

Universidad Carlos III de Madrid

Escuela Politécnica Superior

Computer Science

Bachelors Thesis

Intrusion Analysis System using Big Data

Techniques.

Author: Rafael Garcia Olmedo

Tutors: Francisco Javier Garcia Blas

 July, 2017

Intrusion Analysis System using Big Data Techniques

2

Título: Sistema de Análisis de Intrusión mediante técnicas Big

Data.

Autor: Rafael García Olmedo

Tutor: Francisco Javier García Blas

EL TRIBUNAL

Presidente:

Vocal:

Secretario:

Realizado el acto de defensa y lectura del Trabajo de fin de grado

el día __ de _______ de 20__ en Leganés, en la Escuela

Politécnica Superior de la Universidad Carlos III de Madrid,

acuerda otorgarle la CALIFICACIÓN de

 VOCAL

SECRETARIO PRESIDENTE

Intrusion Analysis System using Big Data Techniques

3

Agradecimientos

Quisiera agradecer en primer lugar a mi tutor Francisco Javier García Blas por toda la

ayuda que me ha proporcionado durante todo el proyecto y la paciencia que ha tenido

conmigo.

En segundo lugar agradecer a mis compañeros Luis y Álvaro por hacer de la época

universitaria un gran capitulo de mi vida y los proyectos y exámenes más llevaderos.

Por supuesto agradecer a mis padres por la infinita paciencia que tienen en el dia a dia

conmigo y por apoyarme siempre en todo lo que haga.

A la universidad por darme la oportunidad de formarme de cara al futuro y experiencas

tan increíbles como lo fue el Erasmus.

Intrusion Analysis System using Big Data Techniques

4

Index of Content
Agradecimientos .. 3

Index of Content... 4

Index of Figures .. 7

Index of Tables ... 9

1. Introduction .. 11
1.1. Motivation .. 11
1.2. Objectives ... 11
1.3. Architecture of the application ... 12
1.4. Document structure .. 12
1.5. Acronyms .. 13

2. State of the Art .. 14
2.1. Distributed Systems ... 14

2.1.1. Characteristics of distributed systems ... 14
2.1.2. Distributed system vs Parallel system ... 14
2.1.3. Main architectures ... 14
2.1.4. Clusters ... 15

2.2. Big Data .. 16
2.2.1. Characteristics of Big Data ... 16
2.2.2. The problem of Big Data ... 17

2.2.3. Architectures ... 17
2.2.3.1. Store and Search ... 17
2.2.3.2. Store and Scale .. 18
2.2.3.3. Scale and Search ... 18

2.3. Apache Spark ... 19
2.3.1. Resilent Distributed Dataset (RDD’s) ... 20
2.3.2. Parallel operations .. 20
2.3.3. Shared variables ... 21
2.3.4. Spark architecture .. 21

2.4. Monitoring systems ... 21
2.5. Security threats .. 22

2.5.1. Security requirements ... 22
2.5.2. Threat classification (Microsoft) ... 23
2.5.3. Threat classification according to the nature of the attack .. 23

2.6. Hadoop .. 23
2.6.1. Hadoop Distributed File System .. 24

2.6.1.1. HDFS Architecture .. 24
2.6.1.2. NameNode .. 25
2.6.1.3. Datanodes ... 25
2.6.1.4. HDFS Client .. 26
2.6.1.5. Replication.. 26

2.6.2. Apache Zookeeper .. 26
2.6.2.1. Zookeeper architecture ... 26

2.7. Apache Hadoop Yarn .. 27

Intrusion Analysis System using Big Data Techniques

5

2.8. Apache Zeppelin ... 28
2.9. Similar applications ... 28

2.9.1. Loggly .. 29
2.9.2. Splunk .. 29
2.9.3. GoAccess .. 30
2.9.4. Logz.io ... 31

3. Analysis of the application ... 31
3.1. Overview of the application .. 31
3.2. Use cases ... 32
3.3. System requirements ... 33

3.3.1. Functional requirements ... 34
3.3.2. Access requirements. ... 37
3.3.3. Software requirements .. 39

4. Installation manual for the different technologies ... 41
4.1. Apache Spark Installation .. 41
4.2. HDFS installation ... 43
4.3. Zookeeper installation .. 45
4.4. Apache Yarn Configuration .. 46
4.5. Alternatives .. 47

4.5.1. Cloudera ... 47
4.5.2. Hortonworks ... 48

5. Development environment characteristics ... 49
5.1. Topology of the cluster ... 49
5.2. Single machine characteristics ... 50

5.2.1. Compute 1-2, 1-3 and 1-7 machines ... 50
5.2.2. Rest of Compute-1-* machines ... 50
5.2.3. Compute-3-* machines .. 50
5.2.4. Compute-5-* machines .. 51
5.2.5. Compute-6-* machines .. 51
5.2.6. Compute-7-* machines .. 51
5.2.7. Compute-8-* machines .. 51
5.2.8. Compute-9-1 and 9-3 machines.. 51
5.2.9. Compute-9-2 machine .. 52
5.2.10. Compute-10-* machines ... 52
5.2.11. Compute-11-* machines ... 52
5.2.11. Storage-1 machine ... 52

5.3. Aggregated capabilities .. 52

6. Implementation of the application ... 53
6.1. Server application... 53

6.1.1. Communication protocol ... 53
6.1.2. Implementation .. 54

6.2. Client application ... 58
6.2.1. Keyconcepts .. 59
6.2.2. Implementation of the Spark Streaming application ... 60
6.2.2.1. Case classes .. 60
6.2.2.2. Main function ... 61

6.3. Visualization application ... 64
6.3.1. Loading of data ... 65
6.3.2. Invalid connections per day ... 66
6.3.3. Invalid connections per IP .. 66
6.3.4. Invalid users used to authenticate ... 66

Intrusion Analysis System using Big Data Techniques

6

6.3.5. Existing users failing to authenticate ... 67
6.3.6. Authentication failures per day .. 67
6.3.7. Top 10 IP’s that tried to authenticate as root .. 68
6.3.8. Number of IP’s banned by the fail2ban application .. 68
6.3.9. Actual IP’s that were banned .. 68
6.3.10. DNS Lookup’s per date ... 69
6.3.11. IP’s performing DNS Lookup ... 69
6.3.12. Disk writes per device and time ... 70
6.3.13. Time-series graph for write operations on devices sdf and sdf1 .. 71
6.3.13. Time-series graph for read operations on devices sdf and sdf1 ... 71
6.3.14. Time-series graph for overall I/O time on devices sdf and sdf1 ... 71
6.3.14. Time-series graph for available RAM memory ... 72
6.3.14. Time-series graph for free RAM memory .. 72
6.3.14. Time-series graph for buffered RAM memory ... 72
6.3.14. Time-series graph for cached RAM memory .. 73

7. Evaluation ... 74
7.1. Window duration ... 74
7.2. Conclusions of the evaluation ... 75

8. Project planning .. 76
8.1. Initial planning .. 76
8.2. Real planning ... 76

9. Socioeconomic Environment ... 78
9.1. Socioeconomic impact .. 78
9.2. Budget .. 78

9.2.1. Human resources budget ... 78
9.2.2. Hardware budget .. 79
9.2.3. Software budget ... 79
9.2.4. Consumables budget ... 79
9.2.5. Overall budget ... 79

10. Regulatory framework .. 80
10.1. Legal aspects ... 80
10.2. Technical standards ... 81
10.3. Intellectual property .. 81

