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Results based on a local linear stability analysis of the Hall thruster discharge are presented. A

one-dimensional azimuthal framework is used including three species: neutrals, singly charged

ions, and electrons. A simplified linear model is developed with the aim of deriving analytical

expressions to characterize the stability of the ionization region. The results from the local analysis

presented here indicate the existence of an instability that gives rise to an azimuthal oscillation in

the þE�B direction with a long wavelength. According to the model, the instability seems to

appear only in regions where the ionization and the electric field make it possible to have positive

gradients of plasma density and ion velocity at the same time. A more complex model is also

solved numerically to validate the analytical results. Additionally, parametric variations are carried

out with respect to the main parameters of the model to identify the trends of the instability. As the

temperature increases and the neutral-to-plasma density ratio decreases, the growth rate of the

instability decreases down to a limit where azimuthal perturbations are no longer unstable. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870963]

I. INTRODUCTION

The Hall Effect Thruster (HET) is a type of electric pro-

pulsion device initially developed in the 1960s by both the

USA1 and the former USSR2,3 independently. The develop-

ment continued in the shadow in the USSR reaching a

mature status in the 1970s and 1980s. In the 1990s, the

advanced state of this Russian technology became known in

western countries, which rapidly restarted the analysis and

development of Hall thrusters. Nowadays, there are several

companies manufacturing modern Hall thrusters for opera-

tional use in USA, Russia, and Europe. The main applica-

tions of these thrusters are low-thrust propulsion of

interplanetary probes, orbital raising of satellites, and north-

south station-keeping of geostationary satellites.4 There are

two basic variants of Hall thrusters, the Stationary Plasma

Thruster (SPT) and the Thruster with Anode Layer (TAL), in

Russian nomenclature. The main difference between them is

the material of the walls of the devices, ceramic for the SPT

model and metallic for the TAL.

The operation principle of a typical Hall thruster is as

follows. A strong radial magnetic field is imposed together

with an axial electric field inside a coaxial channel where a

neutral gas, typically xenon, is introduced as propellant.

Three species of particles are present in a HET: neutrals,

which are injected from the rear part of the channel and flow

axially towards the thruster exit; electrons, which are intro-

duced by a cathode located just outside the channel and flow

upstream towards the anode describing an E�B closed-drift

in the azimuthal direction; and ions, which are created by

ionization of neutrals due to collisions with the counter-

streaming electrons and are accelerated axially by the elec-

tric field in the channel and the near plume. The magnetic

field is such that electrons are strongly magnetized whereas

ions are unmagnetized as the ion Larmor radius is much

larger than the typical length of the thruster channel. For a

given thruster, the main control parameters are the discharge

voltage, the magnetic field, and the mass flow rate, being the

discharge current an output of the dynamical system. For a

given magnetic field and a given mass flow rate, it is possible

to represent the evolution of the discharge current as a func-

tion of the discharge voltage in the so-called current-voltage

(I–V) curve. This curve shows two distinct regimes separated

by a knee: a low ionization regime, where the discharge cur-

rent increases rapidly with the voltage; and a current satu-

rated regime, where the discharge current is fairly insensitive

to changes in the discharge voltage.

Over the last decade, great efforts have been dedicated

by the HET community to the understanding of the physics

of these devices. However, there are still some important

aspects to clarify. Since the early stages of the Hall thruster

technology development, it has been clear that the electron

perpendicular conductivity inside the channel and in the

plume is too high to be explained with classical collisional

theories.5 That is why the term anomalous diffusion is nor-

mally used to refer to the higher-than-expected electron axial

current. The radial magnetic field and the axial electric field

trap the electrons in an azimuthal closed-drift, and, according

to classical theories, the only mechanism that allows the

electrons to drift axially is the collisions with other species.

However, the electron conductivity measured experimentally

is between one and two orders of magnitude higher than the

expected one from collisions, so another mechanism is sus-

pected to enhance the electron mobility.

a)Ph.D. Candidate, Equipo de Propulsi�on Espacial y Plasmas. URL: http://

aero.uc3m.es/ep2
b)Professor, Equipo de Propulsi�on Espacial y Plasmas. Electronic mail:

eduardo.ahedo@uc3m.es

1070-664X/2014/21(4)/043505/12/$30.00 VC 2014 AIP Publishing LLC21, 043505-1

PHYSICS OF PLASMAS 21, 043505 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
164.67.192.128 On: Mon, 14 Jul 2014 16:51:05

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288500584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4870963
http://dx.doi.org/10.1063/1.4870963
http://dx.doi.org/10.1063/1.4870963
http://aero.uc3m.es/ep2
http://aero.uc3m.es/ep2
mailto:eduardo.ahedo@uc3m.es
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4870963&domain=pdf&date_stamp=2014-04-18


Although the experimental evidence is not unanimous,

most common properties of the anomalous diffusion are (a)

it is present in the whole channel as well as in the plume of

the thruster;6 (b) there is a dip of electron conductivity in the

region of high magnetic and electric fields;6–9 (c) the elec-

tron mobility scales as 1/B, where B is the magnetic field

strength;10,11 and (d) the magnetic field gradients affect

greatly the electron conductivity.12

Currently, there is no agreement within the Hall thruster

community about the mechanism of the anomalous diffusion,

but the most accepted explanations are two: plasma oscilla-

tions, referred to as Bohm-type or turbulent diffusion, based

on the fact that correlated azimuthal oscillations of density

and electric field can induce a net axial electron current;13,14

and near-wall conductivity, where secondary electrons emit-

ted by the walls can induce a net axial current.15 However,

near-wall conductivity does not seem to explain the anoma-

lous diffusion since many simulation codes16–18 that include

a near-wall conductivity model still need a Bohm-type diffu-

sion contribution to match the electron conductivity meas-

ured experimentally. On the other hand, several experiments

have confirmed with various techniques the presence of azi-

muthal oscillations. These azimuthal oscillations are nor-

mally grouped into low frequency (5–30 kHz), medium

frequency (30–100 kHz), and high frequency (1–10MHz)

oscillations. Many linear stability analyses carried out so far

focus on the acceleration region or the high frequency range,

where the ionization may be safely neglected. However, a

set of experimental results show also the presence of low fre-

quency azimuthal oscillations originated in the ionization

region of the thruster.14,19–21 The theoretical analysis of this

oscillation, usually called spoke, is at the centre of the pres-

ent study.

The paper is organized as follows. In Sec. II, a review of

the available literature on low frequency oscillations is pre-

sented from three points of view: experiments, numerical sim-

ulations, and theoretical analyses. A linear stability analysis

of azimuthal low frequency perturbations is carried out in Sec.

III. In Sec. IV, a comparison against previous stability analy-

ses is presented. Finally, Sec. V is devoted to conclusions.

