessed.

 Device resources friendly: having well implemented backend

architecture, using REST services for helping to accomplish this

goal, reducing the processing part that takes place on the actual

device, using the appropriate servers.

 1.4. Planning

The phases followed during the development of this project were

stablished following the knowledge earned during the degree in several

subjects focusing on software based projects planning.

Thus, the project development followed the five Software Development

Life Cycle (SDLC) phases [2], shown in Figure 1.1.

CHAPTER 1. INTRODUCTION

5

Figure 1.1. Software Development Life Cycle

 Analyze user requirements: this is a critical phase, where

everything on the project has to be well-defined, the communication

between stakeholders and the developing team takes place.

Guessing what the user will expect of the application is also vital in

order to later save time and resources in future enhancements.

 Design the program: in this phase mainly three sections are

analyzed, the risks and the functional and non-functional

specifications.

o Risks: the potential threats and vulnerabilities that might

take place during the development or after it, along with the

conceivable legal aspects that the app might imply are

studied.

o Functional Specifications: interface requirements,

backend interaction, how will the database be structured

and managed are some aspects to be considered. Likewise,

the workflow the app follows is studied, the interactions

between user and the app.

o Non-functional Specifications: here scalability of the

project, future enhancements, performance and resources

are some of the project facets to be analyzed. It is important

to think in advance how the potential enhancements will

affect the database structure. As it will later be explained, the

CHAPTER 1. INTRODUCTION

6

probable enhancements regarding this project helped in the

decision of the database management system.

 Code the program: phase where the actual development takes

place, the system is coded and the developed parts are tested to work

as expected, this is usually the longest phase in the SDLC.

 Document and test the system: the fully developed project is

migrated to the test environment where different kinds of

evaluations are performed, not only the correct functioning is tested

but also the user acceptance. Once the tests have been passed, the

deployment of the project can be executed. In some cases, either the

users or the technical team, will need documentation to understand

how to use it or, for example, if new developers are incorporated to

the team, they will need some feedback about the application in

order to keep up with the rest of the team.

 Operate and maintain the system: once the application has been

deployed, it still needs maintenance. Despite having passed through

all the tests, some error might occur that will need a fast solution.

Besides, some applications need the tech team to operate a part or

the whole of it for the customers.

Figure 1.2 represents a Gantt chart that shows the different phases of the

development of ShoalUp planning. It is presented in order to have a fast look

at the whole process and, will also be briefly explained.

“A Gantt chart, commonly used in project management, is one of the most

popular and useful ways of showing activities (tasks or events) displayed against

time. On the left of the chart is a list of the activities and along the top is a

suitable time scale. Each activity is represented by a bar; the position and length

of the bar reflects the start date, duration and end date of the activity. This

allows you to see at a glance what the various activities are, when each activity

begins and ends, how long each activity is scheduled to last, where activities

overlap with other activities, and by how much and the start and end date of the

whole project.” [3].

CHAPTER 1. INTRODUCTION

7

Figure 1.2. Project planning Gantt chart

CHAPTER 1. INTRODUCTION

8

 Requirements and analysis: the required research of the technology

to be used and possibilities of development is performed at this point.

Android vs iOS, how to use Android Studio and some tutorials to

start off from, how REST services work and how to be implemented

within the project, potential languages to develop the backend,

database management systems pros and cons, NoSQL vs SQL.

 Design:

o Functional specifications:

 Interface design: design how the frontend will work,

and its appearance in order to be intuitive and self-

explanatory, reducing the time the user will have to

spend to learn how to use the app. Also the interaction

between activities and this section’s workflow.

 Client-server interaction: how the developed part

will interact with the backend and access the database.

 Backend design: the backend architecture was

defined in this section, stablishing the REST services to

develop, its interactions with the database and the

front end and the language to be used to accomplish

this goal.

 Database design: using NoSQL, the schema, i.e. the

collections and documents that will be required for the

expected functioning of the system, was define.

Likewise, the relationships between them,

OneToMany, ManyToMany… were designed for being

implemented afterwards.

o Non-functional specifications: after designing the actual

features to be developed in this stage of the development

process, the future enhancements and improvements were

thought of and written down for a later implementation.

 Coding: the implementation of the previously design model is

performed in this step. The frontend and backend were implemented

separately, tested to work for later integrating them together.

CHAPTER 1. INTRODUCTION

9

 Testing: subsequently, the complete application was put into the test

stage, verifying that it has been developed successfully and correcting

the found errors.

 Documentation: once the previous stage was completed, and even

though during the coding step some of the documentation was being

written, it was at this point where most of it was done.

1.5 Means employed

For developing this software project, the subsequent resources have

been required:

Hardware resources:

 Laptop computer.

 Desktop computer.

 Smartphone Xiaomi Redmi 4.

 USB cable.

Software resources:

 Netbeans software development Java platform.

 Android SDK (Software Development Kit): Android Studio

 RoboMongo (now Mongo 3T): MongoDB management tool.

 Volley HTTP library: managing the REST services more easily

from the Android SDK.

 Google Places API for Android.

 AWS (Amazon Web Services): web server for storing the

application REST services and Mongo database.

 Gantt Pro web application: for creating the Gantt chart.

 SourceTree: Git repositories managing tool.

 Git: version control software.

 Postman: Chrome extension for API development.

 Microsoft Office 2013.

 SmartDraw: flowchart creation tool.

The expenses for the above mentioned resources are calculated in

section 5.2 of this memory.

CHAPTER 1. INTRODUCTION

10

1.6 Memory structure

Chapter 1: Introduction Including the motivation and objectives of

the project, its planning, the resources employed for its accomplishment and

the memory structure.

Chapter 2: State of the art The observed gap that the proposed

solution would cover is analyzed, along with the evaluation of the available

solutions and differences between them. Likewise, a study about the available

technologies for the implementation is carried out.

Chapter 3: Analysis and design Includes the first two dimensions of

the SDLC to be analyzed. The functional requirements, use cases and the

actual design that the application will implement.

Chapter 4: Implementation This section includes the screenshots

and explanation of the processes executed when interacting with the

application.

Chapter 5: Socioeconomic environment Including the social and

economic potential impacts of the application release. Along with the project

budget and previsions.

Chapter 6: Legal framework Including the legal aspects related to the

application.

Chapter 7: Conclusions and future work Lookback of the whole

project, analyzing the prior objectives and whether they have been achieved

or not. Also, future implementations and improvements to be made are

described.

Bibliography References of the consulted books and webs for the

development of this memory.

CHAPTER 3. ANALYSIS AND DESIGN

11

CHAPTER 2

STATE OF THE ART

The project’s objective is to solve two problems related to the

meetings/events creation and discovering by ordinary people. The main

problem that is studied during this section is the difficulty to find an easy-to-

use, intuitive and complete application that allows the user to discover events

according to their interests at any moment, anywhere in a simple way.

Henceforth, the previously stated problem will be deeply analyzed,

explaining the available similar apps and the differences between those and

the proposed solution.

Moreover the available platforms for the project to be developed will be

explained, alongside with the design/implementation possibilities and the

available technologies to be taken into account for the completion of this

project.

2.1. Problem analysis

For having a better understanding of the problem and solution, the

aspects that play a major role in this situation will be put into context.

First, for a better understanding of what “event” or “meeting” are used

for, in this application context, it’s crucial to say that an event or meeting does

not refer, necessarily, to an organized congregation of people hosted or

promoted by companies, with ticket or prior registration required definition.

With this in mind, an event can consist on a gathering of ordinary people

willing to meet other users in order to perform an activity that otherwise they

would not be able to achieve.

 Society has always shown an interest for being surrounded of people

with a taste similar to their own, the most compelling evidence are clubs,

societies. From antique times to our days, people have been congregated in

associations, organizations depending on their interests. Having that in mind,

and thinking of how people are influenced to join clubs or societies where they

get to know a community that better suits their hobbies, and can enjoy it

sharing the experience with others, since the inception of their consciousness.

It can clearly be seen that we tend, either subconsciously or on purpose the

CHAPTER 3. ANALYSIS AND DESIGN

12

human being is inclined to be in company of those who will better appreciate

their interests.

Under those circumstances, different platforms arise, like Meetup [4],

one of the applications that will be analyzed later on for the differences

between that and the proposed solution to be explained.

But solutions to the observed problem do not necessarily have to be

software based, there are plenty of societies that bring together people having

alike passions. Universities, governments, town halls… all of this entities

usually have a vast variety of different activity focused communities, from

sports to travelling or simply for meeting new people.

Nevertheless all of the previously mentioned organizations, usually take

advantage of the available software resources, as Facebook events and

groups [5], to communicate between the parties conforming the aforesaid

community.

Given these points, recently mentioned platforms and the proposed

solution are further compared.

MeetUp

MeetUp is a web based application that aims to help its users to “Find

local groups of people who love the same things that you do”. Despite both

solutions aspiring to reach the same goal, bringing people having akin

interests together, giving them the possibility to form a concrete activity

focused community where they can stablish a relation and put it into practice.

The idea is notably influenced by the formerly explained concept of clubs and

societies, in other words, MeetUp has taken these organizations to the virtual

world, increasing the opportunities of those looking to be included into one

of this congregations to find their desired one.

Every club, society, association, has a limited range of action, to put it in

another way, these entities are restricted by factors like location, mouth to

mouth communication or physical publicity. University clubs are found to be

an excellent example to illustrate the last remark, students usually only get to

know associations based in the university they are studying at, being the

chances of finding their coveted community more limited than if every

aggrupation was available to be consulted in a digital format.

MeetUp not only successfully achieved the aforesaid goal but also

facilitating the user the navigation through the multiple and different

communities being able to filter them to find the ones closer to you, or by type

of activity.

CHAPTER 3. ANALYSIS AND DESIGN

13

Figure 2.1 shows the previously mentioned activity filter, it certainly

improves the user experience while navigating throughout the page,

significantly reducing the time required to get through the different events, as

well as being clear and self-explanatory.