11. Conclusions and further work ... 82
11.1. Conclusions ... 82
11.2. Further work .. 82

11. References and bibliography ... 83

Intrusion Analysis System using Big Data Techniques

7

Index of Figures
Figure 1 Store and Search architecture. .. 18

Figure 2 Store and Scale architecture. .. 18

Figure 3 Scale and Search architecture... 19

Figure 4 Spark architecture [4]. .. 21

Figure 5 Hadoop ecosystem [7]. ... 24

Figure 6 HDFS architecture [8]. ... 25

Figure 7 ZooKeeper architecture [9]. ... 26

Figure 8 Loggly dashboard [12]. .. 29

Figure 9 Splunk dashboard [14]. .. 30

Figure 10 GoAccess dashboard [17]. ... 30

Figure 11 Logz.io interface [20]. .. 31

Figure 12. Detailed architecture of the application .. 32

Figure 13 Application usage use case... 33

Figure 14 Java verification. .. 41

Figure 15 Ubuntu update. ... 41

Figure 16 Install default JRE. ... 41

Figure 17 Install default JDK. .. 41

Figure 18 Download and installation of Scala.. 42

Figure 19 Download and installation of sbt.. 42

Figure 20 Download and installation of Spark. .. 42

Figure 21 Spark shell. ... 43

Figure 22 Installation of SSH. .. 43

Figure 23 Downloading of Hadoop. ... 43

Figure 24 Accessing core-site.xml. .. 43

Figure 25 Core-site.xml configuration. .. 44

Figure 26 HDFS-site.xml configuration. .. 44

Figure 27 Namenode formatting. ... 44

Figure 28 HDFS service starting. ... 44

Figure 29 HDFS service verification. ... 45

Figure 30 Downloading of zookeeper. ... 45

Figure 31 Zookeeper configuration file. ... 45

Figure 32 Creation of the data directory for Zookeeper. .. 46

Figure 33 Adding desired ID to Zookeeper data. ... 46

Figure 34 Starting Zookeeper service. .. 46

Figure 35 Yarn-site.xml configuration file example. ... 46

Figure 36 CDH architecture[24]. .. 47

Figure 37 HDP architecture[27]. .. 48

Figure 38 Cluster topology. .. 49

Figure 39 Communication protocol. ... 54

Intrusion Analysis System using Big Data Techniques

8

Figure 40 Socket addresses... 55

Figure 41 Socket creation + tweaking. ... 55

Figure 42 Binding of the socket. .. 55

Figure 43 Listen + Accept functions. ... 56

Figure 44 Arguments to the threads function. .. 56

Figure 45: Identifier addition. ... 57

Figure 46 Dynamic allocation, copying and sending of the desired file. 57

Figure 47 Spark Context [33]. .. 59

Figure 48 Case class creation. .. 61

Figure 49 Initialization of the application. ... 61

Figure 50 Server connection call. ... 62

Figure 51 Filtering and mapping of fail2ban.log data. ... 62

Figure 52 Filtering of auth.log data. ... 63

Figure 53 Mapping of the data to Case classes. ... 63

Figure 54 Filtering and Mapping of diskstats information. .. 63

Figure 55 Filtering and Mapping of meminfo data. ... 64

Figure 56 Writiing to HDFS + starting of the application. ... 64

Figure 57 Applications on the cluster. .. 65

Figure 58 Data loading. .. 65

Figure 59 Invalid connections per day. .. 66

Figure 60 Invalid connections per IP. ... 66

Figure 61 Invalid users. .. 67

Figure 62 Existing users that failed authentication. ... 67

Figure 63 Authentication failures per day. ... 67

Figure 64 Top 10 IP's attacking root user. .. 68

Figure 65 Banned IP's per day. ... 68

Figure 66 Banned IP's. .. 69

Figure 67 DNS Lookup per day. .. 69

Figure 68 IP's performing DNS Lookup. ... 70

Figure 69 Disk writes per device and time. .. 70

Figure 70 Write time-series graph. ... 71

Figure 71 Read time-series graph. .. 71

Figure 72 I/O time time-series graph. ... 72

Figure 73 Available RAM time-series graph. .. 72

Figure 74 Free RAM time-series graph. ... 72

Figure 75 Buffered RAM time-series graph. .. 73

Figure 76 Cached RAM time-series graph. .. 73

Figure 77 Evaluation of the application. .. 74

Figure 78 Gantt diagram for the initial planning. ... 76

Figure 79 Gantt chart for the real planning of the project. ... 77

Intrusion Analysis System using Big Data Techniques

9

Index of Tables
Table 1 System requirements schema. ... 33

Table 2 Functional requirement 1. .. 34

Table 3 Functional requirement 2. .. 34

Table 4 Functional requirement 3. .. 34

Table 5 Functional requirement 4. .. 35

Table 4 Functional requirement 5. .. 35

Table 5 Functional requirement 6. .. 35

Table 6 Functional requirement 7. .. 35

Table 7 Functional requirement 8. .. 35

Table 8 Functional requirement 9. .. 36

Table 9 Functional requirement 10. .. 36

Table 10 Functional requirement 11. .. 36

Table 11 Functional requirement 12. .. 36

Table 12 Functional requirement 13. .. 37

Table 13 Functional requirement 14. .. 37

Table 14 Functional requirement 15. .. 37

Table 15 Functional requirement 16. .. 37

Table 16 Access requirement 1. ... 37

Table 17 Access requirement 2. ... 38

Table 18 Access requirement 3. ... 38

Table 21 Access requirement 4. ... 38

Table 22 Access requirement 5. ... 38

Table 19 Access requirement 6. ... 38

Table 20 Software requirement 1. .. 39

Table 21 Software requirement 2. .. 39

Table 22 Software requirement 3. .. 39

Table 23 Software requirement 4. .. 39

Table 24 Software requirement 5. .. 40

Table 25 Software requirement 6. .. 40

Table 26 Software requirement 7. .. 40

Table 27 Machine characteristics schema. ... 50

Table 28 Compute 1-2, 1-3 and 1-7 characteristics. ... 50

Table 29 Rest of Compute 1-* characteristics .. 50

Table 30 Compute 3-* characteristics. ... 50

Table 31 Compute 5-* characteristics. ... 51

Table 32 Compute 6-* characteristics. ... 51

Table 33 Compute 7-* characteristics. ... 51

Table 34 Compute 8-* characteristics. ... 51

Table 35 Compute 9-1 and 9-3 characteristics. .. 51

Intrusion Analysis System using Big Data Techniques

10

Table 36 Compute 9-2 characteristics. ... 52

Table 37 Compute 10-* characteristics. ... 52

Table 38 Compute 11-* characteristics. ... 52

Table 39 Compute 11-* characteristics. ... 52

Table 40 Aggregated capabilities of the cluster. .. 53

Table 41 Initial Planning. ... 76

Table 42 Real planning. .. 77

Table 44 Human resources budget. .. 79

Table 45 Hardware budget. .. 79

Table 46 Software budget. .. 79

Table 47 Overall budget. .. 80

Intrusion Analysis System using Big Data Techniques

11

1. Introduction

In this first section of the report we will be giving a brief explanation of the

development of the project as well as the different objectives that we would like to

achieve.

1.1. Motivation

The main motivation behind the development of this project is to be able to use different

emerging technologies to monitor and analyse different terminals in order to detect

possible threats to the security of these systems. To do so we will be using Big Data

techniques to capture and process the different sets of data received in order to detect if

there has been some sort of security breach in the system being analysed. Nowadays Big

Data is not only an emerging sector on the computing world but also relates many

different concepts, from distributed systems (clusters) to visualization tools for this type

of applications (Zeppelin, ggplot for R-based applications. Kibana), so the study of this

type of technology is not only an opportunity to differentiate myself from other

colleagues but to get into the Big Data world.

1.2. Objectives

The bachelor’s thesis main objective is to develop a client-server application to monitor

the activity of a system in order to detect possible intrusions by taking advantage of the

capabilities of large-scale data processing engines such as Apache Spark, by having a

flow of data sent to the possible clients and processing it using these techniques.

The objective of the thesis is to demonstrate the knowledge acquired on this type of

technologies by explaining what was accomplished and how it was accomplished.

In order to complete the main objective of the thesis, the following smaller objectives

are to be followed:

 Provide background on the selected technologies and justification on why they

were chosen.

 Analysis of similar products available on the market.

 Analysis of the development environment of the application.

 Implementation of a C-based server that will send information to our client

application.

 Implementation of an Apache Spark client application that connects to the C-

server and cleans all the information and stores it in a distributed environment

for latter visualization.

Intrusion Analysis System using Big Data Techniques

12

 Implementation of a visualization application using Apache Zeppelin to provide

results of the application.

1.3. Architecture of the application

The client-server application is separated into three distinguishable parts:

 Server: The server for this application is a typical multithreaded C server,

which will be reading information regarding security of the system (different

types of logs) and also some system information.. This multithreaded server

will be creating one thread per file being read and sent to the client.

 Client: The client side of the application consists of an Apache Spark

Streaming client connecting to our implemented C server and receiving the

different data sets, splitting them and processing them. After the processing

of the received data, the apache Spark Client will be writing the final

information to a distributed file system (Hadoop Distributed File System) for

it to be stored in a distributed manner, replicated, and handled easily.

 Visualization of the application: Once the data has been correctly analysed

and stored into our distributed file system, we will have another application

called Zeppelin which will be the one in charge of reading the stored data

from HDFS and displaying different graphs to visualize the effectiveness of

the overall application.

1.4. Document structure

The document is structured in the following parts:

 2. State of the Art: This section covers all the necessary

background information related to the development of the project. The final

section is a series of similar technologies to the one being developed.

 3. Analysis of the application: This

section includes the analysis and design of the application being developed,

including use cases and requirements of the application.

 4. Installation manual for the

different technologies: This section is a manual

covering the step-by-step installation of the different technologies on a machine.

Intrusion Analysis System using Big Data Techniques

13

 5. Development environment

characteristics: This section analyses the environment in which

the application was carried out (Tucan cluster).

 6. Implementation of the

application: This section explains the actual implementation of

the application.

 7. Evaluation: This section covers the evaluation plan carried

out to test the application.

 8. Project planning: This section covers the planning

performed to carry out the project, both the initial planning and the real

planning.

 9. Socioeconomic Environment: This

section covers the impact on social and economic fields as well as the budget for

the project.

 10. Regulatory framework: This section

covers the legal aspects concerning the application as well as programming

standards for the different technologies used.

 11. Conclusions and further work:

This section contains the conclusions of the project and the future lines of work

to improve the application.

1.5. Acronyms

This section provides a table with the acronyms used through the document.

Intrusion Analysis System using Big Data Techniques

14

Acronym Meaning

HDFS Hadoop Distributed File System

OS Operating System

JVM Java Virtual Machine

DAG Directed Acyclic Graph

HA High Availability

SPF Single Point of Failure

RDD Resilient Distributed Dataset

RAM Random Access Memory

DNS Domain Name System

I/O Input / Output

kB, GB Kilobyte, gigabyte

Gbps Gigabyte per second

Intrusion Analysis System using Big Data Techniques

15

2. State of the Art

In order to understand the objective of this project it is necessary to give a brief

explanation of the main technologies being used during the development of it.

2.1. Distributed Systems

We have many definitions for distributed systems, one of these could be the one defined

by Tanenbaum : “A collection of independent computers that appear to the users of the

system as a single computer” [1].

2.1.1. Characteristics of distributed systems

The characteristics of distributed systems are:

 Concurrency of components: as the previous definition said we have a set of

computers that aggregate its hardware components so that we can use them as if

it was a single one.

 Lack of a global clock: each of the computers has their own internal clock and

synchronization among them is necessary for correct behaviour of the

distributed programs that will be run along our system.

 Independent failure components: each of the components of the different

machines is subtle to failure (in distributed systems the probability of a

component failing is much higher than in conventional systems) and it’s the

designer’s job to handle these failures.

2.1.2. Distributed system vs Parallel system

We must differentiate between distributed systems and parallel systems as these two

terms often tend to be confused and overlapped. Whereas parallel systems communicate

through a common memory space, distributed systems communicate through message

passing between the different machines in our system.

2.1.3. Main architectures

There are various types of software and hardware architectures used for distributed

systems but these usually fall into one of the following:

Intrusion Analysis System using Big Data Techniques

16

 Client-Server: architecture in which clients contact the server for data which

will be then format and display it to the users. Input at the client side is sent back

to the server when it represents a permanent change.

 Three-tier: architecture in which the client side of the application is moved to a

middle tier so that stateless clients may be used. This simplifies deployment of

the application. Most of the web applications are three-tier based.

 N-tier: architecture similar to three-tier that extends it to forward its requests to

other enterprise services. Highly used for application servers.

 Peer-to-peer: architectures in which there are no privileged components, all

machines have the same responsibilities and are interconnected among them.

Machines in this type of system are known as peers and can act both as server

and client. Torrent applications use this type of architecture.

2.1.4. Clusters

Cluster is a word used to refer to a group of computers that are interconnected between

them and appear to be a single machine. Clusters are usually interconnected with very

fast LAN networks, and they appeared because the computing power of single machines

got obsolete and their growth (as described by Amdahl’s law [2]) was limited, so in

order to gain processing power computer clusters were created. Clusters have a series of

keywords to describe their components; nodes of a cluster are the smallest unit of

computation (a computer used as a server).

The main purposes of clusters are:

 Performance: clusters offer way higher processing power than that of single

computers as each node in the cluster aggregates its hardware capabilities to that

of the cluster (as its is seen as a single unit), and so they can provide better

performance when dealing with problems that can not be solved using

conventional sole computers.

 High availability: clusters are designed so that service (to the purpose they may

have) can be served by using redundancy, so that if in a certain point in time a

node is busy by other user, service to another one may be served. The main

purpose of HA clusters is to avoid SPF on the system by the usage of

redundancy.

 Load balancing: because nodes in a cluster share hardware resources, load

balancing of an application can be done effectively distributing the computation

among the different nodes. Load-balancing clusters objective is that all the

nodes of the system cooperate to achieve a common goal (for example each of

Intrusion Analysis System using Big Data Techniques

17

the node is performing a different algorithm, and the final result will be

aggregated.

 Scalability: clusters provide the best type of scalability (known as horizontal

scalability) when the problem we are dealing with gets bigger. To scale our

system all we have to do is add more nodes to our system (and generally

computers that make up nodes of a cluster are computers which have low

hardware characteristics that, when aggregated, generate high amount of

resources). There is also the possibility of escalating vertically (meaning to add

more resources to a node), but this would take to escalate every node of the

cluster (not completely necessary) as the purpose of a cluster is to have similar

hardware capabilities to prevent differences when being assigned to a node of

the cluster, as this is done automatically by the cluster manager application.

There are more requirements when building up a cluster like the operating system we

want the cluster to work under, this OS must be both multithreaded and allow multiple

users to connect to it.

Clusters are in need of middleware (software operating between the OS and application

running on the cluster) to provide a single system image, and thus when a user accesses

the cluster it is perceived as a single very powerful computer. This middleware will also

optimize the different processes on the system (load-balancing, fault tolerance…) and

provide the scalability desired (this middle ware is in charge of handling resources of

the system).

2.2. Big Data

Big data is a term used to refer to datasets that are so large or complex that the

traditional processing applications are inadequate to deal with them. It is a field of study

of the analysis, capturing, normalization, search, storage, transfer, visualization,

querying and privatization of these large datasets.

The term is widely used to refer to different concepts and there is no general definition

for what the term “Big data” covers but there are several hints and characteristics of

applications that may take advantage of Big Data technologies.

2.2.1. Characteristics of Big Data

The main characteristics of Big Data application could be summarized in the following:

 Volume: The amount of stored and generated data.

 Variety: The type and nature of data, this information is vital so that people who

will analyse the results of our application can better understand them.

Intrusion Analysis System using Big Data Techniques

18

 Velocity: The speed at which we generate and process data must meet the

expected requirements for that application.

 Variability: Inconsistency of the dataset of our application might disturb

processes computing this data.

 Veracity: The quality of captured data can vary greatly, affecting accurate

analysis.

2.2.2. The problem of Big Data

Big data is a problem, as we cannot offer a solution that is efficient for every type of

system. Depending on what we want to achieve our solution will adapt to one of the

general types of architectures big data applications deal with. These architectures

depend on three variables (we cannot offer the three at the same time):

 Store

 Scale

 Search.