II. REVIEW OF PREVIOUS STUDIES ON LOW
FREQUENCYOSCILLATIONS

A. Experimental results

Back in the 1960s, Janes and Lowder14 carried out a

seminal work on low frequency azimuthal oscillations in

HETs. Even though the Hall accelerator analysed in that

research differs significantly from a modern HET, many of

the conclusions are still valid. In that study, a spoke was

detected by means of azimuthally separated Langmuir

probes. This spoke appeared as a density variation rotating

azimuthally in the E�B direction with a phase velocity of a

few km s�1 and a tilt angle of 20� with respect to the azi-

muthal plane (i.e., with a non-zero axial component of the

phase velocity). The density variation was phase-correlated

with the oscillating electric field and, as a consequence, an

enhanced electron axial mobility was caused. The phase ve-

locity of the rotating spoke was one order of magnitude

smaller than the local E�B drift. Moreover, as part of the

research, different propellants were used and it turned out

that the phase velocity of the spoke scaled with the ioniza-

tion potential of the neutral gas: xenon, krypton, or argon.

All these facts seem to indicate a close connection between

the ionization process and the appearance of the spoke. Janes

and Lowder made as well use of the statistical theory of

Yoshikawa and Rose13 obtaining a good agreement with the

experiments in terms of predicted anomalous diffusion.

Esipchuk et al.22 also reported low frequency azimuthal

oscillations in a Hall thruster in the low voltage part of the

I–V curve and rotating in the E�B direction. The oscilla-

tions for density and electric field were correlated causing

enhanced electron conductivity. However, these oscillations

disappeared at higher voltage. Based on that, Esipchuk et al.
claimed this oscillation is due to incomplete ionization in the

low-voltage part of the I–V curve and hence disappears in

the current saturated part of the curve.

Shortly after, Lomas and Kilkenny19 reproduced the

Janes-Lowder experimental results and carried out an analy-

sis of the influence of the magnetic field. According to the

analysis of Lomas and Kilkenny, the phase speed of the

spoke increases with the magnetic field, an interesting prop-

erty not previously described by Janes and Lowder.

During the last two decades, several experiments have

been carried out with modern HETs to characterize the low

frequency azimuthal oscillations for a wide range of operat-

ing conditions and thrusters, both inside and outside the

channel. Next is a summary of these studies.

In one of the first of those analyses, Hargus et al.23 study
the azimuthal oscillations in a laboratory Hall thruster. The

conclusions from that study can be summarized as follows.

First, low frequency azimuthal waves are observed at veloc-

ities of a few km s�1 both in the low-ionization part and the

current saturation part of the I–V curve. In the current satura-

tion part of the I–V curve, the wave is closer to the channel

exit. In the ionization part of the I–V curve, near the knee,

the wave has a lower frequency and is stronger and more

spread throughout the thruster. Finally, at very low voltages,

the wave is located only near the anode and the wave fre-

quency is higher than in all previous cases.

Meezan and Cappelli6–8 use several low-frequency diag-

nosis methods to measure experimentally the electron mobil-

ity along the thruster. The results are in line with the general

properties of anomalous diffusion presented above, and in

particular, with the presence of a dip in the electron conduc-

tivity around the region of maximum electron shear. And

what is more important, the electron mobility profile com-

puted with the theory of Yoshikawa and Rose13 from the

measured density oscillations matches fairly well the meas-

ured electron mobility for various operating conditions. A

possible correlation between the dip in the electron conduc-

tivity and the electron shear is suggested by Cappelli,8

although no definitive conclusions have been reached to this

respect. A similar mechanism of electron transport barrier

due to high electron shear has been proposed in the area of

nuclear fusion inside tokamaks,24 although Hall and nuclear

fusion plasmas are in rather different conditions to establish

a link between them without a more detailed analysis.
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In a separate study, Chesta et al.20 focus on the charac-

terization of all low frequency oscillations in HETs, both

axial and azimuthal. In that work, the usual breathing mode

and transit time oscillations are clearly observable together

with some special azimuthal oscillations. The latter ones are

caused first by the azimuthal asymmetry of the magnetic

field, generated by four magnetic coils, and second by the

presence of two azimuthally separated Langmuir probes.

Apart from those oscillations, two additional azimuthal low

frequency waves with a tilt angle of 15�–20� and a wave

mode number m¼ 1 are detected at low and at high voltage.

The oscillation at low voltage has a phase velocity of a few

km s�1 with a frequency of 5–10 kHz and seems to match

the properties of the rotating spoke detected by Janes and

Lowder,14 Esipchuk et al.,22 and Lomas and Kilkenny.19 On

the other hand, the oscillation at high voltage has a frequency

of roughly 20 kHz and could be the natural extension of the

rotating spoke to the current saturation part of the I–V curve.

Moreover, the relative size of the low frequency density

oscillations with respect to the azimuthally averaged density

shows a dip in most operating conditions around the region

of high magnetic field, in agreement with the results of

Meezan and Cappelli.6–8

Gascon et al.25–27 study the propagation properties of

low frequency azimuthal oscillations and analyse the influ-

ence of the ceramic material used, either alumina or boron

nitride. In that study, gradient-induced azimuthal oscillations

are detected at various axial locations in the medium fre-

quency range (30–200 kHz). As in previous studies, azi-

muthal waves are suppressed around the region of maximum

magnetic field. The main novelty of that study is the depend-

ence of the direction of propagation of the azimuthal waves

on the ceramic material used. The type of material affects

the azimuthal oscillations by controlling the relative position

of the magnetic field and plasma density maxima via the sec-

ondary electron emission yield of the material. Apart from

these medium frequency oscillations, Gascon et al. also

observe azimuthal oscillations below 30 kHz rotating along

E�B in the near anode region, but in the opposite direction

in the near-plume.

Smith and Cappelli28 analyse low frequency oscillations

of density, temperature, and electric field in the near field

plume of a HET operating in nominal conditions. A density

oscillation is detected at the thruster exit that rotates in the

�E�B direction with a phase velocity of 1.8 km s�1 and a

frequency of 25 kHz. The propagation properties of this os-

cillation agree well with the results previously described,

except for the propagation direction which is reported to be

opposite to the usual E�B drift. A similar behaviour is

reported by Gascon and Cappelli26 in the outer region of a

Hall thruster with alumina as ceramic material.

More recently, Raitses et al.29 have observed spokes in

a cylindrical Hall thruster. In a series of experimental

studies,21,30–33 this oscillation is characterized through the

use of a segmented anode and high-speed imaging. In this

case, the spoke travels in the þE�B direction with a phase

speed of about 2 km s�1 and an azimuthal wave length of the

order of the circumference of the channel, this is, with a

wave mode m¼ 1. These properties agree well with other

experiments described above. Additionally, the influence of

the cathode operation on the spoke and the electron mobility

is analysed in that research. In particular, if the cathode emis-

sion is increased, the spoke disappears and the electron con-

ductivity is greatly reduced. This is a good indication of the

connection between the anomalous diffusion and the spoke

oscillation. As a continuation of those analyses, Refs. 34 and

35 show how it is possible to control, suppress, or even pro-

mote spoke oscillations by means of a feedback-loop control

on the discharge voltage of the elements of a segmented

anode.