Figure 2.2. MeetUp activity focused groups

Figure 2.1. MeetUp activity filter

CHAPTER 3. ANALYSIS AND DESIGN

14

In the event of clicking one of Figure 2.1 fields, all of the existing groups

associated to that kind of activity will be shown as it is consecutively captured

in Figure 2.2. As has been notated, the lastly mentioned figure contains three

meaningful sections that have been highlighted for observation purposes:

 Naturaleza y Aventura: the red highlighted section shows the

activity filter that the user would have previously selected. As it was

mentioned in Section 1.3.2, one of the ten heuristics for a good user

experience design states that the memory required to the user to

recognize the current state of the app has to be minimized.

 Location: “a menos de 10 km de Leganés, ES”, yellow section is

communicating the user that the events that will be found are in a

10 kilometer radius from Leganés. This filter allows the user to select,

on one click, the city and the radius decreasing the time the user is

required to spend to configure the parameters.

 Events: the last highlighted section will display the available

communities found that fulfill the previously analyzed filter

sections.

The point of the deep analysis of MeetUp is to point out that, despite

this solution might seem similar to the one proposed on this paper, there are

notable differences that make them completely disparate.

Platforms like MeetUp or Facebook with its pages and events, aim for

creating this communities of alike people allowing them to communicate and

arrange their own events or meetings. On the other hand ShoalUp will simplify

this process granting the users the possibility of finding these events directly,

without being part of a certain group.

This solution is intended to ease the process commented in the previous

paragraph, getting rid of the necessity of being part of a certain community

and follow the messages people post in order to acknowledge if an event is

taking place, where or at what time. Users will just discover the encounters

they filter to, this being activity based, city or proximity filters.

CHAPTER 3. ANALYSIS AND DESIGN

15

On the context of just displaying events, applications like Eventbrite [6]

or Fever [7] can be found. Despite it can be thought for them to be similar to

the proposed application, these solutions are design to publicize events

already created, granting their users some advantages like discounts and also

the implicit leverage of being able to consult all events taking place on the

selected city at a glance.

Figure 2.3. Fever App homepage

Figure 2.3 illustrates the Fever App homepage, displaying events or

offers occurring close to the user’s position. As it can also be observed, there

are three tabs to be selected:

 For you: will advertise offers related to users preferences,

previously acquired or researched plans.

 Discover: find plans transpiring around you. As its common in this

kind of application and section, the user is able to filter by type of

activity.

 Profile: basically the settings menu, the user is able to configure

his profile, consult his obtained tickets, etc.

CHAPTER 3. ANALYSIS AND DESIGN

16

Similar to Fever, in Figure 2.4 it is shown the homepage of the previously

mentioned application Eventbrite. Similar to formerly evaluated

applications, Eventbrite will display the available events, its price .A deeper

explanation is not required as its similarities with previously analyzed

applications are relatable.

It has been compared the different available solutions to the problem

aimed to be solved in this thesis showing the differences between them and

the gaps for ShoalUp to cover. To summarize, first analyzed applications,

MeetUp and Facebook aim for a community creation of alike interested

people where they can debate and configure meetings. Second, applications

like Eventbrite or Fever, where they advertise organized events providing

their users with discounts and offers. While this being decent approaches to

the problem, ShoalUp aims to ease the process with regard to MeetUp or

Facebook and increase the event offer in respect of applications like Eventbrite

or Fever, not just publicizing pre-organized events but allowing the common

users to create their own.

Figure 2.4. Eventbrite homepage

CHAPTER 3. ANALYSIS AND DESIGN

17

Notwithstanding another kind of applications with the same objective

as this project haven’t been named, it’s the case of Timpik [8], Party with a

Local [9] or Couchsurfing Travel App [10].

The above mentioned applications will be evaluated, showing

similarities between them and analyzing the possible problem for which the

proposed solution might fit.

Starting off with Figure 2.5 and the application it illustrates, Timpik. As

it is mentioned before, the applications to be analyzed from now on present a

greater similarity to the one proposed within this thesis. With this in mind,

it’s relatable that the structure of this application is akin to ShoalUp’s one.

Regarding the application design, you can either organize an event, find events

near to the user’s position, manage the events you are attending or created.

This application, despite looking simple and easy to use, requires more time

than expected to get used to. Besides, the screens take longer to load than it

should, this being a turn off for its users. Another flaw that was observed is the

fact that it has a PRO version, i.e. features only accessible for premium users

who will pay for this characteristic. In most of the cases, this aspect will make

potential users to turn down the app.

The major difference with respect to ShoalUp is diversity, while Timpik

is focused in sports events only, the proposed solution aims for bringing

together events regardless of the field.

Figure 2.5. Timpik homepage

CHAPTER 3. ANALYSIS AND DESIGN

18

Figures 2.6 – 2.7 represent the last two applications to analyze, Party with

a Local and Coachsurfing Travel App. This two applications, despite being

created with different scopes are currently being used for the same purpose,

hang out and meet people from a certain place. To back up the previous

statement it is imperative to understand the objective for which Coachsurfing

Travel App was created, as it might be deduced from its name, this application

aspired to help its ‘surfers’ to meet other users from the country they are

travelling to, and that are offering to host them, for free, getting a deeper

experience of the country by staying with a local, and the local to share its

culture with foreigners. Nevertheless, and as Party with a Local, it is currently

used to find people to hang out, grab a drink and ultimately socialize with

strangers. This proves that either the application use and objective is not

completely clear, illustrating a bad UX/UI design, or the market it aims for

does not have demand enough for this application to successfully achieve its

goal.

Given these points, it is discernible that the greatest problem users find

regarding the discovering of events of their interest is the lack of unification.

There are different applications for different kind of activities devolving upon

the user the task of downloading, registering and learning how to use each one

of them.

To summarize, the goal of ShoalUp is being a simple-to-use, intuitive

application for fast finding any kind of events the user wishes around him or

in the city of his election. Consequently, the evaluated problems, i.e. the time

requiring problem of being part of a community and its necessity to reach an

Figure 2.6. Party with a Local homepage Figure 2.7. Couchsurfing Travel App homepage

CHAPTER 3. ANALYSIS AND DESIGN

19

agreement with those within the same in order to establish an event. Along

with the second analyzed problem of application publicizing pre-organized,

paying, company events and moreover the lastly mentioned problem of having

to acquire, register and learn how to use several applications for different

activity focused events.

The design and implementation of the proposed solution will be

explained in the upcoming sections.

2.2 Platform and mobile OS evaluation

Regarding the application purpose and its implementation, the platform

election is pretty straightforward. It will implement GPS based functions, for

tracking events close to the user’s position. Hence, the platform had to be

mobile based.

Nevertheless, a study between web and native applications has been

performed in order to support the election.

A study from ditrendia [11] shows that in 2016 the number of mobile

devices, world like, was 7.9 thousand million, surpassing the number of

habitants on Earth. In Europe 78 out of 100 people owns a smartphone, and in

Spain smartphones represent an 87% of the mobile devices.

Further, in Spain, there are more of these devices than computers, 80%

of the population have a mobile phone, against 73% owning a computer, either

laptop or desktop.

Furthermore, the age when people start to use smartphones is being

reduced year by year, 98% of the country between 10-14 years have full

equipped, latest generation mobile device.

Moreover native applications are taking over the digital world, meaning

a 54% of digital time spent. Not only the time spent is increasing but the use

of formerly web applications like Facebook, the study shows that in Spain, 70%

of the population access this social network from its mobile device.

CHAPTER 3. ANALYSIS AND DESIGN

20

Figure 2.8. Native vs Web Apps

Figure 2.8 illustrates the pros and cons of native vs web apps, some of

this features are fundamental for the platform election decision.

 Allow function with no Internet connection: native applications can

store data locally allowing the user to have access even if without

Internet connection. In this particular case, where the user might

want to consult some details about the event they are attending and

have no access to the Internet, having this data stored will be of great

usage for him.

 Offer access to the underlying device platform: as it was commented

before, the platform will use the phone’s GPS in order to track

discoverable event around to the user’s location.

Cons like excluding other platform users will not be a problem in the

future, as it is planned to be available for any platform, it will be further

explained in the “Future work” section.

Once the platform decision has been defended, a comparison between

both Android [12] and iOS [13] is required in order to justify this election.

CHAPTER 3. ANALYSIS AND DESIGN

21

Figure 2.9. Android vs iOS usage

Figure 2.9 compares the usage of the mentioned mobile OS regarding

the different age ranges, proving that, regarding a commercial aspect, the

decision being Android the first OS for which the application will be

implemented is the correct decision, as Android users are more than double

with respect to iOS.

The above mentioned reason is not the only one that influenced the

decision of implementing the application for Android. Again, factors like the

previous experience on Android language (Java), and Android Studio

utilization, during the last course. Along with the fact that for developing in

iOS a MAC computer is required and the developer fee that Apple obliges to

pay to anyone that develops an iOS application, 99 USD per year, led to the

choice Android being the first mobile OS for the application to be developed

for.

2.3 Design and implementation patterns

In this section an evaluation for the existing implementation patterns

for Android will be carried out, needless to say that the below commented

patterns are not Android exclusive but used on the development of any

software based project.

Model View Controller (MVC)

The MVC pattern [14] splits the tasks to be performed into 3 levels:

 Model: being independent from the other two components, it is the

core of the model, it represents the data, state and business logic.

CHAPTER 3. ANALYSIS AND DESIGN

22

 View: the view represents the model reacting to the changes the

model experience and modifying itself according to those. Having

access to the model state despite not having permissions to modify

it.

 Controller: the controller will decide which actions to perform

when the view notifies an interaction, e.g. the user presses a button,

changing the state of the model.

Figure 2.10. Android MVC pattern

Figure 2.10 represents the MVC pattern exampled for an Android

application, where starting the user’s zero state will be the logo, interacting

with a concrete view, he/she performs a certain action, as it can be push a

button, and the view will notify it to the controller, in this case an Activity,

which will decide what to do, updating the model state that will, at the same

time, be access by the view noticing the change, getting updated and showing

the expected change to the user.

Model View Presenter (MVP)

MVP pattern [14] derives from the MVC one, finding in the Presenter the

most important difference while the Model and the View remain the same.

CHAPTER 3. ANALYSIS AND DESIGN

23

 Presenter: this component will act as the “middle man” between

view and model, formatting the data obtain from the model and

forwarding it to the view to be represented, and deciding as well

actions to be taken when interacting with the view.