2.2.3. Architectures

Depending on which of the three variables we want to focus on, we have three types of

architectures that are fit to solve the problem:

2.2.3.1. Store and Search

In this type of application we have a single user that will be accessing a distributed

storage system and we will prioritize on storing and searching the data stored and not on

scaling of the application. This can be seen on Figure 1 in which our application would

only allow a single privileged user access to the system.

Intrusion Analysis System using Big Data Techniques

19

Figure 1 Store and Search architecture.

2.2.3.2. Store and Scale

In this type of application we have multiple users accessing a distributed storage

system, we will prioritize on storing and scaling of the application and not on searches

on the data stored. This can be seen on Figure 2, searches on the dataset will go slower

as any user can access any storage system and the data we want to obtain might be in

any of them.

Figure 2 Store and Scale architecture.

2.2.3.3. Scale and Search

In this type of application we have multiple users accessing a single storage system, we

will prioritize on scaling of the application and retrieval of data and not on storage

capacity (as it is not distributed). This can be seen on Figure 3 in which we have

multiple users accessing a central storage system.

Intrusion Analysis System using Big Data Techniques

20

Figure 3 Scale and Search architecture.

All these architectures can also be referenced to the CAP theorem by Eric Brewer

(Consistency, Availability and Partition tolerance), which states that in any distributed

computing system we cannot assure simultaneously these three characteristics.

 Store and Search provides consistency and partition tolerance (does not

provide availability as only one user is able to access the application).

 Store and Scale provides availability and partition tolerance (as at a time t

data among users might not be consistent if a change by user A has been made

on the storage S1 and user B might not see this modification on the data).

 Scale and Search provides consistency and availability (no partition tolerance

as it is not distributed).

2.3. Apache Spark

This section will provide some of the key concepts of the Apache Spark [3] engine for

distributed processing.

From now on we will refer to Apache Spark as Spark for simplicity.

Spark is an open source computing framework oriented to cluster computing and large-

scale data processing. We will explain the main functionalities of it as well as why it

was chosen as the computing framework for this project. Spark is a processing engine

that can work with different programming languages (mostly Scala, Java and Python).

For the development of the application we chose Scala as it is an emerging

programming language and highly used in the Big Data environment, as well as for the

Intrusion Analysis System using Big Data Techniques

21

many features that make it a very good programing language (data types inferring, map-

reduce operations, case class implementations…).

The programming model is functional oriented (treats computation as the evaluation of

mathematical functions and avoids changing-state and mutable data) and is composed of

a driver program that invokes parallel operations on the data sets applying a function

that will be distributed along the infrastructure in which we will deploy the application.

The driver program generates for each application a directed acyclic graph representing

each of the steps of the application.

Spark has two main options for data processing depending on the speed and the

availability of the data being processed. We have either batch processing or stream

processing. In Spark Streaming, processing is not really what we understand as stream

processing but rather micro batch processing. This is because data is not processed

record-by-record as in other streaming applications such as Apache Storm or SQLstream

Blaze, but instead it processes in small batches of data that are aggregated and treated as

a single processing unit (called Dstreams for the Spark engine).

Spark’s programming model is composed of three main elements:

2.3.1. Resilent Distributed Dataset (RDD’s)

They are the main data structure in the programming model of Spark, a definition would

be a read-only set of data items that will be distributed along the infrastructure of our

application. Their main advantage is that they support fault-tolerance through a

capability known as lineage (the set of operations that produced an RDD through the

life-cycle of the application). RDD’s are immutable which means that in order to alter

an existing RDD Spark will generate a new one with the desired transformation.

2.3.2. Parallel operations

Spark supports different type of operations to be performed on an RDD that will

generate a new RDD. We have two different types of operations that can be invoked

over our RDD’s:

 Transformations: these operations create a new RDD from an existing one

applying a function (map, filter…). These transformations are lazy and do not

really occur until an “action” operation is performed over that RDD.

 Actions: these operations return a value to the driver program after applying a

function to the RDD (reduce, collect…).

Intrusion Analysis System using Big Data Techniques

22

2.3.3. Shared variables

Spark supports two types of limited shared variables:

 Broadcast variables: this type of variable is a read-only variable that is cached in

each of the machines of the system. It is mainly used to create copies of large

datasets to reduce the overhead in communication generated by sending these

datasets when they are needed.

 Accumulators: this type of variable is a special type of variable to which we can

only “add” by using associative and commutative operations. They are mainly

used to implement counters. Only the driver program can read this value (the

different computation nodes can not access its value).

2.3.4. Spark architecture

On Figure 4 we can observe the architecture of a spark application:

Figure 4 Spark architecture [4].

As we can observe the Spark architecture is composed of the spark context contained on

the driver program, which interacts with the worker nodes that are the ones in charge of

performing all the computation.

2.4. Monitoring systems

Monitoring systems are software application whose purpose is to monitor activity on a

certain system so that if a failure arises in this system, its detection and recovery is

easier for the system manager. We can also use monitoring systems as a security

element in our system so that once we detect a possible threat, we can inform of it and

keep a record of these threats and establish a backup policy.

Intrusion Analysis System using Big Data Techniques

23

The monitoring application needs information on what to monitor (elements we will be

constantly checking) and how to monitor (if something is detected what to do).

Performance of these monitoring systems is crucial, and we have two main aspects on

performance:

 Impact on the system domain: the monitoring application must never have a

high impact on the performance of the system we are monitoring (must not

degrade the functionality of the system being monitored).

 Efficient monitoring: the monitoring of the system must handle the monitoring

goals in a timely manner, must meet the desired time requirements. This is

strongly related to scalability (if we are monitoring a big system the monitoring

application must scale with the application being monitored).

2.5. Security threats

The definition of a threat in computing is a possible danger that might take advantage of

a vulnerability of our system and cause some harm to the application. The definition

from ISO 27005(International Organization for Standardization) is:” A potential cause

of an incident, that may result in harm of systems and organization” [5]. Threats might

be either intentional or accidental.

2.5.1. Security requirements

Security in every system must meet the following requirements, being the three firsts

ones the most important:

 Confidentiality: only authorized users can access the data.

 Integrity: Data must always be accurate and third parties must not modify them.

 Availability: Data must always be available to authorized users.

 Non-repudiation: Ensuring that the originators of messages cannot deny that

they in fact sent the messages.

 Authentication: Ensuring that users are the persons they claim to be.

 Auditability: keeping track of everything that happens within the system so

audition might be performed.

Intrusion Analysis System using Big Data Techniques

24

2.5.2. Threat classification (Microsoft)

Microsoft proposed a classification for possible threats according to five different

categories, the DREAD risk assessment model [6]:

These five categories are the Damage that represents how bad an attack can be (the

damage it can produce in our system). The Reproducibility of the attack, or how easy it

is to reproduce that attack to our system. The Exploitability of the attack that stands for

how much work does it take to launch that attack in our system. The amount of Affected

users, if we are a big application will the attack affect to all the users of that application

or will it affect to only a small portion of them. And finally the last category of the risk

assessment model would be the Discoverability or how easy it is to discover that threat.

2.5.3. Threat classification according to the nature of the attack

Depending on which of the three main requirements of a secure system (Section 2.5.1)

the attack is exploiting we have four different attack classifications:

 Interception: obtaining data that is being transferred. Attack on confidentiality.

 Interruption: denying access to a certain resource. Attack on availability.

 Modification: modification of data or packages. Attack on confidentiality and

integrity.

 Fabrication: generation of data, it’s a type of modification in which the

modification is total and we generate a new set of data. Attack on

confidentiality and integrity.

2.6. Hadoop

In order to explain the Hadoop Distributed File System (from now on referred to as

HDFS) we need to give a brief introduction to what Hadoop is and which problems was

it designed to solve. Hadoop is a collection of tools intended for both storing and

processing of Big Data applications, it is part of the Apache Software Foundation and

has a lot of different technologies on it (although we will only be using HDFS here).

On Figure 5 we can see part of the Hadoop ecosystem.

Intrusion Analysis System using Big Data Techniques

25

Figure 5 Hadoop ecosystem [7].

The core components of Hadoop are HDFS: a distributed fault tolerant and highly

available storing system; MapReduce: the processing engine for distributed computing

and Apache YARN: a cluster resource manager.

2.6.1. Hadoop Distributed File System

HDFS is a distributed file system developed by the Hadoop foundation intended to

work over clusters to distribute data access and storage along them. It was written in

Java, it is based on an abstraction called Namespace, which is a file and directories

hierarchy. Files along HDFS are divided on big data blocks (128MB) and the

Namespace is separated from the data. Apart from the Namespace we have other

abstract entities on the HDFS environment, we have Namenodes and Datanodes,

Namenodes are the ones in charge of storing in memory (RAM) the namespace

hierarchy, metadata and blocks resident on HDFS; and Datanodes are the ones in

charge of storing the File data blocks on disks local to each node on the cluster. As it is

a fault tolerant system, data blocks are replicated along the cluster (typically a data

block is replicated on 3 instances.

2.6.1.1. HDFS Architecture

On Figure 6 we can observe a diagram showing the architecture of how HDFS works:

Intrusion Analysis System using Big Data Techniques

26

Figure 6 HDFS architecture [8].

As we can observe on the image there are 3 main components of the HDFS architecture,

the client is the one accessing the HDFS in order to perform operations on the different

files stored across the file system. When a client wants to access a file (for either

reading or writing to HDFS), first it access the Namenode which is the one storing all

the metadata necessary to find where a data block is being held, once the client has

“queried” the Namenode to know where to find the data being requested, it will go to

the specific Datanode and perform the operation.

2.6.1.2. NameNode

As stated previously Namenodes are the central piece of the HDFS, it contains all the

information regarding the file systems hierarchy, the block manager and a list with all

the Datanodes that are available. HDFS also has a secondary Namenode that stores

checkpoints on the state of the system; the primary Namenode creates a log of

transactions storing all the operations being made over the file system. The downside of

the Namenode is that as it is the one storing all the information regarding on how to

access data blocks if this one fails, then there is no way to access the data (Single point

of failure), although we can recover it from checkpoints and it is recommended to keep

other replicas of the Namenode.

2.6.1.3. Datanodes

Every Datanode once is created registers itself to the Namenode by sending a list of

available blocks. In order to keep the consistency across the system, Datanodes send a

heartbeat to the Namenode every 3 seconds and if the Namenode has not received this

heartbeat from a Datanode then that node will be marked as unavailable (and thus all its

available blocks).

Intrusion Analysis System using Big Data Techniques

27

2.6.1.4. HDFS Client

The HDFS client supports typical file system operations: create, read and write files,

create and delegate directories, permission, replication, configuration…

2.6.1.5. Replication

Replication on the file system is handled by proximity and thus the three basic replicas

will be created according to the following: 1st replica will be on the same node as the

HDFS client, 2nd replica will be on a different rack from the 1st replica and the 3rd

replica will be on the same rack as the 2nd one but in a different node. This is to

maximize both latency when searching for data blocks and to assure fault tolerance.

2.6.2. Apache Zookeeper

In order to coordinate all the operations that must be done on the Hadoop environment

we have a service named Zookeeper (needed for various reasons), this service allows

distributed processes to coordinate through the hierarchical name space of Hadoop. The

main purpose of Zookeeper is to automate all the synchronization and communication

among the Hadoop ecosystem.

2.6.2.1. Zookeeper architecture

In order to explain the architecture of Zookeeper and how it works we can observe

Figure 7.

Figure 7 ZooKeeper architecture [9].

All the information in the system is replicated through the Zookeeper servers, and each

one has a copy of the data. The leader is selected when the Zookeeper service is started

and is the one in charge of handling the synchronization amongst the rest, to do so a

client using the Zookeeper service may read any of the Zookeeper servers (as it is a non-

blocking operation) but if a write operation is to be made this will be sent to the leader.