In a parallel and independent research, McDonald

et al.36–38 have used also high-speed imaging techniques as

well as a segmented anode to characterize the spoke in a wide

range of HETs, including both conventional and non-

conventional designs (the H6 thruster, the NASA 173Mv1,

the Busek BHT-600, the X2 dual nested channel Hall thruster,

and the Helicon Hall thruster). In those analyses, the larger

the thruster is, the larger the mode number of the spoke is. In

particular, for the H6 thruster modes m¼ 2 and m¼ 3 domi-

nate in nominal operating conditions, whereas m¼ 4 and

m¼ 5 are observed to be dominant when using the segmented

anode.36 Another result from that research is that azimuthal

oscillations are also found in the near plume of the thruster

rotating in the same direction with a similar frequency.39

Similarly, Liu40,41 also finds azimuthal oscillations in

the BHT-200 and BHT-600 thrusters via high speed-imaging

techniques. Although azimuthal plasma structures are found

both at low and high voltages, this is, in the ionization and

current saturation parts of the I–V curve, they are more visi-

ble at low voltage. Liu finds that the velocity and frequency

of the wave increase with the discharge voltage by carrying

out several parametric variations. Additionally, Liu also uses

krypton as propellant finding similar properties for the spoke

oscillation, being the frequency and velocity of the wave

higher than with xenon for similar operating conditions.

As conclusion from all these experiments, it can be

stated that in modern Hall thrusters the spoke oscillation is

an inherent feature of the thruster operation and appears in

the ionization and the current saturation parts of the I–V

curve, being more pronounced at low voltages.

B. Numerical simulations

Lomas and Kilkenny19 support their experimental

results with the numerical solution of a simplified version of

the two-dimensional fluid equations of electrons, ions, and

neutrals in a Hall accelerator with hydrogen as propellant.

Even though the conditions of the simulations are far from

modern HETs, it is interesting to see that low frequency azi-

muthal oscillations can be promoted by the ionization in a

Hall device.

More recently, Lam et al.42 have developed a hybrid

code that is the natural extension of Fife’s hybrid model18,43

to the axial-azimuthal space. Azimuthal effects are kept in

the formulation at the expense of not solving the radial direc-

tion. The results of this code for the nominal operating point

of the simulated thruster show a tilted wave with a phase ve-

locity of 4 km s�1, a mode number m¼ 4, and a frequency of
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40 kHz. This wave propagates inside the channel in the E�B

direction and upstream whereas in the plume the axial direc-

tion of propagation of the wave is reversed. This seems to be

correlated with the change in the gradient of the magnetic

field. Moreover, in the region of maximum magnetic field, the

waves are mostly longitudinal as detected experimentally.26,27

C. Theory: Low-frequency local-linear-stability
models

Most of the stability analyses of the Hall discharge car-

ried out so far are local as opposed to those where the stabil-

ity is analysed globally. The few studies that do account

globally for the axial variations of the inhomogeneous

plasma are focused on the high frequency range.44–48 The

local stability analyses covering the low and medium fre-

quency ranges may be grouped according to whether or not

they include ionization in the formulation. Let us start our

discussion with those that do not take it into account.

Even though there exist previous local stability analyses

dedicated to Hall devices,49,50 Morozov et al.12 carried out

the first azimuthal stability analysis of the Hall discharge.

They used a cold, two-fluid, quasineutral, collisionless, elec-

trostatic formulation without electron inertia. Their main

conclusion was the existence of unstable azimuthal oscilla-

tions in regions where the gradient of the magnetic field to

plasma density ratio is negative, i.e.,

d=dxðB0=n0Þ < 0:

Esipchuk and Tilinin51 extended the linear stability analysis

of Morozov et al. by accounting for electron inertia, and

electromagnetic and non-quasineutral effects. In the electro-

static low frequency and quasineutral limit of the resulting

dispersion relation, similar results to those of Morozov12

were obtained. The stability criterion derived by Esipshuk

and Tilinin seems to cover the gradient-induced oscillations

measured experimentally in the medium frequency range.

Additionally, low frequency quasi-longitudinal waves are

predicted when d/dx(B0/n0)> 0. Furthermore, when electron

inertia terms are retained in the model, high frequency, azi-

muthal, long wavelength oscillations are predicted near the

lower-hybrid frequency.

Kapulkin and Guelman52,53 carry out another stability

analysis with a two-fluid formulation specifically suited for

the region very close to the anode where the ionization is

negligible and the temperature and the magnetic curvature

contribute to the azimuthal drift of the electron flow. The

main novelty with respect to the work of Esipchuk and

Tilinin is the inclusion of electron pressure effects. The elec-

tron temperature is included in the model although its oscil-

lations are neglected. The results indicate the presence of an

unstable oblique wave of low frequency that can promote

electron conductivity towards the anode.

More recently, Frias et al.54,55 have revisited the local

stability of the Hall discharge by means of a two-fluid colli-

sion-less model and applied the resulting stability criterion to

experimental and numerical profiles of the Hall discharge.56

The local stability analysis of Frias et al.54 resembles those

by Morozov et al.,12 and Esipchuk and Tilinin.51 However,

the effect of the compressibility of the electron flow, which

includes the E�B and the diamagnetic drifts, is accounted

for completely, yielding a stability criterion with different nu-

merical factors, but qualitatively similar in form to those

obtained by Morozov et al. and by Esipchuk and Tilinin.

Additionally, the effect of the electron temperature oscilla-

tions on the stability is evaluated by Frias et al. The resulting
stability criterion shows similar features to the analysis with-

out electron temperature oscillations, but near the stability

threshold, the differences are important, causing that stable

cases in the simplified model become unstable if electron

temperature perturbations are accounted for. However, no

attempt is done to analyse the influence of the ionization in

the stability of the discharge in the low-frequency range.

Within the group of local stability analyses accounting

for ionization, the first work is due to Lomas and Kilkenny19

in the 1970s. Beyond reproducing the Janes-Lowder experi-

mental results and using numerical simulations to analyze

the spoke oscillation, they carried out a linear stability analy-

sis of the Hall accelerator and suggested that the spokes

detected experimentally are linked to the growth of electro-

thermal instabilities. However, the analysis is performed for

hydrogen, instead of a more typical propellant of modern

Hall thrusters like xenon.

Chesta et al.57 evaluate numerically the linear stability of

experimental steady-state profiles with a three-fluid description

of the discharge including ionization, particle collisions, and

electromagnetic effects. The main conclusion of that research

is that low frequency azimuthal oscillations are largely caused

by the ionization process and driven in part by the gradients of

the magnetic field and plasma density. However, no investiga-

tion is carried out to describe the exact mechanism of the insta-

bility by means of simple analytical expressions.

