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Abstract

Along the history, innumerable studies about the kinematics that gov-
ern flapping flight at high Reynolds number can be found. Although
the literature of this kind of flight at low Reynolds number is also
huge, the unsteadiness in the aerodynamics, is still really complex to
predict due to the amount of parameters involved in it.

This bachelor thesis aims to study the best configuration of parameters
involved in the kinematics of a flapping airfoil, to achieve the maximum
propulsive efficiency and thrust as possible, without penalizing the
generated lift.

To make the study possible, the Navier Stokes equations, for an in-
compressible flow around an airfoil, are solved by means of Direct
Numerical Simulations, where an Immersed Boundary Method is im-
plemented.

In the process 48 cases are simulated. The immersed body selected is a
NACA 0012 profile. Due to the unmanageable number of parameters
that affects to the kinematics of the problem, some of them are kept
fixed while other varies. A Reynolds number of Re = 500, a reduced
frequency of k = 1.41, a phase shift between pitching and heaving of
ϕ = 90o and a heaving amplitude of h/c = 1 are selected. Feathering
parameter (χ) is going to be studied in the range of values between
0 and 1, where propulsive forces appears. The selected values of χ
have their associated values of pitching amplitude (θ0) and the mean
pitch angle (θm) is adjusted according to the equations of motion to
achieved some desired values of mean lift coefficient in the range of
values between 0 and 1.5. It is observed, how at χ ' 0.5 maximum
values of thrust are obtained while at χ ' 0.7 maximum values of
propulsive efficiency are achieved.

Moreover, it is included a comparison of the results obtained in the
actual project with the ones of a companion project (Yuste 2017).
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Glossary

αe Effective angle of attack

χ Feathering parameter

∆t Time step

∆V Associated volume to a lagrangian marker

∆x Mesh width in x direction

∆z Mesh width in z direction

Γ Total circulation of the flow

ΓT Translational circulation

ΓR Rotational circulation

ρ Density of the fluid

µ Kinematic viscosity

ν Dynamic viscosity

ϕ Phase shift

θ Angular displacement of pitching motion

θ̇ Angular velocity of pitching motion

θ0 Pitching amplitude

θm Mean pitch angle

ω Angular velocity

~ω Vorticity field vector

φ Potential of the flow

b Span of the wing

c Chord of the airfoil

cl Non- dimensional drag coefficient per unit length. cd = 2Fx

ρU2
∞c

cl Non- dimensional lift coefficient per unit length. cl = 2Fz

ρU2
∞c

ct Non- dimensional thrust coefficient per unit length. ct = −2Fx

ρU2
∞c
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ex Unitary vector in x direction

ez Unitary vector in z direction

f Frequency of oscillation

GT Translational coefficient in quasi-steady model for circulation

GT Rotational coefficient in quasi-steady model for circulation

h Vertical displacement of heaving motion

ḣ Vertical velocity of heaving motion

h0 Heaving amplitude
k Reduced frequency k = 2πfc/U∞

Fx Force per unit length in x direction

Fz Force per unit length in z direction

My,c/4 Pitching moment per unit length at c/4 of the leading edge

~n Unitary normal vector pointing towards the fluid

nsteps Number of steps per period

Nx Number of grid points in x direction

Nz Number of grid points in z direction

p.c Number of points per chord

Re Reynolds number Re = U∞c/ν

St Strouhal number St = fc/U∞

t Time
T Period
U∞ Free stream velocity

W Mechanical work

x Stream-wise direction axis

x0 Initial coordinate of the computational domain in x direction

xf Final coordinate of the computational domain in x direction

xp Distance from the leading edge to the pivoting point

z Vertical direction axis

z0 Initial coordinate of the computational domain in z direction

zf Final coordinate of the computational domain in z direction
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Acronyms

2D Two Dimensional

AR Aspect Ratio

BC Boundary Conditions

CFD Computational Fluid Dynamics

CFL Courant Fredrich Levy number

DARPA Defense Advanced Research Project Agency

DNS Direct Numerical Simulation

HDF5 Hierarchical Data Format version 5

IBM Immersed Boundary Method

I/O Input/Output tasks

LE Leading Edge

LEV Leading Edge Vortex

MAV Micro Air Vehicle

MPI Message Parsing Interface

NACA National Advisory Commitee dor Aeronautics

TE Trailing Edge

TEV Trailing Edge Vortex

TUCAN Two(Three)- Dimensional Unsteady Code for Aerodynamics in Nature
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Chapter 1

Introduction

1.1 Motivation

Since the beginning of the time, although more concretely since the human being
starts to develop his knowledge about the things that takes place around him,
humans have been interested in how birds and insects could fly. Although the
first prototype of a flying machine imitating the wings of birds was made by
Leonardo Da Vinci on the 16th century, the interest of humans in these machines
would increase on the 17th century once Issac Newton discovers and explains the
gravitational laws that actuate in our planet. With the development of knowledge
and thus, the advance in technology, the first manned flights that challenges these
laws takes place on the 19th century, thanks to Otto Lilienthal creator of hang
gliders, but it will be on the 20th century when the Wright brothers made possible
the first successful flight in history with a machine heavier than the air, that allows
to cover 120 feet in 12 seconds. Since then, the aeronautical industry has lived
significant changes passing from the simplest powered aircraft, to rotary-wing
aircraft or supersonic aircraft which nowadays are still in development to allow
the possibility of cover huge distances in civil flights. Nevertheless, although
the tendency in the past century has been the development of bigger and faster
aircraft with and associated growth in Reynolds number, that has evolved from a
Re ' 3 · 106 in 1903 with the flight of the Wright brothers to Re ' 7 · 107 in 1977
with the launching of the Concorde, in the past decades the interest in lighter
and efficient machines has increased as well as the interest in Micro Air Vehicles
(MAV) that tries to imitate the performance of birds and insects whose Reynolds
number is much smaller than the ones cited.

MAVs have been defined by the Defense Advanced Research Project Agency
(DARPA) as micro aerial vehicles for having dimensions no larger than 15 cm.
These flying vehicles have attracted the interest of the industry for its huge va-
riety of applications since they are used for commercial and research purposes,
they can access easily to hidden uneven places, for humanitarian or military mis-
sions and they are equipped with sensors that allow to perform reconnaissance,
surveillance and testing activities in hazardous and remote places. Since MAVs
have been developed imitating the performance of small birds and insects, they
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2 Chapter 1. Introduction

fly at Reynolds numbers of the order of 10 to 104, so that the flow separation at
the boundary layer and the transition between the laminar and turbulent regime,
behaves differently than in conventional aircraft built until now, taking special
importance the airfoil shape that affects the performance of these aerial vehicles.
MAVs are able to reach cruising velocities between 10 m/s to 20 m/s in a flying
motion characterized by high amplitudes and moderate frequencies, (Shyy et al.
2013), and due to their small shape and light weight, they are prone to be sensi-
tive to the wind gusts that take place suddenly in the in the flow, although these
physical characteristics of MAVs have not penalized their structural strength.

Although MAVs have attract the aeronautical interest into the study of the un-
steady aerodynamics of flapping wings, this is a complex and challenging subject
to dominate due to the huge number of parameters that affect to it. Thus,
simplified models are used to study how some kinematic parameters affect the
aerodynamic forces and moments. To make this possible the natural movements
of birds and insects are imitated to achieve the most effective performance in
this kind of vehicles. Until now, conventional aircraft have been equipped with
ailerons that generate similar twisting moment as the ones that birds produce
naturally with their wings. Nevertheless, this movement is more complex and
takes place by a combination of pitching movement respect to their spanwise
axis, located along their wings and a rotation about the wing to body union. The
task of reproducing a structure, to recreate these movements with the required
flexibility, taking into account all the parameters that can affect to it, becomes
a challenging task. Moreover, the study of the unsteadiness in the aerodynamics
of these vehicles flying at low Re becomes tedious, and it is not efficiently pre-
dictable yet. An example of this, is given in the behaviour of the flow and the
vortices produced on it, especially the leading edge vortex (LEV) that appears
at the leading edge of the wings, in the case of MAVs, and that reattaches later
on to the surface of the wing before trailing edge vortices (TEV) appears, (Sane
2003). Moreover, due to the small size of these vehicles, the task of including any
navigation system, energy resources or efficient propulsive systems is still a trade
off nowadays.

Thus, taking into account the difficulty concerning the study of the aerodynamics
of this kind of motion, in the pages of this document, an analysis of the aero-
dynamic forces at low Reynolds number is presented. Due to the complexity of
the real problem, the actual study is simplified in a two dimensional case (2D)
assuming a wing of high aspect ratio and infinite spam. The motion analyzed
is an oscillatory sinusoidal motion that combines pitching and heaving. Never-
theless, although the simplifications made are important, the immensity of the
problem is still more than considerable, thus, if at the end of the document our
knowledge about the aerodynamic forces and the performance that drives MAVs
has increased, this project would worth it.
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1.2 State of the art

To be able to analyze and recreate the exact motion of insects and small birds is
a complex task for scientist, due to the small size and high frequencies in motion
characteristics of these flying animals. Nevertheless, although the exact solution
of the problem is difficult to be found, different approaches have been followed
to achieve results that allow to simulate the flying movements of these animals,
generating the necessary lift and thrust obtaining good results in terms of effi-
ciency. In the past century with the development of aircraft and the increase
on the aeronautical knowledge, different approaches have been followed to study
the flapping motion at low Reynolds numbers. The construction of wind tunnels
to recreate real life physics at a determine scale has supposed a way to analyze
forces and moments by imposing different conditions in terms of the geometry
of the immersed body, position of the body respect to an incoming velocity and
different kinematics parameters that define the motion and that affects in a direct
way to the aerodynamic forces and moments that are produced. These forces are
measured by means of gauges, that allow to read the temporary response of forces
and moments in computers. The experimental procedure of studying the flap-
ping motion has been as important as the development of Computational Fluid
Dynamics (CFD) simulations are, in which different procedures and numerical
methods are applied to recreate real world physics where the temporary history
of forces is not measured but computed. This two different but effective methods,
of recreating and analyzing the movement of insects and small birds, have evolved
with the past of the years, as well as the complexity of the simulations analyzed.
Since the natural motion of these flyers is approximated to a flapping motion,
defined as a combination between heaving and pitching motions, the research
works have progressed from the study of these two motions separately, as a way
of simplifying the problem, to the combination of both motions, which becomes
a more complex task. Moreover, due to the huge amount of parameters that are
involved in the problem, most of the studies have simplified the problem to a 2
dimensional one, where the flexibility and elasticity of the wing in the case of
birds and membranes in the case of insects, have been suppressed. Despite all
the studies made and the assumptions took, the complexity of understanding the
flapping motion is startling for the scientific community.

Along the past century scientists have tried to understand and solve the problem
of a 2D airfoil in heaving motion. Heaving motion was identify as the alternative
to rotary propellers. When the vertical motion is produced the airfoil varies its
angle of attack to a non-zero value, and the resultant normal force is decomposed
producing thrust. This phenomena was explained, for the first time, in the re-
search works of Knoller 1909 and Betz 1912 and it would be a decade later when
Katzmayr 1922 validate these results thanks to an experimental study. Glauert
1930 and Garrick 1937 gave a lineal solution to the 2D problem that resulted to
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be incompleted since it founds values of maximum propulsive efficiency at zero
frequency. With the development in aeronautical knowledge and technology, the
past of the years made that Jones and Platzer 1997 study the problem again.
This time the non-linearities at the wake and the ones of the geometry of the
airfoil were introduced in a model that used the unsteady panel method, but the
frequencies obtained were not as good as expected. Moreover the generation of
lift was also investigated. Carr 1988 set the concept of aerodynamic stall pro-
duced when the generation of lift is suddenly lost in steady aerodynamics. Later
Ellington et al. 1996 studied the unsteady aerodynamics of the problem by means
of Direct Numerical Simulations (DNS) and would state that the behaviour of the
LEV and TEV were the main sources of lift generation in the airfoil. Moreover,
Anderson et al. 1998, studied the relation between the thrust generated and the
efficiency obtained with these vortical structures, LEV and TEV. With the begin-
ning of the 21th century, Wang 2000 performed a numerical study of the problem,
at a Re=1000, where it was established that an increase on the Strouhal number
(St) produced and increase on the angle of attack, and thus, an increment on the
generation of thrust. Moreover, it was observed how lift force increases at reduce
frequencies, that increases the LEV and consequently its effect on lift. Indepen-
dently, Young and Lai 2004 studied the strong dependence of the aerodynamic
forces and wake structures on the values of reduced frequency and Strouhal num-
ber. Lewin and Haj-Hariri 2003 made a numerical study at Re=500 and states the
dependency of propulsive efficiency on the LEV and TEV. Propulsive efficiency
and thrust were penalized at low frequencies but at high frequencies propulsive
efficiency also diminished similarly at what occurs assuming an inviscid theory.
Thus, in terms of propulsive efficiency the optimum frequencies are obtained with
the period of the shedding vortices. Moreover, it was stated that an increase in
efficiency is produced increasing the separation time of the LEV and keeping it
attached along a period of motion. A pattern on the vortical structures was also
studied in order to analyzed the interaction between the LEV and the TEV. It was
seen how with a reinforcement of the TEV with the LEV propulsive efficiency and
thrust increases. Moreover, the increase on propulsive efficiency was higher when
the shedding LEV was dissipating. Later on, Martín-Alcántara, Fernandez-Feria,
and Sanmiguel-Rojas 2015 would develop a decomposition of the vortex forces to
describe these interactions that take places on the wake structures. Moreover, it
has to be mentioned the experimental studies of Lai and Platzer 1999, Lua et al.
2007 and Heathcote, Wang, and Gursul 2008.

