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Abstract: The modification of the surface of titanium dioxide nanoparticles (TiO2 NPs) by the
incorporation of cyclodextrins (CDs), cyclic oligosaccharides with a hydrophobic cavity, can largely
improve the functionality of TiO2 by lodging molecules of interest in the CD to act directly on the
surface of the nanoparticles or for further release. With this aim, we have synthesized βCD-modified
nanoparticles (βCDTiO2 NPs) by a two-step reaction that involves the incorporation of a spacer
and then the linking of the macrocycle, and characterized them by thermogravimetric analysis
(TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).
The capacity of the functionalized structures to trap model compounds (Rhodamine and 1-naphthol)
has been compared to that of bare TiO2 NPs by fluorescence and Ultraviolet-visible (UV-visible)
spectroscopy. The presence of the CDs on the surface of the TiO2 avoids the photo-degradation
of the guest, which is of interest in order to combine the photocatalytic activity of TiO2, one of its
most interesting features for practical purposes, with the delivery of compounds susceptible of being
photo-degraded. The βCDTiO2 NPs have been dispersed in polymeric matrices of frequently used
polymers, polyethylene (LDPE) and polyethylene oxide (PEO), by cryogenic high energy ball milling
to produce nanocomposites in the form of films. The surface modification of the nanoparticles favors
the homogenization of the filler in the matrix, while the nanoparticles, either in bare or functionalized
form, do not seem to alter the crystallization properties of the polymer at least up to a 5% (w/w) load
of filler.

Keywords: TiO2 nanoparticles; cyclodextrins; polymer nanocomposites; surface modification;
high energy ball milling (HEBM)

1. Introduction

Nanocomposites are composite materials in which at least one of the components has dimensions
of less than 0.1 µm [1]. In their simplest form, they consist of a nanoscale filler, like nanoparticles [2],
fibres [3], or sheets [4], dispersed homogeneously in the bulk component (matrix). Due to the
high surface to volume ratio of the nanofiller, the large interface can produce significant effects
on the macroscale properties of the material. Specifically, nanoparticles present an elevated surface
area that contributes to dramatically change the matrix characteristics even when present in low
proportion. Thus, nanocomposite materials are obtained and utilized in a vast number of applications,
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such as rheology [5], lubrication and nano-manufacturing [6], prosthesis [7], or for active delivery in
pharmacy [8], amongst others.

Focusing on polymeric-matrices nanocomposites, the production and properties of these materials
containing TiO2 as the filler have been described in the literature [9,10]. TiO2 is a ceramic compound
appearing in three crystalline structures: rutile (the most common form, tetragonal), anatase
(metastable tetragonal), and brookite (orthorhombic). Amongst other many uses, TiO2 is used as
a photocatalyst [11–13], capable of degrading organic pollutants [14] and bacteria [15]. In this
later case, bacteria generate a self-destructing mechanism providing TiO2 with a “self-cleaning”
ability [16,17] which can actually be enhanced by the light. The properties and applications of
nanocomposites based on TiO2 nanoparticles can be expanded in combination with other components,
for example, electrochemical properties when Niobium oxide is utilized [18], antimicrobial activity
when appearing with chitosan in food packaging [19], or the ability to degrade antibiotics enlarged by
mesoporous carbon [20].

Reaching the level of desired functionality most often leads to the addition of multiple
fillers into the same matrix, with the implicit limitations of chemical and physical compatibility
that this involves. A solution to this issues can be the synthesis of multifunctional particles by
modification of the nanoparticle surface, incorporating active molecules that can play different roles.
To this effect, the use of cyclodextrins (CDs) has been described [21–23]. Cyclodextrins (CDs) are
cyclic oligosaccharides composed of several units of D-glucopyranose: αCD (formed by 6 units),
βCD (7 units), and γCD (8 units). Their ability to form inclusion complexes with a variety of guest
molecules is their most important feature, which is possible due to their hollow, truncated cone-shaped
morphology, with a relatively hydrophobic inner cavity that contrasts with the hydrophilic external
surface [24–26]. The number of glucose units in the oligosaccharide produces a range of cavity sizes
which enables CDs to complex different compounds that fit into the macrocycle. To this regard, CDs are
good candidates to complex active principles, which could be subsequently released in specific body
locations for therapeutic purposes, for example [27]. In addition, CDs are easily functionalized, making
them versatile and the right choice when it comes to attaching to different systems in order to modify
the substrate physio-chemical properties. Within this framework, one of the objectives of this work has
been to produce multifunctional TiO2 NPs, by incorporating CDs on their surface, in order to grant
complexing and delivery functionalities. Thus, to the intrinsic photocatalytic activity of TiO2, it would
add up the function of the guest lodged in the cavity of the macrocycle.

