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Abstract: We introduce new dynamic conditional score (DCS) volatility models with dynamic scale and shape 

parameters for the effective measurement of volatility. In the new models, we use the EGB2 (exponential 

generalized beta of the second kind), NIG (normal-inverse Gaussian) and Skew-Gen-t (skewed generalized-t) 

probability distributions. Those distributions involve several shape parameters that control the dynamic skewness, 

tail shape and peakedness of financial returns. We use daily return data from the Standard & Poor's 500 (S&P 500) 

index for the period of January 4, 1950 to December 30, 2017. We estimate all models by using the maximum 

likelihood (ML) method, and we present the conditions of consistency and asymptotic normality of the ML 

estimates. We study those conditions for the S&P 500 and we also perform diagnostic tests for the residuals. The 

statistical performances of several DCS specifications with dynamic shape are superior to the statistical performance 

of the DCS specification with constant shape. Outliers in the shape parameters are associated with important 

announcements that affected the United States (US) stock market. Our results motivate the application of the new 

DCS models to volatility measurement, pricing financial derivatives, or estimation of the value-at-risk (VaR) and 

expected shortfall (ES) metrics. 
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1. Introduction

The precise measurement of the probability distribution of financial returns and, more specifically, the

precise measurement of volatility, are important concerns of practitioners for the effective management

of financial portfolios. When probability distributions that include scale and shape parameters are

used to model financial returns, then both parameters will influence volatility. In classical financial

time series models (e.g. Engle, 1982; Bollerslev, 1986, 1987; Nelson, 1991; Harvey et al., 1994; Harvey

and Shephard, 1996; Kim et al., 1998; Barndorff-Nielsen and Shephard, 2002), the scale parameter is

dynamic and the shape parameter (if it is specified) is constant over time. In this paper, we intro-

duce new dynamic conditional score (DCS) models (Creal et al., 2011, 2013; Harvey, 2013) for the

measurement of conditional volatility, in which the shape parameters are dynamic.

Harvey (2013) provides the following motivation for using DCS models: “The asymptotic distribu-

tion theory for a wide range of dynamic conditional score models is of crucial importance in showing

their viability. The information matrix can be obtained explicitly, and the proof of the asymptotic

normality of the maximum likelihood estimators is relatively straightforward. This contrasts with the

situation for most other cases of nonlinear dynamic models. For example, no explicit information ma-

trix is available for the most commonly used GARCH models, whereas for EGARCH models there is

virtually no asymptotic theory for ML estimation” (Harvey, 2013, p. 19). The DCS models of the

present paper extend the previous financial time series models with constant shape parameters from

the literature, since: (i) they have a superior likelihood-based statistical performance; (ii) they esti-

mate the dynamics of both scale and shape parameters effectively; (iii) news on asset value updates

volatility not only through scale, but also through shape; (iv) they use different dynamic tail shape

for the left and right tails of the return distribution; (v) they identify extreme events effectively; (vi)

we present the conditions for the asymptotic properties of the maximum likelihood (ML) estimator for

DCS models with several score-driven dynamic variables.

We introduce new DCS models for the EGB2 (exponential generalized beta of the second kind) (e.g.

Caivano and Harvey, 2014), NIG (normal-inverse Gaussian) (Barndorff-Nielsen and Halgreen, 1977),

and Skew-Gen-t (skewed generalized-t) (e.g. McDonald and Michelfelder, 2017) distributions, for which

the error term includes several shape parameters. DCS models are robust to extreme observations, since

the score function that updates the dynamic equations discounts the effects of those observations. We

show that this property is also true for the new DCS models with dynamic shape parameters. Those
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models are extensions of the DCS models with constant shape parameters from the works of Harvey

(2013), Caivano and Harvey (2014), Harvey and Sucarrat (2014), Harvey and Lange (2017) and Blazsek

et al. (2018). We also refer to some recent studies of the authors of the present paper that contribute

to the DCS literature: Blazsek and Villatoro (2015), Ayala et al. (2015, 2016), Blazsek and Escribano

(2016), Blazsek and Mendoza (2016), Blazsek and Ho (2017), Blazsek and Monteros (2017a,b), Ayala

and Blazsek (2018a,b,c), Blazsek and Hernandez (2018), and Ayala and Blazsek (2019).

In the body of literature relevant to this paper, different econometric methods are used to investigate

dynamic tail shape for financial returns. Quintos et al. (2001) construct tests of tail shape constancy

that allow for an unknown breakpoint, and present applications of those tests for stock price data.

Galbraith and Zernov (2004) present applications of the same tests for the Dow Jones Industrial Average

(DJIA) and Standard & Poor’s 500 (S&P 500) indexes. More recently, Bollerslev and Todorov (2011)

suggest a flexible nonparametric method of dynamic tail shape, which is used by the same authors for

high-frequency data from the S&P 500. There are several methods in the body of literature that use

options data to estimate dynamic tail shape for financial returns (e.g. Bakshi et al., 2003; Bollerslev et

al., 2009; Backus et al., 2011). In relation to options data and dynamic tail shape, we also refer to the

recent works of Bollerslev and Todorov (2014) and Bollerslev et al. (2015). Furthermore, by using panel

data models, Kelly and Jiang (2014) identify a common variation in the tail shape of United States

(US) stock returns. In the present paper, (i) we use a new flexible parametric approach to estimate

dynamic tail shape; (ii) the proposed econometric models are not only for the dynamic modeling of tail

shape, but also for the dynamic modeling of skewness and peakedness of the distribution.

We use daily log-return time series data from the adjusted S&P 500 index for the period of

January 4, 1950 to December 30, 2017. The application of S&P 500 data to the new DCS models

is useful, for example, for investors of (i) well-diversified US equity portfolios; (ii) S&P 500 futures

and options contracts traded at the Chicago Mercantile Exchange (CME); (iii) exchange traded funds

(ETFs) related to the S&P 500. For practitioners, the new DCS models with dynamic shape param-

eters may provide precise estimates and forecasts of (i) stock market volatility for pricing financial

derivatives (Hull 2018), and (ii) other classical risk measurement metrics, such as value-at-risk (VaR)

(Jorion, 2006) and expected shortfall (ES) (Acharya et al., 2012, 2017).

We estimate all DCS models by using the ML method, and we present the conditions for the

asymptotic properties of the ML estimator. For all DCS specifications, we also perform diagnostic
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tests with respect to the probability distribution of the error term up to the fourth moment. For those

diagnostic tests, we define outlier-robust standardized auxiliary variables that are martingale difference

sequences (MDSs) under correct specification, and we use the MDS test from the work of Escanciano

and Lobato (2009). We compare the in-sample statistical performances of DCS specifications with

dynamic and constant shape parameters. We find that the score-driven dynamics of shape parameters

are significant for the new DCS models, and we show that the performances of several DCS specifications

with dynamic shape parameters are superior to the performance of the DCS specification with constant

shape parameters. Outliers in the shape parameters are associated with important announcements

that affected the US stock market. For the S&P 500, we find that the likelihood-based performance of

Skew-Gen-t-DCS is superior to that of EGB2-DCS and NIG-DCS. These results indicate that the new

DCS models with dynamic shape parameters may provide a more precise measurement of volatility

dynamics than the DCS models with constant shape parameters from the body of literature, and they

may motivate practical applications of the new DCS models with dynamic shape parameters.

In the remainder of this paper, Section 2 presents the new DCS models, Section 3 reviews the

statistical inference, Section 4 presents the empirical results, and Section 5 concludes.

2. Econometric methods

2.1. DCS models with dynamic location, scale and shape parameters

We model the daily log-return on the S&P 500 index, yt = ln(pt/pt−1) for t = 1, . . . , T , where pt is

closing price, adjusted for dividends and stock splits (for p0, we use pre-sample data). The general

form of all DCS models in this paper is

yt = µt + vt = µt + exp(λt)εt (2.1)

where µt and exp(λt) are the dynamic location and scale parameters, respectively. For εt, we use

the EGB2, NIG and Skew-Gen-t distributions (see Appendix A), which are all asymmetric probabil-

ity distributions with several shape parameters (it is noteworthy that E(yt|y1, . . . , yt−1) 6= µt, since

E(εt|y1, . . . , yt−1) 6= 0). The k-th shape parameter is determined by a nonlinear transformation of the

dynamic parameter ρk,t. To illustrate the flexibility of EGB2, NIG and Skew-Gen-t distributions, we

present the density function for each model in Fig. 1, where we consider different shape parameters

for each distribution and compare each probability distribution with the standard normal distribution.
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The EGB2, NIG and Skew-Gen-t distributions use different dynamic tail shape for the left and right

tails, in a similar manner to the works of Bollerslev and Todorov (2014) and Bollerslev et al. (2015).

The parameters µt, λt and ρk,t of the DCS model are specified as follows. First, for the dynamic

location parameter, we use DCS-QAR(1) (quasi-autoregressive) model (Harvey, 2013):

µt = c+ φµt−1 + θuµ,t−1 (2.2)

where |φ| < 1 and uµ,t is the scaled score function of the log-likelihood (LL) with respect to µt (we

present uµ,t for the EGB2, NIG and Skew-Gen-t distributions in Appendix A). As an extension of this

model, contemporaneous values and lags of exogenous explanatory variables may also be included on

the right side of Equation (2.2). This location model can be related to the unobserved components

models (UCMs) (Harvey, 1989), because a UCM is obtained by replacing the scaled score function by

a Gaussian i.i.d. (independent and identically distributed) error term. The location equation is jointly

estimated with the scale and shape equations, because in that way we control for possible dynamics of

the expected return and also improve the measurement of volatility dynamics.

Second, the dynamic log-scale parameter is specified as:

λt = ω + βλt−1 + αuλ,t−1 + α∗sgn(−εt−1)(uλ,t−1 + 1) (2.3)

where |β| < 1, uλ,t is the score function of the LL with respect to λt (see uλ,t for the EGB2, NIG and

Skew-Gen-t distributions in Appendix A), and sgn(x) is the signum function. Contemporaneous values

and lags of exogenous explanatory variables may also be included on the right side of Equation (2.3).

This specification measures leverage effects (i.e. effects of negative unexpected returns), by using param-

eter α∗ in the DCS-EGARCH (exponential generalized autoregressive conditional heteroscedasticity)

model (Harvey and Chakravarty, 2008). The DCS-EGARCH models with constant shape parameters

that use EGB2, NIG and Skew-Gen-t distributions for εt are named EGB2-EGARCH (Caivano and

Harvey, 2014), NIG-EGARCH (Blazsek et al., 2018), and Beta-Skew-Gen-t-EGARCH (Harvey and

Lange, 2017), respectively.

