
 

This document is published at: 

Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, 
L.A., Uncini, A. (2019). Steady-State Performance 
of an Adaptive Combined MISO Filter Using the 
Multichannel Affine Projection Algorithm. 
Algorithms, 12 (1), 2. 

DOI: https://doi.org/10.3390/a12010002 

 
 

This work is licensed under a Creative Commons Attribution 4.0 
International License.  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288500681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3390/a12010002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


algorithms

Article

Steady-State Performance of an Adaptive Combined
MISO Filter Using the Multichannel Affine
Projection Algorithm

Danilo Comminiello 1,* , Michele Scarpiniti 1 , Luis A. Azpicueta-Ruiz 2

and Aurelio Uncini 1

1 Department of Information Engineering, Electronics and Telecommunications (DIET),
Sapienza University of Rome, 00185 Roma RM, Italy; michele.scarpiniti@uniroma1.it (M.S.);
aurelio.uncini@uniroma1.it (A.U.)

2 Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28903 Getafe, Spain;
azpicueta@tsc.uc3m.es

* Correspondence: danilo.comminiello@uniroma1.it; Tel.: +39-06-44585495

Received: 3 December 2018; Accepted: 14 December 2018; Published: 20 December 2018
����������
�������

Abstract: The combination of adaptive filters is an effective approach to improve filtering
performance. In this paper, we investigate the performance of an adaptive combined scheme between
two adaptive multiple-input single-output (MISO) filters, which can be easily extended to the case of
multiple outputs. In order to generalize the analysis, we consider the multichannel affine projection
algorithm (APA) to update the coefficients of the MISO filters, which increases the possibility of
exploiting the capabilities of the filtering scheme. Using energy conservation relations, we derive
a theoretical behavior of the proposed adaptive combination scheme at steady state. Such analysis
entails some further theoretical insights with respect to the single channel combination scheme.
Simulation results prove both the validity of the theoretical steady-state analysis and the effectiveness
of the proposed combined scheme.

Keywords: combination of adaptive filters; steady-state performance; multichannel adaptive filtering;
affine projection algorithm

1. Introduction

The convergence performance of an adaptive filtering is decisively affected by the choice of certain
characteristic parameters of the filter. This is one of the main motivations behind the high number
of adaptive algorithms and structures that are continually introduced in the literature to provide
improvements of convergence and steady-state performance in certain scenarios. The design of an
adaptive filter may be even very risky when no a priori information is provided on the model of the
signal to be processed. One solution to this problem is represented by the adaptive combination of
adaptive filters [1–6], which exploits the diversity of parallel adaptive branches. Combined structures
of filtering have been applied to a wide variety of online adaptive filtering applications [7–15] due to
their capabilities of detecting and selecting instant by instant the best-performing filter. To this end,
the analysis of the mean squared performance aims at showing the effectiveness of adaptive combined
schemes and how to exploit them the best [6,16–20].

In this paper, we focus on the combination of adaptive filters in the multichannel case. In particular,
the combined structure that we take into account is composed of a convex combination of two adaptive
multiple-input single-output (MISO) filters [8]. MISO filters are widely used in several applications,
such as adaptive beamforming [21,22], OFDM systems [23], channel equalization [24], and audio and
speech applications [25,26]. These have been chosen as a baseline scheme of the multichannel case,
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but the combined MISO structure, and the related analysis thereof, can also be easily extended to
multiple-input multiple-output (MIMO) filters, as in [11], since an MIMO filter can be seen as a parallel
of MISO filters. In order to adapt MISO filters, we adopt a multichannel affine projection algorithm
(APA) [27,28], which, being characterized by a projection order, allows us to generalize the analysis
with respect to both gradient-based and Hessian-based adaptive algorithms. Due to its robustness, the
APA has been widely implemented with variable parameters to further improve performance [29–33].

A first novel insight in this paper concerns the combination of two multichannel APA filters
differentiated according to the projection order. The combination of APAs using different projection
orders has been addressed in [8,34–38], where, however, the combination takes into account only the
current projection. Conversely, the proposed approach, which is also generalized with respect to the
other filter parameters, considers a mixing parameter for each projection order. Moreover, in the choice
of differentiating the projection order, and in particular setting a unitary order for one of the two MISO
filters, the diversity between gradient-based and Hessian-based algorithms is exploited, thus yielding
a performance improvement [1,16,39]. Some attempts in that sense were also provided in [40], but
without a theoretical performance analysis.

In this paper, instead, a performance analysis is conducted in-depth, thus representing itself
another novel contribution. Indeed, in order to show the capabilities of the proposed adaptive scheme,
we derive a steady-state analysis of the combined algorithm, thus deriving a theoretical value of the
excess mean squared error (EMSE) based on the energy conservation arguments [41]. In the literature,
many efforts have been made to analyze the performance of single-channel APA filters [42,43] and of
combined least mean squares (LMS)-like algorithms [1,6]. The use of the proposed scheme leads to
further non-straightforward assumptions that increase the complexity of deriving a theoretical value for
the EMSE. Experimental results prove, on the one hand, the validity of the steady-state EMSE analysis
presented and, on the other hand, the effectiveness of the proposed combined filtering architecture.

The rest of the paper is organized as follows: The proposed adaptive combined MISO filter is
introduced in Section 2, and the optimum theoretical EMSE is derived in Section 3. Then, the components
of the theoretical EMSE are derived using energy conservation properties; specifically, the EMSE
components for the individual MISO filters are derived in Section 4, and the EMSE component due to
the combination is achieved in Section 5. Results are presented in Section 6, and finally, in Section 7
our conclusions are drawn.

Notation

In this paper, matrices are represented by boldface capital letters and vectors are denoted
by boldface lowercase letters. Scalars are denoted by italic letters. Time-varying vectors and
matrices show discrete-time index as a subscript index, while in time-varying scalar elements
the time index is denoted in square brackets. A regression vector is represented as xn ∈
RM×1 =

[
x [n] x [n− 1] . . . x [n−M + 1]

]T
, where M is the overall vector length and

x [n− i] is individual scalar entry at the generic time instant n − i. A generic coefficient vector,
in which all the elements depend on the same time instant, is denoted as wn ∈ RM×1 =[

w0 [n] w1 [n] . . . wM−1 [n]
]T

, where wi [n] is the generic ith individual entry at the nth time

instant. All vectors are represented as column vectors. The index related to a generic jth filter is
denoted as superscript, e.g., w(j)

n .

2. A Convex Combination Scheme for Adaptive MISO Filters

An adaptive MISO system is composed of a number P of adaptive filters in parallel, each one
receiving a different input, and yields a single output. A combined system of MISO filters is
characterized by the adaptive combination of the outputs of different MISO filters, which can be
differentiated in several ways according to the updating rule or some parameter settings. In this paper,
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we consider the adaptive combination of a number of J = 2 MISO filters adapted by using the same
updating rule, defined by the regularized multichannel APA [25,27], but different projection orders.