Regarding Figure 2.11 below, differences between both previously

explained models are illustrated. As it is observed, MVP presenter manages

the communication between model and view, as opposed to MVC where the

view had access to the model in order to consult its state and modify itself.

Figure 2.11. MVC - MVP comparison

Model View ViewModel (MVVM)

The MVVM pattern [14] eases the testing process and increased

modularity reducing the need of connections required to between model and

view. Again, the model and view remain unchanged with respect to the MVC,

being the controller the one that changes, exemplified in Figure 2.12.

 ViewModel: will substitute the controller being something in

between a model and a view, helping in the task of passing the events

from the view to the model and preparing the data required by the

view.

Figure 2.12. MVVM pattern

CHAPTER 3. ANALYSIS AND DESIGN

24

2.4 Evaluation of available technologies

2.4.1 Database evaluation
In this section an analysis of relational vs non-relational databases [15]

will be carried out, reasoning the election of using a non-relational database,

MongoDB [16], as the one to implement the project in.

Relational databases, SQL, are positioned as the main model when

studying database systems. Until the last decade, this database model was the

only feasible one for the organizations to implement their data storage

systems in. However, lately more and more organizations are changing his

mindset as a new, more flexible, higher scalability with superior performance

model has come into play, the non-relational database model or, as it is

commonly called, NoSQL. The reason non-relational databases are also

referred as NoSQL is because an expressive query language is not required,

this system can be managed using other commonly use backend languages

like Java or NodeJS. NoSQL is considered to have higher scalability due to the

way it scales compared to SQL, the non-relational databases have a horizontal

scalability, i.e. the way to scale is adding machines to the resource pool,

whereas SQL scales vertically, i.e. adding power to the current machine

(CPU,RAM).

For the evaluation, two dimensions will be analyzed in order to

determine the right choice to make.

Data Model

While SQL uses a fixed data model, using tables for storing the data into

rows and columns, with the columns representing different attributes while

the rows store instances of the object. Being a fixed model means that this

tables have to be predefined and the relations between them have also to be

establish prior to their usage.

On the other hand, NoSQL databases store data in documents, using a

JSON structure. Documents are more intuitive to use than former SQL tables,

each document is associated to an object, this having different fields that can

vary in type, strings, integers, arrays… A relatable advantage comes with data

association, as it is mentioned above, SQL needs different tables connected

with foreign keys to establish data relationships, on the contrary, NoSQL

records and the associated data is usually stored in the same document,

reducing considerably the number of required data accesses. Another

advantage when it comes to scalability is the database schema, again, and as

mentioned above, SQL uses a fixed schema, opposite to this, NoSQL use a

dynamic schema, meaning that each document can contain different fields.

CHAPTER 3. ANALYSIS AND DESIGN

25

Having this in mind, it is comprehensive the statement that assures that this

new database model is superior to SQL in flexibility and scalability.

Document based databases use a management system such as

MongoDB or CouchDB.

Two other less commonly, different purposed data models that are used

in NoSQL are the graph model and the key-value and wide column models.

The graph model data representation is made by means of nodes, edges and

properties. Although it is counter-intuitive and hence, less commonly used, it

has specific situations to be used in like navigating social network connections

or supply chains.

The key-value system is similar to a Java HashMap, where each value is

represented and accessed by its unique key, being this, the only way to query

the system. Along with the key-value, the wide column model stores data in a

sorted map, being possible for each record to vary the number of columns it is

stored at. Data will be recovered by primary key per column family, being the

last mentioned ones an aggrupation of columns.

Query Model

As it is stated in this section’s introduction, SQL uses an expressive

query language is required in order to interact with the database, commands

like SELECT, INSERT or DELETE are an example of this, being used for

retrieving, inserting or deleting data from the database.

NoSQL document model databases also allow to query any field within

the document, some systems like the previously mentioned MongoDB,

provide different set of indexes in order to facilitate the query process.

Regarding their query model, both SQL and NoSQL appear to be very

similar, lying its greatest difference in the efficiency.

Figure 2.13. SQL vs NoSQL queries

CHAPTER 3. ANALYSIS AND DESIGN

26

Figure 2.13 shows an example of how the selection and update of data is

performed regarding both systems being evaluated. In NoSQL, the find()

function is the equivalent to the SQL’s SELECT. In absence of tables, non-

relational databases use collections to store the documents, and in the same

way as SQL specifies the table like FROM table, NoSQL will select the

collection to be queried in the following way, db.Collection.command(). The

update command is similar, in the case of NoSQL, there are two possible

update modes, updating the whole document, done by not writing the $set,

just the field to be queried for and the fields that the documents that fulfill the

conditions will be substituted for. Or as it is done in Figure 2.13, updating only

the parameters that follow the $set command.

Figure 2.14. NoSQL vs SQL

For the conclusion of this section, Figure 2.14 is used to summarize all of

the above mentioned dimensions along with others like consistency or

transactions that were not deeply analyzed as the repercussion it had on the

current project was not as critical as the evaluated ones.

2.4.2 Backend technologies evaluation
In this section the possibilities to develop the backend architecture in

will be analyzed for having a better perspective of the election. It is important

to realize that the technologies here explained are not the only valid ones, the

three languages considered for this concrete project and that are,

consequently, explained hereunder have been extracted from a greater gamut

of disposable languages.

CHAPTER 3. ANALYSIS AND DESIGN

27

 With this been said, the languages considered that could better fit in

this concrete project were: Java [17], NodeJS [18] and PHP [19]. Needless to

say that this languages are heavily consolidated between the developing

communities based on the years they have successfully served to the required

purposes like Java or PHP, counting with a robust backup and support. Despite

the relatively newness of NodeJS it has a large acceptation between developers

and it is raising to be one of the most used languages in the near future.

JAVA

Java is a programming language developed by Sun Microsystems, it’s one

of the most used languages in the software community due to its “longevity”,

as it was released in 1995. It was created with a purpose, for the applications

developed to only need to be compiled for a platform, avoiding the

recompilation for running it on a different one. This is commonly denoted as

Write Once, Run Anywhere.

Java is a simple, dynamic, platform independent, portable, object

oriented language. It also assures a strong security as it uses public-key

encryption for authentication. Programs developed with Java are considered

to be robust as it double checks for errors both at compile and runtime, not

only these programs are capable of performing many tasks at the same time,

as Java is developed to enable the multithread feature, but also make them run

smoothly and with a great performance due to Java’s Just-In-Time compilers.

PHP

Being released in 1994 as an open source project, PHP’s popularity across

the software developer community exponentially increased. Despite being

commonly used for web applications development, as it is embedded in

HTML, it is not rare to find mobile device applications using this language to

establish connections with the database and in general for its backend

architecture.

It is a server side scripting language used for managing databases, web

dynamic content… Integrated in a vast number of databases like MySQL,

PostgreSQL, Oracle or Microsoft SQL Server, it is one of the best options when

building an application that will require interaction with one of the previous

databases. It also can collect form data, manage cookies data, encrypt data or

perform system operations (create, open, delete…) against server stored files.

As a result of the previous evaluation, PHP has been consider as a

potential development option for this project as it also can run on a variety of

CHAPTER 3. ANALYSIS AND DESIGN

28

platforms (Windows, Linux, MAC OS…), it’s compatible with almost every

existing server, it is free and efficiently runs on the server side.

NodeJS

The last language to be considered is the most recently released one,

NodeJS. Being launched in 2009, it has been less than a decade in the

programming scene but it has risen to the top positions when it comes to

backend languages. Its development was influenced by technologies like

Ruby’s Event Machine or Python’s Twisted.

Taking the event model to the next level, in spite of being single-

threaded, NodeJS implements a non-blocking I/O operations event loop, this

is made possible by sending operations to the kernel as frequently as possible.

Figure 2.15. NodeJS event loop

For a better understanding of the NodeJS event loop, it will be deeper

explained. Figure 2.15 displays the event loop’s order of operations, when

reaching a certain phase, the event loop will execute the N operations

waiting in the FIFO callback queue, existing a queue for each phase. The

loop will only advance to the following phase when the queue has been

exhausted or the callback limit has been reached.

The consideration of this NodeJS as a possibility for this project is

explained by its architecture. Being an asynchronous, event-driven engine,

when making a request to the database, it keeps working on other tasks rather

than stalling until a response is received. This feature couples the best with

the selected non-relational database system for this project, MongoDB, as it is

also designed to work asynchronously.

Having all of the previous considerations in mind and taking into

account that an implementation in any of the above analyzed languages would

CHAPTER 3. ANALYSIS AND DESIGN

29

perfectly fit the correct development of the application, it was concluded that

the best fitting language for this application’s purpose was Java. Having both

frontend (Android) and backend sides implemented under the same

programming language will increase the overall consistency of the project.

Likewise, the prior knowledge of the cited language would considerably

reduce the time investment required by the project.

REST Services

Once the backend language has been justified, a brief analysis of the

services that will be used is to be performed.

Representation State Transfer (REST) architectural style [20] was

presented in 2000. Interface like, it uses, but it is not only related to, the

Hypertext Transfer Protocol (HTTP) for data obtaining or to execute data

operations.

Despite REST being ubiquitous, it is not a standard but a style of the

HTTP protocol. Nevertheless, its services benefit from the security, caching,

service routing through DNS of the HTTP protocol from the web architecture

itself. The key to REST simplicity and velocity resides on its four principles:

 Resource identification through URI: providing a global

addressing space for the potential discovery of resources and/or

services.

 Uniform interface: use Create, Read, Update, Delete operations

(CRUD) to manage its resources. This operations are also mapped

to HTTP requests.

 Self-descriptive messages: from the message representation it is

possible to obtain its content in different formats, HTML, JSON,

XML…

 Stateless interactions: saving the client context on the server

would limit scalability, REST avoids this problem by being the client

the one holding the state.

CHAPTER 3. ANALYSIS AND DESIGN

30

Figure 2.16. Client – Server – Database interaction

As it was pointed out above, REST is a software architectural style

designed for data transferring between distributed systems, such as the Web.

