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Abstract: Wireless Sensor Networks (WSNs) are a promising technology with applications in many
areas such as environment monitoring, agriculture, the military field or health-care, to name but
a few. Unfortunately, the wireless connectivity of the sensors opens doors to many security threats,
and therefore, cryptographic solutions must be included on-board these devices and preferably
in their design phase. In this vein, Random Number Generators (RNGs) play a critical role in
security solutions such as authentication protocols or key-generation algorithms. In this article is
proposed an avant-garde proposal based on the cardiac signal generator we carry with us (our heart),
which can be recorded with medical or even low-cost sensors with wireless connectivity. In particular,
for the extraction of random bits, a multi-level decomposition has been performed by wavelet
analysis. The proposal has been tested with one of the largest and most publicly available datasets
of electrocardiogram signals (202 subjects and 24 h of recording time). Regarding the assessment,
the proposed True Random Number Generator (TRNG) has been tested with the most demanding
batteries of statistical tests (ENT, DIEHARDERand NIST), and this has been completed with a bias,
distinctiveness and performance analysis. From the analysis conducted, it can be concluded that the
output stream of our proposed TRNG behaves as a random variable and is suitable for securing WSNs.

Keywords: Wireless Sensor Networks (WSNs); Electrocardiogram (ECG) sensor; Random Number
Generators (RNGs); wavelet

1. Introduction

We are in the era of the Internet of Things (IoT), where all kinds of devices and sensors are
connected to the Internet. There is a wide variety of applications/sectors that can benefit from this
technology, but it can turn into a nightmare if security does not play a critical role [1,2]. This is even
more critical, if possible, in particular sectors like the health-care sector, where sensors are in or on
a subject’s body, and a cybersecurity attack could have dramatic consequences. The reader should
note that the new generations of implanted medical devices (e.g., pacemakers or insulin pumps) are
already equipped with wireless connectivity and can be remotely accessed [3,4]. The security risks of
these medical devices have been recently scrutinized, and the results show certain security pitfalls in
some commercial devices [5].
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Wireless Sensors Networks (WSNs) are one of technologies that supports the IoT paradigm.
In a nutshell, a WSN consists of a large number of nodes, each one of them equipped with a sensor.
The nodes sense their environment (e.g., humidity or pressure), communicate with each other and
transmit the collected data to a gateway with Internet connectivity [6]. A particular case of WSNs is the
Wireless Body Area Networks (WBANs) in which the nodes are in or on the human body and collect
its vital signals [7]; in this case, the gateway is often implemented by a smartphone. The collected
signals can be used for health applications or, as some authors have recently proposed, for security
purposes [8]. The latter is the objective of this proposal and is part of the dependability aspects of
WSNs and should be addressed for a widespread adoption of this technology [9].

As already mentioned, to prevent, or at least hinder, cybersecurity attacks, security mechanisms
must be added at the design phase of the sensors [10]. Regarding security mechanisms, cryptographic
primitives like ciphers, hash functions or Random Number Generators (RNGs) are pivotal. This article
focuses on the design of an RNG that is a critical component in tasks such as the generation of
a fresh session key or a set of random numbers for an authentication protocol. Although it is not
within the scope of this article, it is worth mentioning that the sensors in WSNs due to their wireless
communication capabilities are also vulnerable to disruptions of the radio channel. For instance, a DoS
jamming attack can be easily executed by an adversary with a low-cost hardware, and ad hoc solutions,
such as those presented in [11,12] or [13], are needed for its detection.

There are two main approaches to generate random numbers [14]. Firstly, computational
algorithms, which depend on an initial value (seed or key), can be employed to generate long sequences
of bits that look like a data stream generated by a random variable. These sorts of generators are
called PseudoRandom Number Generators (PRNGs) [15]. Secondly, physical phenomena such as
atmospheric noise or the thermal noise from a Zener diode can be used to generate random numbers
due to their highly entropic nature [16]. Generators under this second approach are labeled as True
Random Number Generators (TRNGs).