The main reason for using Zookeeper on our system is that in order to provide high-

availability on HDFS the best way to do it is to use the Zookeeper service and abstract

the communication when clients want to access HDFS.

Intrusion Analysis System using Big Data Techniques

28

2.7. Apache Hadoop Yarn

Yarn is a cluster resource administration tool, it can be seen as a distributed operating

system intended to work over clusters. The Yarn application consists of a central

Resource Manager, which has information on all the available resources along the

cluster and a series of node managers that are in charge of handling and monitoring

processing on each cluster node. Yarn makes automatic the handling of cluster

resources, and there are some differences on how the application works from what we

talked about in the Spark architecture, Yarn has three different execution modes and

depending on each of them there are some slight differences on how it works. To make

easier to comprehend this differences we need to recap a series of keywords regarding

Spark applications:

 Application: the application is the final purpose of what we want to execute, it

can either be a single shell application, a series of nodes communicating and

collaborating to reach a final purpose, etc.

 Spark driver: the spark driver is the one in charge of creating and executing the

spark context (representing the application), this driver is the one responsible of

generating the DAG representing the application.

 Spark application master: this abstract entity is the one responsible of handling

the requests of resources by each spark executor as well as finding the

appropriate nodes on which to launch the spark application. Spark creates one

application master per application.

 Spark executor: each instance of a JVM on a node that is performing

computations for a single spark application. This must not be confused with

cluster nodes as a single cluster node can have multiple Spark executors. Each

executor on the system is in charge of performing a series of tasks in order to

fulfil the purpose of the application.

 Task: a task represents the minimum unit of computation on a dataset, (each of

the steps in the defined DAG can produce one or more tasks).

Below we give a brief explanation on the three different Yarn modes and their

differences according to these keywords regarding Spark Yarn applications.

Yarn Cluster Mode: in this mode the spark driver program resides on the application

master, who is isolated from the client, the application master requests resources to the

YARN ResourceManager. In this mode, the YARN NodeManager starts executor

processes, which together with the previously mentioned YARN ResourceManager are

the permanent services that are “alive” during the application. In this Yarn mode there is

Intrusion Analysis System using Big Data Techniques

29

no support for spark shell (only self-contained applications may be launched in this

mode).

Yarn Client Mode: in this mode the spark driver program resides on the client node, so

output of the application will be visible to the client. As in the cluster mode, the

application master handles resource requesting; also the same persistent services are

“alive” during the application, and the YARN NodeManager is in charge of starting

executor processes. Client mode does give support for the spark shell.

Spark Standalone: In this mode the client is responsible of managing everything of the

application. It also provides support for spark shell.

2.8. Apache Zeppelin

As stated by its web page, “Apache Zeppelin is a web-based notebook that enables

interactive data analytics” [10], to further understand the purpose of Zeppelin we need

to define what is a web-based notebook.

A web-based notebook is an abstraction of how to work on a determined environment

instead of working with interactive shells. It was first introduced by iPython as a web-

based application in which to create Python interactive programs.

In the end Zeppelin is a tool to ingest, discover, analyse and visualize data on a simple

common environment. Zeppelin supports many different interpreters (Apache Spark,

Python, R, Shell, etc). It also has the possibility to add and create more interpreters to

the system.

The main reason to be using Apache Zeppelin on our application is the fact that once we

have properly saved our desired data, loading it into zeppelin and visualizing it is quite

straightforward. Also it has some serious advantages, it’s simplicity is one of them, the

interface is integrated with easy technologies such as hive or sparkSQL. Again the

variety of opportunities it gives with the plugin architecture regarding interpreters. The

fact that in the same notebook you are able to use different programming languages is

also a fact to take into consideration.

2.9. Similar applications

In this section we will be introducing a few applications available on the market whose

functionality and purpose are similar to the one being developed. These applications are

mainly log-management applications.

Intrusion Analysis System using Big Data Techniques

30

2.9.1. Loggly

This is a cloud-based logging management and analytics application, it records log data

from any device and reports this data in a real-time management platform. Loggly [11]

offers both free and paid plans, but the free plan has some serious limitations (only 1

user can acess the application at the same time, only 200 MB a day, 7 day retention of

data…). On Figure 8 we can observe a view of the dashboard Loggly provides.

Figure 8 Loggly dashboard [12].

The main differences of this application with ours are (apart from it being more

powerful) the Big Data technologies used to implement it (Elasticsearch, Apache

Lucene and Apache Kafka).

2.9.2. Splunk

Splunk [13] is an application for log treatment, it searches, monitories and analyses

machine-generated data. It is a very powerful application, allowing to generate graphs,

dashboards, reports, alerts and visualizations over the log-based data. Splunk offers

many different products going from those aiming to big companies to the ones for small

IT infrastructures; Splunk also offers cloud-based products. On Figure 9 we can observe

an example of the interface Splunk provides to its users.

Intrusion Analysis System using Big Data Techniques

31

Figure 9 Splunk dashboard [14].

2.9.3. GoAccess

GoAccess [15] is an application entirely open-source and available on GitHub [16]. It is

a log-analyser designed to be fast and terminal-based so that it does not require using

the web-browser. It is a very powerful application for system analysers that are fluent

with terminal commands and ssh. GoAccess also offers the possibility to generate

reports in various formats (being the terminal output its default information source) like

HTML, JSON or CSV. On Figure 10 below we can observe the dashboard output for

the GoAccess application.

Figure 10 GoAccess dashboard [17].

Intrusion Analysis System using Big Data Techniques

32

GoAccess does not use Big Data technologies, it is entirely written in C; that would be

the main difference between our application and GoAccess.

2.9.4. Logz.io

Logz.io [18] is another log-analysis software; it is based on Big Data technologies

offered by the Elastic Stack [19], these technologies include, ElasticSearch (search

engine acting as a NoSQL database), Logstash (processing pipeline log-oriented) and

Kibana (visualization platform), all these technologies are easily integrated among

themselves. It offers both paid and free plans (limited to 1GB of data and 3 day

retention). On Figure 11 we can observe an example of the dashboard Logz.io offers.

Figure 11 Logz.io interface [20].

3. Analysis of the application

In this section we will proceed with a previous analysis of the application, stating the

desired functionality, use cases and requirements the application must fulfil. The

objective of this section is to show the different components of the application in a more

detailed way, to do so we will first give a brief glimpse of the application, then we will

provide the use cases for the application, and finally we will show Tables following the

format of Table 1 to show the different requirements of the application.

3.1. Overview of the application

This section aims to provide a small recap of what the applications final purpose is.

Intrusion Analysis System using Big Data Techniques

33

As stated before, this application consists on a monitoring system to detect possible

threats to the system being monitored. The application works as a server-client

application in which the server-side will be sending (as a stream of data) different log

and system information to the client-side of the application. Then the client-side will

filter that data and store it in a distributed file system (HDFS), finally we have a

visualization application (Zeppelin) that will be the one displaying the gathered

information.

On Figure 12 we can observe the overall architecture of the application, explanation of

each the points:

 1. Server application reads the files.

 2. Server application sends data to the Spark application as a stream of data.

 3. Spark application filters incoming stream of data and stores necessary

information on HDFS.

 4. Zeppelin runs over Spark.

 5. Zeppelin loads data from HDFS and provides the visualization tools.

Figure 12. Detailed architecture of the application

3.2. Use cases

In this case we will use UML use case diagrams [21] to represent the different steps to

be followed by a user to use the application.

As our application is a monitoring system application there is only one use case related

to our software application, this use case can be seen on Figure 13.

Intrusion Analysis System using Big Data Techniques

34

Figure 13 Application usage use case.

This is the only use case for our application; the system administrator is in charge of

both having permissions over the required files, and starting the three main components

of the application. Once the three elements are running the system administrator will be

able to see in a real-time fashion the different graphs shown on the visualization

application to monitor malicious activity on the system.

3.3. System requirements

The aim of this section is to provide all the requirements the application must fulfill for

its proper implementation. All requirements will be provided on a table according to the

one shown in Table 1.

ID

NAME

DESCRIPTION

PRIOTITY

NECESSITY

Table 1 System requirements schema.

Where each field on the table represents the following:

 ID: Identifier of the requirement, it is a unique identifier for each of the

requirements that will help the understanding of the type of requirement it

represents, we have three different types of requirements:

o FR-XX: this type of identifier matches functional requirements of the

application, that is, the desired functionality for the different parts of the

application.

o AR-XX: these are access requirements; they represent rights that must be

obtained by the user of the application so that it works properly.

Intrusion Analysis System using Big Data Techniques

35

o SR-XX: these identifiers are the ones representing software

requirements, which include software that must be available, libraries,

versions, etc.

 NAME: a brief name given to the requirement.

 DESCRIPTION: a detailed description of the requirement.

 PRIORITY: this value represents the priority of the requirement; its values can

be three (HIGH, MEDIUM and LOW).

 NECESSITY: this value represents how necessary that requirement is for the

correct functioning of the application, it also has three values (ESSENTIAL,

DESIRABLE and OPTIONAL)

3.3.1. Functional requirements

This section contains the different functional requirements of the application.

FR-01

NAME Auth.log existence

DESCRIPTION The file auth.log must exist on our system.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 2 Functional requirement 1.

FR-02

NAME Fail2ban.log existence

DESCRIPTION The file fail2ban.log must exist on our

system.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 3 Functional requirement 2.

FR-03

NAME diskstats existence

DESCRIPTION The file diskstats must exist on our

system.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 4 Functional requirement 3.

Intrusion Analysis System using Big Data Techniques

36

FR-04

NAME meminfo existence

DESCRIPTION The file meminfo must exist on our

system.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 5 Functional requirement 4.

FR-05

NAME Real-time application.

DESCRIPTION The application must work on a real-time

fashion.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 6 Functional requirement 5.

FR-06

NAME Accept connections.

DESCRIPTION The server application must be able to

support client connections.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 7 Functional requirement 6.

FR-07

NAME Accept multiple connections.

DESCRIPTION The server application must support

multiple clients connecting.

PRIOTITY MEDIUM

NECESSITY DESIRABLE

Table 8 Functional requirement 7.

FR-08

NAME Infinite execution.

DESCRIPTION The server application must be

continuously sending data to the client

application.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 9 Functional requirement 8.

Intrusion Analysis System using Big Data Techniques

37

FR-09

NAME Multithreading

DESCRIPTION The server application must support

multiple threads to run.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 10 Functional requirement 9.

FR-10

NAME Filtering.

DESCRIPTION The client application must filter the

stream of data so that only required

information is stored.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 11 Functional requirement 10.

FR-11

NAME Storing.

DESCRIPTION The client application must correctly store

the filtered information for the

visualization application to load them.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 12 Functional requirement 11.

FR-12

NAME Distributed computing.

DESCRIPTION The client application must perform its

processes in a distributed fashion.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 13 Functional requirement 12.

FR-13

NAME Independent storing.

DESCRIPTION Each of the desired information will be

stored on separate files according to the

nature of the data.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Intrusion Analysis System using Big Data Techniques

38

Table 14 Functional requirement 13.

FR-14

NAME Loading of data.

DESCRIPTION The visualization application must

correctly load the data stored by the client

application.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 15 Functional requirement 14.

FR-15

NAME Clearness.

DESCRIPTION The visualization application must

provide clear meaningful graphs to show

the data.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 16 Functional requirement 15.

FR-16

NAME Replication.

DESCRIPTION The storage of the data made by the

client-application must be automatically

replicated.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 17 Functional requirement 16.

3.3.2. Access requirements.

This section describes the different permissions and authority requirements that must be

taken into account.

AR-01

NAME Access to development cluster.

DESCRIPTION The user must be able to access (and

authenticate) the cluster where the

application is implanted.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 18 Access requirement 1.