Opposing to the Simple Object Access Protocol (SOAP), REST does not need

another layer for the mentioned data transmission, resulting in a lighter and

faster and less complex method that has replaced SOAP in almost any case,

especially when it comes to an extensive number of users, as the former main

data transfer protocol is based on Remote Procedure Call (RPC), being this

more suitable for a controlled environment.

With this being said, and having in mind REST HTTP transfer protocol,

regarding Figure 2.16, the interactions between client server and database are

better understood. The client will send a HTTP request to the server, which

will address it, this request can be a data treatment, an insertion, get, update

or delete from the database… At this point the server will performed the

required actions returning the necessary data to the client in a HTTP response

message.

CHAPTER 3. ANALYSIS AND DESIGN

CHAPTER 3

ANALYSIS AND DESIGN

In this section two steps of the SDLC, concretely the analysis of the

requirements and the design followed for a further implementation will be

deeply analyzed, including use cases, flow charts and any extra material to

support and clarify the followed processes.

3.1 Analysis

Following a linear criteria, the first dimension of the SDLC to be

developed is the analysis. Hence, the requirements and use cases will be are to

be presented on the following subsections.

3.1.1 Requirements
In this section the functional requirements for the application to fulfil

in order to be considered complete will be stated.

 3.1.1.1 User

1. Registration (USR-00): in case of the user being new to the

application, he will be required to register, fulfilling some basic

information fields.

2. Login (USR-01): the user will be able to, in case he has been

previously registered, log into the application with his

credentials, i.e. email and password.

3. Account recovery (USR-02): in case the user’s account has been

stolen or the password forgotten, there will be an option to send

a new password to his email.

4. Profile modification (USR-03): the user will be able to manage

his profile, updating his personal data or his profile image.

5. Account deletion (USR-04): the information related to the user

executing this feature will be eliminated.

CHAPTER 3. ANALYSIS AND DESIGN

32

6. Log out (USR-05): the user will close his session being

redirected to the login/register screen.

3.1.1.2 Events

1. Create event (EVT-00): this functionality refers to the creation

of a new event fulfilling the mandatory fields like date, time, title

or location.

2. Modify event (EVT-01): events created by a user can be modify

by himself only, by this modification a change on the previously

mentioned parameters at ‘create an event’ point.

3. Delete event (EVT-02): the creator of each event will have the

possibility to cancel it, removing all of its information.

4. Show events (EVT-03): events either created or marked to be

assisted by the user will be displayed.

5. Find events (EVT-04): a list of all the available events will be

shown to the user, sorted by distance.

6. Filter events (EVT-05): when on find event, the user will be

granted the possibility to filter by different fields like activity

type, distance, date or location.

7. Discover events (EVT-06): event closer to users position will be

displayed in a map, being possible to navigate around

discovering at the same time the events scoped.

8. Join an event (EVT-07): users are given the possibility to join

an event marked as attendant and receiving updates.

9. Leave a comment (EVT-08): users either attending or not to an

event can write a comment on the event.

CHAPTER 3. ANALYSIS AND DESIGN

33

3.1.2 Use cases

Being defined the functional requirements, the use cases will be

hereafter described [21]. Table 3.1 represents the structure that the use cases

will follow.

Stakeholder Actor/s intervening

Description Objective

Pre-conditions Conditions to be met for prior to the use case

Regular flow Actions that are executed during the duration of
the use case

Alternative flow Actions that can also occur during the use case

Post-conditions Conditions to be met posterior to the use case

Frequency Commonness of the use case
Table 3.1. Use case structure

CHAPTER 3. ANALYSIS AND DESIGN

34

3.1.2.1 Registration

Following the general use case structure presented in section 3.2, Table

3.2 illustrates the use case of a new user registering into the application,

corresponding to functional requirement USR-00.

Stakeholder Anonymous user.

Description Create a ShoalUp account.

Pre-conditions The user is not registered in the database.

Regular flow 1. The stakeholder opens the application in the
register/login screen.
2. Not having registered account, the user goes
to the register form.
3. The stakeholder fills out the mandatory fields
of the form.
4. The application will check the correctness of
the fields and if there is no account associated to
the introduced email, this being valid the user
account will be created.
5. The user will be redirected to his home screen.

Alternative flow In case the input data isn’t correct, e.g. not valid
email address, the user will be notified to make
the correspondent changes.

Post-conditions The user is information is stored in the database.

Frequency Every time a new user wants to register into the
application.

Table 3.2. Use Case: Registration

CHAPTER 3. ANALYSIS AND DESIGN

35

3.1.2.2 Login

Following the general use case structure presented in section 3.2, Table

3.3 illustrates the use case of a registered user logging into the application,

corresponding to functional requirement USR-01.

Stakeholder Registered user.

Description Log into the application.

Pre-conditions The user has a ShoalUp account.

Regular flow 1. The stakeholder opens the application in the
register/login screen.
2. The user enters its credentials, email and
password.
3. The application checks if the introduced
credential are stored in the SQLite database.
4. If there is no register of the introduced data in
the device’s database the application will check
it on the Mongo database.
5. Being step 3 or 4 correct, the user is redirected
into his home screen.

Alternative flow In case the credentials are not correct, an error
will be displayed and the user will be asked for
entering them again.

Alternative flow In case the user closed the application without
logging out, it will remember his credentials not
being necessary to entering them every time the
same user is logging in.

Post-conditions N/A

Frequency Every time a registered user logs into the
application.

Table 3.3. Use Case: Login

CHAPTER 3. ANALYSIS AND DESIGN

36

3.1.2.3 Account recovery

Following the general use case structure presented in section 3.2, Table

3.4 illustrates the use case of a registered user retrieving a lost password,

corresponding to functional requirement USR-02.

Stakeholder Registered user.

Description Retrieve a lost password.

Pre-conditions The user has a ShoalUp account.

Regular flow 1. The user starts the password retrieval process.
2. Enters the email to which his account is
associated.
3. The application checks for the existence of the
email address in the user collection.
4. If the email is correct, the application will
update its password for a random generated one.
5. The new password will be sent to the user’s
email address.
6. The user will log into the application with the
new password.

Alternative flow N/A

Post-conditions The password is updated.

Frequency Every time a user no longer has access to his
password.

Table 3.4. Use Case: Account recovery

CHAPTER 3. ANALYSIS AND DESIGN

37

3.1.2.4 Profile modification

Following the general use case structure presented in section 3.2, Table

3.5 illustrates the use case of a registered user profile modification,

corresponding to functional requirement USR-03.

Stakeholder Registered user.

Description Update user’s profile information.

Pre-conditions The user has a ShoalUp account and he is logged
into the application.

Regular flow 1. The user accesses to his profile.
2. Presses the modification button.
3. Changes the fields he wants to.
4. Confirms the changes by pressing the update
button.
5. Application processes the changes updating
the information in the device and database.

Alternative flow If the data to be updated is not correct, an error
message will be shown to the user to correct the
conflicting fields.

Post-conditions Fields changed are correctly updated.

Frequency Every time a user wants to change his user
information.

Table 3.5. Use Case: Profile modification

CHAPTER 3. ANALYSIS AND DESIGN

38

3.1.2.5 Account deletion

Following the general use case structure presented in section 3.2, Table

3.6 illustrates the use case of a registered user account deletion, corresponding

to functional requirement USR-04.

Stakeholder Registered user.

Description Delete an existing account.

Pre-conditions The user has a ShoalUp account and is logged
into the application.

Regular flow 1. User is in the profile modification screen.
2. The user presses the delete account button.
3. The user will be asked to confirm that he wants
to delete his account.
4. Upon confirmation the application will delete
that account’s data from the device and the
database.

Alternative flow N/A

Post-conditions The account information is successfully deleted
from both the database and the device.

Frequency Every time a user wants to delete his account.

Table 3.6. Use Case: Account deletion

CHAPTER 3. ANALYSIS AND DESIGN

39

3.1.2.6 Log out

Following the general use case structure presented in section 3.2, Table

3.7 illustrates the use case of a user logging out of the application,

corresponding to functional requirement USR-05.

Stakeholder Registered user.

Description Disconnect from the user’s currently logged
account.

Pre-conditions The user is logged into the application.

Regular flow 1. User presses the log out button.
2. User will be asked to confirm that he wants to
log out.
3. Upon confirmation he will be redirected to the
login/register screen.

Alternative flow He cancels the confirmation staying inside the
application.

Post-conditions The user is taken to the login/registration
screen.

Frequency Every time a user wants to log out of this
account.

Table 3.7. Use Case: Log out

CHAPTER 3. ANALYSIS AND DESIGN

40

3.1.2.7 Create event

Following the general use case structure presented in section 3.2, Table

3.8 illustrates the use case of event creation, corresponding to functional

requirement EVT-00.

Stakeholder Registered user.

Description Create an event to be seen by other users.

Pre-conditions The user is logged into the application.

Regular flow 1. User presses the new event button.
2. The user is taken to the new event form.
3. The user is asked to fulfil the form, being some
fields mandatory and some other optional.
4. The user clicks the create event and a
confirmation message is thrown.
5. Upon confirmation the event is created.

Alternative flow The introduced data is not correct, an error
message will be displayed to the user asking to
correct the conflicted fields.

Alternative flow The user decides not to create the event, presses
the cancel button and he is taken to the previous
screen.

Post-conditions The event is successfully created, being
discoverable for other users.

Frequency Every time a user wants to create an event.

Table 3.8. Use Case: Create event

CHAPTER 3. ANALYSIS AND DESIGN

41

3.1.2.8 Modify an event

Following the general use case structure presented in section 3.2, Table

3.9 illustrates the use case of event modification, corresponding to functional

requirement EVT-01.

Stakeholder Registered user.

Description Modify the information regarding an event
created by the user.

Pre-conditions The user is logged into the application and has
previously created an event.

Regular flow 1. User is in the “My Events” screen.
2. The user clicks on an event created by him.
3. User presses the edit button.
4. Modifies the desired fields.
5. The user clicks on the update button.
6. A confirmation message is shown to the user.
7. Upon confirmation the modified fields are
updated.

Alternative flow The introduced fields are not correct, showing
an error message to the user asking to correct the
conflicted fields.