Third, for the k-th dynamic parameter ρk,t that determines the k-th dynamic shape parameter, we
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use the following DCS-QAR(1) model:

ρk,t = δk + γkρk,t−1 + κkuρ,k,t−1 (2.4)

where |γk| < 1, and uρ,k,t is the score function of the LL with respect to ρk,t (we present uρ,k,t

for the EGB2, NIG and Skew-Gen-t distributions in Appendix A). As an extension of this model,

contemporaneous values and lags of exogenous explanatory variables may also be included on the right

side of Equation (2.4). For the EGB2 distribution, the two dynamic parameters that influence shape

are denoted as ρ1,t = ξt and ρ2,t = ζt (Appendix A). For the NIG distribution, the two dynamic

parameters that influence shape are denoted as ρ1,t = νt and ρ2,t = ηt (Appendix A). For the Skew-

Gen-t distribution, the three dynamic parameters that influence shape are denoted as ρ1,t = τt, ρ2,t = νt

and ρ3,t = ηt (Appendix A). For each distribution we also use the constant shape parameter model as

benchmark, for which ρk,t = δk.

We consider different ways of initialization for each dynamic equation. For the results reported

in this paper, we initialize µt by using pre-sample data, λt by parameter λ0, and ρk,t by using its

unconditional mean δk/(1−γk). Nevertheless, our results are also robust to other ways of initialization.

For example, we also use parameters µ0 and ρk,0 for µt and ρk,t, respectively, and the corresponding

results are similar to the results reported in this paper.

2.2. Specification tests

We perform specification tests for each probability distribution of the error term εt up to the fourth

moment. For the EGB2 and NIG distributions, the first four conditional moments exist. For the Skew-

Gen-t distribution, the degrees of freedom parameter specification ensures that the first four conditional

moments exist (i.e. the degrees of freedom parameter is > 4).

For the EGB2-DCS model, εt ∼ EGB2[0, 1, exp(ξt), exp(ζt)], where both shape parameters are

positive as required for the EGB2 distribution (Appendix A). The conditional mean, conditional

variance, conditional skewness and conditional kurtosis of εt are given by:

E(εt|y1, . . . , yt−1; Θ) = Ψ(0)[exp(ξt)]−Ψ(0)[exp(ζt)] (2.5)

Var(εt|y1, . . . , yt−1; Θ) = Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)] (2.6)
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Skew(εt|y1, . . . , yt−1; Θ) = Ψ(2)[exp(ξt)]−Ψ(2)[exp(ζt)] (2.7)

Kurt(εt|y1, . . . , yt−1; Θ) = Ψ(3)[exp(ξt)] + Ψ(3)[exp(ζt)] (2.8)

respectively; Θ is the vector of parameters and Ψ(i)(x) is the polygamma function of order i. For the

NIG-DCS model, εt ∼ NIG[0, 1, exp(νt), exp(νt)tanh(ηt)], where tanh(x) is the hyperbolic tangent func-

tion, and the absolute value of parameter exp(νt)tanh(ηt) is less than parameter exp(νt) as required for

the NIG distribution (Appendix A). The conditional mean, conditional variance, conditional skewness

and conditional kurtosis of εt are given by:

E(εt|y1, . . . , yt−1; Θ) =
tanh(ηt)

[1− tanh2(ηt)]1/2
(2.9)

Var(εt|y1, . . . , yt−1; Θ) =
exp(−νt)

[1− tanh2(ηt)]3/2
(2.10)

Skew(εt|y1, . . . , yt−1; Θ) =
3tanh(ηt)

exp(νt/2)
[
1− tanh2(ηt)

]1/4 (2.11)

Kurt(εt|y1, . . . , yt−1; Θ) = 3 +
3
[
1 + 4tanh2(ηt)

]
exp(νt)

[
1− tanh2(ηt)

]1/2 (2.12)

respectively. For the Skew-Gen-t-DCS model, εt ∼ Skew-Gen-t[0, 1, tanh(τt), exp(νt)+4, exp(ηt)], where

shape parameter tanh(τt) is in the interval (−1, 1) as required for the Skew-Gen-t distribution, degrees

of freedom parameter exp(νt)+4 is higher than four, and shape parameter exp(ηt) is positive as required

for the Skew-Gen-t distribution (Appendix A). The conditional mean, conditional variance, conditional

skewness and conditional kurtosis of εt, respectively, are:

E(εt|y1, . . . , yt−1; Θ) =
2tanh(τt)[exp(νt) + 4]exp(−ηt)B

{
2

exp(ηt)
, exp(νt)+3

exp(ηt)

}
B
{

1
exp(ηt)

, exp(νt)+4
exp(ηt)

} (2.13)

Var(εt|y1, . . . , yt−1; Θ) = [exp(νt) + 4]2 exp(−ηt)× (2.14)

×

 [3tanh2(τt) + 1]B
[

3
exp(ηt)

, exp(νt)+2
exp(ηt)

]
B
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

] −
4tanh2(τt)B

2
[

2
exp(ηt)

, exp(νt)+3
exp(ηt)

]
B2
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

]


Skew(εt|y1, . . . , yt−1; Θ) =
2tanh(τt)[exp(νt) + 4]3 exp(−ηt)

B3
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

] × (2.15)
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×

{
8tanh2(τt)B

3

[
2

exp(ηt)
,
exp(νt) + 3

exp(ηt)

]
− 3

[
1 + 3tanh2(τt)

]
B

[
1

exp(ηt)
,
exp(νt) + 4

exp(ηt)

]
×

×B
[

2

exp(ηt)
,
exp(νt) + 3

exp(ηt)

]
B

[
3

exp(ηt)
,
exp(νt) + 2

exp(ηt)

]

+2
[
1 + tanh2(τt)

]
B2

[
1

exp(ηt)
,
exp(νt) + 4

exp(ηt)

]
B

[
4

exp(ηt)
,
exp(νt) + 1

exp(ηt)

]}

Kurt(εt|y1, . . . , yt−1; Θ) =
[exp(νt) + 4]4 exp(−ηt)

B4
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

]× (2.16)

×

{
− 48tanh4(τt)B

4

[
2

exp(ηt)
,
exp(νt) + 3

exp(ηt)

]

+24tanh2(τt)
[
1 + 3tanh2(τt)

]
B

[
1

exp(ηt)
,
exp(νt) + 4

exp(ηt)

]
B2

[
2

exp(ηt)
,
exp(νt) + 3

exp(ηt)

]
×

×B
[

3

exp(ηt)
,
exp(νt) + 2

exp(ηt)

]
− 32tanh2(τt)

[
1 + tanh2(τt)

]
B2

[
1

exp(ηt)
,
exp(νt) + 4

exp(ηt)

]
×

×B
[

2

exp(ηt)
,
exp(νt) + 3

exp(ηt)

]
B

[
4

exp(ηt)
,
exp(νt) + 1

exp(ηt)

]

+
[
1 + 10tanh2(τt) + 5tanh4(τt)

]
B3

[
1

exp(ηt)
,
exp(νt) + 4

exp(ηt)

]
B

[
5

exp(ηt)
,
exp(νt)

exp(ηt)

]}

respectively; B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function and Γ(x) is the gamma function.

In the remainder of this section, we use the previous mean, variance, skewness and kurtosis formulas

for each equation. We define the auxiliary error term as:

ε∗t =
εt − E(εt|y1, . . . , yt−1; Θ)

Var1/2(εt|y1, . . . , yt−1; Θ)
=
εt − E(εt|ε1, . . . , εt−1; Θ)

Var1/2(εt|ε1, . . . , εt−1; Θ)
(2.17)

This transformation reduces the importance of those outliers that appear within εt. For DCS models,

outliers frequently appear within εt instead of within the updating terms of the dynamic equations; this

is due to the outlier-discounting property of the score-functions. According to the work of Li (2004,

Chapter 4), the robustness of specification tests is increased when residuals are standardized according

to Equation (2.17). The conditional mean and conditional variance of ε∗t are 0 and 1, respectively.
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Therefore, we have:

E(ε∗t |y1, . . . , yt−1; Θ) = E(ε∗t |ε∗1, . . . , ε∗t−1; Θ) = 0 (2.18)

E[(ε∗t )
2 − 1|y1, . . . , yt−1; Θ] = E[(ε∗t )

2 − 1|ε∗1, . . . , ε∗t−1; Θ] = 0 (2.19)

By using the conditional skewness and conditional kurtosis formulas, we also have

E[(ε∗t )
3 − Skew(εt|y1, . . . , yt−1)|y1, . . . , yt−1; Θ] = (2.20)

= E[(ε∗t )
3 − Skew(εt|y1, . . . , yt−1)|ε∗1, . . . , ε∗t−1; Θ] = 0

E[(ε∗t )
4 −Kurt(εt|y1, . . . , yt−1)|y1, . . . , yt−1; Θ] = (2.21)

= E[(ε∗t )
4 −Kurt(εt|y1, . . . , yt−1)|ε∗1, . . . , ε∗t−1; Θ] = 0

Within the expectations of Equations (2.18) to (2.21), variables with MDS property appear. We use

the MDS test with optimal lag-order selection from the work of Escanciano and Lobato (2009), to

verify the correct specification for each probability distribution.

3. Statistical inference

We estimate all models of this paper by using the ML method. With respect to DCS models, Blasques

et al. (2017, 2018) present the conditions for the asymptotic properties of ML for DCS models with a

single score-driven dynamic variable. In this paper, we present those conditions for DCS models with

several score-driven dynamic variables. The first representation of the ML estimator is

Θ̂ML = arg max
Θ

LL(y1, . . . , yT ; Θ) = arg max
Θ

1

T

T∑
t=1

ln f(yt|y1, . . . , yt−1; Θ) (3.1)

where Θ = (Θ1, . . . ,ΘK)′ is the vector of parameters and ln f(yt|y1, . . . , yt−1; Θ) for the EGB2, NIG and

Skew-Gen-t distributions is presented in Appendix A. We assume: (A1) The LL function is correctly

specified for each DCS model. (A2) The vector of true values of parameters Θ0 is an interior point

within a compact parameter set in IRK . (A3) Θ̂ML is a unique solution to the maximization problem

of Equation (3.1). (A4) LL(·; Θ) is a Borel measurable function on IRT . (A5) For each (y1, . . . , yT ) ∈

IRT , LL(y1, . . . , yT ; ·) is a continuous function on the parameter set. (A6) LL(y1, . . . , yT ; Θ) is twice
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continuously differentiable on all of the interior points of the parameter set.