The input signals are the same for each MISO system and are collected into data matrices.
However, due to the different projection order, each MISO system uses its own sub-matrix.
In particular, the pth input sub-matrix of the jth MISO system, for p = 1, . . . , P and j = 1, 2, is
represented as X(j)

p,n ∈ RKj×M:

X(j)
p,n =

[
x(j)

p,n x(j)
p,n−1 . . . x(j)

p,n−Kj+1

]T

=


xp [n] · · · xp [n−M + 1]

xp [n− 1] · · · xp [n−M]
...

. . .
...

xp
[
n− Kj + 1

]
· · · xp

[
n−M− Kj + 2

]


(1)

where M is the length of the adaptive filters (same for all) and Kj denotes the number
of previous entries to keep in memory, i.e., the projection order, for the jth MISO system.
The concatenation of sub-matrices (1) provides the input data matrix for each MISO system,
i.e., X(j)

n ∈ RKj×MP =
[

X(j)
1,n X(j)

2,n . . . X(j)
P,n

]
. Each MISO filter can be represented by w(j)

n ∈

RMP×1
[

w(j),T
1,n w(j),T

2,n . . . w(j),T
P,n

]T
, with j = 1, 2. The output vector of each MISO filter

y(j)
n ∈ RKj×1 =

[
y(j)

0 [n] y(j)
1 [n] . . . y(j)

Kj−1 [n]
]T

is then obtained as:

y(j)
n = X(j)

n w(j)
n−1. (2)

Taking into account the vector d(j)
n ∈ RKj×1 =

[
d [n] d [n− 1] . . . d

[
n− Kj + 1

] ]T
containing

the last Kj samples of the desired signal, it is possible to achieve the error signal vector e(j)
n ∈ RKj×1 =[

e(j)
0 [n] e1(j) [n] . . . eKj−1(j) [n]

]T
for each MISO filter:

e(j)
n = d(j)

n − y(j)
n . (3)

It is worth noting that the difference of notation between the kth entry d [n− k] of d(j)
n and the entry

yk [n] of y(j)
n (and the same for e(j)

n ) is due to the fact that d(j)
n is a regression vector collecting the last

Kj samples of the desired signal, while all the entries of y(j)
n and e(j)

n are computed at each time instant.
This means, for example, that the entry of the desired signal for k = 0 at the n− 1 time instant has
the same value of the entry for k = 1 at the nth time instant, and they both are denoted with d [n− 1].
On the other hand, all the entries of the output and signal vectors may change at each time instant
until convergence; hence, for example, y(j)

0 [n− 1] 6= y(j)
1 [n].

Therefore, the update rule of each MISO filter using the regularized multichannel affine projection
algorithm [27,28]:

w(j)
n = w(j)

n−1 + µjX
(j),T
n

(
δjI + X(j)

n X(j),T
n

)−1
e(j)

n (4)

where µj is the step size and δj is the regularization factor for the jth MISO filter, which is considered
the same for both MISO filters.

The chosen method for combining MISO filters is the system-by-system combination scheme [8],
depicted in Figure 1, since it involves the minimum necessary number of free parameters for
single-stage combined architectures. According to this scheme, the overall output of the system
is achieved by combining convexly the MISO filter outputs (2). This combination involves the sum of
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buffers with different lengths, which depends on the projection order Kj. This problem is addressed by
using zero-padding, thus:

zn

 ∈ RK1×1 = λn � y(1)
n + (1− λn)�

[
y(2)

n ; 0(1)
]

, if K1 ≥ K2

∈ RK2×1 = λn �
[
y(1)

n ; 0(2)
]
+ (1− λn)� y(2)

n , if K1 < K2
(5)

where 0(1) ∈ R(K1−K2)×1 and 0(2) ∈ R(K2−K1)×1 are vectors of zeros, 1 ∈ RKmax×1 are vectors of ones,
where Kmax = max {K1, K2}, and λn ∈ RKmax×1 are mixing parameter vectors for j = 1, 2; finally, �
denotes the Hadamard product.

Σ

Σ

MISO System j = 1

MISO System j = 2

Σ

[ ]1x n

[ ]P
x n
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( )1
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Figure 1. System-by-system combination scheme of two adaptive MISO filters.

The mixing parameters are adaptive weights that balance the combination between the two MISO
filters, giving more importance to the best-performing one. Such awareness is obtained according to a
mean squared error minimization. The adaptation of λn is performed by using an auxiliary vector an,
whose elements are related to those of λn by means of a sigmoidal function defined according to [8,44]:

λk [n] = β

(
1

1 + e−ak [n−1]
− α

)
, k = 0, . . . , Kmax − 1 (6)

where:
α =

1
(1 + e4)

, β =
1

1− 2α
. (7)

The auxiliary vectors are updated by using a gradient descent rule; therefore, for k = 0, . . . , Kmax − 1:

ak [n] = ak [n− 1] +
µc

βrk [n]
ek [n]

(
y(1)k [n]− y(2)k [n]

)
· (λk [n] + αβ) (β− αβ− λk [n]) (8)

where µc/rk [n] represents a normalized step size [45],

rk [n] = γrk [n− 1] + (1− γ)
(

y(1)k [n]− y(2)k [n]
)2

(9)
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is the estimated power of
(

y(1)k [n]− y(2)k [n]
)

, and γ is a smoothing factor close to one.
The entries ek [n] in (8), for k = 0, . . . , Kmax − 1, of the overall error signal vector en are derived as:

en ∈ RKmax×1 =

{
d(1)

n − zn, if Kmax = K1

d(2)
n − zn, if Kmax = K2

. (10)

The overall error en represents the quantity that provides the awareness to the scheme about the
best-performing filter, and it is used to adapt the mixing parameters at each iteration, as is possible to
note in (8).

The combination described by (5) has a significant value due to its generalization properties, since
it can be used:

• to find an optimal selection of filter parameters, e.g., by choosing different values for the step
sizes µj or for the regularization factors δj in (4) [1,6];

• to improve the overall tracking abilities beyond the capabilities of the individual filters by selecting
K1 = 1 and K2 > 1. Since the APA with unitary projection order is equivalent to the (normalized)
least mean squares algorithm, this choice enables the scheme to show a combination between a
gradient-based and a Hessian-based adaptive algorithm, which provides diversity to the scheme
and leads to enhancing the tracking performance [1,16].

In those applications having limited computational resources, the complexity of the proposed
method may represent a drawback. While the adaptation of the mixing parameters does not involve
a significant increment of the computational load [1], the adaption of two MISO filters in parallel
may require twice the resources. However, several implementation strategies have been proposed in
the literature to reduce the overall complexity of a combined scheme significantly, such as using a
low-cost filter as a companion to a high-cost one, rather than using parallelization, or taking advantage
of redundancies in the two filter components (see [1] for further details). The implementation of such
strategies would make the computational load of the combined scheme just slightly higher than the
complexity of a single MISO filter.

In the next sections, we provide a theoretical derivation of the steady-state performance, which is
useful to understand the capabilities of the proposed combined filtering scheme.