Intrusion Analysis System using Big Data Techniques

39

AR-02

NAME Auth.log

DESCRIPTION The user must have (at least) read

permissions over the auth.log file.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 19 Access requirement 2.

AR-03

NAME Fail2ban.log

DESCRIPTION The user must have (at least) read

permissions over the fail2ban.log file.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 20 Access requirement 3.

AR-04

NAME diskstats

DESCRIPTION The user must have (at least) read

permissions over the diskstats file.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 21 Access requirement 4.

AR-05

NAME meminfo

DESCRIPTION The user must have (at least) read

permissions over the meminfo

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 22 Access requirement 5.

AR-06

NAME Stored data.

DESCRIPTION The user must have both read and write

permissions over the directory in which

the filtered data stored by the client

application writes.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 23 Access requirement 6.

Intrusion Analysis System using Big Data Techniques

40

3.3.3. Software requirements

This section will cover the different software requirements needed for the application to

correctly function.

SR-01

NAME Java.

DESCRIPTION The development environment must have

Java installed with version 1.7.0_67 or

higher.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 24 Software requirement 1.

SR-02

NAME Scala.

DESCRIPTION The development environment must have

Scala installed with version 2.11.7 or

higher.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 25 Software requirement 2.

SR-03

NAME Sbt.

DESCRIPTION The development environment must have

sbt installed with version 0.13.13 or

higher.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 26 Software requirement 3.

SR-04

NAME Apache Spark.

DESCRIPTION The development environment must have

Apache Spark installed with version 1.6.0

or higher.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 27 Software requirement 4.

Intrusion Analysis System using Big Data Techniques

41

SR-05

NAME Apache Yarn.

DESCRIPTION The development environment must have

Apache Yarn installed.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 28 Software requirement 5.

SR-06

NAME Apache Hadoop.

DESCRIPTION The development environment must have

Apache Hadoop installed with version

2.6.0-cdh5.11.1 or higher.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 29 Software requirement 6.

SR-07

NAME Apache Zeppelin.

DESCRIPTION The development environment must have

Apache Zeppelin installed with version or

higher.

PRIOTITY HIGH

NECESSITY ESSENTIAL

Table 30 Software requirement 7.

Intrusion Analysis System using Big Data Techniques

42

4. Installation manual for the

different technologies

In this section we will be giving a manual on how to install and configure the different

technologies we will be using on the development of the application. It will be divided

by each technology (as they are all open source). The manual serves as a guide on how

to install all the technologies on a new environment, but our application was in the end

carried on the universities cluster (see Section 5).

4.1. Apache Spark Installation

In order to install apache Spark we need to have a series of pre-requisites:

1. Verify Java Installation: to work with apache spark we need to have java

installed, (we recommend to have the latest java version), so first of all we

should check we have java installed in our machine.

Figure 14 Java verification.

If we do not have Java installed then simply run the following commands to get

the default installation (although this will install Java 7 instead of 8):

a. Update Ubuntu:

Figure 15 Ubuntu update.

b. Download default Java JRE:

Figure 16 Install default JRE.

c. Download default Java JDK:

Figure 17 Install default JDK.

Intrusion Analysis System using Big Data Techniques

43

2. Downloading and installing Scala: in order to download and install Scala in our

Debian-based machine run the following commands:

Figure 18 Download and installation of Scala.

3. Downloading and installing sbt: sbt is an open source building tool for Java and

Scala projects, its use in our project is to compile our Spark code (written in

Scala). In order to install sbt in our Debian-based machine run the following

commands:

Figure 19 Download and installation of sbt.

4. Downloading and installing Apache Spark: the final step is to download apache

spark from its web page [22] and installing it, to do just run the following

commands:

Figure 20 Download and installation of Spark.

5. Finally verify that the installations has been correctly made by executing the

spark-shell:

Intrusion Analysis System using Big Data Techniques

44

Figure 21 Spark shell.

4.2. HDFS installation

In order to install HDFS we have to fulfil the following steps:

1. Installing ssh:

Figure 22 Installation of SSH.

2. Installing Hadoop: we will be installing hadoop on our /opt directory:

Figure 23 Downloading of Hadoop.

3. Configuration of HDFS: in order to configure HDFS we will need to modify the

content of some configuration files:

a. Core-site.xml: file that will configure where :

Figure 24 Accessing core-site.xml.

Intrusion Analysis System using Big Data Techniques

45

Figure 25 Core-site.xml configuration.

Where value will be where HDFS will be residing.

b. Hdfs-site.xml: file that will configure replication and data nodes and

namenodes.

Figure 26 HDFS-site.xml configuration.

4. Running HDFS: in order to be able to start using HDFS we have to run the

necessary services:

a. First of all we have to format the namenode, to do so run the following

command (from the root directory of hadoop):

Figure 27 Namenode formatting.

b. Next we have to run the HDFS service, to do so:

Figure 28 HDFS service starting.

5. Verifying the service is up: in order to finally demonstrate that both namenodes

(primary and secondary) are up we run the following command:

Intrusion Analysis System using Big Data Techniques

46

Figure 29 HDFS service verification.

Now we can proceed with the different commands HDFS supports.

4.3. Zookeeper installation

The following manual covers how to install and configure Zookeeper:

1. First of all we download and uncompress zookeeper.

Figure 30 Downloading of zookeeper.

2. Now we must configure the zoo.cnf file on the “/conf “ directory of Zookeeper.

Figure 31 Zookeeper configuration file.

It is important to note that server.(number) must always be an integer as we will

have to refer to it in the next step.

Intrusion Analysis System using Big Data Techniques

47

3. This previously mentioned number must be included on the data directory as

follows:

a. First we create the following directory:

Figure 32 Creation of the data directory for Zookeeper.

b. Then we issue the following command to finish the configuration of

zookeeper:

Figure 33 Adding desired ID to Zookeeper data.

4. Starting Zookeeper: finally the last step is to lift the Zookeeper service, to do so:

Figure 34 Starting Zookeeper service.

4.4. Apache Yarn Configuration

Apache Yarn is a part of the bundle contained on the Hadoop download on Section 3.3,

in order to configure Yarn we need to go to the “/opt/hadoop/etc/hadoop” directory and

configure the “yarn-site.xml” according to our cluster topology. Below we can observe

an example of “yarn-site.xml”:

Figure 35 Yarn-site.xml configuration file example.

Intrusion Analysis System using Big Data Techniques

48

4.5. Alternatives

There are many alternatives to manually installing and configuring each of the

technologies one by one, there are bundles offered by different companies that contain

most of the Big Data related technologies, below we offer 2 different alternatives.

4.5.1. Cloudera

Cloudera [23] it’s a company that offers different software bundles related to Apache

Hadoop, (its what has been used on our system to get every component working) its

main products are the following:

1. CDH: it’s the Cloudera distribution of Apache Hadoop, it includes all the core

Hadoop elements as well as other related projects (Spark, Impala, Kafka, etc).

CDH offers a series of advantages (and its open source), flexibility (storing any

type of data and various manners of processing), integration (easiness of get

running a complete Hadoop platform), security (process and control of all the

data on your environment), high availability, scalability and compatibility with

other IT infrastructures. Below we can observe an image representing the CDH

architecture.

Figure 36 CDH architecture[24].

2. Apache Impala: its a parallel processing SQL engine for business intelligence

and interactive analytics.

Intrusion Analysis System using Big Data Techniques

49

3. Cloudera Search: service that provides near real-time Access to data on Hadoop

and HBase.

4. Cloudera Manager: another service offered by cloudera used to deploy, manage,

monitor and diagnose CDH deployments.

5. Cloudera Navigator: its an end-to-end data management and security tool for the

CDH platform.

Cloudera offers and installation guide that can be found in in [25]

4.5.2. Hortonworks

Hortonworks [26] is another software company similar to Cloudera that also offers

software bundles related to the Apache Hadoop platform, its main products are:

1. Hortonworks Data Platform: HDP is similar to Cloudera’s CDH, it offers the

core components of Hadoop, its purpose os the processing, storing and analysis

of data-driven applications. The image below shows its architecture (very

similar to CDH):

Figure 37 HDP architecture[27].

2. Hortonworks Data Flow: HDF is and application used for the analysis of the

flow of data on our applications, it is intended for real-time applications and is

integrated with HDP.

Intrusion Analysis System using Big Data Techniques

50

5. Development environment

characteristics

In this section we will be explaining and analysing the environment in which the

application was developed.

This application was carried on the Universidad Carlos III department of Computer

Science and Engineering cluster Tucan. This cluster is a high performance computing

purpose cluster, this means it is intended to perform data-parallel, Big Data and high-

performance applications.

5.1. Topology of the cluster

Typical cluster topologies are rack-based; racks are standardized frame or enclosure for

mounting multiple electronic equipment’s [28]. In the Universities cluster we are in

disposal of 3 racks organised according to Figure 38.

Figure 38 Cluster topology.

The clusters communication network is switch-based; all switches are physically

connected via u-link cables to maximize speed among them. Maximum connection

between nodes at the time is of 10Gbps (Switches 1, 5 and 7), which is a pretty high

communication speed among nodes on a cluster.

Intrusion Analysis System using Big Data Techniques

51

5.2. Single machine characteristics

In this section we will be showing the different physical capabilities of the different

machines composing the cluster, for it we will use tables with the following schema.

Architecture

CPU

RAM Memory

Storage Memory

Table 31 Machine characteristics schema.

In order not to have tables that have the same characteristics we will aggregate

machines having the same characteristics (* means all machines with that prefix).

5.2.1. Compute 1-2, 1-3 and 1-7 machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5405 @ 2.00GHz- 8

cores

RAM Memory 8GiB

Storage Memory 1000.0 GB (1 disk)

Table 32 Compute 1-2, 1-3 and 1-7 characteristics.

5.2.2. Rest of Compute-1-* machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5405 @ 2.00GHz- 8

cores

RAM Memory 8GiB

Storage Memory 2000.0 GB (2 disks)

Table 33 Rest of Compute 1-* characteristics

5.2.3. Compute-3-* machines

Architecture Amd64

CPU Intel(R) Xeon Phi(TM) CPU 7210 @

1.30GHz – 255 cores

RAM Memory 143GiB

Storage Memory 240.0GB (1 disk)

Table 34 Compute 3-* characteristics.

Intrusion Analysis System using Big Data Techniques

52

5.2.4. Compute-5-* machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5640 @ 2.67GHz –

16 cores

RAM Memory 64GiB

Storage Memory 1000.0GB (1 disk)

Table 35 Compute 5-* characteristics.

5.2.5. Compute-6-* machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5645 @ 2.40GHz –

24 cores

RAM Memory 24GiB

Storage Memory 1000.0GB (1 disk)

Table 36 Compute 6-* characteristics.

5.2.6. Compute-7-* machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E7- 4807 @ 1.87GHz

– 48 cores

RAM Memory 128GiB

Storage Memory 1000.0GB (1 disk)

Table 37 Compute 7-* characteristics.

5.2.7. Compute-8-* machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

– 24 cores

RAM Memory 64GiB

Storage Memory 1000.0GB (1 disk)

Table 38 Compute 8-* characteristics.

5.2.8. Compute-9-1 and 9-3 machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40GHz – 32 cores

RAM Memory 256GiB

Storage Memory 2000.0GB (2 disks)

Table 39 Compute 9-1 and 9-3 characteristics.

Intrusion Analysis System using Big Data Techniques

53

5.2.9. Compute-9-2 machine

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40GHz – 32 cores

RAM Memory 384GiB

Storage Memory 2998.0GB (1 disk)

Table 40 Compute 9-2 characteristics.

5.2.10. Compute-10-* machines

Architecture PowerPC Architecture ppc64el

CPU POWER8E (raw), altivec supported – 160

cores

RAM Memory 63GiB

Storage Memory 283.0GB (1 disk)

Table 41 Compute 10-* characteristics.