Despite the improvements in the methods used to solve the problem along the
years, lower values of thrust were obtained, this leads to change the way of re-
search and scientist started to study the effect of pitching motion in thrust, in
order to see the effects of the new kinematics parameters in the aerodynamic
forces and wake structures. It was seen that a variation in the mean pitch angle
affects directly to the generation of thrust and lift, and when non-zero values were
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given to the pitching amplitude, the values obtained for propulsive efficiency and
thrust improved. These parameters and a variation of the Reynolds number had
a clear influence in the behaviour of the flow around the airfoil. Different experi-
mental studies had been performed, between them it has to be recalled the one of
Walker, Helin, and Chou 1985 whose study is based on the effects that pitching
rate and Reynolds number has on the pressure field and the vortices generated
around the airfoil. On the other hand the two independent experimental studies
of Freymuth 1988 and Koochesfahani 1989 were focused on the explanation of the
thrust generation in pure pitching motion. It was observed a relation between
the frequency and pitching amplitude with the axial flow produced at the wake
vorticities structures.

Furthermore, several studies that include these two motions can be found. The
combination of pitching and heaving motion, increases the complexity of the
problem due to the amount of parameters involved in it, that hamper the finding
of the optimum combination of values for the kinematics parameters to allow
values of maximum thrust, maximum propulsive efficiency and good results in
terms of achieved lift. Theodorsen and Mutchler 1935 developed an inviscid,
linear and unsteady theory to predict the forces generated. This theory would be
used by Garrick 1937 to provide the expressions of the input and output power
required by the airfoil and the mean thrust generated. McCroskey 1982 observed
that before dynamic stall is produced large forces of short duration takes places.
Triantafyllou, Triantafyllou, and Grosenbaugh 1993 announced that, for reduced
frequencies and low values of feathering parameter, the observation of the wake
structures overestimate the thrust generated. Moreover, as it was set for pure
pitching motion, the LEV is one of the main sources of lift. For the case of flapping
motion Ellington et al. 1996 explained that the spanwise flow component, derived
by the pressure and velocity gradients that takes place by the acceleration at the
boundary layer, is related with the way the LEV attaches to the surface of the
airfoil and its stability, affecting in a direct way to the generation of lift. Anderson
et al. 1998, was also interested in flapping motion and made several experimental
studies varying parameters involved in the kinematics. He concluded that the
generation of thrust was much higher when the shift angle between pitching and
heaving motion was larger than 90o. Dickinson, Lehmann, and Sane 1999 studied
the nonsinusoidal movement in robots experimentally, where Magnus effect was
appreciated, and Isogai, Shinmoto, and Watanabe 1999 how propulsive efficiency
and thrust were influenced by dynamic stall. Ashraf, Young, and Lai 2011 made
a numerical study where the effect of thickness, camber and Reynolds number
on thrust were analyzed. Fenercioglu and Cetiner 2012 studied the flow patterns
around the airfoil depending on the wake vortices structures. Later on Ford and
Babinsky 2013 and Widmann and Tropea 2015 studied the flow around airfoils
trying to explain the behaviour of the spanwise flow component that affects the
stability of LEV as announced Ellington et al. 1996.
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1.3 Objectives
With this project, it is pretended to know more about the unsteady aerodynamics
that takes place flying at low Reynolds numbers. Along the project, different
objectives are established, these objectives can be divided into short term goals
and long term goals.

The long term goal and main goal of the project, is as said before, to better
understand the unsteady aerodynamics of flapping flights at low Re. Concretely,
this project is focused on achieving a range of values of feathering parameter (χ)
at which the studied airfoil can operate reaching values of maximum propulsive
efficiency and maximum generation of thrust. Moreover, the relation between the
propulsive efficiency obtained and the lift generated, has to be analyzed looking
for the optimum configuration between maximum propulsive efficiency, maximum
generation of thrust and allowed lift. To make this possible, in the process,
aerodynamic forces and moments have been analyzed as well as the flow vorticities
around the airfoil.

To develop the study, short term goals are established and followed.

• To understand the tool use to execute the direct numerical simulations
(DNS), is the first short term goal to be accomplished. This tool is a Two-
Three dimensional Code of Unsteady Aerodynamics in Nature (TUCAN)
built with more than six thousand lines of code, innumerable files and li-
braries. Although it is not pretended to understand everything of TUCAN,
it is necessary to know how it works and its main characteristics.

• To perform a literature review once the problem to be studied is defined in
order to increase the knowledge about the subject.

• To clearly define and calculate each one of the parameters involved in the
kinematics of the airfoil, in order to ensure the desired values of lift coeffi-
cient for each one of the studied simulations.

• To be able to analyze the results obtained for each simulation in terms of
kinematics parameters, aerodynamic forces and moments, propulsive effi-
ciency and behaviour of the flow.

• To compare the results obtained with the ones of a companion project
(Yuste 2017), being able to identify which are the main differences and
why they are produced.

If at the end of this project, every single one of these short term goals is accom-
plished the successful of the long term goal will be ensure.
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1.4 Contents
The structure of the present document can be decomposed into seven different
chapters and an appendix. The information contained in each one of them is
briefly explained in the following lines.

• Chapter 1 is divided into 4 subsections. First of all, a motivation to carry
out this project is presented. After this, the state of art collecting part
of the literature of other authors whose research projects are related with
the actual one. The final goals of the current project are include in the
objectives section, and a scheme of the distribution of the contents along
the documents is presented in the actual section.

• Chapter 2 collects the information related with the methodology concern-
ing the software and hardware. It includes the governing equations of the
project, the most relevant aspects of the flow solver used and some charac-
teristics of TUCAN.

• Chapter 3 is a summary of the presented problem of this project. In this
chapter, the definition of the physical domain as well as the kinematics of the
airfoil, the selection of the parameters and a description of the simulations
can be find.

• Chapter 4 includes an analysis of the results obtained for the simulated
cases. In the first part of the chapter an analysis of the forces and propulsive
efficiency is developed. Then, the behaviour of the flow vorticity is included.
To finish with a comparison between the results obtained in this project and
those of a parallel project (Yuste 2017), that simplifies the model developed
in (Moriche 2017) is presented.

• Chapter 5 presents a description of the socioeconomic impact, regulatory
framework and a estimation of the necessary budget to accomplish this
project.

• Chapter 6 includes a summary of the project, shows the main conclusions
after the development of the whole project and provides some considerations
for future related works.

• Appendix A presents an estimation of the budget needed to perform this
project.

• Appendix B collects extra information about the development of a code to
execute the simulations.





Chapter 2

Methodology

In this chapter it is developed the methodology followed to carry out the simula-
tions in an in-house code that recreates Two(Three)-dimensional Unsteady Code
for Aerodynamics in Nature. The chapter is composed by three sections. In the
first one, the governing equations to solve the problem are set. The second one is
related with the numerical methods followed, the definition of the computational
domain and time marching, and how the body is included in this domain. The
last one, includes a brief explanation of how TUCAN works.

2.1 Navier Stokes equations

The governing equations to recreate the behaviour of the flow around the airfoil,
are the Navier Stokes equations. Mass conservation equation and the momentum
conservation equation for an incompressible and 2D viscous flow are solved in the
simulations.

∂ui
∂xi

= 0 (2.1a)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(2.1b)

where, ui is the fluid velocity, p is the pressure, ρ is the density of the fluid, ν the
kinematic viscosity, t the time and x the distance.

Along the whole project, Reynolds number takes a remarkable importance while
solving the Navier Stokes equations. Reynolds number is one of the most popular
adimensional numbers in aerodynamics defined as Re = ρU∞L

µ
, where ρ is the

density of the fluid, U∞ is the upstream velocity of the fluid, L is the characteristic
length of the body submerged in the fluid and µ the dynamic viscosity. It allows us
to predict at which point of the boundary layer, the flow starts its transition from
laminar to turbulent. It depends on different parameters such as the geometry of
the body, its roughness and the uniformity of the flow between others.

9
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In the case of a pipe the boundary layer is laminar until a Reynolds number of
1000 is reached, and the transition to turbulent ends once Re reaches a value of
2000. On the other hand, assuming a flat plate this transition to a turbulent
regime starts at a Re of 5·105.

The geometry of the body selected, to perform the numerical simulation study,
is a NACA 0012 profile, that can be considered as something in between a pipe
(because of the rounded curvature at the beginning of the body) and a flat plate.
Concretely, the NACA 0012 profile is characterized for having a 12 % of maximum
thickness and no camber, being this profile symmetric respect to the x-axes.
Moreover, it is considered to be the profile of a wing of infinite span, so that the
effect produced on the flow by the wing tip vortices can be neglected, and the
problem can be solved as a 2D one.

For all these reasons, Re number is going to be taken as an important parameter
in the whole project. Reynolds number can be estimated as the ratio between
inertial and viscous forces

(
Re ' inertialforces

viscousforces

)
. Low Re number is considered, and

thus, viscous forces can not be neglected, in fact, they will have an important role
in the aerodynamics of the 2D simulations presented.

Since low Reynolds number is considered, an incompressible fluid predominates
in the simulations. The advantage of having assumed incompressible flow is the
absence of pressure waves propagation, that allows larger time steps and coarser
grids in the simulation, reducing the computation time without penalizing the
final result.

Moreover, to solve the Navier Stokes equations (equations 2.1), some boundary
conditions and no-slip condition at the surface of the immerse body are imposed
to the velocity of the flow to recreate real conditions.

- At domain boundaries: ui=0 (no-slip)

- At body surfaces: ui=Ui

where Ui is the velocity of the immerse body.

Furthermore, the force perceived on the submerged body by the fluid is given by:

~F = −
∫
S

p~ndS + ν

∫
S

~ω × ~ndS (2.2)

where S is the surface of the body, p the pressure, n is the unitary normal vector
pointing towards the fluid and ω the vorticity of the flow.
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2.2 Flow solver

In order to solve the Navier Stokes equations previously mentioned different
aspects have been implemented in TUCAN such as the appropriate numerical
method to be used, the definition of the computational grid and boundary con-
ditions and the presence of submerges body in the fluid. All these aspects are
commented in detail the following subsections.

2.2.1 Numerical methods

Navier Stokes equations (equations 2.1) are solved in TUCAN thanks to a Di-
rect Numerical Simulation (DNS) method that allows accurate results that are
penalized by the computational costs of the method, since the flow solution of
equations 2.1, is calculated at every single point of the mesh of the computational
domain rather than the solution given by a theoretical method, which is cheaper
but less precise.

On the one hand, a fractional step method is used to undertake the decoupling is-
sue that presents the temporary independent continuity equation (equation 2.1a)
as explained in Brown, Cortez, and Minion 2001, where the full algorithm of
Runge Kutta k-th sub-step scheme is developed in detail. There it is explained
how, the velocity components are obtained from the temporary dependent mo-
mentum equation (equation 2.1b). Moreover, this method applies a correction
to the values obtained in order to fulfill and solve both Navier Stokes equations
(continuity and momentum).

On the other hand to solve the spatial issue, a uniform staggered grid is dis-
cretized, and the spatial derivatives are approximated by the used of center finite
differences with second order error convergence, and a three stage, low storage
Runge Kutta scheme is applied to perform the time marching, where advective
terms are treated explicitly and diffusion terms implicitly as it is described in
Roma, Peskin, and Berger 1999, where the full method is explained with more
detail.

2.2.2 Computational grid

Each simulation has its associated defined computational domain. The way to
perform the spatial discretization in TUCAN is using uniform, structured and
staggered grid. The domain is structured into cells, splited in x and z directions,
in a uniform way, since the space between cells is the same in both directions and
the fact of defining a staggered grid means that the points where the pressure and
the normal components of the velocity are calculated is not the same (see figure
2.1).
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Figure 2.1: Sketch of a cell of the staggered grid .

The fact of using staggered grid instead of a collocated one, can be justify in
different ways. While discretizing momentum equation (equation 2.1b) by second
order finite differences, checker board oscillations used to appear in the case of a
collocated grid. Nevertheless, these oscillations are suppressed using a staggered
grid. Moreover, the need of calculating pressure and velocity components at
different points, makes interesting the used of staggered grids where the spatial
discretization becomes easier due to the relative position of grid points of the
different variables.