In this article, an innovative TRNG is proposed. As mentioned, a TRNG exploits a physical
phenomenon. In our case, it takes advantage of an organ, particularly the heart, which is part of our
bodies. The Electrocardiogram (ECG), which is the signal derived from the electrical activity of the
heart and which can be measured through a sensor with several leads on our bodies, is the input to
our system and from which true random bits are extracted. That means that each of us is the holder of
a potential source of entropy just because our heart-beats to keep us alive. The details of the proposal
are given in the following sections.

2. Motivation and Related Work

In the last few years, WSNs have attracted the attention of many researchers because of their great
potential. These can be categorized depending on: (1) the place where the sensors are deployed
(terrestrial, underground or underwater WSNs); (2) their ability to deal with multimedia data
(multimedia WSNs); and (3) their ability to move around (mobile WSNs) [17]. The domains in which
WSNs have been applied are very diverse. Monitoring and tracking are the two main purposes of
the wide suite of applications [18]. Among the main fields of application are military, environment,
industry, agriculture, urbanization, infrastructure and health. This work is framed within BANs,
in which health (patient monitoring) is the star application [19]. In our particular case, the monitored
vital signal is used for security purposes (random number generation); patient status monitoring can
be done at the same time.

As mentioned, the security of sensors in WSNs is fundamental to the success of
the IoT paradigm [20]. Cryptographic solutions must be supported on-board these devices,
and random-number generators are one of the commonly-required cryptographic primitives. In this
vein, the proposal takes advantage of the fact that some sensors record our vital signals. For this reason,
it explores whether randomness can be extracted from physiological signals. In fact, some authors
have recently studied this topic in the context of neuronal signals [21,22]. The main limitation of these
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studies is length of the recordings used and the fact that medical-purpose Electroencephalogram (EEG)
sensors have limited portability capabilities.

In our case, the experiments focus on heart signals. Particularly, the electrical signal of the heart
can be measured by placing electrodes (e.g., three or 12 leads) on the body of the subject under analysis.
The representation of this signal is the Electrocardiogram (ECG). There are five characteristics points in
the ECG: (1) the P-wave represents the depolarization of the atria; (2–4) the QRS complex represents the
depolarization of the ventricles; and (5) the T-wave represents the re-polarization of the ventricles [23].
In Figure 1, an ECG signal and its characteristics points are sketched.

Figure 1. ECG signal.

For cybersecurity purposes, the time interval between two consecutive heart-beats (R-peaks,
which occur when the ventricles begin to contract), has gained the attention of many researchers in
recent years [24–26]. This interval is commonly referred to as the Inter-Pulse-Interval (IPI). Accordingly,
an interesting and proof-of-concept work can be found in [8], where Peter et al. presented a design and
implementation of an IPI-based authentication protocol. In [27,28], the authors showed how IPI-based
values can be employed as cryptographic keys. In addition, ECG biometrics is a growing field in which
some approaches are based on characteristics’ points (including R-peaks and IPIs) [29,30].

In relation to random numbers, some authors have pointed out how the last four bits of IPI
values are highly entropic [27,31]. Nevertheless, high entropy is a necessary, but not a sufficient
condition to be considered a random variable. In Table 1, the results obtained in the analysis of
a 10-MB file of IPI values (4 LSBbits per IPI) with the ENT suite [32] are shown. Although the entropy
value is high, the chi-square test clearly shows that this file is not random. In line with this, in [33],
the randomness quality of IPI values was scrutinized in-depth using 19 public datasets with healthy
and unhealthy subjects. Two main conclusions were drawn from this study: (1) IPI values can generate
short bit streams that behave as a random variable; and (2) large files with IPI values have poor
randomness quality. In addition, the generation of random numbers based on IPI values offers very
low performance, and although, this value is double in [34], the offered throughput is still low.