5.2.11. Compute-11-* machines

Architecture Amd64

CPU Intel(R) Xeon(R) CPU E5-2603 v4 @

1.70GHz – 12 cores

RAM Memory 127GiB

Storage Memory 256.0GB (1 disk)

Table 42 Compute 11-* characteristics.

5.2.11. Storage-1 machine

Architecture Amd64

CPU 8 cores

RAM Memory 32GiB

Storage Memory 10235.0GB (5 disks)

Table 43 Compute 11-* characteristics.

5.3. Aggregated capabilities

In this section we will provide the aggregated physical limitations of the cluster

(WITHOUT taking into account all the resources used for operating system, programs,

etc).

CPU’s 1198 cores

RAM Memory 3981 GiB

Storage Memory 48,044 TB

Intrusion Analysis System using Big Data Techniques

54

Table 44 Aggregated capabilities of the cluster.

6. Implementation of the

application

In this section we will be discussing the different steps we followed in order to create

the security application. We will describe the communication between our server, client

and visualization entities.

We will divide the section in each of the previously mentioned entities in order to

provide understanding of the application.

6.1. Server application

As stated on the introduction, the server application is the typical multithreaded C

server created using Unix Stream Sockets. This server is intended to be gathering

different information about the system in which it will be running, each thread reading

and sending a different file to be analysed by the client side of the application.

6.1.1. Communication protocol

As stated on the introduction, the communication protocol will be contingent upon the

election of the type of sockets we will be using to develop the server. In this section we

will analyse why we chose the type of sockets we did and provide a brief explanation on

how the communication process is carried out.

The sockets we will be working with are Unix Stream Sockets, these type of sockets are

connection-oriented and provide in-order delivery of the flow of information, they work

(usually) over TCP internet protocol. We chose these type of sockets as we are creating

a Streaming application and thus the requirement for Stream sockets and connection-

oriented communication.

The communication protocol is a simple 3 steps protocol in which:

1. Server creates a local socket descriptor that will be permanently listening for

incoming connections from clients.

2. Client issues a connection request and the server accepts it creating a new socket

that will be in charge of the communication between the server and a particular

client.

3. The server is continuously (as it is a streaming application) sending information

to the client for it to process the gathered data.

Intrusion Analysis System using Big Data Techniques

55

We can observe the different steps on the diagram of Figure 39 below.

Figure 39 Communication protocol.

6.1.2. Implementation

In order to implement it, a series of steps where followed (to assure correctness) for the

incremental development of the application. The first step was to have a simple C

server, which was fully working (no multithreading was added in this first part). To do

so we followed the main points to take into account when creating a C-based server.

1. Importation of the necessary libraries to have a functioning C server: the first

thing we have to do is import the server-related libraries to our C application,

these libraries include <sys/socket.h> (library used for the usage of computer

sockets [29]) and <arpa/inet.h> (library used for the manipulation of internet

operations [30]), apart from these libraries other C libraries where included for

the application to correctly function (<stdio.h>, <string.h>, <stdlib.h>…). All

these libraries add functionality to our C server for easiness.

2. Definition of the main variables to be used: the next step was to define the

different variables that are required for a server to function (socket addresses for

both the client and the server, socket descriptors, etc).

Intrusion Analysis System using Big Data Techniques

56

a. Addresses: we require 2 different addresses, which can be seen on Figure

40 the suffix _in is related to the type of socket indicating that it’s a

AF_INET socket working over TCP.

Figure 40 Socket addresses.

These addresses are unique and identify the connection points between

the client and the server application; they are composed of three different

parts (32 bits to identify the IP address, 16 bits to identify the port

associated to that socket).

3. Socket creation: the next step is to create and set the different information

regarding the server socket that will be accepting connections from the different

clients. This process can be seen on Figure 41.

Figure 41 Socket creation + tweaking.

In here we see the type of socket being created (SOCK_STREAM) and the protocol

being used (IPPROTO_TCP) as well as the setting of the IP address and port (9999).

4. Binding of the socket: the process of binding refers to the assignment of the

different arguments of a socket, this action assigns the address and port to the

created socket.

Figure 42 Binding of the socket.

5. Listen + Accept: the next step would be for the server to listen for incoming

connections and for it to be accepting connections in an infinite loop (while(1)).

This is achieved by using the listen call (it prepares the socket to accept

connections) and, inside the infinite loop, accept them (while there is

connections to accept).Once a connection has been accepted the server obtains

both the client’s socket address and a new socket. These 2 steps can be seen on

Figure 43.

Intrusion Analysis System using Big Data Techniques

57

Figure 43 Listen + Accept functions.

6. Function to be carried out by the threads: once the C server was accepting

connections and functioning in the desired way, the next step was to create the

function to be carried out by the different threads. This function is composed of

3 different parts:

a. Arguments to be passed to the thread: each thread requires 3 different

arguments represented on Figure 44.

Figure 44 Arguments to the threads function.

These arguments are the path to the file to be read (represented by a

constant defined on the program), a pointer to a string that will later be

dynamically allocated in which the contents of the file will be copied

(with some information added to it) and the socket descriptor assigned to

each thread.

b. Adding to the beginning of the file the last part of the path to identify

each file on the client side: The next step was to add identifiers to each

file to make easier the job to be carried out on the client-side of the

application.

Intrusion Analysis System using Big Data Techniques

58

Figure 45: Identifier addition.

c. Dynamic allocation of the file to be copied and sent: the final ster is to

dynamically allocate the memory required to copy the file to the

argument referred to in the previous section and copying the file

character by character (this was done as in the initial files to be treated in

order to learn Scala, identifiers were required along the file). The

implementation can be observed on Figure 46.

Figure 46 Dynamic allocation, copying and sending of the desired file.

Intrusion Analysis System using Big Data Techniques

59

d. Files to be sent by the server application: the final server application

once it obtains a connection from a client creates 2 threads each of them

sending a different file to the client application. These files are the

following:

i. auth.log: this is the first file we were working with, it contains all

logging information of the system. The use of this log-file is to

get information regarding both IP’s trying to use invalid users as

well as those trying to connect to existing users with a wrong

password.

ii. fail2ban.log: Fail2ban [31] is an application that scans system

log files and bans IP’s that show signs of malicious activity

towards the system. The use of this type of log is very powerful

as we can obtain IP’s trying to do DNS Lookups and all the

banned IP’s for brute force attacks.

iii. diskstats: this file shows the I/O statistics for block devices,

specific information to what each of the fields on this file

represent can be found in [32].

iv. meminfo: this file represents information regarding RAM

memory of the system. It will be used to obtain information

regarding: total memory of the system, available memory of the

system, free memory of the system, buffered memory of the

system and cached memory of the system. All values on this file

are given in kB.

6.2. Client application

The client application is entirely based on an Apache Spark Streaming self-contained

application, for it to work properly we need the use of sbt (which was explained on

Section 4.1. Apache Spark Installation) to build the applications.

As with the server application, the client application was developed on an incremental

way, first we would be working on the spark-shell (can be observed on Figure 21 Spark

shell.) with simple files to get used to Scala code and Spark’s requirements, and once

that was successfully working we created the self-contained application that will be run

using Apache-Yarn as resource manager of the cluster.

The main purpose of the client application is to develop a streaming process that cleans

the log files that are being sent by the server so that only the desired information is

stored; this information will then be mapped to Scala’s case classes and stored into

HDFS.

Intrusion Analysis System using Big Data Techniques

60

6.2.1. Keyconcepts

In order to fully comprehend the different aspects of the implementation of the client

process, a few concepts must be introduced (apart from those on Section 2.3. Apache

Spark).

 Spark Configuration: the Spark Configuration (SparkConf()) sets up different

properties of the application (master of the application, name of the application,

allowing multiple contexts…). Once the configuration of the application has

been created matching the requirements needed, this configuration will be used

to create the Spark Context.

 Spark Context: the Spark Context (SparkContext()) is essentially the execution

environment of a spark application; it enables us to use all the spark

functionality (working with RDD, parallel operations…). In Figure 47 we can

observe the different components of the Spark context.

Figure 47 Spark Context [33].

Until the spark context is created we cannot start to implement the spark

application, as it is the element that initializes the whole Spark environment.

 Spark Streaming Context: the Spark Streaming Context (StreamingContext()) is

similar to the Spark Context but initializes streaming functionality (data

captured with streaming context will be composed of DStreams instead of

RDDs).

 Spark SQL Context: the Spark SQL Context (org.apache.spark.sql.SQLContext)

is the entry point to be able to use SQL functionality in the Spark application.

Intrusion Analysis System using Big Data Techniques

61

6.2.2. Implementation of the Spark Streaming application

In this section we will be explaining how the Spark Streaming application was made. In

every spark application we have two main parts in the code.

6.2.2.1. Case classes

Outside our main function we have to define our Case classes, Case classes are regular

classes that are extended by the compiler to automatically support the following

features:

1. Public getters for constructor parameters.

2. Pattern matching on constructor parameters.

3. Copy constructor.

4. Automatic toString/hash/equals implementation.

Case classes (as we are working with Spark RDDs) should not be mutable.

In our code we use case classes to match the information we want to extract from the

files sent by the server application to later be stored in HDFS from which the

visualization application will read the information.

We created the following Case classes:

 Connection: this Case class matches information from the auth.log file, it stores

username, day, hour, minute, second, IP and port, of every connection that was

not successful (both with existing users on the system as those who do not).

 Ban: this Case class matches information from the fail2ban.log file; it is storing

IP’s that were banned. Its parameters are the timestamp the IP was banned

(month, day, hour, minute and second) its IP.

 DNS: this Case class also matches information from the fail2ban.log file, in this

case it’s the IP’s that were detected performing DNS Lookup’s. It the date of

the infringement (year, month and day), its time (hour, minute and second) and

the IP that did it.

 DiskSts: this Case class matches information from the diskstats file; we will be

storing the device name, number of reads completed, time spent reading, number

of writes completed, time writing and overall I/O time.

 MemoryInfor: this Case class matches information from the meminfo file, we

will be storing the ID of the information being stored (total, free available,

cached or buffered memory) and the value in kB’s.

Intrusion Analysis System using Big Data Techniques

62

In Figure 43 we can observe the creation of the case classes outside the main function.

Figure 48 Case class creation.

6.2.2.2. Main function

In this section we will be explaining the actual implementation of the Spark application,

we will divide the explanation into three main parts.

1. Initialization of the application: the first step is to prepare the application to be

able to run as expected, this process includes creating the configuration of the

application, its necessary contexts and other minor details (setting Spark so that

it does not show all the logging information of the application). We can observe

this process on Figure 49.

Figure 49 Initialization of the application.

The first 2 lines of code are the ones suppressing part of the Spark output,

afterwards we create the spark configuration, giving the application a name and

specifying that more than one context can coexist. Then we create the Spark

Context, which we will be used to create the sqlContext (necessary for later on

transforming RDD’s to Dataframes). Finally we create the Streaming Context

indicating the duration of every batch (as we said previously Spark Streaming is

not real streaming but rather micro-batching) to 10 seconds, this will make that

every DStream will be a collection of RDD’s that were sent during that batch of

time.

2. Filtering of the DStreams and mapping to our Case classes: the next step was to,

first, capture the input data. The line of code shown in Figure 50 achieves this.

Intrusion Analysis System using Big Data Techniques

63

Figure 50 Server connection call.

Then we filter the incoming data on our DStream (which contains all the

information from all the files sent by the server), so that we can map the

necessary information to our Case classes. We first started with the fail2ban.log

related data, to do so we look for different keywords that are only available (and

our source of information) on that file. On Figure 51 we can observe how the

filtering and mapping to the desired Case classes was made.

Figure 51 Filtering and mapping of fail2ban.log data.

Each of the Case classes matches a certain keyword, lines containing the

keyword “Ban” are IP’s which have been banned due to miss authentication

when trying to Access the system. Lines containing the keyword “WARNING”

are IP’s, which have tried to do a DNS Lookup. Then we apply to each element

of the DStream a map function to split the according to a certain regular

expression, which provides a map in which we can access its elements to be then

mapped to our Case classes.