Alternative flow The user decides not to update, presses the
cancel button and he is taken to the “My events”
screen.

Post-conditions The event information is modified and saved in
the database.

Frequency Every time a user wants to modify an event that
he created.
Table 3.9. Use Case: Modify event

CHAPTER 3. ANALYSIS AND DESIGN

42

3.1.2.9 Delete event

Following the general use case structure presented in section 3.2, Table

3.10 illustrates the use case of event deletion, corresponding to functional

requirement EVT-02.

Stakeholder Registered user.

Description Delete an event created by the user.

Pre-conditions The user is logged into the application and has
previously created an event.

Regular flow 1. User is in the “My Events” screen.
2. The user clicks on an event created by him.
3. User presses the delete button.
4. A confirmation message is shown to the user.
5. Upon confirmation the event will be deleted.

Alternative flow The user decides not to delete, presses the cancel
button and he is taken to the “My events” screen.

Post-conditions The event information is eliminated from the
database.

Frequency Every time a user wants to delete an event that
he created.
Table 3.10. Use Case: Delete event

CHAPTER 3. ANALYSIS AND DESIGN

43

3.1.2.10 Show events

Following the general use case structure presented in section 3.2, Table

3.11 illustrates the use case of displaying user events, corresponding to

functional requirement EVT-03.

Stakeholder Registered user.

Description Display the events the user is either attending or
created.

Pre-conditions The user is logged into the application.

Regular flow 1. User navigates to the “My Events” screen.
2. The application obtains all the events where
the user is part of either as an attendant or as the
creator.
3. The obtained events are displayed to the user.

Alternative flow There system find no events, so the user is asked
to create his first one.

Post-conditions The events are correctly shown.

Frequency Every time a user wants to list his events.

Table 3.11. Use Case: Show events

CHAPTER 3. ANALYSIS AND DESIGN

44

3.1.2.11 Find events

Following the general use case structure presented in section 3.2, Table

3.10 illustrates the use case of event finding, corresponding to functional

requirement EVT-04.

Stakeholder Registered user.

Description List the available events to be attended.

Pre-conditions The user is logged into the application.

Regular flow 1. User is in the “Find Events” screen.
2. The application retrieves all the available
events and sort them with respect to the user’s
position.
3. The user is shown the available events.

Alternative flow There are no available events, displaying an
information message to the user.

Post-conditions The events are correctly shown.

Frequency Every time a user wants to find a new event.

Table 3.12. Use Case: Find events

CHAPTER 3. ANALYSIS AND DESIGN

45

3.1.2.12 Filter events

Following the general use case structure presented in section 3.2, Table

3.13 illustrates the use case of event filtering, corresponding to functional

requirement EVT-05.

Stakeholder Registered user.

Description Filter the list of events to be shown.

Pre-conditions The user is logged into the application.

Regular flow 1. User is in the “Find Events” screen.
2. The user clicks on the filter button.
3. Selects the parameters to filter for.
4. The application retrieves all the available
events that pass the filter.
5. The user is shown the available events.

Alternative flow There are no available events after the filtering,
displaying an information message to the user.

Post-conditions The events are correctly filtered and displayed.

Frequency Every time a user wants to find a new event with
certain features.
Table 3.13. Use Case: Filter events

CHAPTER 3. ANALYSIS AND DESIGN

46

3.1.2.13 Discover events

Following the general use case structure presented in section 3.2, Table

3.14 illustrates the use case of event filtering, corresponding to functional

requirement EVT-06.

Stakeholder Registered user.

Description Navigate through the map discovering events.

Pre-conditions The user is logged into the application.

Regular flow 1. User is in the “Discover events” screen.
2. A map showing the events in the focused
location is loaded.
3. The user navigates around.
4. The application takes uses the coordinates to
establish a radius and obtain the available events
in that radius, displaying them in the map.

Alternative flow There are no events in the current zone, hence,
the map will be shown empty.

Post-conditions Available events are displayed in the map.

Frequency Every time a user wants to navigate around to
discover new events.

Table 3.14. Use Case: Discover events

CHAPTER 3. ANALYSIS AND DESIGN

47

3.1.2.14 Join an event

Following the general use case structure presented in section 3.2, Table

3.15 illustrates the use case of event filtering, corresponding to functional

requirement EVT-07.

Stakeholder Registered user.

Description Mark an event as attending.

Pre-conditions The user is logged into the application.

Regular flow 1. User is either in the “Find Events” or in the
“Discover events” screen.
2. The user clicks on an event to be expanded.
3. User presses the join button.
4. The application adds him to the list of the
attendants.
5. Whenever a modification is made on that
event the user will receive a notification.

Alternative flow The user decides not to be part of the event
anymore, clicking on the leave button. The
application will delete the user from the
attendance list.

Post-conditions The attendance list is correctly updated.

Frequency Every time a user wants to join an event.

Table 3.15. Use Case: Join an event

CHAPTER 3. ANALYSIS AND DESIGN

48

3.1.2.15 Leave a comment

Following the general use case structure presented in section 3.2, Table

3.16 illustrates the use case of event filtering, corresponding to functional

requirement EVT-08.

Stakeholder Registered user.

Description Leave a comment on a certain event.

Pre-conditions The user is logged into the application.

Regular flow 1. User is either in the “Find Events”, the
“Discover events” or the “My Events” screen.
2. The user clicks on an event to be expanded.
3. User presses the text box and writes a
comment.
4. The user clicks on the post button.
5. The application will update the event adding
the comment to its appropriate section.

Alternative flow The user decides not to post a comment
anymore, presses the cancel button being taken
to the previous screen.

Post-conditions The event comments are updated from the
database.

Frequency Every time a user wants to leave a comment on
any event.

Table 3.16. Use Case: Leave a comment

CHAPTER 3. ANALYSIS AND DESIGN

49

3.2 Design

Following the SDLC flow, the next dimension to get into is the design of

the application. In this section the infrastructure of the application will be

explained supported by component diagrams and its relation, illustrating the

backbone of the application.

Further, flow charts representing the most significant use cases will be

presented and the necessary clarifications will be made in order to arrive at

the implementation section having a better understanding of how the

application works.

3.2.1 Application architecture

The Android project is structured as follows:

 Android application: main component of the system, the client

application represent the user interface (UI) and the logic part

(controller). All of the interactions to be made between the user and

the application will be collected by this component. Likewise, the

backend calls to the server and database will be executed and the

data received from those calls gathered and treated.

 SQLite database [22]: allocated in the personal mobile device, will

be in charge of storing some critical data in order to avoid calling

the server as many times. Also the stored data, e.g. user credentials,

or the events created or attended by the user.

 AWS server [23]: cloud server where the REST-ful web services are

allocated, it is in charge of addressing the calls coming from the

client, access the database performing the required operations

depending on the call parameters.

 MongoDB: database also allocated in the server. It is in charge of

the application data persistence along with the SQLite database.

This database will store the whole data application, i.e. as it was

mentioned before, SQLite will be in charge of storing a particular set

of data, whilst it will be the Mongo database the one in charge to

store all of the information, including the one stored in the

complementary database.

CHAPTER 3. ANALYSIS AND DESIGN

50

3.2.2 Diagram of components

On the present section an overview of the components that compose the

application is introduced. Figure 3.1 shows the main components of the

application in a UML 2.o diagram [21]. The purpose of the diagram is to have

an idea about what it will be later deeper explained in section 4.

3.2.3 Activity diagrams

An activity diagram [21] is used to display the sequence of activities that

a concrete process will follow. From a start point to a finish point this diagrams

illustrate states, activities, decisions, paths and more information that, as in

this concrete case, helps to understand the activity flow when it comes to

studying a new project.

3.2.3.1 Registration activity

The following figure represents the activity diagram of the process of

registration followed by a new user to the application. These diagrams are self-

explanatory requiring no further explanation.

Figure 3.1. ShoalUp diagram of components

CHAPTER 3. ANALYSIS AND DESIGN

51

Figure 3.2. Registration activity diagram

CHAPTER 3. ANALYSIS AND DESIGN

52

3.2.3.2 Login activity

The following figure represents the activity diagram of the login

followed by an already registered. These diagrams are self-explanatory

requiring no further explanation.

Figure 3.3. Login activity diagram

CHAPTER 3. ANALYSIS AND DESIGN

53

3.2.3.3 Event creation activity

The following figure represents the activity diagram of for the creation

of an event followed by a registered and logged user. These diagrams are self-

explanatory requiring no further explanation.

Figure 3.4. Event creation activity diagram

CHAPTER 3. ANALYSIS AND DESIGN

54

3.2.3.4 Event retrieval activity

The following figure represents the activity diagram of the login

followed by an already registered. These diagrams are self-explanatory

requiring no further explanation.

Figure 3.5. Event finding activity diagram

CHAPTER 3. ANALYSIS AND DESIGN

55

3.2.4 MongoDB schema

As it was clarified in section 2.4.1 non-relational databases are dynamic,

i.e. the former concept of defining the tables, relations between them using

foreign keys… is no longer required. Nevertheless in this section, despite it can

be modified at any time, the document and collections used for the storage of

user and event data is hereunder explained.

As it is observed, documents follow a JSON structure, being able to store

arrays of data for the different fields of an instance. Regarding the previous

statement, there are two possible ways of proceeding, being both illustrated

in Figures 3.5 – Figure 3.6. Regarding the first, the events field contains an array

of the events which that concrete user will attend or have created, instead of

inserting every event in the array, the unique ObjectID corresponding to each

Figure 3.6. MongoDB user collection document schema

Figure 3.7. MongoDB event collection document schema

CHAPTER 3. ANALYSIS AND DESIGN

56

event is referenced in there. The drawback of this technique is that for getting

the information about those events, a join between both tables is required,

nevertheless when having more than a few elements the efficiency increase of

this technique makes it worth the effort.

On the other hand Figure 3.6 exemplifies the other technique, when

having a limited array, as in the location case where only the latitude and

longitude will be stored and there is no possibility for this to increase, the

elements are referenced directly.