Figure 2.2: Sketch of the grid .

Figure 2.2 presents a sketch of the actual implementation of uniform, structured
and staggered grids in TUCAN. As it is seen in the figure, the computational grid
is subdivided uniformly and structurally in small regions building a mesh. At the
centre of these regions (cells), total pressure is computed and at their boundaries
the normal components of the velocity are calculated. The boundaries of the
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computational grid domain lie on the nodes of the normal components of the
velocity.

This kind of grid is applicable in TUCAN to simulations whose boundaries con-
ditions are characterize by free slip boundary conditions at the north and south
of the computational grid, inflow and outflow boundary conditions are set to
the east and west regions and Neumann boundary conditions are applied to the
pseudo-pressure.

Moreover, it has to be commented the presence of ghost points on the computa-
tional grid which are represented on figure 2.2 by empty symbols. These ghost
points are a very important and relevant aspect that has to be taken into account
in the implementation in TUCAN, since at these points of the grid the solution
cannot be calculated in TUCAN. Instead, they are used in the computations dur-
ing the execution process or as initial condition of an existing field. In section
2.3.1 it is explained how the solution of these ghost points is obtained.

2.2.3 Boundary conditions (BC)

To recreate real world physics TUCAN tool is provided with different boundary
conditions (BC):

- Advective condition: is applied at those boundaries of the domain where
possible reflections of the flow while it is leaving the computational domain
want to be avoided, so that the actual solution compute inside the domain
is not affected but this exiting flow.

- Dirichlet condition: consists on specifying the value of the solution.

- Neumann condition: imposes the value of the derivative.

- Periodic condition: whenever a variable of the flow has a periodic repeated
pattern in time. The advantage of this BC is that once a period is completed
the behaviour can be known in advance.

Having defined the possible boundary conditions, Dirichlet, Neumann, advective
and periodic boundary conditions can be set at any of the boundaries of the
computational domain. Nevertheless, it has to be recall the benefits of using
advective boundary conditions at the east boundary of the domain. As it is seen
in the definition of this type of boundary condition, in the presence of intense
flow at the outlet of the domain an advective process is produced. By using this
type of boundary condition reflections at the outlet of the boundary, that can
be produced by using Neumann or Dirichlet boundary conditions, are avoided,
helping that the flow structures can leave the computational domain as smooth
and in the more realistic way as possible. Thus, the equation to compute the
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actual solution at the east boundary using advective boundary conditions is the
following one.

∂~u

∂t
+ C

∂~u

∂x
= 0 (2.3)

where C is the advective velocity, assumed to be constant in that boundary in
order to fulfill mass conservation inside the computational domain (Ferziger and
Peric 2012). This equation (equation 2.3), is solved following the Runge Kutta
k-th sub step scheme for an advective boundary conditions, similarly as it is done
with the momentum equation (equation 2.1b) (Brown, Cortez, and Minion 2001).

On the other hand, the use of periodic boundary conditions affects the definition
of the staggered grid, whose grid points are going to differ from those of the
grid used while Neuman or Dirichlet boundary conditions are applied. Figure 2.2
shows the effect of using periodic boundary conditions in x and z directions on
the computational grid points distribution.

Finally, since incompressible flow is assumed, the boundary condition chosen for
the pressure in the whole computational domain is Neumann condition.

2.2.4 Immersed Boundary Method (IBM)

In order to solve NS equations in the presence of a submerged body, the Immersed
Boundary Method (IBM) is considered. This method provides high computa-
tional efficiency, specially in the presence of moving rigid bodies at low Reynolds
numbers. If higher Reynolds numbers were considered, this method should be fit-
ted in order to provide higher resolution accordingly to the boundary layer that
will be thinner.

Although the cost associated with the definition of the grid is considerable, it
compensates the costs derived while using a body-fitted method, that has to
remesh the grid and do interpolations continuously to solve the algorithm of the
problem. The use of IBM in TUCAN, simplifies and facilitates the discretization
of the computational grid for complex body geometries, and in the presence of
moving bodies the tasks required of remeshing and interpolating needed in body-
fitted methods are suppressed due to the computational saving resources that
IBM presents. (Mittal and Iaccarino 2005)

To take into account the presence of the body inside the fluid two different do-
mains are defined: the Eulerian one which is fixed (fluid), and the Lagrangian
which is the moving one (body). A regularized delta function, which is a discrete
version of the Dirac´s delta function introduced by (Peskin 2002), with a three
points stencil is used in a diffuse discrete forcing approach method that inter-
polates from the Eulerian to the Lagrangian mesh. The body immersed in the
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fluid is considered to be rigid, the kinematics of the body movement are known
and imposed, and the interaction between it and the fluid is unidirectional. The
presence of the body in the fluid is allowed by adding a force term in the right
hand side of the momentum equation (equation 2.1b) to ensure the no-slip con-
dition and fix the velocity at the boundaries of the body. In Uhlmann 2005, it is
described with more detail the IBM implemented in TUCAN.

Thus, considering the presence of a rigid moving body inside the fluid, the al-
gorithm to solve the Navier Stokes equations inside the computational domain
follows the next steps:

1. An explicit estimation of the velocity in the Eulerian mesh is done.

2. Using the regularized delta function previously mentioned, an interpolation
between the velocity in the Eulerian to the Lagrangian frame is performed.

3. The volume force from the estimated Lagrangian velocity and the desired
one is computed in order to preserve the no-slip condition at the Lagrangian
points.

4. This volume force is transform from Lagrangian to Eulerian frame.

5. Introducing the volume force term into the Navier Stokes momentum equa-
tion (to the right hand side), they can be solved following the fractional
Runge Kutta k-th sub-step method.

An important fact that has to be commented is that with the movement of the
Lagrangian frame, the same does the node points associated to it, where the
components of the velocity and the pressure are calculated. This point that at
the beginning where points of the body without historical data, become into
fluid points with the movement of the frame producing some fluctuations in the
calculated results. These fluctuations are corrected thanks to the used of a low
pass filter that introduces in that points without historical data, the calculated
average of the points in the surroundings.

2.3 TUCAN
The numerical simulations are carried out using TUCAN (Two or Three Dimen-
sional unsteady Code for Aerodynamics in Nature), which is an inhouse code of
significant complexity. It has around 60 thousand lines of code, uses external
libraries and requires specific machine configurations to work properly. This tool,
is already validated for different canonical 2D laminar cases such as Taylor Green
vortices, Poiseuille flow, stationary and moving cylinders and airfoils; and 3D
cases such as flow around a sphere and fully-developed turbulent channel flow
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inside a channel (Moriche 2016). Thus, TUCAN has been already implemented
and it is in continuous used in other investigation works to recreate real world
physics.

In the following subsections, a brief description of the parallelization as a way of
processing and solve the required linear systems of the numerical simulations and
how TUCAN works with Input/Output tasks, is included (Moriche 2017).

2.3.1 Parallelization

The simulations in TUCAN are executed by a parallelization process that is based
on Messege Parsing Interface (MPI) standard (Forum 1994). The main charac-
teristic of MPI standards, is that during a run, processes do not share memory,
in fact, if they need information of another process they have to communicate
between them, which is a complex task. Nevertheless, MPI standards present
some advantages that shared memory protocols, as it is the case of Open MP
(Dagum and Menon 1998), do not present. MPI standards allow the possibil-
ity of increasing the number of processes in a run in a "indefinitely" way. On
the other hand, share memory protocols only can use the number of processors
in a run up to the number of processors that are allowed in the machine, and
increasing this number implies a notorious cost.

Every single simulation performed in TUCAN has its corresponding defined phys-
ical domain, where Navier Stokes equations have to be solved to get the aerody-
namics of each problem. The way to distribute the workload is by following a
partition strategy in which the domain, and the corresponding grid assigned to it,
are decomposed in different portions distributed uniformly in x and z directions,
and said portions are assigned to different processes. Despite the distribution
of the domain in these regions, there are other overlapping regions assigned to
different processes that help to cover the ghost points of the mesh (see figure
2.2). At this point of the computational process, a communication between the
information of processes is required to cover the missing information of ghost
points. This communication is performed twice in each step (for each of the com-
putational variables, which are the velocity components and the pseudopressure),
once the solution of the linear system is calculated and once the correction of the
solution is performed.

2.3.2 Linear systems

To obtain the aerodynamics inside the defined domain of the studied problem, NS
equations (equation 2.1) are solved thanks to the implementation in TUCAN of
the numerical method previously described in section 2.2.1, where the solution of a
linear system for each component of the velocity is obtained solving the Helmholtz
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problem in an iterative process (the matrices present a dominant diagonal) and
the solution of the linear system for the pseudopressure is given solving the Poisson
problem where finite differences are needed to define the spatial discretization of
the problem (matrices are sparse). For this reason, Poisson problem uses Hypre
routines (“High performance preconditioners” 2016 June) that has been shown
to work more than efficiently enough in massive parallel computers (Baker et al.
2012). Moreover, to solve this problem a solver based on multigrid method has
to be preconditioned, which is an expensive but effective method. On the other
hand, to solved Helmholtz problem, a conjugate gradient solver is required.

2.3.3 Input/Output tasks

As it is mentioned above, TUCAN is fully composed of libraries and routines.
During the execution of the code to perform a desired simulation lots of Input-
s/Output tasks (I/O) take place in order to write/read existing data to/from a file
with the purpose of storing data, reading this existing data or postprocessing it.
Regarding with this Input and Output tasks, it has to be mentioned that the time
needed to access to data increases exponentially when the number of processor
that requires access to this data increases, so there should be a balance between
the performance of the simulation and the information desired to be storage by
the user. Moreover, the time needed to access to a disk is higher than the time
of accessing memory.

For these reasons, the Hierarquical Data Format version 5 (HDF5) libraries are
used in TUCAN as the best option of storage, providing I/O routines while han-
dling MPI standards (Group 2016). Thus, HDF5 protocol allows the storage of
large buffers of data in a unique output form that results of easy access and are
easily read by postprocessing data tools, like Matlab, that includes libraries and
routines to read and write data in this format version.





Chapter 3

Problem

In the sections and subsections of this chapter, relevant aspect concerning the
simulations of this project are contained. The chapter has been divided into two
sections. The first one contains information about how the problem has been
defined in TUCAN. In the second one, the physics of the problem and how it has
been carried out is explained.

3.1 Computation and set up

In this section the definition of the computational domain, body geometry and
boundary conditions of the project in TUCAN are explained.

3.1.1 Computational domain

All the simulations performed along the project are carried out in TUCAN, where
Navier Stokes equations are solved in a box of dimensions 12c in x-direction and
10c in z-direction. The term c refers to the chord of the airfoil, taken as the
characteristic unit of length. Said box, defines the computational domain that
has its associated computational grid characterized to be uniform, structured and
staggered, as it was explained in section 2.2.2.

Looking at figure 3.1, it can be seen how the airfoil is placed at the origin of axis
at mid high of the computational box. Nevertheless, the 12c in x direction has
been distributed leaving 3c upstream and 9c downstream where the aerodynamics
at the wake structure are more complex.

The computational grid is subdivided into cells that configure a mesh. Since
the resolution selected is of 64 points per chord, the grid is composed by a total
number of 491,520 grid points, being Nx=768 the number of grid points in x-
direction and Nz=640 the number of grid points in z-direction. To ensure the
uniformity of the grid, the mesh width is defined to be the same in both directions
(x and z) in such a way that ∆x = ∆z. The mesh width is computed as follows:

19
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Figure 3.1: Computational domain.

∆x =
xf − x0

Nx

(3.1a)

∆z =
zf − z0

Nz

(3.1b)

where x0 and xf represent the initial and final coordinates of the computational
domain in x-direction and z0, and zf are the initial and final coordinates respec-
tively in z-direction, so that ∆x = ∆z = 1

64

It has to be commented that the dimensions of the domain and the resolution
of the computational grid are adapted for a problem of Re=500. If this number
was increased, the resolution should be increase as well, since the thickness of
the boundary layer will decrease and the resolution has to be adjusted to the
requirements and necessities of the problem to obtain accurate results.

3.1.2 Definition of the submerged body

In section 2.1, it was briefly commented that the submerged body selected to be
inside the fluid domain is a NACA 0012 profile, with no camber and maximum
thickness of 12% of its chord.