For all this, the designed ECG-based TRNG does not use the IPI approach and exploits all the
wealthy entropic information contained in the entire ECG signal.
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Table 1. ENT results (10-MB file with 4-LSB Inter-Pulse-Interval (IPI) values).

Approximately IPI-Based Approach Optimal Values

Entropy 7.957724 8

Optimum 0% 0%compression

Chi square 493.49 256
(0.01%) ([5–95%])

Arithmetic mean value 123.0993 127.5

Monte Carlo π value 3.158811 3.14159

Serial correlation 0.031878 0
coefficient

3. Materials and Methods

In connection with the acquisition of the EEG signal, both medical equipment or low-cost sensors
can be used for recording. The former ones often use twelve electrodes over the chest and limbs.
These recordings are very accurate, but their portability is limited, making these devices unsuitable for
WSNs. This equipment is commonly used in hospitals, and the subject must be at rest. With regard
to low-cost sensors, only two or three electrodes on the chest or wrists are needed to capture the
ECG traces. The signal can be a little noisy, but portability and integration into wearable devices
(e.g., smart-watches or t-shirts [35]) make these devices very appropriate for WSNs: the wearer may
be performing activities of her or his daily life; in other words, there is no need for the subject to be
at rest. In our particular case, as a proof-of-concept, a low-cost ECG sensor (BITalino board with an
ECG sensor [36]) was used for the acquisition of the ECG records. For this, three electrodes can be
placed at the chest, but also at the palms of the hands. The aim of our contribution, taking advantage
of the fact that some sensors in WSNs have the ability to sense heart signals, is to extract random
numbers, which can be used for security purposes, from the above aforementioned signals. Once the
raw ECG signal is acquired, pre-processing and randomness extraction by wavelet decomposition can
be computed at the sensor itself or at the central node of the WSN that has greater computational and
memory capabilities. Figure 2 shows all the necessary hardware, and the source-code is available in the
following link to facilitate the reproduction of all the results (source code is available at these two links:
https://goo.gl/WmQiiC and https://goo.gl/TpvSQq). The signal pre-processing and randomness
extraction procedure are described below.

In detail, the ECG records have been cleaned using the following procedure (pre-processing
procedure in Algorithm 1). Once the DC component is eliminated, a bandpass filter is used to remove
two main noise sources. The lower and upper cut-off frequencies are fixed to 0.67 (to eliminate the
noise caused by the respiration) and 45 Hz (to eliminate the power line noise), respectively.

Algorithm 1 ECG-RNG.

1: procedure Preprocessing(ECGraw)
2: DC elimination
3: Bandpass filter ([0.67− 45Hz])

4: procedure WAVELET DECOMPOSITION(ECGcleaned)
5: Split ECGcleaned into ECG-windows (one heart-beat per window)
6: for each ECG-window(j) do
7: Discrete wavelet decomposition (set parameters L and w f )
8: procedure ENTROPY EXTRACTION(Wavelet coefficients of each ECG-window ({ci}N

i=1))
9: for each ci do

10: Fractional part extraction (zi)
11: Output the 8-LBS bits (ri)

https://goo.gl/WmQiiC
https://goo.gl/TpvSQq
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Figure 2. Hardware for building an ECG-based RNG.

For squeezing random values from the clean ECG trace, the following procedure (wavelet
decomposition procedure in Algorithm 1) is proposed. The ECG record is split into windows that
contain an R-peak (one heart-beat); for each ECG record, the first and last fifty windows have been
discarded to guarantee that the signal is properly registered. Secondly, the approximation coefficients
of each EGG window are obtained by wavelet analysis. Note that the discrete wavelet transform
of a signal (x[n]) is computed by passing it through a low-pass filter (g[n]) and and high-pass filter
(h[n]). The signal is then sub-sampled by 2, and the process is repeated to increase the level of
decomposition. In particular, the number of iterations is conditioned by the pursued decomposition
level. The procedure is summarized in Figure 3; the reader can consult [37] for a detailed explanation.