The next step was to filter the data related to the auth.log file, the process is very

similar to the one followed when dealing with the fail2ban.log file, we

encountered a problem when dealing with this file because when the file

contained days of the month that had only 1 digit (1 – 9 of every month) instead

of inserting it as 01 – 09 it will insert a space more causing the program to crush.

To fix this we split the filtering between the cases matching this problem and the

rest of them. The implementation of this section can be observed on Figures 52

and 53.

Intrusion Analysis System using Big Data Techniques

64

Figure 52 Filtering of auth.log data.

Figure 53 Mapping of the data to Case classes.

The final step was processing the files corresponding to diskstats and meminfo

and mapping them to our created case classes, this process can be seen on

Figures 54 and 55.

Figure 54 Filtering and Mapping of diskstats information.

Intrusion Analysis System using Big Data Techniques

65

Figure 55 Filtering and Mapping of meminfo data.

3. Writing into HDFS and starting the application: The final step is to take our

mapped DStreams into Case classes and write them to our HDFS directory and

starting the application. To do so we have to apply the foreachRDD() method

which applies a function to each RDD contained on the DStream, we will be

transforming RDD’s to Dataframes and latter using a Databricks library

(com.databricks.spark.csv) [34] to write them in CSV format. This process is

shown on Figure 56.

Figure 56 Writiing to HDFS + starting of the application.

Note that the application will not start running until we call the ssc.start() call,

ssc.awaitTermination() waits for the termination signal from the server (meaning

it wont stop until de server does).

6.3. Visualization application

The visualization section of the application was carried out using Apache Zeppelin (that

was introduced on Section 2.8. Apache Zeppelin). Zeppelin works as a spark-shell

based application; on Figure 57 we can observe Zeppelin being an application working

on the Hadoop system by using Spark.

Intrusion Analysis System using Big Data Techniques

66

Figure 57 Applications on the cluster.

Zeppelin is a web application based on Notebooks and it gives us the option to run the

Notebook according to a timer so that the application is more real-time like. We will use

2 different interpreters in order to perform the visualization of the application.

 Scala interpreter: we will be using Scala-based code in order to load the data

stored by the client application into Dataframes so that we can later represent

this data using different types of graphs.

 SQL: in order to perform the different graphs we will be using SQL-based code

to format the loaded data. Zeppelin provides interactive graphs on table-like

Dataframes.

In the following sections we will provide an explanation on the different graphs created

for the visualization application (code-wise, what they represent and the files which

they are related to).

6.3.1. Loading of data

This is the first section of code of the Zeppelin application, we load the data stored by

the client application into Dataframes and register them as tables. This process can be

seen on Figure 58 below.

Figure 58 Data loading.

Intrusion Analysis System using Big Data Techniques

67

6.3.2. Invalid connections per day

In the following graph we show the number of connections that were made using

invalid users on the system. This graph is related to the auth.log data source, we take the

IP’s and group them by day.

Figure 59 Invalid connections per day.

6.3.3. Invalid connections per IP

This graph represents IP’s that are trying to access the system using invalid users in

order to authenticate, it is also related to the auth.log file. We group data according to

the IP that has been performing the malicious activity and order them in ascending

order.

Figure 60 Invalid connections per IP.

6.3.4. Invalid users used to authenticate

The following graph represents the users IP’s tried to authenticate as in order to Access

the system, this information was also obtained from the auth.log file. As we can see on

the graph the user that was used the most was “admin” (which is a pretty common user

on every system).

Intrusion Analysis System using Big Data Techniques

68

Figure 61 Invalid users.

6.3.5. Existing users failing to authenticate

This graph represents users that exist in our system that failed to authenticate, this

information was taken from the auth.log file. As we can see on the graph the user that

failed authentication the most was “root” (this is because is the most common user to

attack as it is always present on every system).

Figure 62 Existing users that failed authentication.

6.3.6. Authentication failures per day

This graph is similar to the one on Section 6.3.2. Invalid connections per day, it

represents authentication failures per day by existing users.

Figure 63 Authentication failures per day.

Intrusion Analysis System using Big Data Techniques

69

6.3.7. Top 10 IP’s that tried to authenticate as root

In this graph we will be showing the 10 IP’s that tried to authenticate as root the most.

These are IP’s trying to gain root Access to our system by brute force attacks. This

information is taken from the auth.log file. We select those IP’s whose username was

“root” and order them in descending order of the number of connections tried and limit

the output to 10.

Figure 64 Top 10 IP's attacking root user.

6.3.8. Number of IP’s banned by the fail2ban application

This graph represents how many IP’s were banned each day by the fail2ban service

(which bans IP’s according to the number of times it failed to authenticate). This graph

is related to the fail2ban.log file.

Figure 65 Banned IP's per day.

6.3.9. Actual IP’s that were banned

This graph represents the actual IP’s that were banned by the fail2ban service.

Intrusion Analysis System using Big Data Techniques

70

Figure 66 Banned IP's.

6.3.10. DNS Lookup’s per date

This graph represents the number of DNS Lookup’s that were tried to be performed on

the system grouped by date. This information is also obtained from the fail2ban.log file.

In this case the graph is not very representative as there was only 1 day in which there

was this type of threat, but if there were more entries on the log file it would be much

more helpful.

Figure 67 DNS Lookup per day.

 6.3.11. IP’s performing DNS Lookup

This graph shows the IP’s that tried to perform a DNS Lookup on the system. The

information shown on the graph is also obtained from the fail2ban.log file. We can also

observe the relation to the previous graph on Figure 64 that was showing 3 IP’s

performing this type of attack (1 IP performs it once and the other one 2 times).

Intrusion Analysis System using Big Data Techniques

71

Figure 68 IP's performing DNS Lookup.

6.3.12. Disk writes per device and time

The following graph aims to illustrate the devices most used for writing so that

afterwards we can perform time-series analysis over them. This information is obtained

from the diskstats file. We can observe that the devices performing most of the writes

are sdf and sdf1 and those will be the ones we will be performing time series over. We

also provided 2 more graphs that are very similar to Figure 68 (analysing Reads and

overall I/O time).

Figure 69 Disk writes per device and time.

Intrusion Analysis System using Big Data Techniques

72

6.3.13. Time-series graph for write operations on devices sdf and sdf1

This graph represents how the amount of writes completed by the stated devices

behaves. As we can observe these graphs devices must be related as they behave in the

same way.

Figure 70 Write time-series graph.

6.3.13. Time-series graph for read operations on devices sdf and sdf1

This graph represents how the amount of reads completed by the stated devices

behaves. As we can observe on Figure 70 during the execution of the application there

were no reads on these devices.

Figure 71 Read time-series graph.

6.3.14. Time-series graph for overall I/O time on devices sdf and sdf1

This graph represents the overall I/O time spent by the devices and how it behaves

along time. As we can observe ist behaviour is very similar to the one on Figure 69 (as

only write operations were performed on them).

Intrusion Analysis System using Big Data Techniques

73

Figure 72 I/O time time-series graph.

6.3.14. Time-series graph for available RAM memory

This graph represents the available RAM memory (in GB) over time of the system and

how it behaves. This information is obtained from the meminfo file.

Figure 73 Available RAM time-series graph.

6.3.14. Time-series graph for free RAM memory

This graph represents the free RAM memory (in GB) over time of the system and how

it behaves. This information is obtained from the meminfo file.

Figure 74 Free RAM time-series graph.

6.3.14. Time-series graph for buffered RAM memory

This graph represents the buffered RAM memory (in GB) over time of the system and

how it behaves. This information is obtained from the meminfo file.

Intrusion Analysis System using Big Data Techniques

74

Figure 75 Buffered RAM time-series graph.

6.3.14. Time-series graph for cached RAM memory

This graph represents the cached RAM memory (in GB) over time of the system and

how it behaves. This information is obtained from the meminfo file.

Figure 76 Cached RAM time-series graph.

Intrusion Analysis System using Big Data Techniques

75

7. Evaluation
This section aims to provide an evaluation plan for the application. As we are talking of

a streaming application and it is not very processing-intensive, we cannot provide the

usual benchmarking evaluation plans. We cannot provide an evaluation by covering the

different use cases of the application because as we stated on Section 3.2. Use cases,

there is only one use case that the application is fulfilling.

So in order to provide a evaluation method we will be evaluating depending on the

window we set when we run the client application. In order to better understand this

evaluation plan we will give a brief explaining on what that window is.

7.1. Window duration
When we create the Spark Streaming Application we bind the streaming context to a

Spark Configuration and the window duration (see Figure 49 Initialization of the

application.) this window marks the amount of data represented by each DStream, that is

every N seconds a new DStream will be generated, and so the smaller the window the

more real-time like the application will be. So in order to provide an evaluation plan we

will be decreasing the window duration and observe the results.

In order to evaluate the application, the following parameters were taken into account:

 Application running for 1:30 minutes and then stopped.

 Application running in 1 node.

 Decreasing values of the window duration: 10s, 5s, 2s, 1s, 0.5s, 0.1s.

 Correctness: OK if the visualization works as expected FAIL if not.

WINDOW DURATION (seconds) CORRECTNESS

10 OK

5 OK

2 FAIL (auth.log related data fails,

fail2ban.log data does not)

1 FAIL

0.5 FAIL

0.1 FAIL

Figure 77 Evaluation of the application.

Intrusion Analysis System using Big Data Techniques

76

7.2. Conclusions of the evaluation
The application works as expected with window durations of 10 and 5 seconds, when

we reduce the window duration to 2 seconds we start obtaining error son the graphs

saying that data is not available, this is because the window is so small that we are

overwriting the file with data at a speed that makes access to the data fail.

The section of graphs regarding time-line behaviour graphs never fails as we create new

files each time a batch is processed in order to perform the time-analysis. The problem

relies in the fact that if we reduce the window duration below 5 seconds most of the

files generated are data-empty causing a waste of space on the storage environment.

As a conclusion we could say that the optimal time for the window duration of the

application would be between 10 and 5 seconds so that it works as expected.

Intrusion Analysis System using Big Data Techniques

77

8. Project planning
In this section we will illustrate the planning done for the development of the project.

We will show the initial planning and the real planning, finally a section with the budget

for the development of the application will be shown.

8.1. Initial planning

This section contains the initial planning made for the development of the project,

which was started on February 1
st
 of 2016 and finished on June 14

th
. The planning can

be seen on Table 41 below.

Activity Start date Finish date Days spent Hours spent

Planning 01/02/2017 03/02/2017 3 10

Analysis 04/02/2017 20/02/2017 16 40

Design 01/03/2017 09/03/2017 9 30

Implementation 10/03/2017 10/04/2017 31 65

Testing 12/04/2017 20/04/2017 8 15

Evaluation 21/04/2017 01/05/2017 11 20

Documentation 06/02/2017 14/06/2017 128 90

Table 45 Initial Planning.

To provide a more visual representation of the initial Project planning we offer a Gantt

chart on Figure 78 below.

Figure 78 Gantt diagram for the initial planning.

8.2. Real planning

This section covers how the Project was really carried out, to show this information we

will use the same elements as in the previous section. The main difference was in the

time spent on the documentation of the Project having a difference of 7 days to the

original planning.

Intrusion Analysis System using Big Data Techniques

78

Activity Start date Finish date Days spent Hours spent

Planning 01/02/2017 03/02/2017 3 10

Analysis 04/02/2017 20/02/2017 16 40

Design 01/03/2017 09/03/2017 9 30

Implementation 10/03/2017 10/04/2017 31 65

Testing 12/04/2017 20/04/2017 8 15

Evaluation 21/04/2017 01/05/2017 11 20

Documentation 06/02/2017 21/06/2017 125 120

Table 46 Real planning.

On Figure 79 below we can see the real Gantt chart of the development of the project.