The second objective has been to study the feasibility of the βCDTiO2 NPs being dispersed within
polymeric matrixes to produce nanocomposites in the form of films, as a proof of concept for potential
applications as functional bio-nanomaterials. We have focused on low-density polyethylene (LDPE)
and polyethylene oxide (PEO), both of them biocompatible. Polyethylene (PE) is one of the most
widely used polymers [28], as it shows very good chemical resistance and mechanical properties [29].
PEO shares with PE some features, like flexibility and low toxicity and presents some other properties
like hydrophilicity and water-solubility [30], and is frequently employed in a number of uses, from skin
creams or toothpastes to technical ceramics or solid polymer electrolytes [31], and in drug delivery [32],
among other diverse commercial applications [33]. The added value of the materials here described
lies in the surface modification of titania nanoparticles with CDs which could extend the potential
applications of the nanocomposites for the controlled delivery of a molecule of interest, previously
lodged in the cavity of the macrocycles.

2. Materials and Methods

2.1. Materials

Titanium(IV) oxide nanoparticles (TiO2 NPs, ρ = 4.26 g·cm−3, 99.5% purity, and 21 nm size)
were supplied by Sigma-Aldrich (batch 718467, St. Louis, MO, USA). N,N-dimethylformamide
(DMF, 99.8% purity), polyethylene (ρ = 0.925 g·cm−3; low density, melt index 25 g/10 min),
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and poly(ethylene oxide) (PEO, ρ = 1.13 g·cm−3; Mw = 100,000 g·mol−1) were also from Sigma-Aldrich.
Hexamethylene diisocyanate (HMDI) (ρ = 1.47 g·cm−3, 98% purity) was supplied by Fluka (Morris
Planes, NJ, USA). β-Cyclodextrin (βCD) was supplied by Wacker as Cavamax W7 (97% purity, Münich,
Germany). Rhodamine B (RhB), 99% purity, was supplied by Acros Organics (Daltham, MA, USA),
and 1-naphthol from Merck (99% purity, Darmstadt, Germany). Methanol (99.85% purity) was supplied
by Oppac (Noain, Spain), and acetone (99.7% purity) by Quimipur (Camporeal, Spain). All the reactants
were used as received.

2.2. Sample Preparation

2.2.1. Nanoparticles Surface Modification

The grafting of cyclodextrins to the surface of TiO2 was based on a reported method [34]. Firstly,
a linear spacer with a length of 12 atoms was covalently attached to TiO2 NPs by reaction of 1.5 mL
of HMDI with 2 g of TiO2 NPs in 100 mL of DMF. This demanded DMF and the nanoparticles to be
previously heated up under mild conditions (75 ◦C and 60 ◦C, respectively, in order to remove the
water without eliminating hydroxyl groups from the Nanoparticles surface). Reaction proceeded under
nitrogen atmosphere for 72 h at 100 ◦C under vigorous stirring. Then, the product was centrifuged
(8000 rpm, 30 min) and washed three times with acetone. In a second stage, βCD was covalently
bonded to the HMDI spacer already attached to the nanoparticles by adding the product of the first step
to 100 mL of dry DMF and 3 g of dry βCD (65 ◦C for 24 h). The reaction took place during 24 h at 100 ◦C
under vigorous stirring and nitrogen atmosphere. The product was centrifuged (8000 rpm, 30 min)
and then washed three times with methanol. Finally, the solid product was let to dry. Three batches
of βCD-grafted nanoparticles were produced. The first two batches were synthetized as described,
and for the third batch 4.5 mL of HMDI and 9 g of βCD were used (a three-fold proportion with respect
to the synthesis described).

2.2.2. Production of Polymeric Nanocomposites

The nanoparticles were uniformly dispersed in polymeric matrices of either low-density
polyethylene (LDPE) or polyethylene oxide (PEO) by cryogenic high-energy ball milling, using a Retsch
MM400 mill (Haan, Germany). The as-received TiO2 NPs or βCD-grafted nanoparticles were
introduced with the previously ground polymers (5% by weight of the nanofiller) into two 50 mL
steel jars with one stainless steel ball (Ø 2.5 cm) and immersed for 5 min in liquid nitrogen prior
milling. The milling conditions were 30 Hz for 1 min, repeating three times the cooling–milling cycle.
The resulting fine powders were processed in the form of films by hot pressing in an aluminium mould
using a Specac Mini-Film Maker (Orpington, UK), at a constant load of 0.5 ton at 150 ◦C for 1 min.
Then, the samples were let to cool down at room temperature under the same constant pressure.

2.3. Techniques

The sorption capacity of βCDTiO2 NPs was studied using the intrinsic fluorescence of
Rhodamine B (RhB). The emission spectra were recorded using an Edinburgh Instruments FLS920
spectrofluorometer (Livingston, UK). The excitation was set to 554 nm and the emission recorded
from 560 to 700 nm at 1 nm steps and 0.1 s dwell time, with excitation and emission slits of 1 nm and
2 nm, respectively. An amount of 100 mg of each batch of βCD-modified nanoparticles were added to
a 4 × 10−6 M RhB aqueous solution and stirred for 2 h. Then, the mixtures were centrifuged at 8000 rpm
for 30min, and the nanoparticles isolated from the supernatant and dried. The spectra of the solids
were recorded using a front-face sample holder, while for the supernatants the sample was contained
in 10 mm path length quartz cuvettes and the spectra collected under constant magnetic stirring.