3. Optimum Mixing Parameters and EMSE

A first step to perform a mean squared performance analysis of the proposed combined scheme
consists of deriving the expression of the optimal mixing parameter for each input projection that
minimizes the mean squared error of the combined scheme. To this end, we first define the problem
formulation, and then, we formalize the combination performance.

3.1. Stationary Data Model

Let us consider the following linear regression model:

d [n] = xT
n wo + v [n] (11)

where xn ∈ RMP×1 =
[

xT
1,n . . . xT

P,n

]T
is the first projection (i.e., for k = 0) of the data input

matrix X(j)
n (for the simplicity of notation, we omit the projection order subscript for k = 0), and it

is the same for both MISO filters. Moreover, in (11), wo ∈ RMP×1 =
[

wo,T
1 . . . wo,T

P

]T
is the

optimal multichannel weight solution. With respect to the model of (11), we consider the following
assumptions [6,41,42].

Assumption 1. The signal v [n] represents an independent and identically distributed (i.i.d.) noise added to
the system output, whose variance is σ2

v .
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Assumption 2. The input signals are assumed to be statistically independent of the noise signal.

Assumption 3. We also assume that E
{

xp,n
}
= 0, E {d [n]} = 0, E {v [n]} = 0, and define the covariance

matrix E
{

xp,nxT
p,n

}
= Rp,n.

We can define the weight error vector for the jth MISO filter and for the multichannel combined
scheme, respectively, as:

w̃(j)
n ∈ RMP×1 = wo −w(j)

n (12)

w̃n ∈ RMP×1 = wo −wn. (13)

We also introduce the a priori and the a posteriori estimation error signals for the jth MISO system,
respectively, as:

ea
(j)
n ∈ RKj×1 = e(j)

n − v(j)
n = X(j)

n w̃(j)
n−1 (14)

ep
(j)
n ∈ RKj×1 = X(j)

n w̃(j)
n (15)

and the a priori and the a posteriori estimation error signals for the combination scheme, respectively, as:

ean ∈ RKmax×1 = en − vn = Xnw̃n−1 (16)

epn ∈ RKmax×1 = Xnw̃n (17)

where v(j)
n ∈ RKj×1 =

[
v [n] v [n− 1] . . . v

[
n− Kj + 1

] ]T
contains the last Kj samples of the

irreducible noise, while vn ∈ RKmax×1 contains the last Kmax samples of v [n], and Xn ∈ RKmax×1.
It is worth noting that while in the steady-state definition of the model (11), we consider the input

at its current time instant, in (14) and (16), we take into account also the projections of the input signal.
Considering (10) and (5), the a priori error (16) can be also written as:

ean ∈ RKmax×1 =

 λn � ea
(1)
n + (1− λn)�

[
ea

(2)
n ; 0(1)

]
, if Kmax = K1

λn �
[
ea

(1)
n ; 0(2)

]
+ (1− λn)� ea

(2)
n , if Kmax = K2

(18)

which can be denoted for simplicity of notation as:

ean = λn � ea
(1)
n + (1− λn)� ea

(2)
n (19)

3.2. Formulation of the EMSE for the Combination

The mean squared performance of the combined MISO filter can be evaluated in terms of the
excess mean squared error (EMSE) (see for example [1,22,41]), which can be defined according to the
expression of the a priori error (19), for k = 0, . . . , Kmax − 1:

ξk [n] = E
{
|eak [n]|2

}
= λ2

k [n]E
{∣∣∣ea

(1)
k [n]

∣∣∣2}+ (1− λk [n])
2 E
{∣∣∣ea

(2)
k [n]

∣∣∣2}+ 2λk [n] (1− λk [n])E
{

ea
(1)
k [n] ea

(2)
k [n]

}
= λ2

k [n] ξ
(1)
k [n] + (1− λk [n])

2 ξ
(2)
k [n] + 2λk [n] (1− λk [n]) ξ

(12)
k [n]

(20)

where ξ
(j)
k [n], j = 1, 2, are the EMSEs of the kth projection for the two individual MISO filters and:

ξ
(12)
k [n] = E

{
ea

(1)
k [n] ea

(2)
k [n]

}
(21)
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represents the cross-EMSE, as defined in [6], which provides a measure of the ability of the combination
to improve the performance with respect to both filter components [1]. The cross-EMSE satisfies the
Cauchy–Schwartz inequality: ∣∣∣ξ(12)

k [n]
∣∣∣2 ≤ ξ

(1)
k [n] ξ

(2)
k [n] (22)

which implies that the magnitude of the cross-EMSE ξ
(12)
k [n] can never be simultaneously larger than

the individual EMSEs ξ
(1)
k [n] and ξ

(2)
k [n].

We want to minimize (20) to find the optimum mixing parameter for each
projection. The minimization must take into account that λk [n] is contained in the interval
[0, 1] and that (20) is nonnegative and quadratic in λk [n] [1]. Therefore, the optimum mixing parameter
is given by:

λo
k [n] =

ξ
(2)
k [n]− ξ

(1)
k [n]

ξ
(1)
k [n] + ξ

(2)
k [n]− 2ξ

(12)
k [n]

∣∣∣∣∣
1

0

=
∆ξ

(2)
k [n]

∆ξ
(1)
k [n] + ∆ξ

(2)
k [n]

∣∣∣∣∣
1

0

(23)

where ∆ξ
(j)
k [n] = ξ

(j)
k [n]− ξ

(12)
k [n], j = 1, 2, and the vertical line denotes the limits of the interval for

the optimum mixing parameters.
We now substitute (23) in (20) to find the definition of the optimum EMSE for all the

input projections:

ξo
k [n] = ξ

(1)
k [n]− (1− λo

k [n])∆ξ
(1)
k [n]

≡ ξ
(2)
k [n]− λo

k [n]∆ξ
(2)
k [n] .

(24)

The expressions of the optimum EMSE are valid for any time instant n and also at steady state,
i.e., for n→ ∞. It is worth noting from (23) and (24) that the combination depends on the value of the
cross-EMSE. In particular, we can identify four different cases [1,6]:

Case 1: ξ
(1)
k [n] ≤ ξ

(12)
k [n] < ξ

(2)
k [n].

For this case, it is easy to verify that ∆ξ
(1)
k [n] ≤ 0 and ∆ξ

(2)
k [n] > 0. In this situation,

the optimum mixing parameter is λo
k [n] = 1, and the combined scheme turns out to

perform like the best individual filter, i.e., the one with the lower EMSE, which is the first
filter. Indeed, if we replace λo

k [n] in (24), we achieve:

ξo
k [n] ≈ ξ

(1)
k [n] .

Case 2: ξ
(1)
k [n] > ξ

(12)
k [n] ≥ ξ

(2)
k [n].

Here, we have that ∆ξ
(1)
k [n] > 0 and ∆ξ

(2)
k [n] ≤ 0. Again, the combined filter turns out to

perform like the best individual filter, which in this case is the second one. As a matter of
fact, the optimum mixing parameter is λo

k [n] = 0; thus, the optimum EMSE is:

ξo
k [n] ≈ ξ

(2)
k [n] .