Figure 79 Gantt chart for the real planning of the project.

Intrusion Analysis System using Big Data Techniques

79

9. Socioeconomic Environment
This section covers the impact the application will have on both the social and

economic environment as well as a section detailing the budget for the development of

the application.

9.1. Socioeconomic impact

Our application will not have any impact on the economic or social fields, as there are a

lot of similar technologies to the one being developed by us who offer the same type of

functionality and provide free plans.

Also regarding the economic field, the project is intended to be open-source and will be

uplodaded to a public repository on GitHub as a resource to the programming

community, right now there are no intentions on commercialising the application.

9.2. Budget

In this section we will cover the budget to carry out the development of the project. We

will divide it into 4 different sections: human resources, hardware, software and

consumables.

9.2.1. Human resources budget

This section covers the money spent on people working to develop the project, for it we

will base the data on Table 46 Real planning., adding the salary for a system administrator

throughout the project For the development of the project we will need to hire a coder-

analyst whose estimated salary will be of 40€/hour. We can observe the budget related

to human resources on Table 44 below.

Activity Duration Employee €/hour Total(€)

Planning 10 Coder-analyst 40 400

Analysis 40 Coder-analyst 40 1.600

Design 30 Coder-analyst 40 1.200

Implementation 65 Coder-analyst 40 2.600

Testing 15 Coder-analyst 40 600

Evaluation 20 Coder-analyst 40 800

Documentation 120 Coder-analyst 40 4.800

Administration 300 System

administrator

20 6.000

TOTAL 16.000

Intrusion Analysis System using Big Data Techniques

80

Table 47 Human resources budget.

9.2.2. Hardware budget

This section details money spent on hardware resources; note that the application was

carried out using the infrastructure of the universities cluster so all that hardware is not

taken into account.

Description Value (€)

Mac Book Air 1.8 GHz (256GB) 1.349,00

Table 48 Hardware budget.

9.2.3. Software budget

All the software used to carry out the application was open-source software so the total

cost for software resources is of 0€ as we can observe on Table 46.

Description Value (€)

Cloudera distribution (version CDH-

5.11.1-1.cdh5.11.1.p0.4)

0

Includes: Apache Spark 0

 Apache Hadoop 0

 Apache Yarn 0

 Apache Zookeeper 0

 HDFS 0

 Hive 0

Apache Zeppelin 0

TOTAL 0

Table 49 Software budget.

9.2.4. Consumables budget

The approximated cost for all consumable items (printer toner, white pages, pens…) is

of 200,00 €.

9.2.5. Overall budget

This section shows a table gathering all the money spent during the development of the

project, it can be seen on Table 47 below.

Description Ammount (€)

Human resources 16.000,00

Hardware 1.349,00

Software 0,00

Consumables 200,00

TOTAL 17.549,00

Intrusion Analysis System using Big Data Techniques

81

Table 50 Overall budget.

10. Regulatory framework
In this section we will be analysing the different legal aspects of the application being

developed, the different technical standards the application has to follow and issues

regarding intellectual property.

10.1. Legal aspects

This section aims to prove that the application being developed is not incurring in

violation of any existing law that may be applicable to de application being developed.

The main law that might be applicable to this application is the Spanish law concerning

personal data treatment “Ley Orgánica de Protección de Datos de Carácter Personal”

[35], and we will state the different points to observe that this law does not apply to our

application.

1. According to article number 3 Section a), “personal data is considered that of

physical people that are identified or identifiable on our system”. Data being

gathered on our application is not identifying physical people but rather IP’s,

which are doing (or seem to) malicious activity on the system in which the

application has been implanted.

2. According to article number 3 Section e) states that, “the affected person is that

how owns the data being used”. All the data being used on our application is

generated by our system and never obtaining it directly from physical people but

rather auto-generated by analysis software.

3. Regarding article number 6 “consent of the subject owning the data”, we have

demonstrated previously that there are no personal data in our system (as there is

no data that can identify a physical person), and so this article is not applicable

to our application.

4. Articles 7 and 8 (regarding “specially protected data” and “health-related

data” respectively) are also not applicable as there are no data with that nature

being captured.

5. Article 9 stating “data security” and that “the person responsible for the file

containing the data is also responsible for the security of the data”, this article

is also fulfilled, as only people that are able to identify themselves on the cluster

system are able to access its resources.

Intrusion Analysis System using Big Data Techniques

82

So we have first of all demonstrated that data being captured on our application is not

considered as personal data by the Spanish law of personal data protection, as they do

not relate to a physical person at any time. Moreover being the application an intrusion

analysis system, all the data being used is only used to analyse and defend the system

from external attacks.

10.2. Technical standards

In the development of this application we have used three different programming

languages, each of these has its own programming standards. The programming

languages are the following (with references to its programming standards):

 C: the development of the server of the application has been programmed as a

multithreaded C, its programming standards can be found at [36].

 Scala: the client application has been developed using Apache Spark engine with

Scala language; its programming style guide can be found at [37].

 SQL: in the visualization platform (Zeppelin) we use SQL to obtain the final

data to be visualized; the programming style guide can be found at [38].

10.3. Intellectual property

In this section we will discuss the matters regarding intellectual property of the

application.

 Patentability: according to European law, software programs are not susceptible

to be patented (Article 52 of the European Patent Convention Section c)

“schemes, rules and methods for performing mental acts, playing games or

doing business, and programs for computers” [39]

 Intellectual property: intellectual property is directly related to business and

financial matters, all the work done during this project was carried out by the

author of this document and is (currently) an investigation project to get familiar

with a series of tools that will be beneficial for the future and maybe continue

improving project.

Intrusion Analysis System using Big Data Techniques

83

11. Conclusions and further work
This section aims to give a glimpse what was learned throughout the development of the

project and the future improvements that can be performed on the application.

11.1. Conclusions

Taken into account the objectives set for the application on Section 1.2. Objectives,

we can say that these objectives have been correctly fulfilled. We also believe that the

development of the project has helped to strengthen a lot of the content learned

throughout the degree (distributed systems, visualization tools…).

Taking into account the knowledge acquired on all the Big Data technologies (which are

very popular nowadays) used to carry out the application we believe that we have

further added a lot of information on a filed that was not covered by the degrees

syllabus that will help me differentiate myself from fellow colleagues

11.2. Further work

The application currently is at an early state of what it can achieve, this section will

cover some of the future improvements that can be performed.

 The first improvement that can be made is aggregating more data to the

application; we can process more files that contain useful data for analysing

intrusions on the system. As it is a Big Data fashion application currently the

amount of data being used is not that big so this would be one of the future lines

of work to improve the application.

 Zeppelin provides an easy to use interface and is very useful for developing

applications, but when it comes to representing the data it is very limited. One of

the future lines of work will be to use other type of application (like Tableau) to

provide better and more graphs to visualize the information.

Intrusion Analysis System using Big Data Techniques

84

11. References and bibliography

The table below gathers all the references throughout the document.

REFERE

NCE

NUMBE

R

LINK

[1] https://vowi.fsinf.at/images/b/bc/TU_Wien-

Verteilte_Systeme_VO_(Göschka)_-_Tannenbaum-

distributed_systems_principles_and_paradigms_2nd_edition.pdf

[2] https://en.wikipedia.org/wiki/Amdahl%27s_law

[3] https://spark.apache.org/

[4] https://0x0fff.com/spark-architecture/

[5] http://www.pilar-tools.com/doc/v62/ISO27005.pdf

[6] https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

[7] http://revieweasyhomemadecookies.com/what-is-hadoop-ecosystem/

[8] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[9] https://zookeeper.apache.org/doc/trunk/zookeeperOver.html

[10] https://zeppelin.apache.org/

[11] https://www.loggly.com/

[12] https://www.loggly.com/blog/loggly-aws-cloudtrail-simple-way-operate-

smarter/

[13] https://www.splunk.com/

[14] https://www.splunk.com/es_es

[15] https://goaccess.io/

[16] https://github.com/

[17] https://goaccess.io/

[18] https://logz.io/

[19] https://www.elastic.co/

[20] https://github.com/logzio/logzio-es-health

[21] https://en.wikipedia.org/wiki/Use_case_diagram

[22] https://spark.apache.org/

[23] https://www.cloudera.com/

[24] https://www.cloudera.com/documentation/enterprise/5-6-

x/topics/cdh_intro.html

[25] https://www.cloudera.com/documentation/enterprise/5-9-

x/topics/installation.html

https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf
https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf
https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://spark.apache.org/
https://0x0fff.com/spark-architecture/
http://www.pilar-tools.com/doc/v62/ISO27005.pdf
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)
http://revieweasyhomemadecookies.com/what-is-hadoop-ecosystem/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html
https://zeppelin.apache.org/
https://www.loggly.com/
https://www.loggly.com/blog/loggly-aws-cloudtrail-simple-way-operate-smarter/
https://www.loggly.com/blog/loggly-aws-cloudtrail-simple-way-operate-smarter/
https://www.splunk.com/
https://www.splunk.com/es_es
https://goaccess.io/
https://github.com/
https://goaccess.io/
https://logz.io/
https://www.elastic.co/
https://github.com/logzio/logzio-es-health
https://en.wikipedia.org/wiki/Use_case_diagram
https://spark.apache.org/
https://www.cloudera.com/
https://www.cloudera.com/documentation/enterprise/5-6-x/topics/cdh_intro.html
https://www.cloudera.com/documentation/enterprise/5-6-x/topics/cdh_intro.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/installation.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/installation.html

Intrusion Analysis System using Big Data Techniques

85

[26] https://es.hortonworks.com/

[27] https://www.adictosaltrabajo.com/tutoriales/hdp-sandbox/

[28] https://en.wikipedia.org/wiki/19-inch_rack

[29] http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html

[30] http://pubs.opengroup.org/onlinepubs/009696899/basedefs/arpa/inet.h.html

[31] https://www.fail2ban.org/wiki/index.php/Main_Page

[32] https://www.kernel.org/doc/Documentation/ABI/testing/procfs-diskstats

[33] https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-

sparkcontext.html

[34[https://github.com/databricks/spark-csv

[35] http://www.agpd.es/portalwebAGPD/canaldocumentacion/legislacion/estat

al/common/pdfs/Constitucion_es.pdf

[36] http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-style.pdf

[37] http://docs.scala-lang.org/style/

[38] http://www.sqlstyle.guide/

[39] https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar52.html

Below there is a list with the Bibliography used to develop the application and

document.

 Distributed Systems Principles and Paradigms; Second edition; Authors:

Andrew S. Tanenbaum and Maarten van Steen.

 https://en.wikipedia.org/wiki/Distributed_computing

 https://en.wikipedia.org/wiki/Apache_Spark

 https://en.wikipedia.org/wiki/Functional_programming

 https://en.wikipedia.org/wiki/Big_data

 https://en.wikipedia.org/wiki/CAP_theorem

 https://www.tutorialspoint.com/apache_spark/apache_spark_installation.htm

https://es.hortonworks.com/
https://www.adictosaltrabajo.com/tutoriales/hdp-sandbox/
https://en.wikipedia.org/wiki/19-inch_rack
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/009696899/basedefs/arpa/inet.h.html
https://www.fail2ban.org/wiki/index.php/Main_Page
https://www.kernel.org/doc/Documentation/ABI/testing/procfs-diskstats
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-sparkcontext.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-sparkcontext.html
https://github.com/databricks/spark-csv
http://www.agpd.es/portalwebAGPD/canaldocumentacion/legislacion/estatal/common/pdfs/Constitucion_es.pdf
http://www.agpd.es/portalwebAGPD/canaldocumentacion/legislacion/estatal/common/pdfs/Constitucion_es.pdf
http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-style.pdf
http://docs.scala-lang.org/style/
http://www.sqlstyle.guide/
https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar52.html
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/CAP_theorem
https://www.tutorialspoint.com/apache_spark/apache_spark_installation.htm