Gallardo and Ahedo58 use a three-fluid formalism with-

out electromagnetic terms to analyse the relation of the low

frequency azimuthal waves with the electron anomalous dif-

fusion. The main novelty with respect to previous studies is

that the azimuthal three-fluid unsteady equations are solved

to observe non-linear saturation effects. The conditions ana-

lysed in that case correspond to the ionization region of the

channel. The results predict an m¼ 3 azimuthal wave pro-

moted by the ionization process with a phase velocity of

2.7 km s�1 travelling in the �E�B direction.

Finally, Malik and Singh59 perform a local stability

analysis accounting for ionization partially. The ion and

electron equations do contain source terms related to ioniza-

tion, but the model does not include the neutral equations,

which are important in the low frequency range. In fact, the

breathing mode, one of the main low frequency longitudinal

oscillations in Hall thrusters, cannot be reproduced without

considering the neutrals as part of the model. The results

from Malik and Singh predict unstable oscillations in the

range of 100 kHz, which is above the range where the spoke

is normally measured.

As a conclusion from this literature review, it can be

stated that it is worth to revisit the local linear stability of the

Hall discharge accounting for the ionization process com-

pletely, that is, with the conservation equations of the neutral

species. This is the topic of Sec. III.
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III. AZIMUTHAL LINEAR STABILITYANALYSES
OF THE IONIZATION REGION

As shown in the previous section, there is experimental

evidence of low frequency azimuthal oscillations in the ioni-

zation region of the HET discharge. In this region, the ioni-

zation plays a major role in the definition of the axial profile

of the main plasma variables. In order to account for this pro-

cess in a stability analysis, a three-fluid model (ions, elec-

trons, and neutrals) needs to be considered. This section

presents results from two separate models: a simple one,

where the temperature is considered uniform and without

oscillations; and a more complete one, that includes an elec-

tron energy equation and heat conduction terms in order to

account for temperature gradients and oscillations.

Both models are based on a formulation consisting of

particle, momentum, and energy conservation equations for

electrons, ions, and neutrals separately

@n

@t
þr � ðnveÞ ¼ nnnnion; (1)

@n

@t
þr � ðnviÞ ¼ nnnnion; (2)

@nn
@t

þr � ðnnvnÞ ¼ �nnnnion; (3)

0 ¼ rðnTeÞ þ enðEþ ve � BÞ þ mennnneve; (4)

min
@vi
@t

þ vi � rvi

� �
¼ enE� minnnnionðvi � vnÞ; (5)

mnnn
@vn
@t

þ vn � rvn

� �
¼ 0; (6)

@

@t

3

2
nTe

� �
þr � 5

2
nTeve þ qe

� �
¼�enve �E� nnnnionE

0
ion;

(7)

5

2
nTerTe þ eqe � Bþ mennneqe ¼ 0; (8)

where i,e,n are the sub-indexes for ion, electron, and neutral

species; e is the electron charge; me, mi, and mn are the elec-

tron, ion, and neutral masses; E and B are the electric and

magnetic fields; n and nn are plasma and neutral densities; vj
is the velocity vector of species j; nion and ne are the ioniza-

tion and the effective electron collision rates; Te is electron
temperature; E0

ion is the energy loss per effective single ioni-

zation event; and qe is the electron heat conduction flux vec-

tor. The quasi-neutrality assumption (ne¼ ni) has been used

in the formulation since the Debye length is much smaller

than the typical dimensions of the thruster. Finally, notice as

well that the induced magnetic field is neglected and thus,

the electric field derives from an electric potential,

/ ðr/ ¼ �EÞ, and the magnetic field is equal to the exter-

nally applied field, resulting in an electrostatic formulation.

A. Isothermal model

In this case, electron temperature gradients and oscilla-

tions are neglected in the formulation, and therefore, Eqs. (7)

and (8) are not used. The corresponding steady state

(@/@t¼ 0) zero-th order solution (expressed with subindex 0)

is considered azimuthally symmetric (@/@y¼ 0). The zero-th

order solution then verifies

dnn0
dx

¼ � n0nn0nion0
vnx0

; (9)

dvnx0
dx

¼ 0; (10)

dvix0
dx

¼ nn0nion0 � vix0
d ln n0
dx

; (11)

e

mi
E0 ¼ vix0

dvix0
dx

þ nn0nion0ðvix0 � vnx0Þ; (12)

dvex0
dx

¼ nn0nion0 � vex0
d ln n0
dx

; (13)

vex0 ¼ vey0
�e0
xce

; (14)

vey0 ¼ � 1

B0

E0 þ
Te0
e

d ln n0
dx

� �
; (15)

where xce is the electron cyclotron frequency, �e0¼ nn0ne0 is
the effective electron collision frequency, and the Hall pa-

rameter is assumed to be very large (xce/�e0 � 1).

As shown by Ahedo et al. in Ref. 16, the solution of

Eqs. (9)–(15) together with the proper boundary conditions

verifies the following properties. The axial electron velocity

is negative all along the thruster channel as electrons drift

from the cathode to the anode. On the contrary, the neutral

axial velocity is positive as the gas moves from the injector

to the channel exit. In the case of the axial ion velocity, it is

positive in a large part of the thruster channel due to the elec-

tric acceleration (E0> 0), but it becomes negative in an ion

back-streaming region near the anode where the axial elec-

tric field is mildly negative and attracts the ions to the anode

(E0< 0). The azimuthal electron velocity is also negative all

along the thruster and consists of the E�B and the diamag-

netic drifts, being the E�B drift the dominant one in the

acceleration region, while the diamagnetic drift dominates in

the upstream part of the ionization region. As for the plasma

density gradient, it is positive from the anode to the begin-

ning of the acceleration region, from where it becomes nega-

tive as a consequence of the ion acceleration.

Assuming small perturbations with respect to the zero-th

order state (f̂ � f0), except for Te which is considered con-

stant, Eqs. (1)–(6) may be linearised into

@n̂

@t
þ n0

@v̂ex
@x

þ @v̂ey
@y

� �
þ v̂ex

dn0
dx

þ vex0
@n̂

@x

þ vey0
@n̂

@y
þ n̂

dvex0
dx

¼ ðn0n̂n þ n̂nn0Þnion0; (16)

@n̂

@t
þ n0

@v̂ix
@x

þ @v̂iy
@y

� �
þ v̂ix

dn0
dx

þ vix0
@n̂

@x
þ n̂

dvix0
dx

¼ ðn0n̂n þ n̂nn0Þnion0; (17)

@n̂n
@t

þ nn0
@v̂nx
@x

þ @v̂ny
@y

� �
þ v̂nx

dnn0
dx

þ vnx0
@n̂n
@x

¼ �ðn0n̂n þ n̂nn0Þnion0; (18)

043505-5 D. Escobar and E. Ahedo Phys. Plasmas 21, 043505 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
164.67.192.128 On: Mon, 14 Jul 2014 16:51:05



0 ¼ � 1

n0

Te0
me

@n̂

@x
þ n̂

n20

Te0
me

dn0
dx

þ e

me

@/̂
@x

� v̂eyB0

� �

� ðnn0v̂ex þ n̂nvex0Þne0; (19)

0 ¼ � 1

n0

Te0
me

@n̂

@y
þ e

me

@/̂
@y

þ v̂exB0

 !