Case 3: ξ
(12)
k [n] < min

(
ξ
(j)
k [n]

)
, j = 1, 2.

In this case, considering (24), it is easy to conclude that the cross-EMSE is lower than both
individual EMSEs; therefore, ∆ξ

(j)
k [n] > 0, j = 1, 2, while λo

k [n] ∈ (0, 1). This result can be
justified by the fact that since the correlation between the a priori errors of both individual
components is small, their weighted combination provides an estimation error of reduced
variance [1]. In this case, the optimum EMSE is still represented by (24).
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Case 4: ξ
(1)
k [n] = ξ

(2)
k [n] = ξ

(12)
k [n].

For completeness, we consider also this particular case, whose condition is rather rare to
find in practice. In this case, we have ∆ξ

(j)
k [n] = 0, j = 1, 2; thus, the optimum EMSE is:

ξo
k [n] = ξ

(j)
k [n] = ξ

(12)
k [n] .

From these cases, it can be gathered that when the cross-EMSE is comprised between the two
individual EMSEs (i.e., Cases 1 and 2), the cross-correlation between the a priori errors of the two filters
is high enough so that their combination can perform at most as the best individual filter. However,
when the cross-EMSE is lower than the individual EMSEs (i.e., Case 3), a lower excess error is achieved
for the combination.

In order to achieve the expressions of the EMSEs resulting from the above cases, we need to derive
the individual EMSEs of the two MISO filters and the cross-EMSE. To this end, we analyze the mean
squared performance of the individual MISO filters in Section 4, from which we derive the expressions
of ξ

(j)
k [n] = 0, j = 1, 2, and the mean squared performance of the combination in Section 5, from which

we derive the cross-EMSE ξ
(12)
k [n].

4. Mean Squared Performance of Individual MISO APA Filters

Individual EMSEs ξ
(j)
k [n], for j = 1, 2 and k = 0, . . . , Kmax, can be derived by a straightforward

extension of the analysis in [42] to the multichannel case. To this end, we derive the energy conservation
arguments.

4.1. Energy Conservation Relation for MISO Filters

We can reformulate the update equation of the jth MISO filter (4), j = 1, 2, in terms of the weight
error vector (12):

w̃(j)
n = w̃(j)

n−1 − µjX
(j),T
n

(
δjI + X(j)

n X(j),T
n

)−1
e(j)

n . (25)

We left-multiply both sides of (25) by X(j)
n :

X(j)
n w̃(j)

n = X(j)
n w̃(j)

n−1 − µjX
(j)
n X(j),T

n

(
δjI + X(j)

n X(j),T
n

)−1
e(j)

n (26)

in which we replace the expressions of the a priori and a posteriori estimation errors, respectively (14)
and (15), thus yielding:

ep
(j)
n = ea

(j)
n − µjX

(j)
n X(j),T

n

(
δjI + X(j)

n X(j),T
n

)−1
e(j)

n . (27)

Assuming that X(j)
n X(j),T

n is invertible, we can rewrite (27) as:(
δjI + X(j)

n X(j),T
n

)−1
e(j)

n =
1
µj

(
X(j)

n X(j),T
n

)−1 (
ea

(j)
n − ep

(j)
n

)
. (28)

Replacing (28) in (25) and rearranging appropriately, we obtain:

w̃(j)
n + X(j),T

n

(
X(j)

n X(j),T
n

)−1
ea

(j)
n = w̃(j)

n−1 + X(j),T
n

(
X(j)

n X(j),T
n

)−1
ep

(j)
n . (29)

We evaluate the energy of (29), thus obtaining the energy conservation relation for the jth MISO filter:∥∥∥w̃(j)
n

∥∥∥2
+ ea

(j),T
n

(
X(j)

n X(j),T
n

)−1
ea

(j)
n =

∥∥∥w̃(j)
n−1

∥∥∥2
+ ep

(j),T
n

(
X(j)

n X(j),T
n

)−1
ep

(j)
n (30)
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in which no approximations are used, but it is an exact relation showing how the energies of the
weight-error vectors at two successive iterations are related to the weighted energies of the a priori
and a posteriori estimation error vectors [42].

4.2. Variance Relation for MISO Filters

Now, we analyze the energy conservation relation (30) in the mean squared sense. To this end,
we take the expectations of both sides of (30) and get:

E
{∥∥∥w̃(j)

n

∥∥∥2
}
+ E

{
ea

(j),T
n

(
X(j)

n X(j),T
n

)−1
ea

(j)
n

}
= E

{∥∥∥w̃(j)
n−1

∥∥∥2
}
+ E

{
ep

(j),T
n

(
X(j)

n X(j),T
n

)−1
ep

(j)
n

}
(31)

Considering that at steady state (i.e., for n → ∞), the weights no longer change, we have that

E
{∥∥∥w̃(j)

n

∥∥∥2
}

= E
{∥∥∥w̃(j)

n−1

∥∥∥2
}

, so (31) reduces to:

E
{

ea
(j),T
n

(
X(j)

n X(j),T
n

)−1
ea

(j)
n

}
= E

{
ep

(j),T
n

(
X(j)

n X(j),T
n

)−1
ep

(j)
n

}
. (32)

Using (27), the right-hand side of (32) becomes:

µjE
{

ep
(j),T
n

(
X(j)

n X(j),T
n

)−1
ep

(j)
n

}
= E

{
ea

(j),T
n

(
X(j)

n X(j),T
n

)−1
ea

(j)
n

}
− µjE

{
ea

(j),T
n B(j)

n e(j)
n

}
− µjE

{
e(j),T

n B(j)
n ea

(j)
n

}
+ µ2

j E
{

e(j),T
n A(j)

n e(j)
n

} (33)

where:

B(j)
n =

(
δjI + X(j)

n X(j),T
n

)−1
(34)

A(j)
n = B(j)

n X(j)
n X(j),T

n B(j)
n . (35)

Replacing (33) in (32), we obtain the variance relation for the jth MISO filter:

µjE
{

e(j),T
n A(j)

n e(j)
n

}
= E

{
ea

(j),T
n B(j)

n e(j)
n

}
+ E

{
e(j),T

n B(j)
n ea

(j)
n

}
. (36)

4.3. Steady-State Performance for MISO Filters

We want to derive the expressions of individual EMSE at steady state so, taking into account
the definition of the a priori estimation error signal for the jth MISO filter (14) and Assumption 2,
and neglecting the dependency of w̃(j)

n−1 on past noise samples, we can approximate the variance
relation (36) as:

µjE
{

ea
(j),T
n A(j)

n ea
(j)
n

}
+ µjE

{
v(j),T

n A(j)
n v(j)

n

}
= 2E

{
ea

(j),T
n B(j)

n ea
(j)
n

}
. (37)

We use this expression to evaluate the EMSE for n→ ∞. However, for this purpose, we need a further
assumption [42].