We define the T ×K matrix of contributions to the gradient G(y1, . . . , yT ,Θ) by its elements:

Gti(Θ) =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂Θi
(3.2)

for period t = 1, . . . , T and parameter i = 1, . . . ,K. We denote the t-th row of G(y1, . . . , yT ,Θ) by using

Gt(Θ), which is the score vector for the t-th observation. Under (A1) to (A6), the first representation

of the ML estimator is equivalent to the following second representation:

1

T

T∑
t=1

Gt(Θ̂ML)′ =
1

T

T∑
t=1


Gt1(Θ̂ML)

...

GtK(Θ̂ML)

 =
1

T

T∑
t=1


∂ ln f(yt|y1,...,yt−1;p0,Θ̂ML)

∂Θ1

...

∂ ln f(yt|y1,...,yt−1;p0,Θ̂ML)
∂ΘK

 = 0K×1 (3.3)

We write the left side of Equation (3.3) according to the mean-value expansion about the true values

of parameters Θ0, as follows:

1

T

T∑
t=1

Gt(Θ̂ML)′ =
1

T

T∑
t=1

Gt(Θ0)′ +
1

T

[
T∑
t=1

Ht(Θ̄)

]
(Θ̂ML −Θ0) (3.4)

where each row of the K ×K Hessian matrix

Ht(Θ) =
∂2 ln f(yt|y1, . . . , yt−1; Θ)

∂ΘΘ′
(3.5)

of the t-th observation is evaluated at K different mean values, indicated by Θ̄. Each Θ̄ is located

between Θ0 and Θ̂ML, which can be more formally expressed as: ||Θ̄−Θ0|| ≤ ||Θ̂ML−Θ0||, where || · ||

is the Euclidean norm. We define the K ×K contribution to the information matrix for period t that

is evaluated at the true values of parameters, as follows:

It(Θ0) = −E[Ht(Θ0)|y1, . . . , yt−1] = E[Gt(Θ0)′Gt(Θ0)|y1, . . . , yt−1] (3.6)

The second equality in Equation (3.6) is based on the conditional information matrix equality, which
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holds under assumption (A1). From Equations (3.3) and (3.4), we express:

√
T (Θ̂ML −Θ0) =

[
− 1

T

T∑
t=1

Ht(Θ̄)

]−1 [
1√
T

T∑
t=1

Gt(Θ0)′

]
(3.7)

We study conditions for the following asymptotic result:

√
T (Θ̂ML −Θ0)→d NK

[
0K×1, I−1(Θ0)

]
as T →∞ (3.8)

where I(Θ0) ≡ E[It(Θ0)] and I−1(Θ0) is positive definite. The asymptotic covariance matrix of Θ̂ML

is I−1(Θ0)/T , which we estimate by using [
∑T

t=1Gt(Θ̂ML)′Gt(Θ̂ML)]−1.

3.1. Information matrix

We study the conditions of the finiteness of all of the elements of I(Θ0). For ease of notation, we start

with a DCS model with score-driven µt, score-driven λt and known constant shape parameters for εt:

yt = µt + exp(λt)εt (3.9)

µt = c+ φµt−1 + θuµ,t−1 (3.10)

λt = ω + βλt−1 + αuλ,t−1 (3.11)

We start with the conditions of covariance stationarity of yt. We re-parameterize µt and λt, by using

the unconditional means E(µt) = c̃ = c/(1− φ) and E(λt) = ω̃ = ω/(1− β), as follows:

µt = c̃(1− φ) + φµt−1 + θuµ,t−1 (3.12)

λt = ω̃(1− β) + βλt−1 + αuλ,t−1 (3.13)

for which Θ = (c̃, φ, θ, ω̃, β, α) and K = 6. We use these alternative forms, because the information

matrix is simpler under these forms. The conditions for the covariance stationarity of yt are |φ| < 1

and |β| < 1. We name these conditions as Condition 1.

We study the conditions of the finiteness of all of the elements of I(Θ0). We express:

I(Θ0) = E[It(Θ0)] = E
{
E[Gt(Θ0)′Gt(Θ0)|y1, . . . , yt−1]

}
= E[Gt(Θ0)′Gt(Θ0)] (3.14)
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In the following, we present the conditions under which all of the elements of E[Gt(Θ0)′Gt(Θ0)] are

finite. We express the elements of Gt(Θ0)′, according to the chain rule, as follows:

Gt(Θ0)′ =



∂ ln f(yt|y1,...,yt−1;Θ0)
∂θ

∂ ln f(yt|y1,...,yt−1;Θ0)
∂φ

∂ ln f(yt|y1,...,yt−1;Θ0)
∂c̃

∂ ln f(yt|y1,...,yt−1;Θ0)
∂α

∂ ln f(yt|y1,...,yt−1;Θ0)
∂β

∂ ln f(yt|y1,...,yt−1;Θ0)
∂ω̃


=



∂ ln f(yt|y1,...,yt−1;Θ0)
∂µt

× ∂µt
∂θ

∂ ln f(yt|y1,...,yt−1;Θ0)
∂µt

× ∂µt
∂φ

∂ ln f(yt|y1,...,yt−1;Θ0)
∂µt

× ∂µt
∂c̃

∂ ln f(yt|y1,...,yt−1;Θ0)
∂λt

× ∂λt
∂α

∂ ln f(yt|y1,...,yt−1;Θ0)
∂λt

× ∂λt
∂β

∂ ln f(yt|y1,...,yt−1;Θ0)
∂λt

× ∂λt
∂ω̃


(3.15)

We define four panels within the contribution to the information matrix:

It(Θ0) = Et−1[Gt(Θ0)′Gt(Θ0)] = Et−1

 A(3×3) C(3×3)

C(3×3) B(3×3)

 (3.16)

where within panel A elements that involve only the derivatives of µt appear, in panel B elements that

involve only the derivatives of λt appear, and in panel C elements that involve the derivatives of both

µt and λt appear. We factorize out four scalars from A, B and each of the two C panels, respectively,

within Equation (3.16), and we define the following 2× 2 matrix:

I =


[
∂ ln f(yt|y1,...,yt−1;Θ0)

∂µt

]2
∂ ln f(yt|y1,...,yt−1;Θ0)

∂µt
× ∂ ln f(yt|y1,...,yt−1;Θ0)

∂λt

∂ ln f(yt|y1,...,yt−1;Θ0)
∂µt

× ∂ ln f(yt|y1,...,yt−1;Θ0)
∂λt

[
∂ ln f(yt|y1,...,yt−1;Θ0)

∂λt

]2

 (3.17)

Given the factorization with respect to I, we can also write Equation (3.16) as:

It(Θ0) = Et−1(I) ◦D(Θ0) = Et−1(I) ◦

 Ã(3×3) C̃(3×3)

C̃(3×3) B̃(3×3)

 (3.18)

where ◦ denotes the Hadamard product and the panels of the matrix within D(Θ0) are given by the

outer product of the 1× 6 vector

D̃ = [(∂µt/∂θ), (∂µt/∂φ), (∂µt/∂c̃), (∂λt/∂α), (∂λt/∂β), (∂λt/∂ω̃)] (3.19)
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with itself, i.e. D(Θ0) = D̃′D̃. In Equation (3.18), the expectation no longer appears for the matrix

formed by Ã, B̃ and C̃, because µt and λt are not randomly assigned conditional on (y1, . . . , yt−1). By

using the scaled score function and the score function, we write I as:

I =

 u2
µ,t/k

2
t uµ,t × uλ,t/kt

uµ,t × uλ,t/kt u2
λ,t

 (3.20)

where kt is the time-varying scaling parameter. The form of kt is different for different DCS models.

For example, from Equation (A.4) of Appendix A, for EGB2-DCS we have:

∂ ln f(yt|y1, . . . , yt−1; Θ0)

∂µt
= uµ,t × {Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]} exp(2λt) =

uµ,t
kt

(3.21)

For kt of NIG-DCS and Skew-Gen-t-DCS, see Equations (A.14) and (A.22) of Appendix A, respectively.

Based on Equations (3.18) and (3.20), we need the unconditional means of (u2
µ,t/k

2
t ), u

2
λ,t and (uµ,t ×

uλ,t/kt) to be finite. We name these conditions as Condition 2.

We study E[D(Θ0)] <∞, by using the following dynamic equations:

D̃′ =



∂µt
∂θ

∂µt
∂φ

∂µt
∂c̃

∂λt
∂α

∂λt
∂β

∂λt
∂ω̃


=



Xµ,t−1 × ∂µt−1

∂θ + uµ,t−1

Xµ,t−1 × ∂µt−1

∂φ + µt−1 − c̃

Xµ,t−1 × ∂µt−1

∂c̃ + 1− φ

Xλ,t−1 × ∂λt−1

∂α + uλ,t−1

Xλ,t−1 × ∂λt−1

∂β + λt−1 − ω̃

Xλ,t−1 × ∂λt−1

∂ω̃ + 1− β


(3.22)

where Xµ,t = φ + θ(∂uµ,t/∂µt) and Xλ,t = β + α(∂uλ,t/∂λt). With respect to D(Θ0), in panel Ã

elements that involve only the derivatives of µt appear, in panel B̃ elements that involve only the

derivatives of λt appear, and in panel C̃ elements that involve the derivatives of both µt and λt appear.

Equation (3.22) provides the following conditions for E[D(Θ0)] <∞: For panel Ã it is necessary that

E(X2
µ,t) < 1 and for panel B̃ it is necessary that E(X2

λ,t) < 1 (for these results, see Harvey, 2013).

With respect to panel C̃, it is necessary that |E(Xµ,tXλ,t)| < 1 (we present the proof for panel C̃

in Appendix B). Moreover, it is also necessary that the unconditional means of Xµ,t, Xλ,t, uµ,t and
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uλ,t are finite, and that the unconditional mean of each product formed by all possible pairs of those

variables are also finite (Appendix B). We name these conditions as Condition 3. As a consequence,

all of the elements of the information matrix are finite under Conditions 1 to 3.