As it is done with the computational grid, the submerged body is also defined
and discretized. A uniform distribution of points along the surface of the airfoil
is perform taking into account that the resolution is of 64 points per chord, so
that the total number of points needed to build the surface of the airfoil is of 131
points. The discretization in TUCAN is performed following the scheme described
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by Uhlmann 2005, where in appendix A.1, the procedure is fully developed in
detail for the case of a circumference. During the discretization, the requirement
of having the differential of volume associated to each Lagrangian point as close
as possible to the square of the cell width is kept (∆V ' ∆x2). With a resolution
of 64 points per chord the associated volume obtained is ∆V/c2 = 2.433 · 10−4

while ∆x2 = 2.441 · 10−4 having an error of the 0.32%. Doing the transformation
from the Lagrangian to the Eulerian frame, as explained in section 2.2.4, and
once the airfoil is defined with this configuration, 64 grid points are needed in
x-direction and 7 grid points at the maximum thickness section of the airfoil.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.2
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0

0.1

0.2

z/c

Figure 3.2: Lagrangian markers for a NACA 0012 profile with a resolution of 64
points per chord.

3.1.3 Boundary conditions

Having defined all the possible types of boundary conditions that can be applied
in TUCAN (see section 2.2.3), the boundary conditions applied to all the direct
numerical simulations (DNS) of the present project are presented.

As it is seen in previous section (section 3.1.1), the submerged body, a NACA 0012
is placed at the origin of the computational domain. Three chords upstream of
the leading edge (LE) of the mentioned NACA, a uniform free stream, of velocity
U∞ in the x-direction, is imposed just at the inlet boundary of the domain where
Dirichlet BC are applied to both components of the velocity (x and y components)
and at the exit of the domain, nine chord upstream, advective BC are applied to
avoid the possible reflections commented previously in section 2.2.3. Finally, on
both vertical boundaries, free-slip boundary conditions are applied so that there
is no penetration of fluid either entering or exiting of the domain. This is achieved
imposing Neumann BC at the x component of the velocity and Dirichlet BC at
the y component. Finally Neumann boundary condition is applied to pressure in
the whole domain.
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Figure 3.3: Applied boundary conditions at the computational domain .

3.2 Physics of the problem
These sections include information regarding the kinematics of the problem, the
definition of the parameters involved in it and all the steps followed to carry out
the simulations.

3.2.1 Airfoil motion

All the simulations are performed at a Reynolds number of 500 which is defined
as:

Re =
ρU∞c

µ
(3.2)

where the free stream velocity (U∞), the characteristic length which is the chord
of the airfoil (c), the density of the fluid (ρ) and the dynamic viscosity of the fluid
(µ) are involved.

The kinematics of all the Direct Numerical Simulations of this project, are carried
out in TUCAN. Figure 3.4 shows and sketch of the main kinematics features and
the parameters involved in the motion of the airfoil.

In figure 3.4, it is seen how many parameters are involved in the kinematics of
the airfoil. Those parameters are the distance from the LE to the pivoting point,
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Figure 3.4: Sketch of the kinematics parameters involved in the motion of the
airfoil.

defined to be as one quarter chord (xp = c/4), the pitching amplitude (θ0), the
mean pitch angle (θm) and the heaving amplitude (h0), all of them affecting in a
direct way to the equations of motion that are given by:

h(t) = h0 cos(2πft) (3.3a)

θ(t) = θm + θ0 cos(2πft+ ϕ) (3.3b)

Equation 3.3a defines the heaving motion of the airfoil in time, being h(t) the ver-
tical displacement of the pivoting point, while equation 3.3b defines the pitching
motion in time, where θ(t) is the pitching angle, defined to be the angle between
the chord line and the free stream velocity direction. In equations 3.3, it can be
seen how both movements are carried at the same frequency of motion (f), but
with a phase shift difference between the heaving and pitching motions (ϕ). The
frequency of the motion can also be defined by means of the reduced frequency
k.

k =
2πfc

U∞
(3.4)

It has also been taken into account the periodicity of the movement of the airfoil.
This periodicity is defined by the period of oscillation which is the inverse of the
frequency of the motion (f), so that:

T =
1

f
=

2πc

kU∞
(3.5)
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Along the computational process, the aerodynamic forces and moments are com-
puted several times in each period. The way to perform the temporary discretiza-
tion is by defining the time step and thus, the number of steps per period. Both
parameters are influenced by the Courant Fredrich Levy (CFL) condition which
indicates until which point the computational process is stable and can converge
to a solution. The formula to calculate the non-dimensional CFL number is given
by:

CFLmax > CFLsimulation =
Umax∆t

∆x
(3.6)

where CFLmax is the maximum CFL that the simulation allows in terms of
stability, CFLsimulation is the maximum calculated CFL of the simulation, Umax
is approximated to be twice the income free stream velocity (U∞), ∆t represents
the time step and ∆x the mesh width defined previously in section 3.1.1. Isolating
∆t in equation 3.6 and knowing that the number of steps per period is defined
as:

nsteps =
T

∆t
(3.7)

A first approximation of the number of steps per period is done. Nevertheless, this
number is rounded to the nearest possible power of two, since this will facilitate
the postprocessing of data. Thus, the new value for the time step parameter is
introduced in equation 3.6 to check the stability of the simulations.

Being periodic all the presented simulations in this project, their motion can
schematically be presented as follows:

Figure 3.5: Sketch of the airfoil motion along a period.
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where it has to be remarked the distinction between the downstroke motion at
the first middle of the period, and the upstroke motion in the second part of the
period.

3.2.2 Selection of the parameters

Due to the big number of parameters that affect to the kinematics of the air-
foil, the fact of study their effects on the motion and the aerodynamic forces is
unmanageable. Thus, some parameters have been selected to be fixed along the
whole project while others have been varied for each simulation.

The parameters that have been fixed and their respective values are:

• Number of resolution points per chord. p.c = 64

• Reynolds number. Re = 500

• Heaving amplitude. h0 = c

• Pivoting pint. xp = c/4

• Reduced frequency. k = 1.41

• Oscillation period. T = 4.44c/U∞

• Time step. ∆t = 2.16 · 10−3

• Number of steps per period. nsteps = 2048

• Phase shift. ϕ = 90o

On the other hand, there are several parameters that have been varied in every
simulation, some of them have been imposed and there are other parameters that
are dependent of the previous ones. The independent parameters are the mean
lift coefficient(c̄l) and the feathering parameter (χ) while the mean pitch angle
(θm) and the pitching amplitude (θ0) are the dependent ones, and its calculation
will be explained in next section (section 3.2.3).

First of all, the DNS are executed imposing different values of mean lift coefficient
(c̄l). The selected values are : 0, 0.25, 0.5, 0.75, 1 and 1.5.

The feathering parameter has been one of the most relevant parameters of this
project. It is defined as:

χ =
θ0

arctan
(
ωh0
U∞

) (3.8)
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where ω defines the angular velocity given by:

ω = 2πf =
kU∞
c

(3.9)

For very low angles, it can be approximated to χ = θ0U∞
ωh0

(something as the ratio
between the movement of pitching and heaving described by the airfoil), but in
the studied cases this assumption can not be made. If χ = 0 pure heaving motion
is presented, values of χ < 1 indicate propulsive cases, values of χ > 1 describe
power extraction cases and for values of χ = 1 a neutral motion (feathering)
is presented where the airfoil movement is smooth with the flow. The selected
values of feathering parameter for this project are in the range from 0 to 1. At the
beginning, it was decided to start from 0 increasing the value 0.2 each time until
1 in order to have a global vision of how this parameter affects to the kinematics.
Later, it was seen that a feathering parameter of 0.5 and 0.7 were points of interest
in terms of maximum thrust and maximum propulsive efficiency respectively. So
that at the end, the studied values of χ are: 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and 1.

Taking this into account, and looking at the definition of χ (equation 3.10), the
dependence of the pitching angle (θ0) to the feathering parameter is clear. Isolat-
ing θ0 from this equation, this parameter can be calculated for each simulation
as:

θ0 = χ · arctan

(
ωh0

U∞

)
(3.10)

Every selected value of feathering parameter has its corresponding value of pitch-
ing amplitude in the simulation. These values, are collected in table 3.1.

χ 0 0.2 0.4 0.5 0.6 0.7 0.8 1
θ0 (o) 0 10.94 21.89 27.36 32.83 38.30 43.78 54.72

Table 3.1: Corresponding values of pitching amplitude angle for each feathering
parameter.

3.2.3 Description of the simulations

As it is specified in section 3.2.2, six different values of lift coefficient and eight
different values of feathering parameter are studied. In this project all the possible
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combination between them are executed, performed and analyzed yielding in
a total number of 48 simulations. Since the amount of data regarding these
simulations is huge, the most relevant results will be presented on chapter 4
following table 3.2.

χ
c̄l 0 0.25 0.5 0.75 1 1.5

0 C00000 C00025 C00050 C00075 C00100 C00150
0.2 C02000 C02025 C02050 C02075 C02100 C02150
0.4 C04000 C04025 C04050 C04075 C04100 C04150
0.5 C05000 C05025 C05050 C05075 C05100 C05150
0.6 C06000 C06025 C06050 C06075 C06100 C06150
0.7 C07000 C07025 C07050 C07075 C07100 C07150
0.8 C08000 C08025 C08050 C08075 C08100 C08150
1 C10000 C10025 C10050 C10075 C10100 C10150

Table 3.2: Summary of the simulated cases in TUCAN.

Table 3.2 collects the names of all the simulations performed in TUCAN. The
scheme to name the cases is easy to follow. As it is seen all the names are
composed by a C followed by 5 digits (CXXYYY). Letter C refers to the studied
"Case", the next two digits (XX) account for the selected value of feathering
parameter for the simulation, and the last three digits (YYY) refer to the target
value of mean lift coefficient.

The aim of performing all these simulations, is to find at which feathering param-
eter, maximum thrust and maximum propulsive efficiency are reached for each
one of the different desired values of mean lift coefficient. The simulations are
performed following an iterative process in which some of the parameters involved
in the equations of motion are fixed, others vary and some of them are estimated
as a first approach to reach said c̄ltarget.

All the tasks, concerning the simulations, performed in this project can be clas-
sified in: preprocessing tasks, processing tasks, postprocessing tasks and analysis
tasks.

Before launching any simulation in TUCAN, the computational domain, bound-
ary conditions and body geometry need to be specified. This, and the parameters
involved in the equations of motion are included in the required libraries and files.
As explained in section 3.2.2, while solving the time history of the equations of
motion, h0, k, ϕ and xp are kept fixed for all the performed simulations, θ0 varies
according to the value of χ and θm is firstly estimated and then adjust, as will be
explained in the following paragraphs, to achieve the desired c̄ltarget.



28 Chapter 3. Problem

The project is started for cases whose c̄ltarget = 0.5. The estimation of θm is done
looking for a similar simulation case in Moriche 2017. There, the case B090 is
selected. The characteristic parameters of this case are: θ0 = 30o, θm = 10o,
ϕ = 90o, xp = c/4, h0 = c and the c̄l obtained with them is of 1.5509. The most
similar value to that θ0 in this project, is the one provided for χ = 0.6 (θ0 = 32.83o

' 30o). Thus, the first studied case for c̄ltarget = 0.5 is the case C06050. By means
of a linear interpolation using this data, and taking into account that θ0, ϕ, xp
and h0 are the same in both cases, a value of θm = 3.33o is obtained as a first
approximation to reach a c̄l = 0.5 which is considered a good approximation,
since the final value calculated of θm to reach said c̄l is of 3.81o. With this case
converged, the same procedure is used to estimate an initial value of θm, in all
the studied cases, that are introduced in the appropriate file in TUCAN.

Once the preprocessing tasks are performed, TUCAN is in charge of the execution
of the DNS. At this point of the simulation, the Navier Stokes equations (equa-
tions 2.1) and the equations of motion 3.3 are solved processing the provided data
and parameters. Once the launched simulation is converged1, TUCAN provides
different output data that has to be analyzed doing some postprocessing tasks.

The historical data of the normal components of the velocity and forces, momen-
tum, pressure, values for the vertical displacement and pitching angle between
others, are provided by TUCAN. In order to ensure that the simulation has con-
verged to the desired lift coefficient, a code to facilitate the postprocessing of data
has been developed, although it has not been automatized in TUCAN, since the
complexity of doing this, does not compensate due to the fastness of the simula-
tions to converge2. A summary of the main tasks of this code is developed in the
following lines.

• First of all, it is check whether the simulation is converged or not. This is
done by analyzing the forces obtained for the launched simulation. Assum-
ing that at least two periods of the simulation are calculated in TUCAN.
The average of the lift coefficient of one period is compared with the one
of the previous period until the absolute difference between them is lower
than an arbitrary tolerance defined to be 1 · 10−4.

|c̄l(i)− c̄l(i− 1)| < 1 · 10−4 (3.11)

where i represents the number of the period starting from 2.

1Each launched simulation in TUCAN, takes around 7 hours and 15 periods of simulation
to converge with the input parameters provided, and needs 2-3 iterations of θm to converged to
a desired value of c̄ltarget.

2It was expected that at least 5 iterations were needed for each simulation to converge.
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• If this condition is not satisfied, the simulation has to be relaunched until
it converges, otherwise the step to follow is to check if the simulation has
achieved the desired c̄ltarget. This is done calculating the error between the
average lift coefficient achieved in the last period of the simulation, and the
desired mean lift coefficient. Again, an arbitrary tolerance of 0.2% is used
in the checking process.