Assumption 4. At steady state, the input signal xn is statistically independent of the a priori estimation error
signals ea

(j)
n , j = 1, 2, and moreover,

E
{

ea
(j)
n ea

(j),T
n

}
= E

{∣∣∣e(j)
a [n]

∣∣∣2} · S(j) (38)



Algorithms 2019, 12, 2 10 of 20

where e(j)
a [n] is the a priori estimation error sample for the first projection (i.e., k = 0; we omit the projection

order subscript for the simplicity of notation), and the matrix S(j) ∈ RKj×Kj assumes the following values:

S(j) ≈
{

I, for small values of µj
F, for large values of µj

(39)

being F ∈ RKj×Kj = diag
{

1 0 . . . 0
}

.

The derivation of the approximation in Assumption 4 can be found in Appendix A.
Using Assumption 4, we can rewrite (37). In particular, the first term on the left-hand side is

equivalently written as:

E
{

ea
(j),T
n A(j)

n ea
(j)
n

}
= µjTr

(
E
{

ea
(j)
n ea

(j),T
n A(j)

n

})
= µjE

{∣∣∣e(j)
a [n]

∣∣∣2}Tr
(

S(j)E
{

A(j)
n

})
.

(40)

Similarly, we can write the remaining terms of (37) respectively as follows:

µjE
{

v(j),T
n A(j)

n v(j)
n

}
= µjσ

2
v Tr

(
E
{

A(j)
n

})
(41)

2E
{

ea
(j),T
n B(j)

n ea
(j)
n

}
= 2E

{∣∣∣e(j)
a [n]

∣∣∣2}Tr
(

S(j)E
{

B(j)
n

})
. (42)

Therefore, (37) becomes:(
2Tr

(
S(j)E

{
B(j)

n

})
− µjTr

(
S(j)E

{
A(j)

n

}))
E
{∣∣∣e(j)

a [n]
∣∣∣2} = µjσ

2
v Tr

(
E
{

A(j)
n

})
(43)

from which we can derive the expression of the steady-state EMSE of the individual MISO filters as:

ξ
(j)
∞ = lim

n→∞
E
{∣∣∣e(j)

a [n]
∣∣∣2} =

µjσ
2
v Tr

(
E
{

A(j)
n

})
(

2Tr
(

S(j)E
{

B(j)
n

})
− µjTr

(
S(j)E

{
A(j)

n

})) . (44)

It is worth noting that Equation (44) takes into account the information related to each projection
and contained in the matrices A(j)

n , B(j)
n and S(j), but at the same time, it provides a unique steady-state

EMSE value for all the projections; therefore, the dependence of ξ
(j)
∞ on index k disappears.

The expression above can be simplified when the regularization factor δj is small enough, so that

A(j)
n ≈ B(j)

n . This implies Tr
(

S(j)E
{

A(j)
n

})
≈ Tr

(
S(j)E

{
B(j)

n

})
; hence, the EMSE (44) reduces to:

ξ
(j)
∞ =

µjσ
2
v(

2− µj
) Tr

(
E
{

A(j)
n

})
Tr
(

S(j)E
{

A(j)
n

}) . (45)

Now, we can distinguish two further approximations.

(i) Small value of µj.
If we assume a small value of the step size µj, we have for Assumption 4 that S(j) = I; hence, (45)
becomes:

ξ
(j)
∞ =

µjσ
2
v(

2− µj
) . (46)
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(ii) Large value of µj.
If we assume a large value of the step size µj (i.e., close to one), we have for Assumption 4 that
S(j) = F; hence, (45) becomes:

ξ
(j)
∞ =

µjσ
2
v(

2− µj
) Tr

(
E
{

A(j)
n

})
E
{

a(j)
11 [n]

} (47)

where a(j)
11 [n] is the element on the first row and first column of A(j)

n . However, we can also
assume the following approximations:

Tr
(

E
{

A(j)
n

})
≈ E

{
Kj

‖xn‖2

}
(48)

1

E
{

a(j)
11 [n]

} ≈ Tr
(

R(j)
n

)
(49)

that yield the following expression for the steady-state EMSE of the jth MISO filter:

ξ
(j)
∞ =

µjσ
2
v(

2− µj
)Tr

(
R(j)

n

)
E

{
Kj

‖xn‖2

}
(50)

which depends proportionally on the value of the projection order Kj.

5. Mean Squared Performance of the Combination of MISO Filters

Now, we want to derive the expression of the cross-EMSE ξ
(12)
k [n] by carrying out similar

procedural steps of the previous section, but considering the cross-information, as explained in
detail in the following.

In order to derive the energy conservation relation for the combined scheme, similarly to [6], we
consider (29) with Xn ∈ RKmax×1 and multiply the transpose of (29) for j = 1 by (29) itself for j = 2,
and get:

w̃(1),T
n w̃(2)

n + ea
(1),T
n

(
XnXT

n

)−1
ea

(2)
n = w̃(1),T

n−1 w̃(2)
n−1 + ep

(1),T
n

(
XnXT

n

)−1
ep

(2)
n . (51)

Taking the expectations of both sides of (51) and considering that at steady state E
{

w̃(1),T
n w̃(2)

n

}
=

E
{

w̃(1),T
n−1 w̃(2)

n−1

}
, we obtain:

E
{

ea
(1),T
n

(
XnXT

n

)−1
ea

(2)
n

}
= E

{
ep

(1),T
n

(
XnXT

n

)−1
ep

(2)
n

}
. (52)

Replacing (27) (with Xn ∈ RKmax×1) in (52) and after some simplifications, similarly to what was done
for (36), it is possible to achieve the variance relation for the combined scheme at steady state:

µ1µ2E
{

e(1),Tn Ane(2)n

}
= µ1E

{
e(1),Tn Bnea

(2)
n

}
+ µ2E

{
ea

(1),T
n Bne(2)n

}
(53)

where An and Bn are defined similarly to (34) and (35), respectively, but over Kmax. Considering (14),
we can rewrite (53), similarly to (37), as:

µ1µ2E
{

ea
(1),T
n Anea

(2)
n

}
+ µ1µ2E

{
vT

n Anvn

}
= (µ1 + µ2)E

{
ea

(1),T
n Bnea

(2)
n

}
. (54)
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Now, similarly to Assumption 4, but with extension to the case of combined MISO filters, we can
define the following assumption.

Assumption 5. At steady state, the input signal xn is statistically independent of the a priori estimation error
signals ea

(j)
n , j = 1, 2, and moreover,

E
{

ea
(1)
n ea

(2),T
n

}
= E

{∣∣∣e(1)a [n] e(2)a [n]
∣∣∣} · S(12) (55)

where the value of S(12) ∈ RKmax×Kmax is defined according to the following cases.

• If we characterize the combination scheme according to the step-size values, generally µ1 small and µ2 large,
e.g., to find an optimal selection of filter parameters, we have that:

S(12) ≈ F (56)

where F is defined similarly to (39).
• On the other hand, if we want to provide diversity to the combined scheme and choose different projection

orders, but the same step-size value, i.e., µ1 = µ2 = µ, we have that:

S(12) ≈
{

I, for small values of µ

F, for large values of µ
. (57)

Equation (57) holds as long as the SNR is high, as detailed in Appendix B.