3.2. Central limit theorem (CLT) for the score vector

We focus on the asymptotic properties of following term from Equation (3.6):

1√
T

T∑
t=1

Gt(Θ0)′ as T →∞. (3.23)

We use the CLT from the work of White (1984, Theorem 5.15): If (E1) Gt(Θ0)′ is strictly stationary

and ergodic, (E2) all of the elements of the unconditional covariance matrix of Gt(Θ0)′ are finite, and

(E3) E[G1(Θ0)′|y0, y−1, . . . , y−t] →q.m. 0 as t → ∞ (q.m. is quadratic mean), then Equation (3.23)

converges in distribution to the normal distribution.

(E1) With respect to stationarity and ergodicity, we refer to the works of Brandt (1986) and Diaconis

and Freedman (1999). First, we write Equation (3.22) as:



∂µt
∂θ

∂µt
∂φ

∂µt
∂c̃

∂λt
∂α

∂λt
∂β

∂λt
∂ω̃


=



Xµ,t−1 0 0 0 0 0

0 Xµ,t−1 0 0 0 0

0 0 Xµ,t−1 0 0 0

0 0 0 Xλ,t−1 0 0

0 0 0 0 Xλ,t−1 0

0 0 0 0 0 Xλ,t−1





∂µt−1

∂θ

∂µt−1

∂φ

∂µt−1

∂c̃

∂λt−1

∂α

∂λt−1

∂β

∂λt−1

∂ω̃


+



uµ,t−1

µt−1 − c̃

1− φ

uλ,t−1

λt−1 − ω̃

1− β


(3.24)

We use the following compact notation for the previous equation:

Yt = A∗t−1Yt−1 +B∗t−1 (3.25)

which is a stochastic recurrence equation (SRE). Condition 4 is that εt is strictly stationary and

ergodic. We refer to the work of White (1984, Theorem 3.35), in which a possibly nonlinear measurable

function transforms strictly stationary and ergodic variables to new strictly stationary and ergodic

variables. Conditions 1 to 4 imply that uµ,t, uλ,t, ∂uµ,t/∂µt, ∂uλ,t/∂λt, µt and λt are strictly stationary

and ergodic, because they are transformations of εt. As a consequence, A∗t and B∗t are strictly stationary
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and ergodic (see, for example, Harvey, 2013). From E(X2
µ,t) < 1 and E(X2

λ,t) < 1 of Condition 3 and

by using the Cauchy–Schwarz inequality, we have |E(Xµ,t)| < 1 and |E(Xλ,t)| < 1. Based on the

results of Brandt (1986) and Diaconis and Freedman (1999), we have that Yt is strictly stationary and

ergodic (i.e. D̃′ is strictly stationary and ergodic). Second, we write Equation (3.15), as follows:

Gt(Θ0)′ =

 ∂ ln f(yt|y1,...,yt−1;Θ0)
∂µt

∂ ln f(yt|y1,...,yt−1;Θ0)
∂λt

 ◦
 A†

B†

 =

 uµ,t/kt

uλ,t

 ◦
 A†

B†

 (3.26)

where in panel A† elements that involve only the derivatives of µt appear from D̃′ of Equation (3.22),

and in panel B† elements that involve only the derivatives of λt appear from D̃′ of Equation (3.22).

Under Conditions 1 to 4, uµ,t/kt and uλ,t are strictly stationary and ergodic. In Equation (3.26),

Gt(Θ0)′ is represented as a product of strictly stationary and ergodic variables. Thus, according to the

theorem of White (1984, Theorem 3.35), Gt(Θ0)′ is also strictly stationary and ergodic.

(E2) The unconditional covariance matrix of Gt(Θ0)′ is the information matrix, for which the

conditions of finiteness were shown in the previous section.

(E3) With respect to E[G1(Θ0)′|y0, y−1, . . . , y−t] →q.m. 0 as t → ∞: this property holds under

Conditions 1 to 3 and due to |E(Xµ,t)| < 1 and |E(Xλ,t)| < 1 in Equation (3.22). As a consequence,

the CLT 5.15 of White (2004) holds for the score vector under Conditions 1 to 4.

Theorem 1: For the model of Equations (3.9) to (3.11), with a likelihood function (3.1) satisfying

the regularity conditions (A1) to (A6),
√
T (Θ̂ML − Θ0) →d N [0K×1, I−1(Θ0)] as T → ∞ under

the following conditions: Condition 1 is that |φ| < 1 and |β| < 1. Condition 2 is that the uncon-

ditional means of (u2
µ,t/k

2
t ), u

2
λ,t and (uµ,t × uλ,t/kt) are finite. Condition 3 is that E(X2

µ,t) < 1,

E(X2
λ,t) < 1 and |E(Xµ,tXλ,t)| < 1, where Xµ,t = φ+ θ(∂uµ,t/∂µt) and Xλ,t = β + α(∂uλ,t/∂λt).

Under Condition 3, the unconditional means of Xµ,t, Xλ,t, uµ,t and uλ,t are finite, and the uncon-

ditional mean of each product formed by all possible pairs of those variables is finite. Condition 4

is that εt is strictly stationary and ergodic.

Conditions 1 to 4 can be extended to models with several score-driven parameters. We present the

ML conditions for the EGB2-DCS model with εt ∼ EGB2[0, 1, exp(ξt), exp(ζt)]:

yt = µt + exp(λt)εt (3.27)
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µt = c+ φµt−1 + θuµ,t−1 (3.28)

λt = ω + βλt−1 + αuλ,t−1 (3.29)

ξt = δ1 + γ1ξt−1 + κ1uξ,t−1 (3.30)

ζt = δ2 + γ2ζt−1 + κ2uζ,t−1 (3.31)

Theorem 2: For the model of Equations (3.27) to (3.31), with a likelihood function (3.1) satisfying

the regularity conditions (A1) to (A6),
√
T (Θ̂ML − Θ0) →d N [0K×1, I−1(Θ0)] as T → ∞ under

the following conditions: Condition 1 is that |φ| < 1, |β| < 1, |γ1| < 1 and |γ2| < 1. Condition 2

is that the unconditional means of (u2
µ,t/k

2
t ), u

2
λ,t, u

2
ξ,t, u

2
ζ,t, (uµ,t × uλ,t/kt), (uµ,t × uξ,t/kt),

(uµ,t×uζ,t/kt), (uλ,t×uξ,t), (uλ,t×uζ,t), and (uξ,t×uζ,t) are finite. Condition 3 is that E(X2
µ,t) < 1,

E(X2
λ,t) < 1, E(X2

ξ,t) < 1, E(X2
ζ,t) < 1, |E(Xµ,tXλ,t)| < 1, |E(Xµ,tXξ,t)| < 1, |E(Xµ,tXζ,t)| < 1,

|E(Xλ,tXξ,t)| < 1, |E(Xλ,tXζ,t)| < 1 and |E(Xξ,tXζ,t)| < 1, where Xµ,t = φ + θ(∂uµ,t/∂µt),

Xλ,t = β + α(∂uλ,t/∂λt), Xξ,t = γ1 + κ1(∂uξ,t/∂ξt) and Xζ,t = γ2 + κ2(∂uζ,t/∂ζt). Under

Condition 3, the unconditional means of Xµ,t, Xλ,t, Xξ,t, Xζ,t, uµ,t, uλ,t, uξ,t and uζ,t are finite,

and the unconditional mean of each product formed by all possible pairs of those variables is also

finite. Condition 4 is that εt is strictly stationary and ergodic.

4. Empirical results

We use daily log-return data from the adjusted S&P 500 index pt for the period of January 4, 1950

to December 30, 2017 (source: Bloomberg). Descriptive statistics of yt are presented in Table 1. The

negative skewness estimate indicates that the mass of the distribution of yt is concentrated on the

right side, and the high excess kurtosis estimate suggests heavy tails of yt. The negative correlation

coefficient Corr(y2
t ,yt−1) suggests that high volatility often follows significant negative returns, which

motivates the consideration of leverage effects within λt.

In the remainder of this section, we present the ML results and model diagnostics for the EGB2-DCS

(Table 2), NIG-DCS (Table 3) and Skew-Gen-t-DCS (Table 4(a) and Table 4(b)) models. We compare

the LL-based performance of those models in Table 5. We present the evolution of ρk,t for all k and

the evolution of λt for all DCS specifications in Figs. 2, 3, 4(a) and 4(b). We highlight the dates of

extreme events identified by one of the DCS specifications in Fig. 5. We study the outlier-discounting

properties for all score functions in Fig. 6.
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With respect to the parameters of location, scale and shape dynamics and the parameters of the

corresponding updating terms, in Tables 2 to 4 we present the following results. For most of the speci-

fications, we find that φ parameter which measures the dynamics of conditional location is significantly

different from zero. The scaling parameter of the score function with respect to location θ is positive

and significant for all models. For all of the specifications, we find highly significant ω, α, α∗ and β

parameters for conditional scale. For most of the specifications, we find that the dynamic parameters

of shape (i.e. γ1, γ2 and γ3) are significant and positive. We also find for all of the specifications that

the scaling parameter of the updating term for shape (i.e. κ1, κ2 and κ3) is significantly different from

zero. For all DCS equations we find a significant parameter for the updating term, i.e. the DCS models

are identified (Harvey, 2013).

In Tables 2 to 4, we report the estimates of φ, β, γ1, γ2 and γ3. All of those estimates are less

than one in absolute value, thus, Condition 1 is supported for the ML estimates. Moreover, in

Tables 2 to 4, we report the estimates of Cµ = E(X2
µ,t), Cλ = E(X2

λ,t), Cρ,1 = E(X2
ρ,1,t), Cρ,2 =

E(X2
ρ,2,t), Cρ,3 = E(X2

ρ,3,t), Cµ,λ = |E(Xµ,tXλ,t)|, Cµ,ρ,1 = |E(Xµ,tXρ,1,t)|, Cµ,ρ,2 = |E(Xµ,tXρ,2,t)|,

Cµ,ρ,3 = |E(Xµ,tXρ,3,t)|, Cλ,ρ,1 = |E(Xλ,tXρ,1,t)|, Cλ,ρ,2 = |E(Xλ,tXρ,2,t)|, Cλ,ρ,3 = |E(Xλ,tXρ,3,t)|,

Cρ,1,ρ,2 = |E(Xρ,1,tXρ,2,t)|, Cρ,1,ρ,3 = |E(Xρ,1,tXρ,3,t)| and Cρ,2,ρ,3 = |E(Xρ,2,tXρ,3,t)|. All of those es-

timates are less than one, thus, the corresponding formulas of Condition 3 are supported for the ML

estimates. For the variables of Conditions 2 and 3, we perform the augmented Dickey–Fuller (1979)

(hereinafter, ADF) unit root test with constant. We find that Conditions 2 and 3 are supported for

the ML estimates. We do not report the ADF test results in this paper, but those are available from

the authors on request. Condition 4 is a maintained assumption for all DCS models of this paper.