Figure 3. Wavelet decomposition of a signal x[n].

As for the wavelet decomposition, there are two key-parameters that need to be set and a wide
range of possibilities are studied in the following sections. On the one hand, L parameter sets the
decomposition level: L = {1, 2, 3, 4} are the tested levels. On the other hand, w f sets the wavelet
family (e.g., Daubechies or coiflets) used in the decomposition and determines the filters used (g[n]
and h[n]).
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Finally, random bits are extracted (entropy extraction procedure in Algorithm 1) using a kind
of quantization. More precisely, the fractional part of each coefficient is converted into a 32-bit
unsigned value, and then, the 8 LSB bits are extracted. Mathematically, let ci be a coefficient of
wavelet-decomposition and ri an outputted random byte. Then,

zi = uint32((ci × 104)� 24)
ri = zi(0, . . . , 7)

lll (1)

Although the proposal was initially evaluated with ECG records obtained with the BITalino board,
an in-depth analysis has been carried out, using a well-known and public dataset that uses three
electrodes. More precisely, the E-HOL-03-0202-003 dataset, which was provided by the Telemetric
and ECG Warehouse (THEW) of University of Rochester (dataset available at: http://thew-project.
org/index.htm), has been employed. ECG records were acquired using three pseudo-orthogonal lead
configuration (X, Y and Z), and the sampling frequency was set to 200 Hz. The descriptive statistics of
the dataset are summarized in Table 2.

This database has features that are not present in many other public datasets. First, the number
of individuals (ECG signals) is very large (i.e., 202 subjects; in our experiments, 3 ECG records were
discarded due to the very short length of these recordings). Secondly, each ECG record lasts around
24 h, which is much longer than the length of ECG files available in many other public datasets. Finally,
it is worth mentioning that the subjects were healthy, and therefore uniformity in the distribution can
be assumed.

Table 2. Population descriptive statistics.

Statistic Male Female

Number 101 101

Height 176.8 162.3

Weight 77.6 62.3

Body Mass 24.7 23.7

4. Results and Analysis

To assess the randomness quality of the outputted bits, three of the most common statistical tests
batteries to evaluate the randomness quality of a RNG have been used: NIST [38], DIEHARDER [39]
and ENT [32]. NIST is the most demanding battery and requires long files (several tens of megabytes).
In our particular case, files with a size of around 100 MB have been generated. For each subject
(199 in total), experiments lasted between 4 and 6 h (the time interval was randomly chosen from the
24 h available of the ECG signal), and therefore, 0.5-MB files were obtained per subject after the entropy
extraction by wavelet analysis (see Section 3 for details). Finally, all the files were appended (assuming
independent and identically distributed random variables), and this was the file analyzed; note that
the NIST suite requires files of at least 30 MB that would require the recording of one individual
during approximately 15 days. In relation to the parameters w f and L, Daubechies was the family
used (the number of vanishing moments was set to N = 4), and there were 1–4 levels tested.

Tables 3–5 summarize the results obtained with the NIST, DIEHARD and ENT suites for the four
configurations studied. It is noteworthy that the NIST suite is devoted to test RNGs that have been
designed for security purposes. Table 3 shows the p-value and the proportion of tests that pass each
one of the fifteen tests included in the suite. Without a doubt, all configurations pass all the tests at
the 0.005 level of significance, and it can be concluded that the output behaves as a random variable.
Table 4 summarizes the p-values for each one of the test included in the Diehardsuite. The results were
consistent with the NIST results. For a wavelet decomposition of three or four levels (the last two
columns of Table 4), all tests passed. In the case of a decomposition of one or two levels, all the tests
passed except a pair of tests where a weak-pass was obtained (p-value < 0.005); these are highlighted

http://thew-project.org/index.htm
http://thew-project.org/index.htm
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in bold in the table. Although the differences were minimal, the results indicated that a decomposition
with a larger number of levels avoided the appearance of rare/weak patterns in the output. Finally,
ENT results (as shown in Table 5) were in tune with all the above. In fact, and contrary to the results
shown in Table 1 of Section 2, all tests were extensively passed. It is worth noting how the chi-square
test was close to the optimal value (256).