� ðnn0v̂ey þ n̂nvey0Þne0; (20)

@v̂ix
@t

þ vix0
@v̂ix
@x

þ v̂ix
dvix0
dx

¼� e

mi

@/̂
@x

� nn0nion0ðv̂ix � v̂nxÞ

� n̂nnion0ðvix0 � vnx0Þ; (21)

@v̂iy
@t

þ vix0
@v̂iy
@x

¼ � e

mi

@/̂
@y

� nn0nion0ðv̂iy � v̂nyÞ; (22)

@v̂nx
@t

þ vnx0
@v̂nx
@x

¼ 0; (23)

@v̂ny
@t

þ vnx0
@v̂ny
@x

¼ 0; (24)

where it is assumed that the collision and ionization rates are

constant (ne¼ ne0, nion¼ nion0).
The perturbations may be assumed to be of the follow-

ing Fourier form:

f̂ ðt; x; yÞ ¼ �f ðxÞexpð�ixtþ ikyyÞ; (25)

where t is the time variable, x and y are the axial and azi-

muthal coordinates in the quasi-planar approximation, �f ðxÞ
is the x-dependent coefficient of the Fourier-expanded per-

turbation of a generic variable f, and x and ky are the angular
frequency and azimuthal wave number, respectively. Note

that the y axis is along the �E�B direction and that ky may

only take a discrete number of values given the azimuthal

symmetry of the problem. This type of Fourier expansion is

the basis of global stability studies, where the resulting for-

mulation is not algebraic, but consists of differential equa-

tions. Within the linear regime, that global approach is fully

consistent for inhomogeneous plasmas as opposed to the

local analysis carried out here.

As part of the current local analysis, the axial variation

of the perturbations is also Fourier-expanded resulting in

f̂ ðt; x; yÞ ¼ �f expðikxxÞexpð�ixtþ ikyyÞ; (26)

where kx is the axial wave number and �f is the coefficient of

the Fourier-expanded perturbation. The tilt angle of the os-

cillation may be then expressed as arctanðkx=kyÞ.
In this local analysis, it is necessary to freeze the zero-th

order variables and their gradients and consider them con-

stant, even if in reality the plasma is inhomogeneous along x,
so that the Fourier expansion in the x direction can be carried

out. This is supported by the assumption that the length scale

of the axial variation of the zero-th order variables (Lx) is
much larger than the axial wave-length of the perturbations

(kxLx � 1). This is the so-called Boussinesque approxima-

tion54 and allows reducing the formulation to an algebraic

problem. In Hall thrusters, this condition is not strictly met

and thus the solutions from local stability analyses must be

considered as an approximate limiting case. In fact, some

authors claim that depending on how the equations are line-

arised and Fourier-expanded as part of the local stability

analysis, the resulting stability criterion may change.60 In

any case, the local analysis does provide some insights into

the stability of the Hall discharge and is an important step to

take before analysing the linear stability with a global

approach.

Equations (16)–(24) contain four gradients of zero-th

order variables (dn0/dx, dnn0/dx, dvix0/dx, dvex0/dx). Making

use of Eqs. (9)–(15) and the length scale of the axial varia-

tion of the plasma density, ln:

ln ¼ ðd ln n0=dxÞ�1
(27)

those four gradients may be expressed as a function only of

the zeroth order variables and ln. It is important to note that

the gradient of the magnetic field does not appear in the for-

mulation as the expressions for the axial and azimuthal elec-

tron velocities in Eqs. (14) and (15) have been linearised and

Fourier expanded rather than introduced in the rest of expres-

sions in Eqs. (9)–(13) before the linearisation, as Esipchuk

and Tilinin51 and Frias et al.54 do. The consequences of this

choice are discussed in Ref. 60 and evaluated in the next

section.

Additionally, it is possible to make the problem non-

dimensional by defining the following reference variables

for mass, charge, time, density, and length, respectively: mi,

e, X�1, n0, and L, where X and L are arbitrary reference val-

ues here assumed to be, respectively, 10 kHz and 1 cm.

Hereinafter, non-dimensional variables are expressed with a

tilde above the variable symbol. For instance, ~ln ¼ ln=L rep-

resents the non-dimensional length scale of the axial varia-

tion of plasma density.

The non-dimensional Fourier form of the linearised

equations may be written as an eigenvalue problem in matrix

form as

ðA~x þ BÞ~w ¼ 0; (28)

where ~w ¼ ð~n; ~nn;~vix;~viy; ~/;~vex;~veyÞ is the vector of non-

dimensional variables, A and B are matrices of size 7� 7,

which are functions of the vector of non-dimensional param-

eters defining the zero-th order solution, ~p0 ¼ ð~nn0;~vix0;~vnx0;
~nion0; ~ne0; ~Te0; ~B0), and the non-dimensional wave-numbers

in the axial and azimuthal directions, ~kx and ~ky. Equation
(28) constitutes an eigenvalue problem with one unknown,

the complex oscillation frequency, ~x ¼ ~xre þ i~xim, as func-

tion of the wave numbers and the vector of parameters, this

is, ~xð~kx; ~ky; ~p0Þ. Since the electron inertia and electromag-

netic and non-quasineutral terms have been neglected, no

time derivatives of ~vex; ~vey, and ~/ appear in the formulation.

Thanks to this, three equations may be pre-eliminated in the

matrix formulation and there remain only four solutions for

~x in Eq. (28).

In the remainder of the analysis, we will focus on purely

azimuthal oscillations (~kx ¼ 0) in an attempt to reproduce

and analyse the spoke oscillations. Notice that under that

condition, the perturbations of the axial and azimuthal neu-

tral velocity are zero (~vnx ¼ ~vny ¼ 0) according to the
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perturbed neutral momentum equations. Moreover, we will

study the limited region of the thruster channel where

dn0/dx> 0 and dvix0/dx> 0 due to ionization and a positive

zero-th order electric field (E0> 0).

1. Approximate solution

Let us first consider a particular case, where an analyti-

cal solution for the dispersion relation can be found. This

consists of the collisionless case (~ne0 ¼ 0) at the particular

cross-section where ~vnx0 ¼ ~vix0, located inside the ionization

region. Then, the dispersion relation in Eq. (28) simplifies

into

0 ¼ ð~x þ i~nn0~nion0Þ ð~x � i~vix0=~lnÞ �
~nn0~n

2

ion0

~x þ i~nion0

 !

þ ~ky~ln ~B0 ~x � ~kyð ~Te0=~ln � ~E0Þ= ~B0 �
~nn0~n

2

ion0

~x þ i~nion0

 !
:

(29)

Equation (29) is cubic in ~x and thus has three solutions. The

fourth solution of Eq. (28), not captured in Eq. (29), comes

from Eq. (21) and is stable (~xre > 0) under the current

assumptions.