In Tables 2 to 4, we report diagnostic test results with respect to the correct specification of the

error term up to the fourth moment (see Section 2.2). For EGB2-DCS, we consider four different

specifications with respect to dynamic versus constant shape parameters, and we find that all of those

specifications fail the MDS test with respect to skewness and kurtosis. For NIG-DCS, we consider four

different specifications with respect to dynamic versus constant shape parameters, and we find that all

of those specifications pass the MDS test up to the fourth moment. For Skew-Gen-t-DCS, we consider

eight different specifications with respect to dynamic versus constant shape parameters, and we find

that four out of eight specifications pass the MDS test up to the fourth moment.

We compare model performance by using the following model performance metrics: LL, Akaike
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information criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn criterion (HQC).

We find that the AIC-, BIC- and HQC-based statistical performances of the DCS model with dynamic

shape are superior to the statistical performance of the corresponding DCS model with constant shape

(Tables 2 to 5). We also compare model performance by using the likelihood-ratio (LR) test for non-

nested models (Vuong, 1989). We denote the conditional density functions of yt of the DCS models

with dynamic and constant shape by using f(yt|y1, . . . , yt−1) and g(yt|y1, . . . , yt−1), respectively. We

define dt = ln f(yt|y1, . . . , yt−1)− ln g(yt|y1, . . . , yt−1) for t = 1, . . . , T . We test whether LL of DCS with

dynamic shape is superior to that of DCS with constant shape by estimating dt = c+ εt with the OLS-

HAC (ordinary least squares-heteroskedasticity and autocorrelation consistent; Newey and West, 1987)

estimator. If c is significantly positive then DCS with dynamic shape is superior to DCS with constant

shape. We always find that at least one of the DCS specifications with dynamic shape parameters is

superior to the DCS specification with constant shape parameters (Tables 2 to 5). We find that the

statistical performance of the Skew-Gen-t-DCS model is superior to the statistical performances of the

EGB2-DCS and NIG-DCS models (Tables 2 to 5).

We present the evolution of ρk,t for all k and the evolution of λt in Figs. 2 to 4. Those figures

indicate the following: (i) the shape parameters are time-varying for all DCS models; (ii) for the DCS

models with dynamic shape parameters, the shape parameters identify the dates of several extreme

events. We analyze the identification of extreme events for one of the best performing DCS specification

with dynamic shape parameters (Table 5), and we present evolution of νt for the DCS-Skew-Gen-t

specification with constant τt, dynamic νt and constant ηt in Fig. 5. In Fig. 5, we number several days

for which νt is relatively low, indicating that the probability of an extreme observation is high for those

days. We investigated what extreme events caused the high tail thickness of the S&P 500. Interestingly,

we were able to associate all of those days with important events that significantly impacted the US

stock market (see Appendix C). As aforementioned, a general property of all DCS models is that

outliers are discounted by the score functions in the dynamic equations. We investigate whether this

property is also true for the new DCS models with score-driven shape parameters. In Fig. 6 we present

the score functions, which indicate different ways of discounting outliers for different DCS models.

Extreme observations are never accentuated by score functions in the new DCS models.
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5. Conclusions

We have suggested new DCS models of conditional volatility, for which both the scale and shape

parameters are dynamic. Our models extend previous volatility models with constant shape parameters

from the literature, since: (i) they have a superior likelihood-based statistical performance; (ii) they

estimate the dynamics of both scale and shape parameters effectively; (iii) news on asset value updates

the distribution of financial return not only through scale, but also through shape; (iv) they use different

dynamic tail shape for the left and right tails of the return distribution; (v) they identify extreme events

effectively; (vi) we have provided the conditions for the asymptotic properties of ML for the new DCS

models.

We have introduced new DCS volatility models for the EGB2, NIG, and Skew-Gen-t distributions

with dynamic shape parameters. We have used return time series data from the adjusted S&P 500

index for the period of January 4, 1950 to December 30, 2017. We have estimated all DCS models by

using the ML method, and we have presented the conditions of the asymptotic properties of the ML

estimator. We have found that the likelihood-based performance of Skew-Gen-t-DCS is superior to the

likelihood-based performances of EGB2-DCS and NIG-DCS. We have also found that the score-driven

dynamics of shape parameters are significant, and we have shown that the likelihood-based performance

of the new DCS models is superior to that of the DCS models with constant shape parameters. Our

results may motivate practical applications of the new DCS models with dynamic shape parameters,

for example, for the estimation of stock market volatility, for pricing financial derivatives, or for the

estimation of risk measurement metrics, such as VaR and ES.

Appendix A

In this appendix, for each error specification, we present the conditional distribution of yt, the conditional mean of yt,

the conditional volatility of yt, the log of the conditional density of yt, the scaled score function for location uµ,t, and the

score functions for scale uλ,t and shape uρ,k,t.

(1) For the EGB2-DCS model, the conditional distribution of yt is EGB2[µt, exp(−λt), exp(ξt), exp(ζt)]. The condi-

tional mean and the conditional standard deviation (SD) (i.e. conditional volatility) of yt are

E(yt|y1, . . . , yt−1; Θ) = µt + exp(λt)
{

Ψ(0)[exp(ξt)]−Ψ(0)[exp(ζt)]
}

(A.1)

SD(yt|y1, . . . , yt−1; Θ) = exp(λt){Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]}1/2 (A.2)
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respectively. The log of the conditional density of yt is

ln f(yt|y1, . . . , yt−1; Θ) = exp(ξt)εt − λt − ln Γ[exp(ξt)]− ln Γ[exp(ζt)] (A.3)

+ ln Γ[exp(ξt) + exp(ζt)]− [exp(ξt) + exp(ζt)] ln[1 + exp(εt)]

The score functions with respect to µt, λt, ξt and ζt are as follows. First, the score function with respect to µt is

∂ ln f(yt|y1, . . . , yt−1; Θ)

∂µt
= uµ,t × {Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]} exp(2λt) =

uµ,t
kt

(A.4)

where

uµ,t = {Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]} exp(λt)

{
[exp(ξt) + exp(ζt)]

exp(εt)

exp(εt) + 1
− exp(ξt)

}
(A.5)

is the scaled score function. Second, the score function with respect to λt is

uλ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂λt
= [exp(ξt) + exp(ζt)]

εt exp(εt)

exp(εt) + 1
− exp(ξt)εt − 1 (A.6)

Third, the score function with respect to ξt is

uξ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂ξt
= exp(ξt)εt − exp(ξt)Ψ

(0)[exp(ξt)] (A.7)

+ exp(ξt)Ψ
(0)[exp(ξt) + exp(ζt)]− exp(ξt) ln[1 + exp(εt)]

Fourth, the score function with respect to ζt is

uζ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂ζt
= − exp(ζt)Ψ

(0)[exp(ζt)] (A.8)

+ exp(ζt)Ψ
(0)[exp(ξt) + exp(ζt)]− exp(ζt) ln[1 + exp(εt)]

(2) For the NIG-DCS model, the conditional distribution of yt is

yt|(y1, . . . , yt−1) ∼ NIG[µt, exp(λt), exp(νt − λt), exp(νt − λt)tanh(ηt)] (A.9)

The conditional mean and the conditional volatility of yt are

E(yt|y1, . . . , yt−1; Θ) = µt +
exp(λt)tanh(ηt)

[1− tanh2(ηt)]1/2
(A.10)

SD(yt|y1, . . . , yt−1; Θ) =

{
exp(2λt − νt)

[1− tanh2(ηt)]3/2

}1/2

(A.11)

respectively. The log of the conditional density of yt is

ln f(yt|y1, . . . , yt−1; Θ) = νt − λt − ln(π) + exp(νt)[1− tanh2(ηt)]
1/2 (A.12)

20



+ exp(νt)tanh(ηt)εt + lnK(1)

[
exp(νt)

√
1 + ε2t

]
− 1

2
ln(1 + ε2t )

where K(1)(x) is the modified Bessel function of the second kind of order 1. The score functions with respect to µt, λt,

νt and ηt are as follows. First, the score function with respect to µt is

∂ ln f(yt|y1, . . . , yt−1; Θ)

∂µt
= − exp(νt − λt)tanh(ηt) +

εt
exp(λt)(1 + ε2t )

(A.13)

+
exp(νt − λt)εt√

1 + ε2t
×
K(0)

[
exp(νt)

√
1 + ε2t

]
+K(2)

[
exp(νt)

√
1 + ε2t

]
2K(1)

[
exp(νt)

√
1 + ε2t

]
where K(0)(x) and K(2)(x) are the modified Bessel functions of the second kind of orders 0 and 2, respectively. We define

the scaled score function with respect to µt as

uµ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂µt
× exp(2λt) =

∂ ln f(yt|y1, . . . , yt−1; Θ)

∂µt
× kt (A.14)

Second, the score function with respect to λt is

uλ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂λt
= −1− exp(νt)tanh(ηt)εt +

ε2t
1 + ε2t

(A.15)

+
exp(νt)ε

2
t√

1 + ε2t
×
K(0)

[
exp(νt)

√
1 + ε2t

]
+K(2)

[
exp(νt)

√
1 + ε2t

]
2K(1)

[
exp(νt)

√
1 + ε2t

]
Third, the score function with respect to νt is

uν,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂νt
= 1 + exp(νt)[1− tanh2(ηt)]

1/2 + exp(νt)tanh(ηt)εt (A.16)

− exp(νt)
√

1 + ε2t ×
K(0)

[
exp(νt)

√
1 + ε2t

]
+K(2)

[
exp(νt)

√
1 + ε2t

]
2K(1)

[
exp(νt)

√
1 + ε2t

]
Fourth, the score function with respect to ηt is

uη,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂ηt
= exp(νt)sech2(ηt)εt − exp(νt)tanh(ηt)sech(ηt) (A.17)

where sech(x) is the hyperbolic secant function.