In the subsequent subsections, the above analysis is rounded off by a bias and distinctiveness
analysis. The performance of our proposal has also been analyzed and compared to previous works. Finally,
some light is shed on which wavelet-family is more appropriate for the generation of random numbers.

Table 3. NIST results.

Approximately Level 1 Level 2 Level 3 Level 4

Frequency 0.8165 (49/50) 0.9558 (50/50) 0.0200 (49/50) 0.8514 (49/50)

Block Frequency 0.4190 (49/50) 0.4190 (47/50) 0.8832 (49/50) 0.1917 (49/50)

Cumulative Sums 0.5207 (2/2) 0.4356 (2/2) 0.6101 (2/2) 0.1563 (2/2)
(49/50) (50/50) (49/50) (49/50)

Runs 0.6993 (48/50) 0.6993 (50/50) 0.4944 (50/50) 0.4559 (50/50)

Longest Run 0.2897 (50/50) 0.6993 (50/50) 0.9915 (50/50) 0.8832 (50/50)

Rank 0.08559 (50/50) 0.5341 50/50 0.3505 (49/50) 0.0352 (50/50)

FFT 0.1223 (50/50) 0.0757 (49/50) 0.5749 (49/50) 0.2897 (50/50)

Non-Overlapping 0.4986 (148/148) 0.4881 (148/148) 0.5080 (148/148) 0.5090 (148/148)
Template (>49/50) (>49/50) (>49/50) (>49/50)

Overlapping Template 0.3838 (50/50) 0.1719 (48/50) 0.9558 (48/50) 0.4190 (49/50)

Universal 0.3505 (50/50) 0.0156 (50/50) 0.3838 (48/50) 0.9915 (49/50)

Approximate Entropy 0.0669 (48/50) 0.9558 (49/50) 0.6993 (50/50) 0.1088 (50/50)

Random Excursions 0.2865 (8/8) 0.1094 (8/8) 0.3629 (8/8) 0.4111 (8/8)
(>36/38) (>37/38) (>33/34) (>32/33)

Random Excursions Variant 0.2867 (18/18) 0.3328 (18/18) 0.4612 (18/18) 0.3969 (18/18)
(>36/37) (>37/38) (>33/34) (>32/33)

Serial 0.6511 (2/2) 0.9537 (2/2) 0.1753 (2/2) 0.5116 (2/2)
(>49/50) (50/50) (49/50) (49/50)

Linear Complexity 0.0352 (50/50) 0.2622 (50/50) 0.5749 (49/50) 0.9717 (50/50)

Table 4. Diehardresults.

Approximately Level 1 Level 2 Level 3 Level 4

Birthdays 0.68301545 0.61270139 0.80007480 0.94460956

OPERM5 0.01657098 0.76376607 0.77095792 0.0012866

32 × 32 Binary Rank 0.73054931 0.93907677 0.93485678 0.40762130

6 × 8 Binary Rank 0.03964233 0.63609809 0.01640541 0.78004161

Bitstream 0.44644237 0.38432822 0.76304154 0.46452841

OQSO 0.16901300 0.0000523 0.10390905 0.07871345
0.76574765 0.63218487 0.56716581 0.69843874

DNA 0.01104271 0.66337412 0.04864965 0.16432922

Count the 1’s (stream) 0.64310466 0.75768749 0.14166650 0.64535121

Count the 1’s Test (bytes) 0.61217963 0.12233837 0.45342646 0.31039533

Parking Lot 0.01700299 0.72327165 0.45123033 0.61550204

Minimum Distance 0.05835137 0.39712445 0.57168207 0.60978869(2D Circle)

3D Sphere 0.45525876 0.40382693 0.74404666 0.94736187(Minimum Distance)

Squeeze Test 0.51553404 0.0000231 0.26298106 0.87828628

Runs 0.01450632 0.17897685 0.64894698 0.85809732
0.77031157 0.78097772 0.51236956 0.27052895

Craps 0.01027903 0.09666884 0.00901385 0.91551334
0.0042827 0.08596808 0.27730790 0.90795457
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Table 5. ENT results.