The derivation of the approximation (55) in Assumption 5 can be found in Appendix B.
Using Assumption 5 and after some manipulations, similarly to what was done for (44), it is

possible to derive the expression of the cross-EMSE from (54):

ξ
(12)
∞ = lim

n→∞
E
{∣∣∣e(1)a [n] e(2)a [n]

∣∣∣} =
µ1µ2σ2

v Tr (E {An})
(µ1 + µ2)Tr

(
S(12)E {Bn}

)
− µ1µ2Tr

(
S(12)E {An}

) . (58)

As done in the previous section for ξ
(j)
∞ , we may further simplify also (58) when the regularization

factor δj is small enough to be neglected, so that An ≈ Bn, which implies:

ξ
(12)
∞ =

µ12σ2
v Tr (E {An})

(1− µ12)Tr
(
S(12)E {An}

) (59)

where µ12 = µ1µ2/ (µ1 + µ2). Equation (59) can be further reduced according to the values of the step
sizes. In particular, similarly to what was done for ξ

(j)
∞ in Section 4.3, we can consider the following

approximations.

(i) Small values for both µj.
This case is typical when we want to differentiate the combined scheme according to the projection
order and we choose the same small value for both step sizes µ1 = µ2 = µ. Based on Assumption
5, we have that S(12) = I; hence, (59) becomes:

ξ
(12)
∞ =

µ12σ2
v

(1− µ12)
. (60)

(ii) Large value for at least one µj.
We can also consider the case for which S(j) = F, according to Assumption 5. This may occur
when we want to characterize the combined scheme according to the projection order and we
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choose the same large value for both step sizes µ1 = µ2 = µ, or also when we choose the same
projection order, but one step-size value small and the other one large (close to one). In both of
these situations, after some approximations similarly to (50), we have that (59) becomes:

ξ
(12)
∞ =

µ12σ2
v

(1− µ12)
Tr (Rn)E

{
Kmax

‖xn‖2

}
(61)

which depends proportionally on the value of the maximum projection order Kmax between the
two MISO filters.

We can note that, similarly to the case of the individual EMSEs in (44), even the steady-state
cross-EMSE (58) provides a unique value for all the projections, although it considers the information
related to them. This also implies a unique value at steady state for the optimum mixing parameter for
all the projections. Therefore, considering (44) and (58), and related approximations, the expression of
the theoretical EMSE of the combined MISO scheme (24) can be written at steady state as:

ξ∞ = ξ
(1)
∞ [n]− (1− λ∞)∆ξ

(1)
∞

≡ ξ
(2)
∞ − λ∞∆ξ

(2)
∞

(62)

according to which the four different cases described in Section 3 can be easily derived.

6. Simulation Results

We evaluate the theoretical results derived in the previous sections by considering a system
identification scenario. The unknown MISO system, described by the model of (11), was composed of
P = 5 impulse responses, each one formed with M = 7 independent random values between −1 and
one. The input signal was generated by means of a first-order autoregressive model, whose transfer
function is

√
1− α2/

(
1− αz−1), with α = 0.8, fed with an i.i.d. Gaussian random process. The length

of the input signal was L = 20,000 samples. An additive i.i.d. noise signal v [n] with variance σ2
v = 0.01

(i.e., providing 20 dB of SNR) was added to form the desired signal. We took into account a combined
MISO filter to identify the unknown MISO system. We might differentiate the two individual MISO
filters of the combined scheme according to the step-size values or to the projection orders.

The theoretical EMSEs were achieved by considering (24), involving (45) and related
approximations for individual EMSEs and (59) and related approximations for the cross-EMSE. The
measured steady-state EMSEs were achieved according to:

EMSE [n] = E
{
(e [n]− v [n])2

}
(63)

evaluated over 50 independent runs. We also report the measured EMSEs of the two individual
MISO filters.

6.1. Performance Evaluation Using Different Step-Size Values

First, we analyzed the former case by choosing different step-size values for the two MISO filters.
We chose the same projection order K1 = K2 = 4 for both the MISO filters, and we varied the step-size
values. In particular, we took into account the range of values [0.001, 1] for µ2, which represents the
larger step size, and we set µ1 = µ2/q, where q is a proportionality factor. The parameter setting for the
adaptive combination was characterized by: µc = 0.5, ak [0] = 0 and rk [0] = 1 for k = 0, . . . , Kmax − 1.

The results are shown in Figure 2 with different settings of the factor q, i.e., 4, 10, 25, and 100.
These results prove the validity of the derived theoretical EMSE (59), as the measured EMSE values
approached the theoretical ones. It is worth noting, in Figure 2, the effect of the combination, especially
for small step-size values and high q.
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We also evaluated the convergence performance of the combined MISO scheme. The scenario
was similar to the previous experiment, but in this case, we considered P = 8 unknown channels, each
one formed by M = 10 independent random values between −1 and one. The input signal was again
generated by using a first-order autoregressive model, and its length was L = 40,000. In order to study
the ability of the combined filtering scheme to react to abrupt changes in the scenario, the coefficients
of all the unknown channels were randomly reassigned at time instant n = L/2. Again, we considered
additive noise with σ2

v = 0.01 at the output of the unknown MISO system. We chose a small step-size
value µ1 = 0.001 for the first MISO filter and a larger one µ2 = 0.1 for the second MISO filter, while
we considered the same projection order K1 = K2 = 2 for both filters. Performance was evaluated in
terms of the measured EMSE, averaged over 10,000 independent runs. We compared the adaptive
combined MISO filter with the corresponding individual filters. Results are depicted in Figure 3, where
it is worth noting that the MISO filter with µ1 shows a slow convergence rate, but a good precision
at steady state, while the MISO filter with µ2 provides a faster convergence rate, but lower precision.
The combined MISO filter was capable of exploiting the advantages of both the individual MISO filters,
thus showing a fast convergence rate and good precision at steady state. Moreover, a performance
gain due to the cross-EMSE was visible when the mixing parameter was changing its value from zero
to one. In Figure 3, the evolution of the current projection of the mixing parameter, i.e., for k = 0, is
also depicted to highlight the changing behavior of the combined MISO filter.
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Figure 2. Steady-state theoretical and measured excess mean squared error (EMSE) for a combined
MISO filter using different step-size values, according to µ1 = µ2/q, with (a) q = 4, (b) q = 10,
(c) q = 25, and (d) q = 100.



Algorithms 2019, 12, 2 15 of 20
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Figure 3. Convergence performance of a combined MISO filter using different step-size values with
the related evolution of the mixing parameter λ0 [n].