(3) For the Skew-Gen-t-DCS model, the conditional distribution of yt is

yt|(y1, . . . , yt−1) ∼ Skew-Gen-t[µt, exp(λt), tanh(τt), exp(νt) + 4, exp(ηt)] (A.18)

The conditional mean of yt is

E(yt|y1, . . . , yt−1; Θ) = µt + 2 exp(λt)tanh(τt)[exp(νt) + 4]exp(−ηt) ×
B
{

2
exp(ηt)

, exp(νt)+3
exp(ηt)

}
B
{

1
exp(ηt)

, exp(νt)+4
exp(ηt)

} (A.19)
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The conditional volatility of yt is

SD(yt|y1, . . . , yt−1; Θ) = exp(λt)[exp(νt) + 4]exp(−ηt)× (A.20)

×

 [3tanh2(τt) + 1]B
[

3
exp(ηt)

, exp(νt)+2
exp(ηt)

]
B
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

] −
4tanh2(τt)B

2
[

2
exp(ηt)

, exp(νt)+3
exp(ηt)

]
B2
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

]


1/2

The log of the conditional density of yt is

ln f(yt|y1, . . . , yt−1; Θ) = ηt − λt − ln(2)− ln[exp(νt) + 4]

exp(ηt)
− ln Γ

[
exp(νt) + 4

exp(ηt)

]
(A.21)

− ln Γ[exp(−ηt)] + ln Γ

[
exp(νt) + 5

exp(ηt)

]

−exp(νt) + 5

exp(ηt)
ln

{
1 +

|εt|exp(ηt)

[1 + tanh(τt)sgn(εt)]exp(ηt) × [exp(νt) + 4]

}
First, the score function with respect to µt is

∂ ln f(yt|y1, . . . , yt−1; Θ)

∂µt
= (A.22)

=
[exp(νt) + 4] exp(λt)εt|εt|exp(ηt)−2

|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]
× exp(νt) + 5

[exp(νt) + 4] exp(2λt)
=

= uµ,t ×
exp(νt) + 5

[exp(νt) + 4] exp(2λt)
=
uµ,t
kt

where uµ,t is the scaled score function. Second, the score function with respect to λt is

uλ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂λt
=

|εt|exp(ηt)[exp(νt) + 5]

|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]
− 1 (A.23)

Third, the score function with respect to τt is

uτ,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂τt
=

[exp(νt) + 5]|εt|exp(ηt)sgn(εt)sech(τt)

[sgn(εt)sinh(τt) + cosh(τt)]
× (A.24)

×
{
|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]

exp(ηt)[exp(νt) + 4]
}−1

Fourth, the score function with respect to νt is

uν,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂νt
= −exp(νt − ηt)

exp(νt) + 4
− exp(νt − ηt)Ψ(0)

[
exp(νt) + 4

exp(ηt)

]
(A.25)

+ exp(νt − ηt)Ψ(0)

[
exp(νt) + 5

exp(ηt)

]

+
exp(νt − ηt)[exp(νt) + 5]|εt|exp(ηt)

[exp(νt) + 4] {|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]}

− exp(νt − ηt) ln

{
1 +

|εt|exp(ηt)

[1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]

}
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Fifth, the score function with respect to ηt is

uη,t =
∂ ln f(yt|y1, . . . , yt−1; Θ)

∂ηt
= 1 +

ln[exp(νt) + 4]

exp(ηt)
+

exp(νt) + 4

exp(ηt)
Ψ(0)

[
exp(νt) + 4

exp(ηt)

]
(A.26)

+
1

exp(ηt)
Ψ(0)

[
1

exp(ηt)

]
− exp(νt) + 5

exp(ηt)
Ψ(0)

[
exp(νt) + 5

exp(ηt)

]

+
exp(νt) + 5

exp(ηt)
ln

{
1 +
|εt|exp(ηt)[1 + tanh(τt)sgn(εt)]

− exp(ηt)

exp(νt) + 4

}

+
[exp(νt) + 5]|εt|exp(ηt) ln[1 + tanh(τt)sgn(εt)]

|εt|exp(ηt) + [exp(νt) + 4][1 + tanh(τt)sgn(εt)]exp(ηt)

− [exp(νt) + 5]|εt|exp(ηt) ln(|εt|)
|εt|exp(ηt) + [exp(νt) + 4][1 + tanh(τt)sgn(εt)]exp(ηt)

Appendix B

C̃ is given by the outer product of [(∂µt/∂θ), (∂µt/∂φ), (∂µt/∂c̃)]
′ and [(∂λt/∂α), (∂λt/∂β), (∂λt/∂ω̃)]′ with itself. In this

appendix we study the conditions under which the expected value of each of the nine elements of C̃ is finite. We study

the dynamics for each element by using Equation (3.22), as follows:

With respect to (∂µt/∂θ)× (∂λt/∂α), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂θ

∂λt
∂α

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂θ

∂λt−1

∂α
+ Et−2(Xµ,t−1uλ,t−1)

∂µt−1

∂θ
+

Et−2(Xλ,t−1uµ,t−1)
∂λt−1

∂α
+ Et−2(uµ,t−1uλ,t−1)

(B.1)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.1),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the second and third terms on the

right side of Equation (B.1), we use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013),

E(∂µt/∂θ) = E(∂λt/∂α) = 0, hence the second and third terms are zero. The fourth term on the right side of Equation

(B.1) is constant under Condition 3. Thus, E[(∂µt/∂θ)× (∂λt/∂α)] is finite.

With respect to (∂µt/∂θ)× (∂λt/∂β), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂θ

∂λt
∂β

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂θ

∂λt−1

∂β
+ Et−2(Xµ,t−1)(λt−1 − ω̃)

∂µt−1

∂θ
+

Et−2(Xλ,t−1uµ,t−1)
∂λt−1

∂β
+ Et−2(uµ,t−1)(λt−1 − ω̃)

(B.2)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.2),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the third term on the right side of

Equation (B.2), we use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂λt/∂β) = 0,

hence the third term is zero. The fourth term on the right side of Equation (B.2) is zero, since E(λt − ω̃) = 0. For the

second term on the right side of Equation (B.2), we write the expectation:

Et−3

[
(λt−1 − ω̃)

∂µt−1

∂θ

]
= Et−3

{
[β(λt−2 − ω̃) + αuλ,t−2]×

[
Xµ,t−2

∂µt−2

∂θ
+ uµ,t−2

]}
=

Et−3(Xµ,t−2)β(λt−2 − ω̃)
∂µt−2

∂θ
+ Et−3(uµ,t−2)β(λt−2 − ω̃)+

Et−3(Xµ,t−2uλ,t−2)α
∂µt−2

∂θ
+ Et−3(uµ,t−2uλ,t−2)α

(B.3)
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We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.3)

is the first lag of the second term on the right side of Equation (B.2), multiplied by |β| < 1 (Condition 1). Under

Condition 3, the expected value of the first term is finite. The second term on the right side is zero under Condition 3,

and since E(λt − ω̃) = 0. The third term on the right size is zero under Condition 3, and under E(∂µt/∂θ) = 0 in

accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right size is constant under Condition 3. Thus,

E[(∂µt/∂θ)× (∂λt/∂α)] is finite.

With respect to (∂µt/∂θ)× (∂λt/∂ω̃), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂θ

∂λt
∂ω̃

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂θ

∂λt−1

∂ω̃
+ Et−2(Xµ,t−1)

∂µt−1

∂θ
(1− β)+

Et−2(Xλ,t−1uµ,t−1)
∂λt−1

∂ω̃
+ Et−2(uµ,t−1)(1− β)

(B.4)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.4),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the second term on the right side of

Equation (B.4), we use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂µt/∂θ) = 0,

hence the second term is zero. For the third term on the right side of Equation (B.4), we use Condition 3 and Harvey

(2013, p. 36, Lemma 6). According to Harvey (2013), E(∂λt/∂ω̃) = (1 − β)/[1 − E(Xλ,t)], hence the third term is

constant. For the fourth term on the right side of Equation (B.4), the law of iterated expectations gives zero, because

E(uµ,t) = 0. Thus, E[(∂µt/∂θ)× (∂λt/∂ω̃)] is finite.

With respect to (∂µt/∂φ)× (∂λt/∂α), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂φ

∂λt
∂α

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂φ

∂λt−1

∂α
+ Et−2(Xµ,t−1uλ,t−1)

∂µt−1

∂φ
+

Et−2(Xλ,t−1)(µt−1 − c̃) ∂λt−1

∂α
+ Et−2(uλ,t−1)(µt−1 − c̃)

(B.5)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.5),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the second term on the right side of

Equation (B.5), we use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂µt/∂φ) = 0,

hence the second term is zero. For the fourth term on the right side of Equation (B.5), the law of iterated expectations

gives zero, because E(uλ,t) = 0. For the third term on the right side of Equation (B.5), we write the expectation:

Et−3

[
(µt−1 − c̃) ∂λt−1

∂α

]
= Et−3

{
[φ(µt−2 − c̃) + θuµ,t−2]×

[
Xλ,t−2

∂λt−2

∂α
+ uλ,t−2

]}
=

Et−3(Xλ,t−2)φ(µt−2 − c̃) ∂λt−2

∂α
+ Et−3(uλ,t−2)φ(µt−2 − c̃)+

Et−3(Xλ,t−2uµ,t−2)θ
∂λt−2

∂α
+ Et−3(uµ,t−2uλ,t−2)θ

(B.6)

We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.6) is the

first lag of the third term on the right side of Equation (B.5), multiplied by |φ| < 1 (Condition 1). Under Condition 3, the

expected value of the first term is finite. The second term on the right side of Equation (B.6) is zero, since E(µt− c̃) = 0.

The third term on the right size of Equation (B.6) is zero under Condition 3, and under E(∂λt/∂α) = 0 in accordance

with Harvey (2013, p. 36, Lemma 6). The fourth term on the right size of Equation (B.6) is constant under Condition 3.