Approximately Level 1 Level 2 Level 3 Level 4

Entropy 7.999998 7.999998 7.999998 7.999998

Optimum 0 % 0 % 0 % 0 %Compression

Chi Square 279.22 268.41 235.82 313.44
(14.24 %) (26.99 %) (80.01 %) (0.73 %)

Arithmetic Mean Value 127.4657 127.4731 127.4896 127.4931

Monte Carlo π Value 3.141955902 3.142772504 3.141912708 3.141860883

Serial Correlation −0.000105 0.000022 −0.000124 0.000058Coefficient

4.1. Bias Analysis

The bias of the outputted stream has been analyzed for each approach. To this end, the following
experiment has been carried out. For each subject (199 in total), a file of 0.5 MB has been generated
using the same procedure as described in Section 3 and analyzed using the ENT suite. In Figure 4,
a box-plot of the chi-square values is shown. It is worth noting that the optimal value of the chi-square
test was 256, and the greater the distance to this optimal value, the greater the bias in the data.
Using this analysis, it could be concluded that the fourth level approach was the most appropriate to
build a secure and robust TRNG based on ECG signals: the average value (blue circle) was the optimal
one, and the distribution of values between the first and third quartile was the narrowest.

Figure 4. Bias analysis.

4.2. Distinctiveness Analysis

We have tested whether the random data generated from different ECG signals (each one
belonging to a single individual) were distinct. If this holds, an adversary cannot use data from
another individual to predict values generated by the target. To evaluate this, as in Section 4.1, a file of
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0.5 MB has been generated for each individual (ECG record). Then, for each file, data were grouped
into {8, 16, 32, 64}-bit words. In Figure 5, the data distribution of the Hamming distance between all
the pairs (C199,2 in our particular case) of individuals belonging to the dataset is shown. As expected,
the distribution fit a binomial distribution:

p(k) =
(

n
k

)
pk(1− p)n−k (2)

where n = {8, 16, 32, 64} and p = 1/2. The experimental mean value of k is
{4.0008, 8.0015, 16.0031, 32.0062}, which is nearly the expected value (E(k) = np = {8, 16, 32, 64} ×
(1/2) = {4, 8, 16, 32}). From all this, it can be concluded that the advantage for an adversary to predict
values using ECG signals from a different individual was zero.

Figure 5. Hamming distance distribution.

Apart from using the ECG of a different user, the attacker may be tempted to capture ECG signals
from a distance. In [40], Calleja et al. showed how IPI-values (R-peaks) can be eavesdropped without
touching the target individual and using a camera. Fortunately, this approach is totally uselessness
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against our proposal since the whole ECG signal (P-wave, QRS-complex and T-wave) was used and
there is no way to predict or capture an entire ECG signal from a distance.

4.3. Performance Analysis

Apart from the poor randomness quality of IPI-based approaches [33], the throughput is also
a bottleneck. Generally, in this sort of approach, four random bits (LSB) are extracted after the
observation of two heart-beats [27,31]. In order to improve efficiency, in a recent proposal, Pirbhulal
et al. were able to extract 16 bits per IPI value [34]. Despite all efforts, IPI-based approaches suffer
from low throughput. Luckily, our approach was much more efficient since it was possible to extract
several random bytes per each heart-beat. In Table 6, the performance of existing approaches is
summarized. To facilitate the understanding of these values, in Columns 3 and 4, a healthy individual
whose heart-beats between 60- and 100-times per minute (i.e., [1–0.6] s per beat) is assumed.