For typical conditions in the ionization region of a Hall

thruster, it holds approximately that ~nn0 � 1; ~nion0 � 1;
~nn0~nion0 � 1, and ~vix0 � 1. Taking into account those orders

of magnitude, Eq. (29) simplifies into the following second

order equation:

0 ¼ ~x2 þ ~xði~nn0~nion0 � i~vix0=~ln þ ~ky~ln ~B0Þ

þ ~nn0~nion0~vix0=~ln � ~k
2

y
~lnð ~Te0=~ln � ~E0Þ (30)

plus the marginally stable solution ~x 	 �i~nion0. The solu-

tions of Eq. (30) are in the low frequency range, and are

unstable (~xim > 0) when

ð~ky~lnÞ2 <
~nn0~nion0~vix0
~Te0=~ln � ~E0

; (31)

where the evaluation is performed in the near anode region,

where the electron pressure gradient, ~Te0=~ln, dominates over

the electric field, ~E0, and hence the denominator of the expres-

sion (31) is positive. According to Eq. (30), the highest growth

rate is obtained for the perturbation with the smallest wave

number allowed by the azimuthal continuity condition, which

imposes a lower limit on the azimuthal wave number. Note as

well that the most unstable solution of Eq. (30) verifies that

the product of ~xre and ~ky is negative, indicating that the wave

propagates in the �y direction, that is, along þE�B.

2. Full numerical solution

The numerical solution of the isothermal model in Eq.

(28) is discussed in this subsection. To this end, several para-

metric analyses are presented in this section with respect to

different parameters (~vnx0; ~nn0; ~Te0; ~nion0, and ~B0) together

with the azimuthal wave number, ~ky. In all of them, it is

possible to observe unstable solutions for low wave numbers

in agreement with the particular analysis in the previous

subsection.

For the resolution of Eq. (28), the following typical val-

ues for the macroscopic variables in the ionization region of a

HET are used: neutral velocity at injection, vnx0¼ 500m s�1;

neutral density, nn0¼ 1019m�3; electron temperature, Te0
¼ 6 eV; ionization frequency, �i0¼ nn0nion0¼ 105Hz; and

magnetic field, B0¼ 140 G. Additionally, the following

values for the reference parameters are used: mi¼ 2.2� 10�25

kg, e¼ 1.6� 10�19 C, X¼ 10 kHz, n0¼ 5� 1017m�3, and

L¼ ln¼ 1 cm. The resulting non-dimensional variables are

~vnx0 ¼ 5; ~nn0 ¼ 20; ~Te0 ¼ 450; ~nion0 ¼ 0:5; ~ln ¼ 1, and ~B0

¼ 1. These parameters define the reference state with respect

to which the parametric variations are carried out below. It is

also interesting to point out that under these conditions a

non-dimensional value of the wave number of ~ky ¼ �0:25 is

equivalent to an oscillation travelling in the þE �B direction

with a wavelength of around 24 cm, which is the same as the

perimeter of a circumference with a mean radius of 4 cm, a

typical value for a modern HET. Thus, ~ky ¼ �0:25 corre-

sponds to a mode m¼ 1 and wave numbers below that thresh-

old are not possible due to azimuthal continuity.

Figure 1 shows the influence of the neutral velocity on

the growth rate of the perturbations. Note that one of the

cases plotted is the one studied analytically previously,

~vnx0 ¼ ~vix0. Figure 2 shows the growth rate as a function of

FIG. 1. Growth rate of the most unstable solution of Eqs. (16)–(24) for

the following non-dimensional parameters: ~nn0 ¼ 20; ~v ix0 ¼ 5; ~n ion0 ¼ 0:5;
~ne0 ¼ 0; ~Te0 ¼ 450 and ~B0 ¼ 1. Parametric variation of ~ky and ~vnx0.

FIG. 2. Growth rate of the most unstable solution of Eqs. (16)–(24) for

the following non-dimensional parameters: ~v ix0 ¼ 5; ~vnx0 ¼ 5; ~n ion0 ¼ 0:5;
~ne0 ¼ 0; ~Te0 ¼ 450 and ~B0 ¼ 1. Parametric variation of ~ky and ~nn0.
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~ky and ~nn0. The smaller the neutral density is, the smaller the

range of wave numbers for unstable perturbations. Fig. 3

shows both the growth rate and the frequency of the oscilla-

tion as a function of ~ky and ~Te0. As the electron temperature

increases, the range of wave numbers for unstable solutions

is reduced. In this case, it is also possible to observe that

instabilities exist with a frequency around 10 kHz, ~xre ¼ 1,

and a wavelength around 24 cm, ~ky ¼ �0:25. Note that a fre-
quency of 10 kHz and a wavelength of 24 cm in the þE�B

direction correspond to an m¼ 1 oscillation with a phase ve-

locity of about 2.4 km s�1, very similar to the ion acoustic

speed and to the velocity of the spoke usually measured in

experiments.

Figures 4 and 5 show the variation of the growth rate of

the most unstable perturbation as a function of ~ky and ~B0 and

of ~ky and ~nion0, respectively. Fig. 4 shows that the higher the

magnetic field, the wider the range of wave numbers for

unstable solutions. Moreover, for a given wave number (e.g.,
~ky ¼ �0:25), the frequency of the oscillation increases with

the magnetic field. From Fig. 5, it can be stated that the

higher the ionization rate, the wider the range for unstable

solutions. Moreover, even though the oscillation with the

largest growth rate is still the m¼ 1 mode, the difference in

growth-rate for different wave numbers is greatly reduced

when the ionization rate is increased making it possible to

have unstable oscillations with higher wave mode numbers

(m¼ 2, m¼ 3…), as found experimentally.36 To this respect,

while it is true that the model predicts that the m¼ 1 mode

has the largest unstable growth rate and that other unstable

modes m¼ 2, m¼ 3 and higher exist with lower growth

rates, it is also important to note that the current analysis is

linear and local and that the final dominant mode can only be

fully determined if non-linear effects are accounted for. The

relevant result from our analysis is that it is for low wave

numbers when the perturbations become unstable, in line

with experimental evidence and contrary to the results from

the analysis of Frias et al., where the larger the wave num-

ber, the larger the growth rate.

Figure 6 depicts a map of the growth rate of the oscilla-

tion as a function of the neutral density and the electron tem-

perature for a fixed azimuthal wave number (~ky ¼ �0:25). In
our model, as the electron temperature is increased and the

neutral-to-plasma density ratio is decreased, the growth rate

decreases up to the point where the perturbation is no longer

unstable. Experiments show that as the discharge voltage is

increased, keeping the rest of parameters constant, the inten-

sity of low frequency oscillations diminishes considerably,

specially in the ionization part of the I–V curve of the

thruster.61,62 Thus, the linear model is in line with that exper-

imental trend as a discharge voltage increase causes an

increase of the electron temperature in the ionization region

of the thruster via ohmic heating and a decrease of the neu-

tral-to-plasma density ratio thanks to improved ionization.