Thus, E[(∂µt/∂φ)× (∂λt/∂α)] is finite.
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With respect to (∂µt/∂φ)× (∂λt/∂β), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂φ

∂λt
∂β

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂φ

∂λt−1

∂β
+ Et−2(Xµ,t−1)(λt−1 − ω̃)

∂µt−1

∂φ
+

Et−2(Xλ,t−1)(µt−1 − c̃) ∂λt−1

∂β
+ (µt−1 − c̃)(λt−1 − ω̃)

(B.7)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.7),

the absolute value of the autoregressive parameter is < 1 under Condition 3. In the following we analyze covariance

stationarity of the (i) second, (ii) third and (iii) fourth terms of Equation (B.7), respectively:

(i) For the second term on the right side of Equation (B.7), we write the expectation:

Et−3

[
(λt−1 − ω̃)

∂µt−1

∂φ

]
= Et−3

{
[β(λt−2 − ω̃) + αuλ,t−2]×

[
Xµ,t−2

∂µt−2

∂φ
+ µt−2 − c̃

]}
=

Et−3(Xµ,t−2)β(λt−2 − ω̃)
∂µt−2

∂φ
+ β(λt−2 − ω̃)(µt−2 − c̃)+

Et−3(Xµ,t−2uλ,t−2)α
∂µt−2

∂φ
+ Et−3(uλ,t−2)α(µt−2 − c̃)

(B.8)

We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.8) is the

first lag of the second term on the right side of Equation (B.7), multiplied by |β| < 1 (Condition 1). Under Condition 3,

the expected value of the first term is finite. The second term on the right side of Equation (B.8) is the first lag of

the fourth term on the right side of Equation (B.7), multiplied by |β| < 1 (Condition 1). Thus, the expected value

of the second term is finite. The third term on the right side of Equation (B.8) is zero under Condition 3, and under

E(∂µt/∂φ) = 0 in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Equation (B.8)

is zero, because E(µt − c̃) = 0.

(ii) For the third term on the right side of Equation Equation (B.7), we write the expectation:

Et−3

[
(µt−1 − c̃) ∂λt−1

∂β

]
= Et−3

{
[φ(µt−2 − c̃) + θuµ,t−2]×

[
Xλ,t−2

∂λt−2

∂β
+ λt−2 − ω̃

]}
=

Et−3(Xλ,t−2)φ(µt−2 − c̃) ∂λt−2

∂β
+ φ(µt−2 − c̃)(λt−2 − ω̃)+

Et−3(Xλ,t−2uµ,t−2)θ
∂λt−2

∂β
+ Et−3(uµ,t−2)(λt−2 − ω̃)

(B.9)

We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.9) is the

first lag of the third term on the right side of Equation (B.7), multiplied by |φ| < 1 (Condition 1). Under Condition 3, the

expected values of the first term is finite. The second term on the right side of Equation (B.9) is the first lag of the fourth

term on the right side of Equation (B.7), multiplied by |φ| < 1 (Condition 1). Thus, the expected values of the second

term is finite. The third term on the right side of Equation (B.9) is zero under Condition 3, and under E(∂λt/∂β) = 0

in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Equation (B.9) is zero, because

E(λt − ω̃) = 0.

(iii) For the fourth term on the right side of Equation (B.7), we write the expectation:

Et−3 [(µt−1 − c̃)(λt−1 − ω̃)] = Et−3 {[φ(µt−2 − c̃) + θuµ,t−2]× [β(λt−2 − ω̃) + αuλ,t−2]} =

φβ(µt−2 − c̃)(λt−2 − ω̃) + Et−3(uλ,t−2)φα(µt−2 − c̃)+

Et−3(uµ,t−2)θβ(λt−2 − ω̃) + θαEt−3(uµ,t−2uλ,t−2)

(B.10)
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We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.10) is the

first lag of the fourth term on the right side of Equation (B.7), multiplied by |φβ| < 1. Thus, the expected value of the first

term is finite. The second and third terms on the right side of Equation (B.10) are zero, because E(µt−c̃) = E(λt−ω̃) = 0.

The fourth term on the right side of Equation (B.10) is constant under Condition 3. Thus, E[(∂µt/∂φ) × (∂λt/∂β)] is

finite.

With respect to (∂µt/∂φ)× (∂λt/∂ω̃), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂φ

∂λt
∂ω̃

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂φ

∂λt−1

∂ω̃
+ Et−2(Xµ,t−1)(1− β)

∂µt−1

∂φ
+

Et−2(Xλ,t−1)(µt−1 − c̃) ∂λt−1

∂ω̃
+ (µt−1 − c̃)(1− β)

(B.11)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.11),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The second term on the right side of

Equation (B.11) is zero under Condition 3, and under E(∂µt/∂φ) = 0 in accordance with Harvey (2013, p. 36, Lemma 6).

The fourth term on the right side of Equation (B.11) is zero, because E(µt − c̃) = 0. For the third term on the right side

of Equation (B.11), we write the expectation:

Et−3

[
(µt−1 − c̃) ∂λt−1

∂ω̃

]
= Et−3

{
[φ(µt−2 − c̃) + θuµ,t−2]×

[
Xλ,t−2

∂λt−2

∂ω̃
+ 1− β

]}
=

Et−3(Xλ,t−2)φ(µt−2 − c̃) ∂λt−2

∂ω̃
+ φ(µt−2 − c̃)(1− β)+

Et−3(Xλ,t−2uµ,t−2)θ
∂λt−2

∂ω̃
+ Et−3(uµ,t−2)θ(1− β)

(B.12)

We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.12)

is the first lag of the third term on the right side of Equation (B.11), multiplied by |φ| < 1 (Condition 1). Under

Condition 3, the expected value of the first term is finite. The second term on the right side of Equation (B.12) is zero,

because E(µt − c̃) = 0. The third term on the right side of Equation (B.12) is constant under Condition 3, and under

E(∂λt/∂ω̃) = (1 − β)/[1 − E(Xλ,t)] in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right

side of Equation (B.12) is zero, because E(uµ,t) = 0. Thus, E[(∂µt/∂φ)× (∂λt/∂ω̃)] is finite.

With respect to (∂µt/∂c̃)× (∂λt/∂α), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂c̃

∂λt
∂α

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂c̃

∂λt−1

∂α
+ Et−2(Xµ,t−1uλ,t−1)

∂µt−1

∂c̃
+

Et−2(Xλ,t−1)(1− φ)
∂λt−1

∂α
+ Et−2(uλ,t−1)(1− φ)

(B.13)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.13),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The second term on the right side of Equation

(B.13) is constant under Condition 3, and under E(∂µt/∂c̃) = (1− φ)/[1−E(Xµ,t)] in accordance with Harvey (2013, p.

36, Lemma 6). The third term on the right side of Equation (B.13) is zero under Condition 3, and under E(∂λt/∂α) = 0

in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Equation (B.13) is zero, because

E(uλ,t) = 0. Thus, E[(∂µt/∂c̃)× (∂λt/∂α)] is finite.
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With respect to (∂µt/∂c̃)× (∂λt/∂β), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂c̃

∂λt
∂β

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂c̃

∂λt−1

∂β
+ Et−2(Xµ,t−1)(λt−1 − ω̃)

∂µt−1

∂c̃
+

Et−2(Xλ,t−1)(1− φ)
∂λt−1

∂β
+ (1− φ)(λt−1 − ω̃)

(B.14)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.14),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The third term on the right side of Equation

(B.14) is zero under Condition 3, and under E(∂λt/∂β) = 0 in accordance with Harvey (2013, p. 36, Lemma 6). The

fourth term on the right side of Equation (B.14) is zero, because E(λt − ω̃) = 0. For the second term on the right side of

Equation (B.14), we write the expectation:

Et−3

[
(λt−1 − ω̃)

∂µt−1

∂c̃

]
= Et−3

{
[β(λt−2 − ω̃) + αuλ,t−2]×

[
Xµ,t−2

∂µt−2

∂c̃
+ 1− φ

]}
=

Et−3(Xµ,t−2)β(λt−2 − ω̃)
∂µt−2

∂c̃
+ β(λt−2 − ω̃)(1− φ)+

Et−3(Xµ,t−2uλ,t−2)α
∂µt−2

∂c̃
+ Et−3(uλ,t−2)α(1− φ)

(B.15)

We use the law of iterated expectations for the previous equation. The first term on the right side of Equation (B.15)

is the first lag of the second term on the right side of Equation (B.14), multiplied by |β| < 1 (Condition 1). Under

Condition 3, the expected value of the first term is finite. The second term on the right side of Equation (B.15) is zero,

because E(λt−2 − ω̃) = 0. The third term on the right side of Equation (B.15) is constant under Condition 3, and under

E(∂µt/∂c̃) = (1−φ)/[1−E(Xµ,t)] in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side

of Equation (B.15) is zero, because E(uλ,t) = 0. Thus, E[(∂µt/∂c̃)× (∂λt/∂β)] is finite.

With respect to (∂µt/∂c̃)× (∂λt/∂ω̃), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂c̃

∂λt
∂ω̃

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂c̃

∂λt−1

∂ω̃
+ Et−2(Xµ,t−1)(1− β)

∂µt−1

∂c̃
+

Et−2(Xλ,t−1)(1− φ)
∂λt−1

∂ω̃
+ (1− φ)(1− β)

(B.16)

We use the law of iterated expectations for the previous equation. For the first term on the right side of Equation (B.16),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The second term on the right side of

Equation (B.16) is constant under Condition 3, and under E(∂µt/∂c̃) = (1−φ)/[1−E(Xµ,t)] in accordance with Harvey

(2013, p. 36, Lemma 6). The third term on the right side of Equation (B.16) is constant under Condition 3, and under

E(∂λt/∂ω̃) = (1 − β)/[1 − E(Xλ,t)] in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right

side of Equation (B.16) is constant. Thus, E[(∂µt/∂c̃)× (∂λt/∂ω̃)] is finite.

Appendix C

In this appendix, we describe the circumstances of the extreme events numbered in Figure 5.

(1) June 27-28, 1950. June 25, 1950: The Korean War began. North Korean (Democratic People’s Republic of Korea)

troops invaded South Korea (Republic of Korea) and proceeded toward Seoul. June 27, 1950: US President Harry

Truman ordered US warships to assist South Korean forces.

(2) February 10, 1953. Egypt and West Germany (Federal Republic of Germany) broke their economic negotiations,
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due to the contacts established by Egypt with East Germany (German Democratic Republic).

(3) June 7, 1955. Prime Minister of India Jawaharlal Nehru visited the USSR.

(4) September 28-29, 1955. September 24, 1955: US President Dwight D. Eisenhower suffered a heart attack and

was hospitalized for 6 weeks.

(5) August 11, 1959. August 9, 1959: The SM-65 Atlas, America’s first intercontinental ballistic missile (ICBM) was

declared to be operational after successful testing.