The particular number of bits that can be extracted from an ECG-window (including only one
R-peak) depends on the heart rate of the individual. Figure 6 shows the average value of bits extracted
per heart-beat for each of the 199 subjects belonging to the dataset. The overall average value of all
these values is the value shown in Table 6.

Table 6. Performance analysis.

Approach Efficiency Throughput (60 PPMs) Throughput (100 PPMs)

IPI-based approaches [27,31] 4 bits/2 heart-beats 2 bits /second 3.3 bits/second

Pirbhulal et al. [34] 16 bits/2 heart-beats 8 bits/second 13.33 bits/second

Our approach 23 bytes/heart-beat 184 bits/second 306 bits/second

Figure 6. Throughput analysis.

Compared to previous proposals, the advantages of our solution were two-fold. On the one
hand, one heart-beat (ECG-window) is only needed to extract random bits; note that IPI approaches
require two heart-beats since a difference between two R-peaks is computed. On the other hand,
the throughput has increased drastically (with a 2200% increase in the worst-case scenario). Therefore,
our proposal was able to generate random bits at a moderately high throughput rate.
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4.4. Wavelet Family Analysis

The wavelet decomposition of the ECG signal represents the core function of the proposed RNG.
Up to this point, the experimentation has been conducted using the Daubechies family (the number
of vanishing moments is set to four; N = 4). For completeness, we have evaluated the RNG with
other families (i.e., Haar, coiflets, symlets, discrete Meyer, biorthogonal) to discern which alternatives
were the most appropriate for the generation of randomness. A file of 100 MB has been generated in
each case and then evaluated using the ENT, DIEHARDER and NIST randomness test suites. Table 7
summarizes the overall average results.

As already mentioned, Daubechies was our first approach since this is the common mother
wavelet used for the analysis of the ECG signal [41–43]. Nevertheless, this paper explores how to
extract randomness from ECG signals by multi-level wavelet decomposition, and to the best of our
knowledge, this is the first time this approach has been studied. Therefore, the choice of the most
appropriate wavelet family has not been evaluated before in the context of random number generation.
Figure 7 summarizes the distribution of p-values for the tests included in the DIEHARD and NIST
suites in order to gain a better overall perspective of the results. The biorthogonal approach can
certainly be ruled out as the p-values were far away from an uniform distribution. In addition,
Haar, coiflets and symlets are also not recommended as the median of the p-values fell well bellow the
optimal value of 0.5. For all this, the use of Daubechies or discrete Meyer is recommended since with
both approaches, the output stream behaved as a random variable.

Figure 7. p-values (DIEHARD and NIST suite tests).
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Table 7. Wavelet family analysis.

XXXXXXXXXFamily
Test ENT DIEHARDER NIST

Daubechies (N = 4) PASS (6/6) PASS (15/15) PASS (15/15)

Haar PASS (6/6) (12 PASS–2 WEAK–1 FAILED)/15 PASS (15/15)

Coiflets (N = 3) PASS (6/6) (14 PASS–1 WEAK) /15 PASS (15/15)

Symlets (N = 4) PASS (6/6) (13 PASS–2 WEAK) /15 PASS (15/15)

Discrete Meyer PASS (6/6) PASS (15/15) PASS (14/15)

Biorthogonal (Nr(d) = 3) PASS (6/6) (13 PASS–2 WEAK) /15 PASS (12/15)

5. Discussion

Regarding the extraction of randomness from cardiac signals, the reader may be tempted to
think that this topic has already been studied in the literature. Nevertheless, there is a key-difference
between IPI-based approaches, such as [31,34], and our proposal. In the former, the time difference
between two R-peaks is the only information used; note that R-peaks can be read from an ECG record,
but also from a Photoplethysmography (PPG) signal. In our approach, a whole ECG trace (P-wave,
QRS-complex, T-wave) is needed.