6.2. Performance Evaluation Using Different Projection Orders

We analyzed also the second case of combination by differentiating the MISO filters according
to the projection orders, which is very important since the combination of APA-based filters with
different projection orders is able to provide diversity to the combined scheme [1,16]. In particular,
we chose K1 = 1 for the first MISO filter, which turns out to be a multichannel NLMSfilter, and K2 = 4
for the second MISO filter. The parameter setting for the adaptive combination was the same as used
for the first case. Different selections have been chosen for the step-size value, which was the same
for both the individual MISO filters. We compared the theoretical values of the EMSE of (59) for the
combined architecture with the measured steady-state EMSEs of (63) over 50 independent runs. We
also compared the measured EMSEs of the two individual MISO filters. Results are shown in Figure 4
and prove the validity of (59), as again, the measured EMSE values approached the theoretical ones.
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Figure 4. Steady-state theoretical and measured EMSE for a combined MISO filter using different
projection orders.

Even for this case, we evaluated the convergence performance of the combined MISO scheme.
The scenario was the same as in the first case, and the input signal length was L = 24,000. Again, we
considered an abrupt change at time instant n = L/2. The combined MISO filter was composed of two
individual MISO filters having different projection orders, K1 = 1 and K2 = 4, and same step sizes,
µ1 = µ2 = 0.01. Performance was evaluated in terms of the measured EMSE (63), averaged over 10,000
independent runs. We compared the adaptive combined MISO filter with the corresponding individual
filters. The results are depicted in Figure 5, where it is possible to notice that even in this case, the
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combined MISO filter was capable of exploiting the advantages of both the individual MISO filters, as
also highlighted by the evolution of the mixing parameter on the current projection (i.e., λ0 [n]).

1 
 

 

 

Figure 5. Convergence performance of a combined MISO filter using different projection orders with
the related evolution of the mixing parameter λ0 [n].

7. Conclusions

In this paper, we have studied an adaptive combination of MISO filters, based on the adaptation
by the multichannel APA, which allows the filters to be differentiated according to the step size
or to the projection order. We have analyzed the steady-state performance of such a combined
scheme, thus deriving a theoretical value for the EMSE based on the energy conservation properties.
Simulation results have proven the validity of such a theoretical study. We have also assessed
the performance improvement involved by an adaptive combined MISO filter using different
projection orders in a changing scenario. Future research lines include the analysis of tracking and the
transient performance of a combined MISO filter, as well as the extension to multi-stage combined
filtering architectures. Moreover, the scheme can be evaluated in practical system identification
problems, like acoustics or communications applications, where its performance can be compared
with that of alternative single-MISO adaptive filters, such as multichannel variable step-size APA filters.
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Appendix A. Steady-State Approximation for the EMSE of Individual MISO Filters with
Multiple Projections

We evaluate the term E
{

ea
(j)
n ea

(j),T
n

}
. We remind the reader that the vectors ea

(j)
n ∈ RKj×1 and

ep
(j)
n ∈ RKj×1, with j = 1, 2, contain the projections of the a priori and a posteriori estimation errors,

respectively, at the nth time instant, and they can be written as:

ea
(j)
n =

[
e(j)

a0 [n] . . . e(j)
aKmax−1 [n]

]T
(A1)
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ep
(j)
n =

[
e(j)

p0 [n] . . . e(j)
pKmax−1 [n]

]T
. (A2)

Assuming a small value for the regularization parameter δj, the relation between the a priori and the a
posteriori estimation error signals in (27) becomes:

ep
(j)
n = ea

(j)
n − µje

(j)
n =

(
1− µj

)
ea

(j)
n − µjv

(j)
n . (A3)

Taking the expectation of the square of both sides of (A3) and considering the error signals to be
statistically independent of the noise, we have:

E
{

ep
(j)
n ep

(j),T
n

}
=
(
1− µj

)2 E
{

ea
(j)
n ea

(j),T
n

}
+ µ2

j σ2
v . (A4)

At steady state, we know that the coefficients of the weight vectors no longer change [41]. We also
know that, due to the construction of the input data matrix, in the APA, the k− 1th projection of the
input signal at the nth time instant is equivalent to the kth projection at the time instant n− 1 [41,42].
Therefore, at steady state, the k− 1 projection of the a posteriori error is equivalent to the kth projection
of the a priori error signal. For this reason, the expectation in (A4) can be rewritten, for k = 1, . . . , Kj− 1,
as:

E
{∣∣∣e(j)

ak [n]
∣∣∣2} =

(
1− µj

)2 E
{∣∣∣e(j)

ak−1 [n]
∣∣∣2}+ µ2

j σ2
v (A5)

while for k = 0, E
{∣∣∣e(j)

a0 [n]
∣∣∣2} is initialized to its own value, which we write omitting the index k = 0.

Generalizing (A5) for all the projections, we have:

E
{

ea
(j)
n ea

(j),T
n

}
= E

{∣∣∣e(j)
a [n]

∣∣∣2} · S(j) + µ2
j σ2

v · S
(j)
v (A6)

where S(j) and S(j)
v are diagonal matrices ∈ RKj×Kj , respectively given by:

S(j) = diag
{

1 ζ ζ2 . . . ζKj−1
}

(A7)

S(j)
v = diag

{
0 1 (ζ + 1)

(
ζ2 + ζ + 1

)
. . .

(
ζKj−2 + ζKj−3 + . . . + 1

) }
(A8)

where ζ =
(
1− µj

)2.
It is worth noting that, when µj is small, S(j) ≈ I. On the other hand, when µj is close to one,

S(j) ≈ F, where F = diag
{

1 0 . . . 0
}

. Regarding the second term of the right-hand side of (A6),

µ2
j σ2

v S(j)
v ≈ 0, when µj is small enough or when the SNR (signal-to-noise ratio) is high enough (i.e., σ2

v
very small).

In addition, considering that the choice of large values of µj might not lead to satisfactory

convergence performance when the SNR is low, we can always neglect the term µ2
j σ2

v S(j)
v in (A6).

Therefore, steady-state EMSE for the jth MISO filter evaluated at all the projections can be finally
written as:

E
{

ea
(j)
n ea

(j),T
n

}
= E

{∣∣∣e(j)
a [n]

∣∣∣2} · S(j) = ξ
(j)
∞ S(j). (A9)

Appendix B. Steady-State Approximation for the Cross-EMSE Involving Multiple Projections

Assuming a small value for the regularization parameter δ and considering the relation between
the a priori and the a posteriori estimation error signals in (A3), we take the expectation E

{
ea

(1)
n ea

(2),T
n

}
and get:

E
{

ep
(1)
n ep

(2),T
n

}
= (1− µ1) (1− µ2)E

{
ea

(1)
n ea

(2),T
n

}
+ µ1µ2σ2

v . (A10)



Algorithms 2019, 12, 2 18 of 20

Similarly to Appendix A, we can rewrite (A10) as:

E
{

ea
(1)
n ea

(2),T
n

}
= E

{∣∣∣ea
(1) [n] ea

(2) [n]
∣∣∣} · S(12) + µ1µ2σ2

v · S
(12)
v (A11)

where S(12) and S(12)
v are diagonal matrices ∈ RKmax×Kmax , respectively given by:

S(12) = diag
{

1 ζc ζ2
c . . . ζKmax−1

c

}
(A12)