(6) April 18-19, 1961. April 17, 1961: The Bay of Pigs military invasion of Cuba undertaken by the Central Intelligence

Agency (CIA) failed.

(7) May 29, 1962. On May 28, 1962, the stock exchanges of New York, London, Tokyo, Paris, Frankfurt and Zurich

exhibited the largest one-day decline since the Great Depression.

(8) August 17, 1971. August 15, 1971: US President Richard M. Nixon announced the end of the international

convertibility of the US dollar to gold.

(9) August 3, 1978. August 2, 1978: President Jimmy Carter declared an unprecedented state emergency and

evacuation, immediately following the revelation that Niagara Falls, New York, neighborhood Love Canal was built

on a toxic waste dump.

(10) September 5, 1979. The 1979 oil shock was related to events in the Middle East (the Iranian Revolution) and

a strong global oil demand. The oil prices more than doubled between April 1979 and April 1980. This event

influenced the increase of the inflation in the US to 9% by the end of 1979.

(11) August 18, 1982. Stock market crash of Kuwait’s stock market named Souk Al-Manakh. Kuwait’s financial

sector was badly shaken by the crash, as was the entire economy. The S&P 500 declined 6% during the period of

August 3-12, 1982. August 12, 1982: Mexico defaulted on its foreign debt.

(12) October 26, 1982. October 26, 1982: US budget deficit reached more than USD110 trillion for 1982.

(13) December 19, 1984. The Sino-British Joint Declaration, stating that China would resume the exercise of

sovereignty over Hong Kong and the United Kingdom would restore Hong Kong to China with effect from July 1,

1997 was signed in Beijing, China by Deng Xiaoping and Margaret Thatcher.

(14) July 8, 1986. July 2, 1986: General strike against Pinochet regime in Chile. July 7, 1986: Supreme Court struck

down Gramm-Rudman deficit-reduction law.

(15) September 12, 1986. September 11, 1986: Egyptian President Hosni Mubarak received Israeli Prime Minister

Shimon Peres. September 11, 1986: US performed a nuclear test at Nevada Test Site. September 11, 1986: Dow

Jones Industrial Average declined 86.61 points to 1,792.89.

(16) October 20, 1987. October 19 1987: Black Monday, stock markets around the world crashed.

(17) January 11, 1988. January 2, 1988: USSR began its program of economic restructuring (perestroika) with

legislation initiated by Mikhail Gorbachev.
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(18) April 15, 1988. April 3, 1988: USSR performed a nuclear test at Semipalitinsk Test Site. April 7, 1988: Russia

announced that it would withdrew its troops from Afghanistan. April 7, 1988: US performed a nuclear test at

Nevada Test Site. April 9, 1988: US imposed economic sanctions on Panama.

(19) May 15-16, 1989. May 10, 1989: General Manuel Noriega’s Panama government nullified the country’s elections,

which the opposition had won by a 3-1 margin. May 11, 1989: US President George H. W. Bush ordered nearly

2,000 troops to Panama. May 13, 1989: Approximately 2,000 students began hunger strike in Tiananmen Square,

China. May 14, 1989: Demonstration in Beijing’s Tiananmen square.

(20) October 16-17, 1989. October 13, 1989: The S&P 500 index declined 6.1% as a result of the junk bond

market collapse. On Friday 13 October 1989, there was a stock market mini-crash. The crash was caused by

the breakdown of a USD6.75 billion leveraged buyout deal for UAL Corporation, the parent company of United

Airlines. It triggered the collapse of the junk bond market.

(21) November 18-19, 1991. November 6, 1991: Russian President Boris Yeltsin outlawed the Communist Party.

November 15, 1991: Dow Jones dropped 120.31 points (5th largest dive). November 15, 1991: The NASDAQ

composite index declined 4.2%.

(22) February 17, 1993. February 5, 1993 Grenade exploded in Sarajevo, killing 63 and injuring 160.

(23) February 7, 1994. February 5, 1994: 68 killed and 200 wounded due to a mortar bomb in Sarajevo.

(24) May 19, 1995. May 1, 1995: Croatian forces launched Operation Flash during the Croatian War of Independence.

May 2, 1995: Serbian missiles exploded in the heart of Zagreb, killing six. May 12, 1995: Dow Jones for 5th straight

day of the week set a new record (4,430.59).

(25) March 11, 1996. March 7, 1996: The first democratically elected Palestinian parliament formed.

(26) July 8, 1996. July 7, 1996: Nelson Mandela stepped down as President of South Africa.

(27) October 28-29, 1997. October 20, 1997: The US accused Microsoft of violating a pact to stop Microsoft forcing

makers of personal computers to include its Internet browser automatically. October 22, 1997: Compaq testified

that Microsoft threatened to break Windows 95 agreement if they showcased a Netscape icon. October 27, 1997:

Microsoft argued it should be “free from government interference”. October 29, 1997: Iraq’s Revolution Command

Council announced that it would no longer allowed US citizens and US aircraft to serve with UN arms inspection

teams.

(28) January 5, 2000. January 4, 2000: Alan Greenspan was nominated as US Federal Reserve Chairman for a fourth

term.

(29) April 17, 2000. April 14, 2000: Metallica filed a lawsuit against P2P sharing phenomenon Napster. This law-suit

eventually led the movement against file-sharing programs.

(30) February 28 and March 1, 2007. Stock prices in the US declined 3.5%, after a surprising 9% fall in the

Shanghai market provoked worries worldwide about the global economy and the valuation of share prices. In the

US, markets had already been shrinking due to concerns about deterioration in the mortgage market for people
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with poor credit, as well as worries about the economy. Alan Greenspan told a conference on February 26, 2007

that a recession in the US was likely.

(31) September 30, 2008. September 21, 2008: Goldman Sachs and Morgan Stanley, the two last remaining indepen-

dent investment banks on Wall Street, became bank holding companies as a result of the subprime mortgage crisis.

September 29, 2008: Dow Jones Industrial Average fell 777.68 points, its largest single-day point loss, following

the bankruptcies of Lehman Brothers and Washington Mutual.

(32) February 23, 2011. February 11, 2011: Egyptian Revolution culminated in the resignation of Hosni Mubarak

and the transfer of power to the Supreme Military Council after 18 days of protests (Arab Spring). February

14, 2011: The 2011 Bahraini uprising commenced. February 15, 2011: Libyan protests began opposing Colonel

Muammar al-Gaddafi’s rule.

(33) June 27-28, 2016. June 23, 2016: Brexit referendum: United Kingdom voted to leave the European Union (EU).

June 24, 2016: British Prime Minister David Cameron resigned after the UK voted to leave the EU. June 26, 2016:

City of Falluja freed from Islamic State (IS) control after a month-long campaign by Iraqi forces. June 28, 2016:

Suicide bombings and gun attacks at Istanbul’s Ataturk Airport.

(34) September 12, 2016. September 9, 2016: North Korea conducted its fifth nuclear test at the Punggye-ri Nuclear

Test Site, at the time of its largest ever test in North Korea at 10 kilotons.

(35) May 18, 2017. May 9, 2017: US President Donald Trump dismissed FBI Director James Comey. May 9, 2017:

Moon Jae-in was elected President of South Korea after a snap election to replace Park Geun-hye. May 15, 2017:

UN Security Council condemned North Korea missile test.

(36) August 11, 2017. August 2, 2017: US President Donald Trump signed legislation imposing sanctions on Russia.

August 5, 2017: UN Security Council voted to impose sanctions on North Korea for its continued missile program.

August 9, 2017: North Korea said it planned to fire rockets on the US territory of Guam in the continuing escalation

of tension between North Korea and the US.
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Table 1

Descriptive statistics for daily log-returns on the S&P 500 index, yt = ln(pt/pt−1).

Start date 4-Jan-1950

End date 30-Dec-2017

Sample size T 17, 109

Minimum −0.2290

Maximum 0.1096

Mean 0.0003

Standard deviation 0.0096

Skewness −1.0162

Excess kurtosis 27.4010

Corr(yt, yt−1) 0.0269

Corr(y2t , yt−1) −0.0877

Source of data: Bloomberg
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Table 5

Likelihood-based model comparison.

EGB2-DCS AIC AIC rank BIC BIC rank HQC HQC rank

Constant ξt and ζt −6.9050 16 −6.9004 14 −6.9004 16

Dynamic ξt and ζt −6.9072 9 −6.9009 11 −6.9051 9

Dynamic ξt and constant ζt −6.9060 12 −6.9005 12 −6.9042 13

Constant ξt and dynamic ζt −6.9055 15 −6.9000 16 −6.9037 15

NIG-DCS AIC AIC rank BIC BIC rank HQC HQC rank

Constant νt and ηt −6.9059 13 −6.9013 10 −6.9044 12

Dynamic νt and ηt −6.9068 10 −6.9005 13 −6.9047 11

Dynamic νt and constant ηt −6.9068 11 −6.9013 9 −6.9050 10

Constant νt and dynamic ηt −6.9056 14 −6.9002 15 −6.9038 14

Skew-Gen-t-DCS AIC AIC rank BIC BIC rank HQC HQC rank

Constant τt, νt and ηt −6.9080 8 −6.9030 4 −6.9064 7

Dynamic τt, νt and ηt −6.9099 1 −6.9022 7 −6.9074 6

Dynamic τt, νt and constant ηt −6.9097 4 −6.9029 6 −6.9075 5

Dynamic τt, constant νt and dynamic ηt −6.9099 2 −6.9031 3 −6.9076 3

Dynamic τt and constant νt, ηt −6.9080 7 −6.9021 8 −6.9061 8

Constant τt and dynamic νt, ηt −6.9097 3 −6.9029 5 −6.9075 4

Constant τt, dynamic νt and constant ηt −6.9096 6 −6.9037 2 −6.9077 2

Constant τt, νt and dynamic ηt −6.9097 5 −6.9038 1 −6.9077 1

Notes: AIC, BIC and HQC with bold font indicate that all MDS specification tests support the model (see Tables 2 to 4).
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EGB2-DCS NIG-DCS Skew-Gen-t-DCS

uµ,t uµ,t uµ,t

uλ,t uλ,t uλ,t

uξ,t uν,t uτ,t

uζ,t uη,t uν,t

uη,t

Fig. 6. Score functions, as a function of εt.

Notes: We present the estimates for those DCS specifications for which all shape parameters are time-varying.

For all of the cases, we use the unconditional mean of the score-driven parameters in the computation.
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