As mentioned, the entire ECG signal is used to extract randomness from an ECG-window.
In particular, a multi-level decomposition by wavelet analysis is the chosen technique. To the best of
our knowledge, this is the first time that this approach has been proposed. It is worth noting that other
transform domains (e.g., Fourier or Hadamard) have been tested, but the results were not as good as
in the wavelet domain. Regarding the mother wavelet, as shown in Section 4.4, the two recommended
families are Daubechies or Meyer.

The experimentation has been conducted with the E-HOL-03-0202-003 dataset, which contains
202 subjects recorded over a 24-h period. In the above-mentioned dataset, the subjects were healthy.
The proposal could have been tested with a dataset in which the subjects suffer from a cardiac ailment.
Nevertheless, this would be a more advantageous scenario since the disease itself would introduce
more entropy into the ECG signal. Therefore, in a healthy setting, the worst case scenario for random
number generation is considered.

Another critical aspect of the proposal is whether an adversary could predict the values of a target
user using another user’s ECG. The experiments conducted in Section 4.2 clearly point out how the
attacker has no chance of success; that is, the adversary’s advantage is zero. Furthermore, and unlike
IPI-based approaches, in the proposed TRNG, the usage of the entire ECG signal prevents attacks
where the heart signal is eavesdropped from a distance.

Finally, apart from randomness, throughput is a key aspect for cryptographic primitives.
The proposed TRNG far exceeds its predecessors: throughput rate (bytes/s) is multiplied by about 20
in the worst-case scenario. Despite this increment, the study of whether the ECG signal can be further
squeezed to extract randomness is a pending work.

6. Conclusions

In the last few years, the e-health sector has undergone a major transformation. The population is
more concerned about it habits and health and has access to detailed information thanks to the wide
variety of low-cost sensors or medical devices that monitor our vital signals and daily activities; all these
sensors together with a central gateway make up the WSN and, more particularly, the WBAN when the
sensors surround our bodies. In addition, the new generation of medical devices (e.g., pacemakers or
insulin pumps) monitor physiological signals and upload these data to the hospital cloud. The doctor
can not only check the status of a patient in real time, but can also re-program the device while the
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patient is comfortably at home. In short, the new health-tracking or IoT medical devices aim to improve
the quality life of citizens by improving our performance/habits or treating a disease.

The benefits associated with continuous monitoring of our vital signals for medical or performance
purposes are well-known. Nevertheless, the situation is very risky if security is not included on-board
(and preferably by design) in these sensors/devices within a WSN. Therefore, sensors in a BAN that
monitor our vital signals can be used with a dual purpose. On the one hand, the main goal is to
improve the health of the user. Besides, additional goals do not have to compromise this primary goal;
note that some sensors are critical for the treatment of certain medical conditions (e.g., heart attacks or
epileptic seizures). On the other hand, the wireless connectivity of the devices makes the incorporation
of security protection mechanisms mandatory; RNGs, such as the one designed in this article, can help
in this task.

An authentication protocol is one of the most common solutions to provide an adequate security
level for sensors with limited capabilities (computation, storage and energy). For this purpose,
RNGs may be necessary for the generation of random numbers included in a cryptographic protocol
or for the seed(s) employed in a key generation algorithm. As mentioned, in the context of random
number generation, TRNGs exploit a physical phenomenon from which they extract entropy. Based on
this principle, this article explores whether the randomness from cardiac signals can be extracted.
In detail, a wavelet decomposition has been used to extract randomness from an ECG-window.
To the best of our knowledge, this is the first time that this approach has been proposed. From the
analysis carried out, it is concluded that the output of the proposed ECG-based TRGN behaves as
a random variable. In addition, our TRNG offers a high throughput that has nothing to do with the
low throughput of IPI-based approaches.

As future work, the proposal can be tested with other vital signals such as respiration,
blood pressure or even an electroencephalogram. There is also room to study in depth the entropy
extraction problem in a transformed domain.
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