S(12)
v = diag

{
0 1 (ζc + 1)

(
ζ2

c + ζc + 1
)

. . .
(

ζKmax−2
c + ζKmax−3

c + . . . + 1
) }

(A13)

where ζc = (1− µ1) (1− µ2).
It is worth noting that, when both µ1 and µ2 are small, S(12) ≈ I. On the other hand, when at least

one of the step-size values is close to one, S(12) ≈ F.
Concerning the second term of the right-hand side of (A11), µ1µ2σ2

v S(12)
v ≈ 0 when at least one

of the step sizes is small enough or when the noise power is low (i.e., σ2
v very small). In addition,

considering that for low SNR values, the choice of large values for both the step sizes might not lead to
satisfactory convergence performance, we can always neglect the term µ1µ2σ2

v S(12)
v in (A11). Therefore,

(A11) can be written as:

E
{

ea
(1)
n ea

(2),T
n

}
= E

{∣∣∣e(1)a [n] e(2)a [n]
∣∣∣} · S(12) = ξ

(12)
∞ S(12). (A14)
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30. Paleologu, C.; Benesty, J.; Albu, F.; Ciochină, S. An Efficient Variable Step-Size Proportionate Affine Projection
Algorithm. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 77–80.

31. Gonzalez, A.; Albu, F.; Ferrer, M.; de Diego, M. Evolutionary and Variable Step Size Strategies for
Multichannel Filtered-x Affine Projection Algorithms. IET Signal Process. 2012, 7, 471–476. [CrossRef]

32. Albu, F.; Coltuc, D.; Comminiello, D.; Scarpiniti, M. The Variable Step Size Regularized Block Exact
Affine Projection Algorithm. In Proceedings of the 10th International Symposium on Electronics and
Telecommunications (ISETC), Timisoara, Romania, 15–16 November 2012; pp. 283–286.

33. Bhotto, M.Z.A.; Ahmad, M.O.; Swamy, M.N.S. Robust Shrinkage Affine-Projection Sign Adaptive-Filtering
Algorithms for Impulsive Noise Environments. IEEE Trans. Signal Process. 2014, 62, 3349–3359. [CrossRef]

34. Ferrer, M.; de Diego, M.; Gonzalez, A.; Piñero, G. Convex Combination of Affine Projection Algorithms.
In Proceedings of the European Signal Processing Conference (EUSIPCO), Glasgow, UK, 24–28 August 2009;
pp. 431–435.

http://dx.doi.org/10.1016/j.sigpro.2017.01.009
http://dx.doi.org/10.1109/TSP.2008.919105
http://dx.doi.org/10.1109/TSP.2007.911486
http://dx.doi.org/10.1109/TSP.2010.2048210
http://dx.doi.org/10.1109/TSP.2010.2049650
http://dx.doi.org/10.1109/TSP.2012.2189110
http://dx.doi.org/10.1109/TWC.2011.081011.102169
http://dx.doi.org/10.1002/ecja.4400670503
http://dx.doi.org/10.1109/97.484209
http://dx.doi.org/10.1049/iet-spr.2012.0213
http://dx.doi.org/10.1109/TSP.2014.2324997


Algorithms 2019, 12, 2 20 of 20

35. Ferrer, M.; de Diego, M.; Gonzalez, A.; Piñero, G. Steady-State Mean Square Performance of the Multichannel
Filtered-X Affine Projection Algorithm. IEEE Trans. Signal Process. 2012, 60, 2771–2785. [CrossRef]

36. Arévalo, L.; Apolinário J.A., Jr.; de Campos, M.L.R.; Sampaio-Neto, R. Convex Combination of Three
Affine Projections Adaptive Filters. In Proceedings of the IEEE International Symposium on Wireless
Communication Systems (ISWCS), Ilmenau, Germany, 27–30 August 2013; pp. 209–213.

37. Shi, L.; Lin, Y.; Xie, X. Combination of Affine Projection Sign Algorithms for Robust Adaptive Filtering in
Non-Gaussian Impulsive Interference. Electron. Lett. 2014, 50, 466–467. [CrossRef]

38. Huang, F.; Zhang, J.; Zhang, S. Combined-Step-Size Affine Projection Sign Algorithm for Robust Adaptive
Filtering in Impulsive Interference Environments. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 493–497.
[CrossRef]

39. Choi, J.H.; Kim, S.H.; Kim, S.W. Adaptive Combination of Affine Projection and NLMS Algorithms.
Signal Process. 2014, 100, 64–70. [CrossRef]

40. Comminiello, D.; Scarpiniti, M.; Scardapane, S.; Parisi, R. Improving Nonlinear Modeling Capabilities of
Functional Link Adaptive filters. Neural Netw. 2015, 69, 51–59. [CrossRef]

41. Sayed, A.H. Adaptive Filters; Wiley: Hoboken, NJ, USA, 2008.
42. Shin, H.C.; Sayed, A.H. Mean-Square Performance of a Family of Affine Projection Algorithms. IEEE Trans.

Signal Process. 2004, 52, 90–102. [CrossRef]
43. Sankaran, S.G.; Beex, A.A.L. Convergence Behavior of Affine Projection Algorithms. IEEE Trans. Signal Process.

2000, 48, 1086–1096. [CrossRef]
44. Lázaro-Gredilla, M.; Azpicueta-Ruiz, L.A.; Figueiras-Vidal, A.R.; Arenas-García, J. Adaptively Biasing the

Weights of Adaptive Filters. IEEE Trans. Signal Process. 2010, 58, 3890–3895. [CrossRef]
45. Azpicueta-Ruiz, L.A.; Figueiras-Vidal, A.R.; Arenas-García, J. A Normalized Adaptation Scheme for the

Convex Combination of Two Adaptive Filters. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, USA, 31 March–4 April 2008; pp. 3301–3304.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSP.2012.2189390
http://dx.doi.org/10.1049/el.2013.3997
http://dx.doi.org/10.1109/TCSII.2015.2505067
http://dx.doi.org/10.1016/j.sigpro.2014.01.015
http://dx.doi.org/10.1016/j.neunet.2015.05.002
http://dx.doi.org/10.1109/TSP.2003.820077
http://dx.doi.org/10.1109/78.827542
http://dx.doi.org/10.1109/TSP.2010.2047501
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Convex Combination Scheme for Adaptive MISO Filters
	Optimum Mixing Parameters and EMSE
	Stationary Data Model
	Formulation of the EMSE for the Combination

	Mean Squared Performance of Individual MISO APA Filters
	Energy Conservation Relation for MISO Filters
	Variance Relation for MISO Filters
	Steady-State Performance for MISO Filters

	Mean Squared Performance of the Combination of MISO Filters
	Simulation Results
	Performance Evaluation Using Different Step-Size Values
	Performance Evaluation Using Different Projection Orders

	Conclusions
	Steady-State Approximation for the EMSE of Individual MISO Filters with Multiple Projections
	Steady-State Approximation for the Cross-EMSE Involving Multiple Projections
	References