For summarize this section, the application will have three collections,

the equivalent to SQL tables, in the Mongo database: users, storing the

personal information and the user events; events, holding everything related

to the event, attendants, comments, location, date…; also a third one for the

comment storage, with the comment, user and event. The decisions that led

to this schema were thoroughly thought for achieving the best application

performance.

CHAPTER 4. IMPLEMENTATION

57

CHAPTER 4

IMPLEMENTATION

In the present chapter a deeper, more technical analysis of the

application will be carried out, including screenshots and moreover,

explaining every process that it follows with code examples and the necessary

clarifications as libraries used.

This section will be structured as follows, several subsections regarding

the different dimensions of the application, within each section the mentioned

screenshots are found along with its process explanation.

4.1 Login and registration

In the current section the actions performed to manage the user access

to the platform are expounded.

Figure 4.1. ShoalUp login screen

CHAPTER 4. IMPLEMENTATION

58

Figure 4.1 illustrates the login screen of the application, where the

credentials are directly asked to the user for speeding up the process of getting

into the application.

There are three possible flows to be followed:

1. The user enters the credentials and presses the Log in button.

2. The user is new to the application and does not have an account,

going through the register process by clicking the

corresponding section.

3. The user has forgotten his password and wants to recover it.

Case 1

In the scenario of a registered user trying to log to the application, the

application will first check the SQLite database, i.e. the device’s database, to

see if the user’s information is stored there. The reason of this first

implementation is efficiency, in case it is the same user who connects from the

same device, his credentials will be stored in that database, not being

necessary the REST call, not only decreasing the process’s time but also

allowing the user to log into the application and have access to the available

offline content such as his events.

 It is important to remark that despite not a profound security measure

plan has been established yet, it is to be discussed in the Future work section,

some adjustments have been already implemented. It is the case of the

password encryption, despite not being the most secure one, and having

points to re-analyze, an AES-256 password encryption has been implemented

as the one learned during the Mobile Security subject. The method uses a salt,

i.e. a string stored on the device to encrypt the password and store the

encrypted one. For checking the validity of the credentials, the encrypted

password is retrieved from the database, decrypted with the said salt string

and compared with the one introduced by the user. The problem that comes

with this method is that if the user tries to log from another device, the salt

will be different and, even if the is introducing his password correctly, the

system won’t accept it as valid, this problem is contemplated in the Future

work section also.

The next case scenario is the user logging from a new device, or it is his

first connection to the application, his credentials won’t be available on the

SQLite database so it will be necessary to check the MongoDB database. To do

this a REST call is invocated from the login process, this call will be addressed

CHAPTER 4. IMPLEMENTATION

59

by a method stored in the server, and perform the necessary actions, and send

back the required information*. Upon receiving the stored password, and in

the same way it is done with the SQLite database, it will be decrypted and

compared with the user’s input, if passwords match, the user will be redirected

to his home screen. If, on the contrary, both passwords do not match, an error

message will be displayed and he will be asked to re-introduce his password.

*As many processes are using REST call for similar processes the REST

functioning will be fully explained at the end of the chapter including examples

for all the presented cases.

Case 2

If the user is new to the application, and he wants to register into the

system, after pressing the register button, the correspondent form, Figure 4.2,

will be displayed to be filled out.

Figure 4.2. ShoalUp registration form

CHAPTER 4. IMPLEMENTATION

60

Figure 4.2 illustrates the mentioned form, as it can be observed it is a

simple one, not asking for unnecessary data, keeping it simple will make the

application more attractive to the user being this one of the main objectives

to achieve during the development of this project. Some restrictions are

applied to the form, the Email has to be in the correct format, i.e.

something@something.something, and the field Password and Confirm

password have to coincide in order to continue with the registration. When

the form has been filled out the user will continue the process by submitting

it, at this moment a check on the previous fields is run and, in case everything

is correct, the form will be sent in JSON format to the server via REST. The

server will perform the later explained actions and send back a code meaning

that everything was done the way it was supposed or that an error occurred.

In case everything is correct the user will be redirected to his home screen,

otherwise, depending on the error code different error messages can be

displayed, e.g. if the email already exists in the database the user will be

notified and asked to introduce another one; or if there is an error regarding

connectivity with either the server or the database, he will be asked to try again

or wait and try later.

Case 3

If the user can no longer remember his password, there is an option

implemented for him to get a new one. As it is observed in Figure 4.1, the last

option given is the one analyzed in this case, pressing it will pop a form similar

to the registration one, being in this case single fielded, and the user will be

asked to introduce the email associated to his account. Submitting the email

will call a REST service that will check if the email exists on the database, in

case it does, a new password will be randomly generated, updated in the

database to substitute the lost one and sent to the introduced email address.

mailto:something@something.something

CHAPTER 4. IMPLEMENTATION

61

4.2. ShoalUp

This section encapsulates everything regarding event creation, finding,

discovery and modification along with the user’s profile modification.

Figure 4.3. ShoalUp home screen

Figure 4.3 displays ShoalUp’s home screen, the one the user is redirected

after successfully logging in or registering. There are many aspects to be

analyzed here.

The top menu bar encapsulates four elements: the application’s title, the

access to the user’s profile situated on the top left, and the notifications and

log out buttons on the top right corners. Being this elements self-explanatory

there is no need for further commentaries but mentioning that despite the

icon being already displayed, the notification system is not implemented yet,

it is one of the branches of the future work and it will be explained in the

correspondent section.

CHAPTER 4. IMPLEMENTATION

62

On the second level of the screen a tab bar to intuitively navigate

through the application is found, as it is clearly observed it displays the current

state of the application, i.e. the activity where the user is at every moment, this

being a blue bar under the concrete tab. Changing tabs will change the

executing activity changing the programmed methods as it is explained below.

Next element to be analyzed is the search bar. The filter feature that has

been mentioned on previous chapters referred to this element. Again, and as

the notification system, there are some future implementations to be

developed here, at the moment it works as follows, the user introduce the

desired word to filter for, e.g. an activity type (sports, party…), a username, a

place, event title… associating a onTextChangedListener() to the filter bar, will

detect when the user has introduced a text to filter for displaying again the

event listview, but this time only the elements containing the filter text in any

of its fields will be displayed.

Last, the event area and the event creation button. For the description

of this section it is important to understand how it works, the different event

activities, i.e. My Events, Find Events and Discover have a common onCreate()

method, this method encapsulates a series of actions to be executed the

moment the activity starts. The most essential one is the retrieving events one,

once the activity has started it makes a call to the database via REST service

sending different parameters depending on the activity. In this concrete case

the user ID is sent, the server’s method will query the database to find all the

events where the sent user’s ID appears either in the creator or the attendant

fields. Sending the obtained information back to the client, it will be mapped

and displayed as a listview being possible to sort it by location, activity number

of attendants… In case there are no elements to display, the screen illustrated

in Figure 4.3 will be shown informing the user and encouraging him to create

one, Figure 4.4.

CHAPTER 4. IMPLEMENTATION

63

Figure 4.4. ShoalUp event creation

The above image illustrates the event creation form, the placeholders

are self-descriptive leaving no room for the user to mistake the information to

introduce. For the date and time completion, in order to avoid possible errors

like introducing an invalid date or non-existing time, date and time pickers,

Figure 4.5, have been implemented. The recently mentioned components

consist on DialogFragments implementing a

TimePickerDialog.OnTimeSetListener interface that will receive a callback

when the user introduces the desired time. The same implementation is made

for the datepicker but this class implementing the

DatePickerDialog.OnTimeSetListener. The Activity element consists on a

spinner, i.e. a list of pre-established values to be picked by the user, it contains

the type of activity for which the event corresponds best, e.g. hang out,

sports… The most complex behavior corresponds to the Location element, for

a better implementation and in order to avoid as many errors as possible, e.g.

people introducing a place that does not exist, this text element is connected

to the Google Places API [24]. There are two possible ways of implementing

this functionality, by adding a PlaceAutocompleteFragment or adding an

intent to being an autocomplete activity, for this project the first one has been

elected as the best fitting option. For its implementation it is required to add

a new fragment connected to the API to the .xml of the activity and regarding

CHAPTER 4. IMPLEMENTATION

64

the activity, a PlaceSelectionListener will complete the location introduced by

the user being a completely reliable direction. The rest of the fields, are plain

text, it will store whatever the user introduces. Once the user has filled out the

form and pressed the Create button, a check is run on the fields, making sure

that none has been left blank and that the formats are correct, if there is an

error the user gets notified and asked to correct it, otherwise it is sent to store

in the database via REST service, and as in every REST call it will return a code

meaning that the operation was successful or an error code for the application

to interpret and display a message informing the user about the occurred

error.

Figure 4.6. ShoalUp Find Events screen Figure 4.7. ShoalUp event complete information

Figure 4.5. Date and time picker examples

CHAPTER 4. IMPLEMENTATION

65

Next analyzed section is Find event, Figure 4.6 – Figure 4.7. Maintaining

the structure of Figure 4.3, the similarities between both screens are relatable,

the whole structure is maintained, the only difference comes to the apparition

of events; in this case Figure 4.6 displays a set of events around the user’s

position. These events are obtained via REST service, as in the previous screen

case, when the activity starts the onCreate() method is executed calling the

server, in the previous case the user’s ID was sent, now the position of the user

obtained by the phone’s GPS functionality, is sent to the server obtaining first

the elements in the city and after filtering them by the distance from their

coordinates to the sent ones. For obtaining the distance two Location objects

are created, one being the position of the user and the other the location of

the event, afterwards the distanceTo() function is used to obtain the distance

in meters between both points and filter it by the radius. For this first

implementation, the radius to filter for is fixed, established by the developer

in 25 kilometers, in the future this parameter will be established by the user.

After all this process the events meeting the conditions are sent to the client

in JSON format, mapped to string and display them in a listview formatted as

observed in Figure 4.6. The events consist on a representative image, being

this static at the moment, it is planned to change as it is explained in the

Future work section, and the basic information, the title, date and time of the

event and number of attendants and the join button highlighted in blue. On

the event of the user joining the event by pressing the mentioned button, a

REST call will be executed informing the server with the users ID to be inserted

in the database as an attendant and sent the code to the application to be

interpreted.