∣∣∣∣ c̄ltarget − c̄l(i)A

∣∣∣∣ < 0.2% (3.12)

where A represents the amplitude of signal of cl for the last calculated period
of the historical data. If the error is lower than the defined tolerance, the
simulation is converged to the desired solution and the historical data for
the last period, once it has converged, is stored to be analyzed later on.

• If the simulation is not conclude, a new value of θm is calculated to reach
the desired c̄ltarget. This is done by means of the secant method, knowing for
the first iteration that for θm = 0, c̄l = 0, and once the second iteration is
performed, using the values of θm and c̄l achieved in the previous iteration.

θmroot = θmcurrent −
(
c̄lcurrent − c̄ltarget

)
(θmcurrent − θmold

)

c̄lcurrent − c̄lold
(3.13)

There θmroot is the new calculate value for θm, the variables with the subindex
current refers to the ones of the last period of the actual simulation, and
the variables with the subindex old define by the parameters of the previous
iteration.

At this point a new checking is performed in order to ensure that the solu-
tion given by the secant method has not diverged. The absolute difference
between the current and new θm has to be lower than a new tolerance of
0.1o.

|θmroot − θmcurrent| < 0.1o (3.14)

• Once the new calculated value of θm is computed the simulation is launched
and the explained procedure is followed once again until the simulation is
conclude.
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For more details a flowchart and a pseudocode of the actual code implemented in
the project are included in appendix B.

Last, but not least, some analysis tasks are performed. These tasks can be de-
composed in the analysis of forces, visualization of the flow and a comparison
between the results obtained in the actual project and a parallel project (Yuste
2017).

In the first part of the analysis, forces are analyzed paying special attention to
the behaviour of thrust coefficient and propulsive efficiency. The motion of the
airfoil is analyzed in terms of the non-dimensional lift and thrust coefficient.

cl(t) =
2Fz(t)

ρU2
∞c

(3.15a)

ct(t) = −2Fx(t)

ρU2
∞c

(3.15b)

where Fx and Fz represent the streamwise and vertical components of the force
respectively. Nevertheless, it has to be mentioned that since the project is studied
in a non-dimensional way, such that the results can be adapted to any dimensions,
in TUCAN forces are given in a non-dimensional way so that FyTUCAN

(t) = Fy(t)

ρU2
∞c

and FxTUCAN
(t) = Fx(t)

ρU2
∞c

. Moreover, it has to be taken into account that TUCAN
calculates the force exerted by the body on the fluid, and from an aerodynamic
point of view, the force exerted by the fluid on the body is more interesting to
be analized. Thus, when analyzing the forces provided by each simulation, it has
to be considered, that for this project, the actual lift and thrust coefficients are
given by:

cl(t) = −2FyTUCAN
(t) (3.16a)

ct(t) = 2FxTUCAN
(t) (3.16b)

Propulsive efficiency is also analyzed in this project. It is defined as the ratio
between the ability of the airfoil to generate thrust and the work required to
produce the periodic motion of the airfoil (combination of pitching and heaving
motion). Its calculation for each simulated case is performed as follows:

ηp =
T F̄xU∞∫ T

0
(Fzḣ+My,c/4θ̇)dt

(3.17)

where My,c/4 is the aerodynamic moment about the pivoting point located at the
quarter of the chord of the airfoil, ḣ and θ̇ represent the first time derivatives
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of the heaving and pitching motion, previously defined in equations 3.3. The
equations that define these two variables are:

ḣ(t) = −2πfh0 sin(2πft) (3.18a)

θ̇(t) = −2πfθ0 sin(2πft+ ψ) (3.18b)

Once the analysis of the forces is conclude a visualization of the vorticiy of the
flow is performed, in order to relate the results obtained with the effect that some
vortical structures, as it is the case of the LEV and the TEV, have on them.

This last tasks about the analysis of the data obtained for each simulation has
been done using Matlab, a computational software. The most interesting results
obtained will be developed in detail in next chapter (chapter 4).





Chapter 4

Results

This chapter collects the most interesting results obtained after the execution of
this project. The chapter is divided into three sections. The first one is focused
on the aerodynamic forces obtained in the simulations. The second one presents
a visualization of the flow along a period of simulation, for the most relevant
cases, in order to see how the LEV and TEV affect to the aerodynamic forces.
The last section shows a comparison between the aerodynamic forces obtained in
this project and the ones of a parallel project (Yuste 2017), in order to check the
validity of the method applied in the last one.

4.1 Aerodynamic forces

The simulations are carried out according to the steps described in section 3.2.3.
Due to the high number of studied cases the most relevant results obtained in
each one of the simulations are collected in tables following the scheme presented
in table 3.2.

Before analyzing the forces obtained, once the simulations have converged, the
mean lift coefficient values are analyzed. The efficiency of TUCAN and the
method used in the process, surprise due to the good results obtained in less
than a day of computations per each launched simulation.

Figure 4.1 shows the mean lift coefficient values as a function of the feathering
parameter for each one of the 48 simulated cases and the exact values obtained
are collected in table 4.1. Looking at said table, it can be appreciated how the
obtained mean lift coefficients are very similar to the target ones. As specified
in section 3.2.3 the error between the obtained and target values is calculated
(see equation 3.12) to ensure the convergence of all the simulations following the
same criteria. It is established that the calculated error for each simulated case
should be lower than a 0.2%. The results obtained are included in table 4.2. It
is seen how the errors obtained are in almost all the cases an order of magnitude
or even two orders of magnitude lower than the criteria established, being the
highest error obtained of 0.17 % for the case C10075. With these results for the

33
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calculated errors, the accuracy of the results obtained in terms of aerodynamic
forces and other parameters is more than ensure for the presented problem.
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Figure 4.1: Mean lift coefficient (c̄l) as a function of feathering parameter (χ) for
each one of the simulated cases.

χ
c̄l 0 0.25 0.5 0.75 1 1.5

0 -0.0037 0.2487 0.4990 0.7523 0.9847 1.4969
0.2 -0.0030 0.2506 0.4989 0.7446 0.9952 1.4956
0.4 -0.0022 0.2493 0.5010 0.7536 0.9981 1.4992
0.5 -0.0017 0.2490 0.5017 0.7506 1.0031 1.5010
0.6 -0.0014 0.2485 0.5002 0.7498 0.9958 1.4997
0.7 -0.0011 0.2497 0.4991 0.7495 0.9982 1.4930
0.8 -0.0007 0.2502 0.4998 0.7508 1.0023 1.4927
1 -0.0001 0.2500 0.5009 0.7572 0.9932 1.4978

Table 4.1: Exact obtained values of mean lift coefficient (c̄l) for each of the sim-
ulated cases.
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χ
c̄l 0 0.25 0.5 0.75 1 1.5

0 0.0240 0.0079 0.0060 0.0151 0.1019 0.0212
0.2 0.0241 0.0047 0.0086 0.0428 0.0380 0.0356
0.4 0.0231 0.0062 0.0101 0.0373 0.0197 0.0085
0.5 0.0206 0.0109 0.0206 0.0075 0.0358 0.0124
0.6 0.0199 0.0200 0.0027 0.0015 0.0570 0.0048
0.7 0.0180 0.0036 0.0128 0.0070 0.0284 0.1127
0.8 0.0152 0.0055 0.0020 0.0157 0.0418 0.1351
1 0.0023 0.0003 0.0220 0.1776 0.1696 0.0614

Table 4.2: Exact obtained values of the error in percentaje between the mean lift
coefficient (c̄l) achieved in each of the simulated cases and the target ones (c̄ltarget).

The success in the rapid conversion of the simulations, is due to a good estimation
of the initial value of the mean pitch angle (θm) that is included in the equations
of motion (equations 3.3) and adjusted until the desired values of c̄l are obtained,
after an iterative process as it was explained in the previous section of the docu-
ment. Figure 4.2 shows the required values of θm, presented in degrees, to achieve
said c̄ltarget. The exact values for each simulated case are collected in table 4.3.

As expected, in order to achieve larger values of c̄l, higher values of mean pitch
angle are required. Nevertheless, it has to be commented the effect of the feath-
ering parameter in the obtained results. Feathering parameter was defined to be
similar to the ratio between pitching and heaving, and in equation 3.10 it was
appreciated the direct dependence between feathering parameter and the pitch-
ing amplitude (θ0) so that if one of these parameters increases the same does
the other one. On the other hand, in the pitching equation of motion (equation
3.3b), it was seen the independent contribution of mean pitch angle and pitching
amplitude to the total pitching motion of the airfoil, although it is assumed that
they can not be increased infinitely due to stall reasons. Thus, if one these angles
(θ0 or θm) is sufficiently large it has to be compensated with smaller values of the
other one. This behaviour is clearly seen looking at figure 4.2, where higher values
of mean pitch angle are required at low values of feathering parameter to achieve
the desired mean lift coefficient, and as the value of the feathering parameter
increases, increasing also the pitching amplitude, the required mean pitch angle
becomes smaller. Moreover, it has to be commented the similarity, for all the
different cases of c̄l, on the behaviour of θm respect to the feathering parameter
except for the case of zero lift. In the curves that describe the evolution it has
to be recalled a minimum for the cases of χ ' 0.7 that coincides with the points
of maximum propulsive efficiency, and a maximum at χ ' 0.5, points at which
maximum thrust is achieved (see figure 4.3 and figure 4.4).
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Figure 4.2: Mean pitch angle (θm [ o]) as a function of feathering parameter (χ)
for each one of the simulated cases.

χ
c̄l 0 0.25 0.5 0.75 1 1.5

0 0 2.8790 6.2308 9.2252 11.7795 19.1275
0.2 0 2.3691 4.5746 6.7500 9.0000 12.9823
0.4 0 2.8074 4.7175 6.6883 8.6815 12.2095
0.5 0 1.6075 3.9442 6.3015 8.2089 11.4889
0.6 0 1.8811 3.8103 5.3414 6.7501 10.8273
0.7 0 1.2214 2.6563 4.3782 6.3263 10.5213
0.8 0 1.5046 3.0671 4.6805 6.3784 10.0035
1 0 1.7309 3.4843 5.2894 7.0030 10.6459

Table 4.3: Exact obtained values of mean pitch angle (θm [ o]) for each of the
simulated cases.

One of the objectives of the present project was to find a combination for the
values of the parameters involved in the kinematics of the airfoil, to achieve
maximum values of thrust. Table 4.4 collects the exact obtained values of c̄t after
the postprocessing of data provided by TUCAN for each of the simulated cases.
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Moreover, these results are also shown in figure 4.3, where it is appreciated how
the lower the desired lift, the higher the thrust that can be generated. It has to
be recalled the fact that at certain values of χ there is no generation of thrust,
as it occurs for values of χ larger than 0.8 ∼ 0.9, depending of the case analyzed,
and for c̄l = 1.5 due to the large value of lift, thrust is not generated until a value
of feathering χ ' 0.1 is achieved. Furthermore, it is clearly seen how maximum
values of mean thrust coefficient are achieved at values of feathering parameter
between 0.5 and 0.6.
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Figure 4.3: Calculated and approximated values of mean thrust coefficient (c̄t)
as a function of feathering parameter (χ) for each one of the simulated cases, and
maximum values of c̄t for each c̄l.

The fact of launching new simulations in TUCAN to obtain the exact value of χ
that provides maximum thrust is not complex but tedious, and the accuracy of
the exact values does not compensate the computational time required, and the
associated cost to achieve them. Thus, an approximation of the values of c̄t that
would be obtained at every single χ is include in figure 4.3, where the points of
maximum thrust are remarked. Table 4.5 collects the approximated values of χ
for maximum thrust. To ensure the validity of the approximation made, the error
between the maximum obtained thrust coefficient in the simulations for each c̄l
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case and the maximum approximated value of thrust coefficient is calculated as
follows:

Errormax,c̄t =

∣∣∣∣100−
c̄tmax,c̄l · 100

c̄t,approx

∣∣∣∣ (4.1)

χ
c̄l 0 0.25 0.5 0.75 1 1.5

0 0.1226 0.1145 0.0911 0.0464 -0.0227 -0.4155
0.2 0.5573 0.5454 0.5108 0.4553 0.3811 0.2099
0.4 0.7692 0.7641 0.7475 0.6975 0.6231 0.4366
0.5 0.8297 0.8175 0.7753 0.7322 0.6686 0.4913
0.6 0.7815 0.7810 0.7649 0.7283 0.6770 0.4773
0.7 0.6696 0.6707 0.6656 0.6416 0.5909 0.4035
0.8 0.5010 0.4865 0.4554 0.4216 0.3837 0.2322
1 -0.19214 -0.1930 -0.1959 -0.2038 -0.2190 -0.3670

Table 4.4: Exact obtained values of mean thrust coefficients (c̄t) for each of the
simulated cases.

c̄l 0 0.25 0.5 0.75 1 1.5
χapprox 0.5066 0.5110 0.5369 0.5471 0.5681 0.5271
c̄tapprox 0.8301 0.8182 0.7777 0.7365 0.6814 0.4943

Error [%] 0.0387 0.0818 0.3039 0.5903 0.6394 0.6056

Table 4.5: Approximated values of maximum thrust (c̄t) for each mean lift co-
efficient (c̄l) studied and the corresponding feathering parameter (χ) to achieve
them.