FIG. 3. Growth rate (-) and real part (-�) of the most unstable solution of

Eqs. (16)–(24) for the following non-dimensional parameters: ~nn0 ¼
20; ~v ix0 ¼ 5; ~vnx0 ¼ 5; ~n ion0 ¼ 0:5; ~ne0 ¼ 0 and ~B0 ¼ 1. Parametric varia-

tion of ~ky and ~Te0.

FIG. 4. Growth rate of the most unstable solution of Eqs. (16)–(24) for

the following non-dimensional parameters: ~nn0 ¼ 20; ~v ix0 ¼ 5; ~vnx0 ¼ 5;
~n ion0 ¼ 0:5; ~ne0 ¼ 0 and ~Te0 ¼ 450. Parametric variation of ~ky and ~B0.

FIG. 5. Growth rate of the most unstable solution of Eqs. (16)–(24) for

the following non-dimensional parameters: ~nn0 ¼ 20; ~v ix0 ¼ 5; ~vnx0 ¼ 5;
~ne0 ¼ 0; ~Te0 ¼ 450 and ~B0 ¼ 1. Parametric variation of ~ky and ~n ion0.

FIG. 6. Growth rate of the most unstable solution of Eqs. (16)–(24) for

the following non-dimensional parameters: ~ky ¼ �0:25; ~v ix0 ¼ 5; ~vnx0 ¼ 5;
~n ion0 ¼ 0:5; ~ne0 ¼ 0 and ~B0 ¼ 1. Parametric variation of ~nn0 and ~Te0.
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3. Simplified model

The dispersion relation in Eq. (30) is equivalent to the

following linearised system of perturbation equations in non-

dimensional form:

@~̂n

@~t
þ @~̂v ey

@~y
þ
~̂v ex
~ln

þ ~vey0
@ ~̂n

@~y
¼ 0; (32)

@ ~̂n

@~t
þ @~̂v iy

@~y
� ~̂n

~vix0
~ln

¼ 0; (33)

~̂v ey ~B0 ¼ ~̂n ~Te0=~ln; (34)

0 ¼ ~Te0
@~̂n

@~y
� @

~̂/
@~y

� ~̂v ex ~B0; (35)

@~̂v iy
@~t

þ @
~̂/

@~y
þ ~nn0~nion0~̂v iy ¼ 0: (36)

Notice that the ionization terms are compensated by the gra-

dients of the zero-th order solution in the continuity equations,

explaining why there are no source terms in those equations.

If all equations in (32)–(36) are combined into one equa-

tion for the non-dimensional plasma density, the result is

0 ¼ @2 ~̂n

@~t
2
� ~ln ~B0

@2 ~̂n

@~t@~y
� ~ln

~Te0

~ln
� ~E0

 !
@2 ~̂n

@~y2

þ~nn0~nion0
@ ~̂n

@~t
� ~̂n

~vix0
~ln

 !
� @~̂n

@~y

~vix0
~ln

: (37)

Since ~Te0=~ln � ~E0 > 0, expression (37) is a wave-type equa-

tion with a term (@2 ~̂n=@~y2) whose coefficient ð�~c2Þ ¼
�~lnð ~Te0=~ln � ~E0Þ < 0 corresponds to a wave velocity, ~c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Te0 � ~ln ~E0

p
	

ffiffiffiffiffiffiffi
~Te0

p
, of the order of the ion acoustic

speed. Moreover, the destabilizing element in Eq. (37) corre-

sponds to the term ~n~nn0~nion0~vix0=~ln, which is associated to

ionization and comes from the coupling between the continu-

ity and momentum equations of the ion species.

However, the solution of the eigenvalue problem associ-

ated to Eqs. (32)–(36), that is Eq. (30), indicates that, even

though there are unstable perturbations (~xim > 0), the phase

speed of the oscillations is very close to zero (~xre 	 0). The

reason for this is that in the previous approximation several

terms have been neglected, in particular, the variation of

neutral density.

If neutral density oscillations are reintroduced in the pre-

vious system, Eqs. (32) and (33) are modified as indicated

below and the neutral continuity equation is added to the set

of equations

@~̂n

@~t
þ @~̂v ey

@~y
þ
~̂v ex
~ln

þ ~vey0
@~̂n

@~y
¼ ~̂nn

~nion0; (38)

@~̂n

@~t
þ @~̂v iy

@~y
� ~̂n

~vix0
~ln

¼ ~̂nn
~nion0; (39)

@~̂nn

@~t
¼ �ð~̂n ~nn0 þ ~̂nnÞ~nion0: (40)

Equations (34)–(36) and (38)–(40), consistent with Eq. (29),

represent the minimal system of linear equations capable of

reproducing the results from the full solution of the eigen-

value problem given by Eqs. (16)–(24) in terms of phase

speed and growth rate of the unstable perturbations for typi-

cal HET conditions.

B. Model with energy equation and heat conduction

In the previous section, a simplified stability analysis

has been carried out accounting for the ionization process.

However, the electron temperature was considered uniform

and without oscillations, and consequently, no energy equa-

tion was included in the formulation. In this section, both

assumptions are relaxed in order to check whether the insta-

bility detected with the isothermal model still appears with a

more complex model including heat conduction terms.

Nevertheless, electron inertia terms and plasma non-quasi-

neutrality are still neglected since they are not believed to

influence the low frequency instability under analysis.

Under the previous hypothesis, the complete set of gov-

erning conservation laws in Eqs. (1)–(8) is considered,

including the electron energy conservation equation and the

diffusive model for the electron heat conduction flux. In

order to close the formulation, a hypothesis about the zero-th

order temperature gradient is needed. In this case, an

adequate choice seems to be assuming a fixed zero-th order

electron temperature axial gradient as suggested by Gallardo

and Ahedo.58 Moreover, the ionization and effective colli-

sion rates, nion and ne, are considered constant, neglecting

their dependence with the temperature, which is not consid-

ered critical for this analysis.

After the linearisation of the equations and the use of a

Fourier-like form for the perturbations, the set of equations

(16)–(24) is modified and extended with 3 more equations.

In particular, the electron momentum equations, (19) and

(20), are modified to account for electron temperature oscil-

lations and additionally an electron energy equation and two

equations for the electron heat flux vector are added:

0 ¼ � 1

n0

Te0
me

@n̂

@x
þ n̂

n20

Te0
me

dn0
dx

� 1

n0

T̂ e

me

dn0
dx

� @

@x

T̂e

me

þ e

me

@/̂
@x

� v̂eyB0

� �
� ðnn0v̂ex þ n̂nvex0Þne0; (41)

0 ¼ � 1

n0

Te0
me

@n̂

@y
� @

@y

T̂e

me
þ e

me

@/̂
@y

þ v̂exB0

 !