Figure 4.7 represents the application state when pressing an event,

displaying its full information and the comment section. When inserting a

comment a similar process to the inclusion of the user to the event is followed,

when the user writes the comment and hits the Comment button, it is not

observable as due to the full information about the event size a scrollable

element was required showing just a part of it, Figure 4.9 shows a different

view of this element, the comment is sent via REST along with the event ID

and the user ID to the server storing the three of them in the comment

collection as a document and the comment ID being added to the array of

comments in that event’s document within the event collection. This complete

view of the event also allows the user to join, being this icon dynamic changing

depending on if the user is already a part of the event, allowing him to leave it

or if the user is the creator becoming an edit function, this last feature is to be

after explained.

Last, the Discover screen, Figure 4.8, allows the user to navigate through

the map displaying the events enclosed in the focused zone of the map. This

was the most complex process implemented using the Google Maps API [25].

Again and as in the previous screens, when the activity starts the onCreate()

CHAPTER 4. IMPLEMENTATION

66

method is executed sending the user’s location to the server querying the

database to obtain the events taking place in that concrete city and sending

the list to the application. Once the application receives the response it

obtains the coordinates of each element received and prints them as markers

in the map using the Google Maps function addMarker(), Figure 4.10 illustrates

an example similar to the one used for this project’s goal. Also using the

Google Maps API the inclusion of the map within this screen was

straightforward using the tutorial provided by them, as in the Google Place

autocomplete location function, adding a fragment in the .xml associated to

this activity was required in order to establish the attribute that will define the

connection to Google’s MapFragment section of its API. The

OnMapReadyCallback interface has to be implemented by the activity and

configure the callback instance to a MapFragment object, for managing the

previous fragment, i.e. the map itself, the method findFragmentById()

receiving as argument the resource id of the map fragment. The fragment’s

callback is managed by the getMapAsync() function.

Once the map is ready and the events markers have been placed, for

displaying the full event information on clicking the marker an

onMarkerClickListener is implemented to listen to the click events on each

marker. If this happens, the onMarkerClick(Marker) function is executed

passing the marker as an argument, retrieving its whole information and

displaying it as it is shown on Figure 4.9.

Figure 4.8. ShoalUp discover screen Figure 4.9. ShoalUp discover event full information

CHAPTER 4. IMPLEMENTATION

67

Regarding profile information modification, Figure 4.11, accessed by the

top left person icon, allows the user to change any of the details introduced

when registering to the application. This modification procedure works in the

same way for events.

As it is observed there are extra fields like country, city or activity

selection, as other interface options, its functionality hasn’t been implemented

yet as it was out of the scope of this project. Nevertheless, their inclusion is

the result of the in-advance planning and in order to require less UI changes

when implementing the upcoming features. The user is allowed to modify its

details by clicking on the edit icon, i.e. the pencil, this will take him to the edit

mode gathering the changed fields and when clicking on the Update button,

again and as in prior cases, not all of the interface can be displayed due to its

size, the application will send the profile’s information via REST service to the

server that will perform an update query against the database persisting the

Figure 4.10. AddMarker() method example

Figure 4.11. ShoalUp profile information

CHAPTER 4. IMPLEMENTATION

68

modified fields, sending back the confirmation code to be interpreted by the

application.

REST services

In this section as it was mentioned earlier in the chapter, an explanation

of the REST implementation made to manage the server calls. REST has been

implemented in order to reduce the operations to be performed at the user’s

device, increasing the efficiency of the application. For the REST calls the

Volley library [26] has been used, being this library a high-level interface

between the user and the thread management. Volley is petition focused,

managing different petitions concurrently getting rid of the problem of having

different asynchronous tasks at the same time and having to repeat the code.

The HTTP calls are taken into a petition queue, from this queue the different

calls are selected by the cache dispatcher checking if the results of each call

exists already in cache, in that case that result will be used, otherwise the

petition will be sent to the pendant connection queue waiting to be executed.

Finally the network dispatcher is in charge of selecting those awaiting

petitions and execute its respective HTTP transaction to the server.

The HTTP requests are directed against the server’s URL where the

REST services are stored, each service has a concrete URL, e.g. for user

registration the URL ends with /register/user, this way the user register service

is accessed. There are two possible methods regarding REST for data

transmission, GET and POST. GET method data is embedded within the HTTP

URL, e.g. user registration would be /register/user/Alvaro/De

Saavedra/100306200@alumnos.uc3m.es/123/123. On the method’s definition it

is established that the first element after /user is the name, the second the

surname and so on, the problem with the GET method comes when having, as

in this case, a big set of parameters to transmit, and also that as for now, the

encryption has not been implemented but for the password, in the case of an

attack, elements like the users complete name or his email can be obtained.

On the other hand, the POST method, the one used in this project, receives

the data in the request body, denoted in the method as @RequestBody, the

method will obtain the sent information, in this case a JSON object, and

execute the programmed actions, e.g. insert the user in the database. When

the application requires to receive data, as in the case of gathering the closer

events, the method call will return a @ResponseBody object, this being a JSON

containing the different elements to be returned.

mailto:Saavedra/100306200@alumnos.uc3m.es/123/123

CHAPTER 4. IMPLEMENTATION

69

4.3 Evaluation

All of the requirements established in section 3.1.1 following the use

cases of section 3.1.2 have been put into test phase, checking the correct

execution of each of the processes, making sure that the interactions between

the client and the server worked as it was expected, the data persistence by

means of both databases, SQLite and MongoDB, was correctly stored.

Checking it by accessing the application from different devices.

Several users were created in order to ensure that the visualization of

the events created by one of them was possible for the rest, testing the join

and modification systems. Errors in retrieving the events associated for a

concrete user were solved in this section.

Also the map functionality was where most of the problems aroused,

leading to an extra effort for analyzing and correcting those. Nevertheless it

was expected as working for the first time with an extern API can take harder-

to-resolve problems than a code you are familiar with.

CHAPTER 5. SOCIOECONOMIC ENVIRONMENT

70

CHAPTER 5

SOCIOECONOMIC

ENVIRONMENT

In the present chapter, divided in two subsections, the potential

socioeconomic repercussions of the proposed solution are analyzed along with

the project’s budget.

5.1 Socioeconomic environment

Regarding the application objective, to bring people together to perform

activities they like with people with similar taste, the first dimension that

might be thought it can have impact on is both local and bigger businesses. If

the application becomes popular, the number of events being organized

anywhere will increase, affecting the utilized infrastructures for these to be

celebrated, e.g. in the event of a football match meeting, a pitch will be

required. Hence, potentially, the closest sports center, soccer pitch… where it

can be celebrated will be booked becoming a potential social and economic

impact.

The social impact might be observed in the inclusion of people that

might not know people to execute his hobbies or preferred activities with into

a group of alike people eliminating this barrier.

Further, the application becoming viral will exponentially increase the

number of events celebrated, accordingly increasing the reservations,

bookings and sales related to those events. One of the potential side-effects of

this might be the increase of staff members in the affected businesses

decreasing the country’s unemployment rate. Likewise, the economy growth

will potentially lead the owners of those businesses to invest into new ones, or

expand their own to provide a better service to the customers.

Potentially, the most affected sectors would be the hospitality, sports,

and party (bars and nightclubs) sectors. Having this in mind, the application

would be monetized offering this entities to be publicized before their

competitors, e.g. when a user looks for an Italian restaurant, those paying the

most will appear first on the list. Also, as it is explained in the future work

section, we will offer those business the possibility to cooperate with us

CHAPTER 5. SOCIOECONOMIC ENVIRONMENT

71

allowing our users to book directly from our app getting special discounts or

offers for a pre-established percentage of each operation.

5.2 Budget of the project

Based on the project planning, section 1.4, in the present section a

breakdown of the project’s budget will be calculated. Only the actual costs will

be describe below, mentioning free tools like NetBeans or Git is not required,

henceforth, won’t be reflected.

Operational costs

Calculated using the formula:

 Cost = ((days * hours) / manDedication) * manCost

 Duration in days: 160

 Daily hours invested: 4

 Man dedication per month: 131.25

 Man cost per month: 2000

Cost = 160 * 4 / 131.25 * 2000 = 9752.38

The total operational costs would ascend to 9752.38 €

Technology costs

Both software and hardware means are taken into account in this

section.

 Hardware:

o Laptop: 1200€

o Smartphone Xiaomi Redmi 4: 180€

o AWS: 0€ *

CHAPTER 5. SOCIOECONOMIC ENVIRONMENT

72

 Software:

o All of the used software for this project’s development was

open source, meaning that no monetary investment was

required.

Table 5.1 shows the equipment amortization, being the imputable cost

calculated following the next formula:

𝐴

𝐵
∗ 𝐶 ∗ 𝐷

 A: number of months that the equipment has been used since the

billing date.

 B: depreciation period (60 months)

 C: equipment cost (without VAT)

 D: equipment percentage of dedication to the project (usually

100%)

Description Cost
(€)

% project
dedication

Dedication
(months)

Depreciation
period

Imputable
cost

Laptop
computer

1200 100 5 60 100

Smartphone
Xiaomi
Redmi 4

180

100

5

60

15

 TOTAL: 115
Table 5.1. Project technology costs.

*It is worth mentioning that AWS has a free plan with several

limitations for projects like this, in order to be able to test connectivity and

store a limited set of thing on the server. As the project advances, a different

plan will be required.

CHAPTER 5. SOCIOECONOMIC ENVIRONMENT

73

Project’s total budget Project’s total budget
(€)

Operational costs 9752.38

Technological costs 115

Subcontracting 0

Indirect costs (20%) 1973,48

Total not including VAT 11840,856

Total including VAT 14327.44
Table 5.2. Project’s total budget

Table 5.2 reflects the project’s total budget, it being a total of 14327.44€.

The application being free to download and advertisement free

complicates the calculation of product amortization, as it will depend only in

the number of user it has. This strategy has been proven the best in order to

make the application more attractive to users and encourage their loyalty to

it, i.e. ensuring that they use it on regular basis. This strategy has been

followed by loads of successful startups such as Uber or Airbnb.