It has been obtained a maximum error of 0.63% for the case of c̄l = 1, so the
approximation made can be considered good enough. The values of the errors ob-
tained for the rest of lift coefficient cases, are also included in table 4.5. Moreover,
looking at said figure and tables it can be seen how larger values of thrust are
achieved at lower values of lift, and how the tendency of the values of χ, at which
these maximum values are achieved, is to increase as lift is increased up to a point
between c̄l = 1 and c̄l = 1.5 where the value of the required feathering parameter
to achieved maximum thrust decreases. Furthermore, it exits a trade off between
the desired lift and the maximum thrust generated, existing a difference of 40.45
% between the maximum c̄t generated at c̄l = 0 and c̄l = 1.5. From a propulsion
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point of view, the results obtain for c̄l = 0.25 (c̄l = 0 does not make sense from
an aerodynamic point of view since there is no generation of lift and the results
obtained for that c̄l = 0.25 does not differ a lot from the ones of c̄l = 0) are
excellent. Nevertheless, in some circumstance the weight that the flying machine
has to carry is larger, and a balance between the payload allowed and the thrust
generated has to be done. Looking at the results obtained, it can be conclude
that the optimum point is to achieve values of c̄l of the order of 1 (even slightly
higher) without penalizing a lot the generation of thrust (that differs in a 17.9%
to the thrust achieved at c̄l = 0).

To find the combination of parameters to obtain the best results in terms of
propulsive efficiency was one of the main objectives of the project. Knowing the
exact values of the parameters involved in the kinematics of the airfoil for each
simulated case and the aerodynamic forces obtained, applying equation 3.17 the
exact values of propulsive efficiency are obtained for each one of the 48 cases
launched in TUCAN. These values are collected in table 4.6, and they are also
presented in figure 4.4.
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Figure 4.4: Calculated and approximated values of propulsive efficiency (ηp) as
a function of feathering parameter (χ) for each one of the simulated cases and
maximum values of ηp for each c̄l.
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χ
c̄l 0 0.25 0.5 0.75 1 1.5

0 0.0267 0.0250 0.0200 0.0102 -0.0050 -0.0961
0.2 0.1463 0.1430 0.1337 0.1190 0.0995 0.0551
0.4 0.2429 0.2407 0.2355 0.2221 0.2005 0.1439
0.5 0.2899 0.2872 0.2754 0.2599 0.2400 0.1829
0.6 0.3180 0.3169 0.3095 0.2964 0.2792 0.2044
0.7 0.3302 0.3299 0.3261 0.3141 0.2899 0.2002
0.8 0.3163 0.3087 0.2898 0.2656 0.2372 0.1438
1 -0.2808 -0.2799 -0.2771 -0.2781 -0.2859 -0.4514

Table 4.6: Exact obtained values of propulsive efficiency (ηp) for each of the
simulated cases.

Looking at figure 4.4, it can be appreciated how as feathering parameter is in-
creased the same does the propulsive efficiency in a similar way to the behaviour
of c̄t previously commented and showed in figure 4.3, since ηp is proportional to it.
Thus, as it occurs in the analysis of the mean thrust coefficients obtained, there
are values of feathering parameter for which the propulsive efficiency obtained is
negative. Once again, coinciding with the case of c̄t, for values of χ larger than
0.8 ∼ 0.9, depending on the analyzed case, the values of ηp abruptly decrease
from almost their maximum values, and negative values are obtained, as well as
for the case of c̄l = 1.5, where the efficiency obtained is negative up to χ = 0.1.
Moreover, it has to be commented the presence of maximum values of propulsive
efficiency although in this case, they are obtained at values of χ between 0.6∼0.7
and the curve in the behaviour of ηp as a function of χ seems to be pushed to
the right (respect to the results obtained in terms of c̄t) due to the influence of
other parameters such as the lift force, heaving and pitching rates, that influence
in the calculation of ηp (see equation 3.17). As it occurred for the case of max-
imum thrust, the fact of launching new simulations in TUCAN to achieve the
exact values of feathering parameter at which maximum propulsive efficiency is
achieved, does not compensate the computational cost. Thus, an approximation
is performed in a similar way as in the previous case and the results obtained
are also included in figure 4.4. The estimated values of χ at which maximum
ηp would be achieved are collected in table 4.7. To ensure the validity of the
approximation made, once again, the error between the approximated maximum
values and the actual values obtained in the simulation is computed as follows:

Errormax,ηp =

∣∣∣∣100−
ηp,max,c̄l · 100

ηp,approx

∣∣∣∣ (4.2)
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c̄l 0 0.25 0.5 0.75 1 1.5
χapprox 0.7372 0.7230 0.7000 0.6903 0.6746 0.6385
ηpapprox 0.3326 0.3308 0.3262 0.3144 0.2916 0.2065

Error [%] 0.7098 0.2509 0.0000 0.0895 0.5785 0.9977

Table 4.7: Approximated values of maximum propulsive efficiency (ηp) for each
mean lift coefficient (c̄l) studied and the corresponding feathering parameter (χ)
to achieve them.

The results obtained are also collected in table 4.7. In this case, the maximum
error obtained is of 0.99% for the case of c̄l = 1.5. Looking at said figure and
tables, it can be seen how for the lower the lift achieved the higher the thrust
that can be generated and thus, the higher the propulsive efficiency obtained.
Moreover, it has to be commented how as lift is increased the value of feathering
parameter at which maximum ηp is achieved decreases. Again, it exists a trade
off between the lift and propulsive efficiency obtained. In this case the difference
between the maximum propulsive efficiency achieved at c̄l = 0 and c̄l = 1.5 is
of 37.91%. Looking at figure 4.4 and table 4.7, it is clearly apreciated how this
difference is much smaller between a c̄ll = 0 and c̄l = 1 differing only in a 12.32%.
Thus, the optimum is to flight at lift coefficients of the order of 1 or slightly larger,
where the propulsive efficiency is almost penaliced.

In order to find the optimum envelope in terms of parameters that provides the
combination of kinematic parameters to achieve the best results according to lift
force, thrust force and propulsive efficiency, the results previously commented of
ηp are presented as a function of c̄t on figure 4.5. On said figure, the values of
feathering parameter for maximum generation of thrust and maximum propulsive
efficiency (χ = 0.5 and χ = 0.7 respectively) are also shown for each one of the 6
different lift cases studied along the project. Looking at said figure, and without
forgetting the estimation made of the points of maximum c̄t (figure 4.3 and table
4.5) and maximum ηp (figure 4.4 and table 4.7), it can be clearly seen how the
optimum feathering parameter to flight without almost penalize the generation
of c̄t or ηp is in almost all the cases at χ ' 0.6. It has to be also commented, the
fact that all the curves looks like very similar, and the results obtained in terms
of c̄t and ηp are quite the same for all the cases of mean lift coefficient studied
except for c̄l = 1.5, where a clear difference is appreciated. Nevertheless, this
difference is more than justify since the larger values of lift are always penalized
with a less generation of thrust and thus, taking into account the contribution of
this two forces, propulsive efficiency is penalized obtaining lower values.
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Figure 4.5: Propulsive efficiency (ηp) as a function of mean thrust coefficient (c̄t)
for each one of the mean lift coefficients (c̄l) studied. Values of feathering param-
eter (χ) for maximum generation of thrust and maximum propulsive efficiency
are also included.

In next section (section 4.2) it is presented the behaviour followed by the vor-
ticities around the flow in a period of time, for the most relevant cases. The
LEV and TEV are the two main vortical structures in the flow responsible of
the generation of forces. Thus, in the next figures, it is previously presented the
temporary history of cl and ct for a period of time.

Figure 4.6 presents the temporary history of cl for each one of the 6 different
values of c̄l studied, for the most relevant values of feathering parameter, so that
it is included χ = 0 and χ = 1, since pure heaving motion and a smooth motion
respect to the flow are respectively presented, and χ = 0.5 and χ = 0.7 since at
these values, maximum generation of thrust and maximum propulsive efficiency
are respectively obtained. In the figure, the part with the white background
corresponds to the downstroke motion and the one with the light grey corresponds
to the upstroke. Looking at said figure, it can be appreciated how the lower
the value of feathering parameter the larger the amplitude of cl. Feathering
parameter is responsible of the orientation of the airfoil respect to the incoming
velocity, taking an important role in the magnitude of the forces generated and
their orientation. Moreover, these forces are larger during the downstroke than
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in the upstroke.
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Figure 4.6: Temporary history of cl in one period of motion for the most relevant
values of χ for each one of the six different cases of c̄l.

Figure 4.7 shows a clear comparison on the forces achieved at each studied value
of feathering parameter for the cases of lowest and highest value of c̄l. There,
the behaviour of larger forces appearing for the larger values of χ is appreciated.
Moreover, it is seen how as the value of c̄l is increased larger forces takes place
during the downstroke while for the case of c̄l = 0 larger forces takes place along
the upstroke.
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Figure 4.7: Temporary history of cl for the highest and lowest values of c̄l for each
one of the eight different cases of χ studied.

0 0.25 0.5 0.75 1

t / T

-3

-2

-1

0

1

2

3

c
t

   c
l
 = 0

 = 0
 = 0.2
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 1

0 0.25 0.5 0.75 1

t / T

-3

-2

-1

0

1

2

3
    c

l
 = 1.5

Figure 4.8: Temporary history of ct for the highest and lowest values of c̄l for each
one of the eight different cases of χ.

Differently to the results presented in figure 4.6 and figure 4.7, the results obtained
in terms of thrust coefficient, shown in figure 4.8 and 4.9, are more unpredictable.
Looking at figure 4.9, it can be seen how the temporary history of this force is not
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Figure 4.9: Temporary history of ct in one period of motion for the most relevant
values of χ for each one of the six different cases of c̄l.

symmetric during the downstrock and upstroke. It is seen how for lower values of
χ, higher values of thrust are obtained along the upstroke, while as χ is increased
higher values are obtained in the downstroke. In these figures, it can be seen how
at χ = 0.5 the temporary history of ct presents positive values of thrust coefficient
along almost the whole period, allowing to achieve maximum values of generated
thrust. On the other hand, it has to be remarkable the behaviour presented at
χ = 1 where larger negative values takes place along the upstroke that can not be
compensated with the positive ones yielding to the negative values of c̄t previously
commented on figure 4.3.
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4.2 Flow visualization
Having seen the temporary history of lift and thrust coefficients for a period of
motion, in this section a visualization of the flow is presented, in order to relate
the effect that LEV and TEV have on the generation of these forces.

In the following figures, the visualization of the flow along a period is presented
in four snapshots for the most relevant cases studied. First of all, it is presented
a comparison between the cases of lowest and highest values of c̄l studied (c̄l=0
and c̄l=1.5) for a pure heaving motion (χ = 0) and a motion that is smooth
with the flow (χ=1). After that this comparison is made with the same values of
mean lift coefficient but at the interest values of feathering parameter in terms
of maximum generation of thrust and maximum propulsive efficiency, which are
χ = 0.5 and χ = 0.7 respectively.

Looking at figure 4.10 and figure 4.11, it can be seen how at χ = 1 the airfoil
moves smoothly in the flow without generating almost any force. Nevertheless,
at χ = 0 pure heaving motion is observed, and as expected larger forces are
presented. It can be seen the effect of the LEV and TEV and how they dissipate
in the wake. The effect of these vortical structures is even more larger for the
case of c̄l = 1.5 as it can be seen in figure 4.11. Moreover, looking at both figures
it can be see how at t = 0.75T , coinciding with the upstroke, there is a creation
of a LEV in the bottom part of the airfoil and the detachment of the vortex
generated in the upper part that causes a momentary lose of the list force, and
at t = 0.25T during the downstroke this LEV is generated in the upper part and
the detachment of the TEV, being the responsible of the higher values of cl seen
in its temporary history.

Figure 4.12 and figure 4.13 show the behaviour of the flow at values of feathering
parameter of 0.5 and 0.7 coinciding with maximum generation of thrust and
maximum propulsive efficiency. Although small differences are presented between
them, it can be seen how for χ = 0.5 larger forces takes place around the airfoil,
and these forces become stronger at c̄l = 1.5. During the upstroke, at t = 0.25T
it is seen how the TEV is much stronger at χ = 0.5 as well as the LEV generated
during the downstroke.