� ðnn0v̂ey þ n̂nvey0Þne0; (42)

@

@t

3

2
T̂ e

� �
þ 5

2
v̂ex

dTe0
dx

þ 5

2
vex0

@T̂ e

@x
þ 5

2
vey0

@T̂ e

@y

� n̂

n20

dqex0
dx

þ 1

n0

@q̂ex
@x

þ
@q̂ey
@y

� �

¼ Te0
n0

@n̂

@t
� n̂nnion0 E0

ion0 þ
5

2
Te0

� �

� 5

2
nn0nion0T̂ e � ev̂exE0 þ evex0

@/̂
@x

þ evey0
@/̂
@y

; (43)
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0 ¼ 5

2
n̂Te0

dTe0
dx

þ 5

2
n0T̂ e

dTe0
dx

þ 5

2
n0Te0

@T̂ e

@x
þ eq̂eyB0

þ mene0ðn̂nqex0 þ nn0q̂exÞ; (44)

0 ¼ 5

2
n0Te0

@T̂ e

@y
� eq̂exB0 þ mene0ðn̂nqey0 þ nn0q̂eyÞ: (45)

Once the previous equations are transformed to non-

dimensional space, the stability analysis can be formulated

as the eigenvalue problem in Eq. (28), where ~w is extended

with ð ~Te; ~qex; ~qeyÞ and ~p0 with ( ~E
0
ion0). Once again, since

electromagnetic and non-quasineutral terms, and electron

inertia are not considered, the electron momentum vector

equation and the heat flux vector equation, can be pre-

eliminated from the matrix formulation.

In this case, no analytical solution is investigated and

only the results from the numerical solutions of the corre-

sponding eigenvalue problem are shown. Figures 7 and 8

show the numerical solution of the stability problem for the

same case as for the isothermal model. In particular, the

growth rate of the most unstable mode and its real part are

shown in Fig. 7. It is possible to see that the same long-

wavelength instability appears as in the isothermal model.

Moreover, as expected, results from the simpler model are

recovered if no temperature gradients are assumed for the

zero-th order solution. As the temperature gradient increases,

the range of azimuthal wave numbers where unstable pertur-

bations exist is reduced. On the other hand, the phase speed

of the unstable perturbation is still of the order of the ion

acoustic speed and the frequency of the oscillation of the

order of 10 kHz. Figure 8 shows the stability map of the per-

turbation with respect to the temperature and the neutral-to-

plasma density ratio. The conclusions are similar to those

derived from the isothermal model.

IV. COMPARISON AGAINST PREVIOUS LOCAL
STABILITYANALYSES

The simplified expression derived in the previous sec-

tion, Eq. (30), may be compared against the one derived by

Frias et al.54 in the limit of no ionization. Similar

conclusions could be derived by comparing the expressions

obtained in our study against those derived by Morozov

et al.12 or Esipchuk and Tilinin.51 A major difference

between the results obtained by Frias et al. and those pre-

sented here is related to the presence of the magnetic field

gradient in the resulting expressions. While the length scale

of variation of the magnetic field (~lB ¼ ðLd lnB0=dxÞ�1
)

does not appear in Eq. (30), it plays a major role in the analy-

sis of Frias et al. The reason for this, as explained before, is

the fact that the equations for the electron axial and azi-

muthal velocity are replaced by Frias et al. in the electron

continuity equation before the linearisation and the Fourier-

expansion of the equations. In case this approach is used in

our analysis, the following expression is obtained under the

same hypotheses leading to Eq. (30):

0 ¼ ~x2 þ ~xði~nn0~nion0 � i~vix0=~ln þ ~ky~lg ~B0Þ

þ ~nn0~nion0~vix0=~ln � ~k
2

y
~lg ~B0ð~vey0 � 2 ~Te0=ð~lB ~B0ÞÞ

� ~ky~lg ~B0i~nn0~nion0; (46)

where 1=~lg ¼ 1=~ln � 2=~lB. In the limit of no ionization and

zero ion velocity gradient, Eq. (46) reduces to

0 ¼ ~x2 þ ~x ~ky~lg ~B0 � ~k
2

y
~lg ~B0ð~vey0 � 2 ~Te0=ð~lB ~B0ÞÞ (47)

which, aside from the use of non-dimensional variables, is

equivalent to the expression derived by Frias et al. under the
same hypotheses for purely azimuthal oscillations (~kx ¼ 0),

Eq. (17) of Ref. 54.

The analysis of Eq. (46) shows that in the case of posi-

tive gradients (~ln; ~lB > 0), apart from the unstable solutions

already predicted by Frias et al. when ~lB > 2~ln, there are

also unstable solutions when ~lB < 2~ln due to the ionization

terms. Similar to the unstable solutions given by Eq. (31),

the latter unstable solutions from Eq. (46) have also a higher

growth rate for smaller wave numbers. This is a distinct fea-

ture with respect to the unstable solutions already predicted

by Frias et al., for which the higher the wave number is, the

higher the growth-rate is. Experiments show that both

gradient-induced and spoke oscillations have low wave-

numbers and this fact seems to point to the oscillations

caused by the ionization terms in Eqs. (31) and (46).

FIG. 7. Growth rate (-) and real part (-�) of the most unstable solution for

the following non-dimensional parameters: ~nn0 ¼ 20; ~v ix0 ¼ 5; ~vnx0 ¼ 5;
~n ion0 ¼ 0:5; ~ne0 ¼ 0; ~Te0 ¼ 450 and ~B0 ¼ 1. Parametric variation of ~ky and
d ~Te0=dx.

FIG. 8. Growth rate of the most unstable solution for the following non-

dimensional parameters: ~ky ¼�0:25; ~v ix0 ¼ 5; ~vnx0 ¼ 5; ~n ion0 ¼ 0:5; ~ne0 ¼ 0

and ~B0 ¼ 1. Parametric variation of ~nn0 and ~Te0, with ~Te0 ¼ d ~Te0=d~x.
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V. CONCLUSIONS

A thorough review of the available literature on low fre-

quency azimuthal oscillations in Hall effect thrusters has

been carried out and has justified the need for a stability

analysis of the plasma in the ionization region of the channel.

The local linear stability has allowed us to identify an azi-

muthal instability not previously described theoretically in

the Hall thruster literature. The linear oscillation is similar to

the spokes measured experimentally in terms of frequency

range, phase speed, and wavelength. Parametric analyses

have been carried out with respect to the main parameters of

the model in order to identify the trends of the instability.

Moreover, a simplified set of linear differential equations

able to reproduce the instability has been derived and ana-

lysed, providing some insight into the mechanism of the lin-

ear oscillation.

However, the local analysis presented here has limita-

tions that recommend extending the work. The main draw-

back of the local analysis is related to the fact that axial

variations of the zero-th order variables are neglected. This

is only valid in the limiting case where the length scale of

these variations is much larger than the axial wavelength of

the perturbations. In order to overcome this limitation, in

Part II of this study a global stability analysis is carried out

accounting for the ionization and following an approach sim-

ilar to those used by Kapulkin et al.45,46 and Litvak et al.44

in the past for other stability studies of the Hall thruster dis-

charge in the high frequency range. Preliminary results from

that global approach have already been presented by the

authors in Ref. 63.
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