CHAPTER 6. REGULATORY FRAMEWORK

74

CHAPTER 6

REGULATORY FRAMEWORK

In this section the legal concerns that affect the proposed solution will

be presented. Being sort of a social network where the users are required to

enter their personal data, the most significant applicable legal treatment

comes with the Ley Orgánica 15/1999, de 13 de diciembre, de Protección de

Datos de Carácter Personal (LOPD) [27]. This law’s objective is to guarantee

and protect the information and liberties of the people.

Due to the extensity of the LOPD, a summary containing the most

concerning concepts with regard to the current project is presented

hereunder.

 Information rights: the person requested to introduce his personal

information has to be properly informed of the purpose, addressee,

consequences that might entail of this data gathering along with his

right of access, rectification, cancellation or opposition.

 Consent of the affected person: the person must agree

unequivocally to its consent to provide his personal information.

 Security, secrecy and communication: the person or entity in

charge of the acquired data, is responsible of his implement the

required technical or organizational measures to assure its

protection. Further, the aforesaid information is protected by the

professional secrecy, being forbidden to communicate it to non-

authorized entities.

 User’s age: the application won’t be allowed to make public any

kind of information regarding users with less than fourteen years of

age. An exception to the previous statement would occurs if he/she

has the express consent of the parents or legal tutor.

 Identity fraud: constituting a crime, if an account is suspected to

be false, it would immediately be banned and denounced to the

competing authorities.

Everything privacy and security related will be clearly defined under the

section named in the same way before the application release.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

75

CHAPTER 7

CONCLUSIONS AND FUTURE

WORK

7.1 Conclusions

The objective of the project was to develop a simple, intuitive interfaced

application working with REST services for data transmission between the

client and the server, being this last one in charge of managing the database

accesses, persisting or retrieving data for the application.

The application solved the existing gap between the community

creating applications like MeetUp and similar applications like TimPik being

activity specific, ShoalUp’s solution allows its users to avoid the effort of

registering amongst different apps, having every kind of event available

contained in a single application.

The application UI follows as close as possible the ten rules for a good

UX design, being possible to always cancel actions, e.g. in user registration,

event creation or modification… having a consistent design, robust trying to

reduce as much as possible the potential errors and, in the case of an error

occurrence, information different information messages are prepared to guide

the user through it. As well as elements reflecting the state of the application

helping the user to acknowledge where he is, e.g. the blue line under the tab

bar displaying if he is in the “My events” section, the “Find events” or the

“Discover”.

Further, the whole system is prepared for future improvements and

implementations, as seen in chapter 4 with some elements of the interface,

being these functionalities explained in section 7.2.

For the conclusion of the section it is to say that the objectives aimed to

be achieved at the beginning of this project were successfully completed,

experiencing the whole process of developing a software project from its

design to its testing phase. The most complex part was the inclusion of the

Google Maps and Google Places APIs into the system; nevertheless it was

worth the effort regarding the obtained results.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

76

7.2 Future work

In this section future implementations and improvements to be

developed are explained hereunder divided into two sections.

7.2.1 Near future work

The next upcoming implementations would consist on the ones

mentioned in the previous chapter. Regarding the events, a notification

system is to be implemented for the attendants of each event to be notified

whenever there is an update, e.g. a new comment or attendant or whether it

has changed location time or if it has been deleted.

Also, the scalability of the event finding and discovery is one of the

closest goals to achieve, right now it obtains the events of the current city for

efficiency matters, the next step is to be able to efficiently load the events

within a whole country. This improvement will require a larger

implementation and a higher computing power regarding the server.

However, a viability study will be carried out, evaluating how this

improvement might work on different devices having different computational

power.

Regarding personalization, as observed in Figure 4.11, the user will be

offered to establish a preference system based on his country and city along

with the kind of events he is interested in the most. The expected result is a

more attractive application displaying the best fitting events for each user.

Also the radius to search for, mentioned in chapter 4, is an improvement to be

soon implemented giving the user a higher degree of freedom.

The last implementation planned is security wise. A deeper analysis of

the required measures to be taken is to be carried out, having sensible user

information will require measures like database encryption or an

authentication system based on tokens.

7.2.2 Further future work

Once the application has been proved complete and secure, the

implementations aiming monetary profit will be developed. The procedure to

be followed has not yet been decided. Nevertheless, the objective is to allow

the users to book the infrastructure or resources to perform the event activity

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

77

from our application, e.g. when planning a football match, the attendants will

be able to reserve the pitch in advance from the application obtaining a

discount or an offer by doing it this way. This will require a further study as it

becomes more complex, having to negotiate with local business, agencies…

78

BIBLIOGRAPHY

[1] S. Duggirala, "10 Usability Heuristics with Examples – prototypr",

prototypr, 2016. [Online]. Available: https://blog.prototypr.io/10-usability-

heuristics-with-examples-4a81ada920c.

[2] "What is the Software Development Life Cycle (SDLC)?", Airbrake Blog,

2013. [Online]. Available: https://airbrake.io/blog/sdlc/what-is-the-software-

development-life-cycle.

[3] "What is a Gantt Chart? Gantt Chart Software, Information, and History",

Gantt.com. [Online]. Available: http://www.gantt.com/.

[4] Meetup.com. [Online]. Available: https://www.meetup.com/es-ES/

[Accessed: 11- Sep- 2017].

[5] "Facebook Events", Facebook Events. [Online]. Available:

https://events.fb.com/ [Accessed: 11- Sep- 2017].

[6] "Eventbrite", Eventbrite. [Online]. Available: https://www.eventbrite.es/

[Accessed: 11- Sep- 2017].

[7] "What things to do, tourism, attractions and tours in New York City -

Fever", Feverup.com. [Online]. Available: https://feverup.com/ [Accessed: 11-

Sep- 2017].

[8] "Timpik: Practica deporte en tu ciudad", TIMPIK: Practica deporte en tu

ciudad. [Online]. Available: http://www.timpik.com/ [Accessed: 11- Sep-

2017].

[9] P. Local, "Party with a Local | App Connecting People Who Want to

Party", Party with A Local. [Online]. Available: http://partywithalocal.com/

[Accessed: 11- Sep- 2017].

[10] "Mobile | Couchsurfing", Couchsurfing.com. [Online]. Available:

http://www.couchsurfing.com/about/mobile/ [Accessed: 11- Sep- 2017].

[11] Ditrendia, "Informe Mobile en España y en el Mundo 2016", 2017.

[12] P. Deitel, H. Deitel, A. Wald and P. Deitel, Android 6 for Programmers:

An App-Driven Approach. 2015.

[13] C. Keur and A. Hillegass, iOS Programming: The Big Nerd Ranch Guide.

2016.

[14] E. Maxwell, "MVC vs. MVP vs. MVVM on Android", Academy.realm.io,

2017. [Online]. Available: https://academy.realm.io/posts/eric-maxwell-mvc-

mvp-and-mvvm-on-android/.

https://blog.prototypr.io/10-usability-heuristics-with-examples-4a81ada920c
https://blog.prototypr.io/10-usability-heuristics-with-examples-4a81ada920c
https://airbrake.io/blog/sdlc/what-is-the-software-development-life-cycle
https://airbrake.io/blog/sdlc/what-is-the-software-development-life-cycle
http://www.gantt.com/
https://www.meetup.com/es-ES/
https://events.fb.com/
https://www.eventbrite.es/
https://feverup.com/
http://www.timpik.com/
http://partywithalocal.com/
http://www.couchsurfing.com/about/mobile/
https://academy.realm.io/posts/eric-maxwell-mvc-mvp-and-mvvm-on-android/
https://academy.realm.io/posts/eric-maxwell-mvc-mvp-and-mvvm-on-android/

79

[15] [B. Moschetti, "MongoDB vs SQL: Day 1-2", MongoDB, 2014. [Online].

Available: https://www.mongodb.com/blog/post/mongodb-vs-sql-day-1-2.

[16] Top 5 Considerations When Evaluating NoSQL Databases. MongoGB,

2017. [Online] Available at:

https://webassets.mongodb.com/_com_assets/collateral/10gen_Top_5_NoSQ

L_Considerations.pdf

[17] H. Schildt, Java: The Complete Reference, 9th ed. 2014.

[18] B. Syed, Beginning Node.js, 1st ed. 2014.

[19] L. Ullman, PHP for the Web: Visual QuickStart Guide, 5th ed. 2016.

 [20] "Building REST services with Spring", Spring.io. [Online]. Available:

https://spring.io/guides/tutorials/bookmarks/ [Accessed: 19- Sep- 2017].

[21] D. Pilone, UML 2.0 pocket reference, 1st ed. 2006.

[22] "SQLite Home Page", Sqlite.org. [Online]. Available:

https://www.sqlite.org/ [Accessed: 20- Sep- 2017].

[23] "¿Qué es AWS? – Amazon Web Services", Amazon Web Services, Inc..

[Online]. Available: https://aws.amazon.com/es/what-is-aws/ [Accessed: 20-

Sep- 2017].

[24] "Getting Started | Google Places API for Android | Google

Developers", Google Developers. [Online]. Available:

https://developers.google.com/places/android-api/start [Accessed: 15- Sep-

2017].

[25] "Getting Started | Google Maps Android API | Google Developers",

Google Developers. [Online]. Available:

https://developers.google.com/maps/documentation/android-api/start

[Accessed: 15- Sep- 2017].

[26] "Transmitting Network Data Using Volley | Android Developers",

Developer.android.com. [Online]. Available:

https://developer.android.com/training/volley/index.html [Accessed: 15-

Sep- 2017].

[27] Ley 5/2015, de 27 de abril, de fomento de la financiación empresarial.

BOE-A-2015-4607

https://www.mongodb.com/blog/post/mongodb-vs-sql-day-1-2
https://webassets.mongodb.com/_com_assets/collateral/10gen_Top_5_NoSQL_Considerations.pdf
https://webassets.mongodb.com/_com_assets/collateral/10gen_Top_5_NoSQL_Considerations.pdf
https://spring.io/guides/tutorials/bookmarks/
https://www.sqlite.org/
https://aws.amazon.com/es/what-is-aws/
https://developers.google.com/places/android-api/start
https://developers.google.com/maps/documentation/android-api/start
https://developer.android.com/training/volley/index.html