4.2. Flow visualization 47

   =0

   0T

-2

0

2

  0.25T

-2

0

2

  0.5T

-2

0

2

  0.75T

0 2 4

-2

0

2

   =1

   0T

  0.25T

  0.5T

  0.75T

0 2 4

Figure 4.10: Flow visualization for the case of c̄l = 0 along a period of motion for
pure heaving motion (χ = 0) and a motion smooth with the flow (χ = 1).
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Figure 4.11: Flow visualization for the case of c̄l = 1.5 along a period of motion
for pure heaving motion (χ = 0) and a motion smooth with the flow (χ = 1)
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Figure 4.12: Flow visualization for the case of c̄l = 0 along a period of motion for
values of feathering parameter of maximum generation of thrust (χ = 0.5) and
maximum propulsive efficiency (χ = 0.7)
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Figure 4.13: Flow visualization for the case of c̄l = 1.5 along a period of motion
for values of feathering parameter of maximum generation of thrust (χ = 0.5)
and maximum propulsive efficiency (χ = 0.7)
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4.3 Comparison of results with a parallel project

In this section, it is included a comparison between the results obtained in section
4.1 and the ones obtained in Yuste 2017, a companion project.

4.3.1 Numerical method

In Yuste 2017 it can be found a validation of reduced order of the method used
by Moriche 2017. This new model consist on a simplification of the equations
that describe the aerodynamic forces, and whose objective is to reach a high
efficient tool in terms of computational time, although a small gap of error has
to be included in the results. This model has been developed based on the cases
detailed in Moriche 2017, and the objective of said project is to check the validity
of the model using cases that differs to these ones.

In order to compute the aerodynamic forces, the model is based in the Navier
Stokes equations for an incompressible case. In order to obtain the simplified
expression of the forces, the model follows the Chang algorithm, explained in
detail in Chang 1992, where forces are obtained by a sum of several integral
terms. Thus, the normal components of forces are calculated as follows:

Fx = −ρ
∫
S

φx
U∞

∂~u

∂t
· ~ndS +

ρ

2

∫
S

|~u|2~n · ~exdS − ρ
∫
V

(~u× ~ω) · ∇φx
U∞

dV

+ µ

∫
S

(~ω × ~n) ·
(
∇φx
U∞

+ ~ex

)
dS

(4.3a)

Fz = −ρ
∫
S

φy
U∞

∂~u

∂t
· ~ndS +

ρ

2

∫
S

|~u|2~n · ~ezdS − ρ
∫
V

(~u× ~ω) · ∇φy
U∞

dV

+ µ

∫
S

(~ω × ~n) ·
(
∇φz
U∞

+ ~ez

)
dS

(4.3b)

Different contributions take part in the calculation of the components of the
forces. In equations 4.3a and 4.3b, four different integral terms can be distinguish.
The first two terms make reference to the forces produced by the body motion,
the third integral component refers to the flow vorticity, and the last integral
term to the surface vorticity. These three different contributions to the total
force, exerted by the fluid into the body, have different importance and relevance
into the total force. In the next paragraphs, these contributions and how their
calculation is achieved, is developed.
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The two integral terms corresponding to the body motion forces include all the
forces caused by the movement of the airfoil inside the fluid domain. The potential
that defines this force contribution depends directly on the geometry and the
kinematics of the problem. Thus, this is a highly reliable contribution that can
not be considered as a source of error. The potential is complex to be calculated,
and it is given by solving the Laplace equation for the airfoil.

On the other hand, the flow vorticities considered in the third term is the contribu-
tion that represents the highest source of error. This is the term to be simulated
in the model, where different simplifications have been considered. There, the
circulation of the flow (Γ), and the direction of the force, take an important role.
Kutta-Joukowski established that F = ρUinfty × Γ so that the incident velocity
and the force were perpendicular. Nevertheless, looking at the simulated cases
collected in Moriche 2017, it is easy to observe how the components of the force
are not perpendicular to the incident velocity but to the chord of the airfoil.
Although this behaviour in the direction of the forces is not fulfill in the whole
period, it is done in almost the totality of the period. The difference respect to
what Kutta-Joukowski established, is that this theory was applicable for flows
around rigid wings, and wings have evolved with the past of the years being more
flexible and introducing changes in their shape. Despite of this, the scalar formula
of the Kutta-Joukowski formula, is kept (

∣∣∣~F ∣∣∣ = ρΓ
∣∣∣~U ∣∣∣). To solve the problem, the

circulation is calculated by means of a constant fitting model of Pesavento and
Wang 2004. The formula used in the calculation of the circulation is composed
by a translational and rotational terms, and it is given by:

Γ = ΓT + ΓR =
1

2
GT c

∣∣∣~U ∣∣∣sin (2αe) +
1

2
GRc

2θ̇ (4.4)

where, GT and GR are the two constants that represent the translational and
rotational terms respectively. The rotational constant is calculated by similarity
with the expression of the potential thin airfoil theory, where:

ΓR = πc2θ̇

(
3

4
− xp

c

)
(4.5)

Being the pivoting point located at the quarter chord and by similarity, it is
conclude that GR = π. The GT constant is calculated, ones GR is defined, by
means of a fitting method explained with more detail in Yuste 2017, yielding in a
final value of GT = 1.85. The fact of using this constant in the calculation of the
total Γ represents a possible source of error once they are used out of the base
cases to develop the model. Thus, these constants need a continuous checking
and modifications for each one of the different cases in order to diminish as much
as possible the source of error.
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Finally, the fourth integral term corresponding to the forces produced by the
vorticities generated by the surface of the body. This final contribution to the
total force, is very small compared with the others, and its calculation is tedious.
Thus, in order to simplify the model given in Moriche 2017 it has been decided to
neglect the contribution of this term. As a consequence, a small source of error
produced by this decision has to be considered.

With the model already developed and using the equations of motion (equations
3.3), in Yuste 2017, it can be found the analysis of multiple cases, performed in
Matlab, where different parameters involved in the kinematics of the airfoil, the
Reynolds number and pivoting point position between others, have been varied in
order to find possible patrons in the behaviour of the simulations and determine
for which cases the model works providing good results.

Due to the high efficiency of the method in terms of computational time, all
the simulations included in this document were also analyzed. Thus, in the fol-
lowing pages it is presented a comparison between the results obtained in this
project performing the Direct Numerical Simulations using TUCAN, and the re-
sults provided using the simplified model previously commented. To make the
comparison possible all the necessary data regarding the computational domain,
boundary conditions and every single parameter involved in the kinematics of
the airfoil for each of the 48 different cases studied, is provided to perform the
analysis using this model. The results obtained are presented in section 4.3.2.

4.3.2 Results

Taking into account that TUCAN is sufficiently validated, this section aims to
find for which cases the results obtained using the proposed simplified model are
good enough, although some differences in the results obtained are expected due
to the assumptions and simplifications made.

Figure 4.14 shows a comparison on the behaviour of the mean lift coefficient as
a function of feathering parameter between the results obtained using TUCAN
and the simplified method in study. The difference in the results is notorious. In
the first computational method the mean pitch angle is continuously varied until
the desired mean lift coefficient is achieved providing accurate results as it can
be appreciated. Nevertheless, in the second one, the final values of θm to achieve
those c̄l values and other kinematic parameters are introduced in the equations
of motion (3.3) and the aerodynamic forces are directly calculated, as explained
in section 4.3.1, by means of the equations 4.3 yielding to results that differ a lot
to the expected ones.

It can be observed how at χ = 0 a value of c̄l ' 0.05 is obtained no matter the
value of the mean pitch angle imposed. As feathering parameter increases larger
values of mean lift coefficient are obtained until those values converge at χ ' 0.7
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Figure 4.14: Comparison of the mean lift coefficients (c̄l) obtained using TUCAN
and a simplified model for each one of the simulated cases.

to a value of mean lift coefficient that differs in approximately a 30 % to the
expected value. The fact of obtaining these differences in values can be explained
due to the assumptions made while computing the forces components. In section
4.3.1 it is explained how in the third integral term corresponding with the vorticity
of the flow, the translational and rotational constants are estimated supposing
a high source of error. Moreover the direction of the normal components of the
forces respect to the incoming velocity and the chord of the airfoil represents
and important role in the calculation. This added with the small contribution
to the total error derived from neglecting the force produced by the vorticities
caused by the surface of the airfoil (fourth integral term), can explained how the
final lift force achieved is smaller than the expected one. Furthermore, the fact
of achieving such lower values of lift for values of χ between 0 and 0.4 could be
explained due to the effect exerted by the LEV and its principal contribution to
the final lift force.

Regarding the mean thrust coefficient, the results provided using the simplified
model are similar to the ones of TUCAN. Looking at figure 4.15, it can be appre-
ciated how the behaviour of the curve followed by each of the target lift coefficient
cases behaves similar to what it was expected. Nevertheless, the curve seems to
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Figure 4.15: Comparison of the mean thrust coefficients (c̄t) obtained using TU-
CAN and a simplified model for each one of the simulated cases.

be pushed up and to the left, achieving larger values of maximum mean thrust
coefficient at values of χ between 0.6 ∼ 0.7 instead of at χ ' 0.5, as it is the
case of the results provided solving the DNS in TUCAN. Moreover, it has to be
commented that similarly to what occurred for the lift force, at χ = 0 the gen-
eration of thrust is almost zero and for all the studied cases. Once again, these
differences in the results is associated with the assumption made in the process
of calculating the force components. Looking at figure 4.14 and figure 4.15, it is
seen how while larger values of mean thrust coefficient respect to the expected
ones are obtained, lower values of lift coefficient are achieved. Thus, a source of
error in the orientation of the calculated components of the force respect to the
actual ones estimated using TUCAN is expected.

In order to calculate the propulsive efficiency (equation 3.17) for each of the
simulated cases, not only the components of the force are necessary but the
moment of the airfoil at the LE. While solving the DNS in TUCAN the temporary
history of data is provided for each one of the cases. Nevertheless, the simplified
model has not been developed to calculate this moment yet. Since the work
required to perform the pitching motion is much lower than the work required
to perform the heaving one, and the moment at the leading edge is not the
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Figure 4.16: Comparison of the propulsive efficiency (ηp) obtained using TUCAN
and a simplified model for each one of the simulated cases.

biggest contribution to the total moment computed at the quarter chord of the
airfoil, using the data provided by TUCAN, it is considered that for those cases in
which the work required for pitching is less than a 10% the work for heaving, the
contribution of this term to the total moment can be neglected. After analyzing
the data of the 48 different cases, it is seen how the criteria established is fulfilled
in almost all the simulated cases except in some of the cases for c̄l = 0 (Cases with
the nomenclature CXX000 collected in table 3.2). Thus, with this assumption
a small source of error in the computation of the propulsive efficiency has to
be added to the errors commented in the calculation of the components of the
force. The results obtained using this simplified model are compared with the
ones obtained using TUCAN in figure 4.16.

In said figure, it can be seen how despite the differences seen in the results concern-
ing the aerodynamic forces, the propulsive efficiency calculated with the model,
provide good results for low values of feathering parameter and after χ reaches a
value of 0.5 the behaviour of the curves obtained for each target mean lift coeffi-
cient is completely different to the expected one. Once again the obtained results
can be justify from the results previously obtained for the aerodynamic forces. It
is seen how the effect of thrust force is higher than the lift one in the propulsive
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efficiency. Thus, for small values of χ (χ < 0.4) where the results of c̄t are similar
to the ones of TUCAN, good results are obtained in terms of ηp no matter the
differences encountered in the results obtained for c̄l. Nevertheless, as the value
of feathering parameter increases the values obtained for c̄t are not so good, ex-
plaining the results obtained for ηp that continue being positive and even becomes
bigger, and tends to infinity, for larger values of feathering parameter, behaviour
that is explained due to the results obtained for the mean thrust coefficient.





Chapter 5

Regulatory framework and socioeconomic
impact

One of the objectives of this project, is to be capable to predict the aerodynamic
forces that take place under a flapping motion, with the purpose of using the
obtained knowledge on improving the design of MAVs.

5.1 Regulatory framework

The interest put in micro aerial vehicles in the past years, and their huge variety
of applications, has generated a controversy about their used, concretely about
the restrictions of their used, and if it would be allowed to use them under any
circumstance, in any place, by anyone and without restrictions of the aerial space.
Although the debate is not solved, the possible regulations derived from it, do not
affect to the implementation of the actual project in the design of MAVs, since the
main purpose of the project is to increase the knowledge about the performance
of insects and small bird to imitate their movements to design more efficient
MAVs, and its implementation does not suppose a change on the structure, but
a change on the parameters that affect to their kinematics without taking any
safety risk for anyone (as it could be any modification on the structure of an
aircraft). Moreover, a part from the possibility of implementing the acquired
knowledge in their design, there is not any known regulation about the design
and manufacturing of these vehicles.

5.2 Socioeconomic impact

As said before, one of the direct applications of the actual project is to improve
the performance of MAVs in the new designed prototypes. In the past years MAVs
have attracted the interest because of their huge variety of applications. These
micro air vehicles, imitate the flight of small birds and insect, with dimensions
lower than 15 cm that allow them to fly to remote, recondite, steep and hazardous
places where aircraft or even drones can not access due to its bigger size. MAVs are
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also provided with sensor to take measurements, photos, videos or take samples
of water, air or terrain. Thus, their used in humanitarian, reconnaissance, rescue
or military missions is more than attractive having a huge social impact. They
could be used to test whether or not it is safe to breath the air under natural
disasters as it is the case of a leakage at a nuclear power plant or the proximity of
an active volcano, to detect if there is alive people in a landslide or an earthquake
and to recognize the terrain in hazardous military missions allowing soldiers to
avoid unnecessary risks.

Due to the huge variety of interesting applications, their use is more than ensure
supposing a good rate of manufacturing, which would imply a positive economic
impact and an advanced in technology.



Chapter 6

Summary and conclusions

6.1 Summary

This bachelor thesis aims to contribute in the understanding of the unsteady
aerodynamics of flapping flights at low Reynolds number, which despite all the
researching works made, are not completely understood yet due to its high com-
plexity.

Along the execution of this project 48 different Direct Numerical Simulations have
been launched in TUCAN, where an Immersed Boundary Method has been used
to solve the Navier Stokes equations around an airfoil. With this project it is
pretended to study the influence of feathering parameter in the unsteady aerody-
namics of the flapping movement of a NACA 0012, at low Reynolds number and
reduced frequency, and to achieve the best configuration of kinematic parameters
to obtain maximum values of thrust and propulsive efficiency without penalizing
the generation of lift.

To make this possible different values of feathering parameter in the range between
0 and 1, where propulsive forces takes place, are analyzed. At the beginning the
selection of these values was made from 0.2 to 0.2, but in the process it was seen
that χ = 0.5 and χ = 0.7 were values of interest in terms of thrust and propulsive
efficiency, so that the final values studied were: 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and
1. This values of feathering parameter were analyzed at 6 different values of lift
coefficient (0, 0.25, 0.5, 0.75, 1 and 1.5) yielding in a total of 48 simulated cases.
Due to the complexity of the problem and the amount of parameters involved,
some of them have been fixed as it is the case of: Reynolds number, Re = 500;
heaving amplitude , h0/c = 1; pivoting point, xp = c/4; phase shift between
heaving and pitching motion, ϕ = 90o and reduced frequency, k = 1.41. To
solved the equations of motion, the mean pitch angle and pitching amplitude
were defined. Having fixed the rest of parameters θ0 is directly obtained from the
definition of χ and θm is varied continuously in an iterative process to achieve the
desired values of lift coefficient.
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6.2 Conclusions
While analyzing the results obtained in terms of maximum generated thrust and
maximum propulsive efficiency, it has been seen that maximum values of thrust
are obtained at χ ' 0.5 and the ones of maximum propulsive efficiency are
achieved at χ ' 0.7. Since in this project, it is pretended to achieve a range
of values of χ to optimize the performance of the airfoil, the exact values of
feathering parameter for maximum propulsive efficiency and maximum genera-
tion of thrust have not been achieved performing DNS, since it would supposed
an increased on the computational time and cost, that is out of the limits of the
project. Thus, an estimation of the results that would be obtained performing a
DNS in terms of c̄t and ηp has been done for each one of the 6 different cases of
mean lift coefficient. The results obtained are good enough to save said compu-
tational time. The error between the maximum obtained c̄t and the one obtained
performing the approximation is of 0.63 % for the case of c̄l = 1 and for the case
of maximum propulsive efficiency this error is of 0.99% for the case of c̄l = 1.5.
In order to achieve the best combination of parameters to compensate the gen-
eration of thrust and propulsive efficiency without penalizing the generation of
lift it has been established that the best option is to flight at values of feathering
parameters of χ ' 0.6 achieving values of c̄l slightly larger than 1.

Moreover, the analysis of the results of obtained in terms of aerodynamic forces
and propulsive efficiency has been reinforced with a visualization of the flow for
the most relevant cases, paying special attention to the effect caused by the LEV
and TEV on the generation of this forces.

6.3 Future work
First of all, it has to be said that the results presented in this document can be
taken into consideration as a reference for future works, where similar parameters
are considered and the present project can be consider as a starting point for
future works.

It could be interesting to increase the Reynolds number, since the one used in the
simulation is a very low one. Nevertheless, it has to be considered that increasing
Re more than approximately Re = 3000 can yield in some instabilities on the
flow that would need a 3D DNS to be solved, which increases a lot the cost of
the project. Thus, values of Re of 1000 or 2000 would be a good choice to see
how the obtained results are modified. Moreover, an increase in Re would have
and associate increase on the number of resolution points and the size of the
computational box in order to achieve accurate results.

Looking at the results obtained in terms of aerodynamic forces and the proce-
dure followed, it has been seen how for this project is not practical to continue
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launching more simulations to achieve more precise values and an approximation
is accurate enough. Nevertheless, introducing changes in the Re, and the size of
the box it would be interesting to perform simulations for the most interesting
cases in terms of maximum generation of thrust and propulsive efficiency taking
as reference the results obtained by the approximated method used. Further-
more, it is recommended to perform some simulations at the interested points for
some values of mean lift coefficient between 1 and 1.5, specially to see the results
obtained in terms of generation of thrust.

Moreover, taking into account the results obtained in section 4.3, it could be
interesting to check the values imposed for the translational and rotational con-
stants at it supposed a big source of error in the results obtained, as well as the
orientation of the forces that seems to be not the exact one. To finish with, al-
though it represents a small source of error, and the final goal of this model is
to achieve good results by means of simplifying the model proposed in Moriche
2017, it would be interesting to introduce the computation of moments in the
model to improve the results in terms of propulsive efficiency.





Appendix A
Budget

An important part of any project, is the estimation of the total budget needed
to develop it, in which the individual costs are broken down.

In the following lines, it can be found with detail, the most important items that
take part in this project.

• MATLAB license.
To postprocess the results obtained in the simulations, MATLAB has been
used as a computational program. An academic license provided by the
Univertisty has been used whose priced is value on 500 €.

• Base computer.
To carry out the project a personal computer has been needed. A Toshiba
laptop, intel-i7 provided with Microsoft Windows, has been used. Moreover,
a remote-interface terminal to allow the shell remote conection in Linux has
been indispensable. The cost of the computer is of 870 €.

• Hours of engineering work.
To finish up the project, around 500 hours of work has been necesary. The
price per work hour of a low experience engineering is estimated at 20
€/hour, yielding to a total of 10,000 €.

• Software license.
The carry out the simulations the software used has been a CFD code
developed at the bioengineering and aerospace department of UC3M. The
estimated cost of the sofware is included in the budget by looking at the
price of an equivalent software as it is the case of ANSYS FLUENT whose
academic license is priced on around 6000 €.

• Computational time.
Along the project 48 simulations have been performed, and between 15 and
22 hours per simulation have been needed before they converged. The simu-
lations have been launched on a HPC cluster where 12 nodes per simulations
have been used yielding in a total of 12000 cphours approximately. If the

65



66 Appendix A. Budget

computing hour is estimated in 0.2 €/hour acoording to CESGA, this adds
2.400 € to the total budget.

Table A.1 collects a summary of the neccesary cost to develop the project.

Subject Price(€)
Software costs 8,900
Material costs 870

Engineering work 10,000
Total cost 19,770

Table A.1: Summary of the project budget estimation.



Appendix B

Flowchart and pseudocode

To better understand the postprocess of data explained in section 3.2.3 the
flowchart and pseudocode are also included.

% Define (c̄l, θm)old and (c̄l, θm)current
c̄lold = 0;
θmold

= 0;
c̄ltarget = 0.5; % For the first case. Substitute according with the simulated case
θmcurrent = 3.81π/180; % rad (3.81o)

% Define number of steps, frequency, period and tolerances.
nsteps = 2048;
k = 1.41;
T = 2π/k;
tol_cl = 1e− 4;
tol_θm = 2π/3600; % rad (0.1o)
tol_error = 0.2; %

% Launch the simulation in TUCAN until it finishes the execution and analyze
the generated data.

Load data(Fx, Fy, time)

If floor(time(end)/T)>= 2;
cl = −2 · Fy;

% Check if the simulation has converged
Calculate c̄l for the first period: c̄l(1) = mean(cl(1 : nstep));

For i=2:floor(time(end)/T);

Calculate c̄l for the next period: c̄l(i) = mean(cl(nstep · (i−1) : nstep · i));
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If |c̄l(i)− c̄l(i− 1)| <= tol_cl

disp([’The simulation has converged’])
c̄lcurrent = c̄l(i);
Calculate the amplitude in signal (A):
A = max(cl(nstep(i− 1) : nstep(i)))−min(cl(nstep(i− 1) : nstep(i)));

% Check if it has conclude
If
∣∣∣ c̄ltarget−c̄lcurrent

A

∣∣∣ > tol_error

disp([’The simulation has not conclude.’])
disp([’Apply the secant method’])

θmroot = θmcurrent −
(c̄lcurrent−c̄ltarget)(θmcurrent−θmold)

c̄lcurrent−c̄lold

% Check the diference between θmroot and θmcurrent

If |θmroot − θmcurrent| > tol_θm

disp([’The simulation has not conclude’])
% Update variables
θmold

= θmcurrent ;

θmcurrent = θmroot ;

c̄lold = c̄lcurrent;

Else
disp([’The simulation has conclude’])

End

Else
disp([’The simulation has conclude’])

End

Else
disp([’The simulation has not converged’])

End

End

Else
disp([’Launch again the simulation’])

End
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START 

Load forces and time (𝐹𝑥, 𝐹𝑧,𝑡𝑖𝑚𝑒) 

Launch the simulation in TUCAN 

𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 (𝑡𝑖𝑚𝑒(𝑒𝑛𝑑)/𝑇 ≥ 2)  

𝑐𝑙̅ = −2𝐹𝑧 
Calculate 𝑐𝑙̅ for the 1𝑜period  

(𝑐𝑙̅ from 𝑡𝑖𝑚𝑒 = 1 to  𝑡𝑖𝑚𝑒 = 𝑇) 

|𝑐𝑙̅ (𝑖) − 𝑐𝑙̅(𝑖 − 1)| ≤ 𝑡𝑜𝑙𝑐𝑙
 

θ𝑚𝑟𝑜𝑜𝑡
= θ𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡

−
(𝑐𝑙̅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

− 𝑐𝑙̅𝑡𝑎𝑟𝑔𝑒𝑡
)(θ𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡

− θ𝑚𝑜𝑙𝑑
)

𝑐𝑙̅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑐𝑙̅𝑜𝑙𝑑

 

|θ𝑚𝑟𝑜𝑜𝑡
− θ𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡

| < 𝑡𝑜𝑙𝜃𝑚
 

𝜃𝑚𝑜𝑙𝑑 
= 𝜃𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 

θ𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡
= θ𝑚𝑟𝑜𝑜𝑡

 

𝑐𝑙̅𝑜𝑙𝑑
= 𝑐𝑙̅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 

𝑆𝑎𝑣𝑒 𝑖 

𝑌𝐸𝑆 

END 

Define (𝑐𝑙,̅ 𝜃𝑚)𝑜𝑙𝑑  , 𝑐𝑙̅𝑡𝑎𝑟𝑔𝑒𝑡
 and 𝜃𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 

 

𝑛𝑠𝑡𝑒𝑝𝑠 = 2048             𝑡𝑜𝑙𝑐𝑙
=  10−4 

𝑘 = 1.41                       𝑡𝑜𝑙𝜃𝑚
= 0.1𝑜 

      𝑇 = 2𝜋/𝑘                     𝑡𝑜𝑙𝑒𝑟𝑟𝑜𝑟 = 0.2 % 
𝑖 = 2                                                     

 
 

𝑡𝑖𝑚𝑒(𝑒𝑛𝑑)/𝑇 ≥ 2  

Calculate 𝑐𝑙̅ for the 𝑖𝑜period  
(𝑐𝑙̅ from 𝑡𝑖𝑚𝑒 = (𝑖 − 1)𝑇 to  𝑡𝑖𝑚𝑒 = 𝑖𝑇) 

𝑐𝑙̅𝑐𝑢𝑟𝑟𝑒𝑛𝑡
= 𝑐𝑙̅(𝑖) 

Calculate the amplitude in signal  
𝐴 = max (𝑐𝑙) − 𝑚𝑖𝑛(𝑐𝑙) 

 

|
𝑐𝑙̅𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑐𝑙̅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐴
| ≤ 𝑡𝑜𝑙𝑒𝑟𝑟𝑜𝑟 

𝑌𝐸𝑆 

NO 

𝑌𝐸𝑆 

𝑖 = 𝑖 + 1 

 

NO 

𝑌𝐸𝑆 

NO 

NO 

𝑌𝐸𝑆 

Calculate θ𝑚𝑟𝑜𝑜𝑡
 

NO 
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