Thermogravimetric analysis of the samples (TGA), was performed in a TGA-SDTA 851 Mettler
Toledo (Columbus, OH, USA). The samples were weighed in platinum crucibles and the weight
recorded in the range from 25 ◦C to 1000 ◦C at 10 ◦C/min under N2 atmosphere.
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Fourier transform infrared spectroscopy characterization was carried out in attenuated total
reflectance mode (ATR) utilizing an FTIR Nicolet Avatar 360 spectrometer (Waltham, MA, USA),
coupled to a Specac Golden Gate ATR. Spectra were recorded with a resolution of 2 cm−1 and 32 scans
per spectrum. Post processing consisted of manual base-line correction to the averaged spectra.

For the sorption equilibrium experiments, 50 mg of each type of nanoparticles (native and CD
modified) were placed in 10 mL vials containing 1-naphthol of different concentrations (ranging
between 75 and 200 ppm). The samples were placed on a magnetic stirrer for at least 5 h, to ensure
sorption equilibrium was reached. The samples were then filtered by 0.1 µm polyvinylidene
difluoride (PVDF) membranes (centrifugation was required prior to filtering in the case of unmodified
nanoparticles) and the supernatants measured by UV-visible spectroscopy with a diode array
spectrophotometer Agilent 8454 (Santa Clara, CA, USA).

Optical microscopy of the films was performed using a Zuzi polarizing microscope (Beriain, Spain).
The morphologies of the nanoparticles and nanocomposites were imaged using the backscattered
electron (BSE) signal in a Philips XL30 scanning electron microscope, scanning electron microscopy
(SEM), (Eindhoven, Netherlands). To avoid charge accumulation, the samples were gold coated by
sputtering using a low-vacuum coater Leica EM ACE200 (Wetzlar, Germany).

Differential scanning calorimetry (DSC) of LDPE, PEO, and their mixtures with the as-received
and βCD-modified nanoparticles were carried out using a Mettler Toledo 822E analyser (Greifensee,
Switzerland). All samples, of about 1.5–3 mg, were subjected to the following thermal steps under
a nitrogen atmosphere: (i) A first heating scan from 30 ◦C to 150 ◦C (for LDPE) or 100 ◦C (for PEO)
at 10 ◦C/min to investigate thermal transitions of the materials; (ii) a stabilization step at 150 ◦C
(100 ◦C for PEO) for 5 min to erase thermal history; (iii) a cooling scan from that temperature down to
30 ◦C at 10 ◦C to study thermal transitions of the relaxed nanocomposite system; and (iv) a second
heating scan from 30 ◦C to 150 ◦C (100 ◦C for PEO) to study the thermal transitions with the same
thermal history. Crystallization and melting temperatures were obtained from the cooling and the
second heating scan respectively. Also, the enthalpies of each thermal transition were analysed in each
case. In composite materials, enthalpies were corrected and referred to the total amount of polymer
dividing the raw value obtained from the DSC trace by (1 − x), where x corresponds to the fraction of
particles (in a 1/1 ratio).

3. Results and Discussion

3.1. Characterization of the Nanoparticles Surface

Surface modification of the TiO2 NPs has been characterized by FTIR-ATR spectroscopy and
TGA. The infrared spectra corresponding to βCD, the as-received nanoparticles, and three batches
of the βCD-grafted nanoparticles are shown in Figure 1. Some characteristic bands coming from all
the reactants can be found in the spectra of modified nanoparticles, as well as other due to the new
functional groups created in the reaction, which prove the actual linking of the macrocycles to the
surface of TiO2. For example, in the group vibration zone of the mid IR spectrum, βCD presents
a broad band due to the stretching of the primary and secondary –OH groups at the rims of the
macrocycle, while in this same region TiO2 shows a broad and much less intense band, which indicates
a certain extent of hydration. By contrast, the spectrum of the βCDTiO2 NPs presents a narrow band
centered at ca. 3300 cm−1 corresponding to the amino groups (–NH) resulting from the reaction with
the cross-linker. Regarding the characteristic vibrations from diisocyanate, we can find bands of –CH
groups at 3350 cm−1 and the band of urethane carbonyl groups (–C=O) at ≈1650 cm−1. In addition,
the band of N–H bending appears at ≈1550 cm−1 and the C–O vibration from the urethane group
at ≈1250 cm−1. In the case of the vibrational modes corresponding to βCD, those of the C–O–C
group can be found at ≈1150 cm−1. As a matter of fact, the region between 900 and 1200 cm−1 is of
particular interest in order to confirm and evaluate the βCD modification step. Even though both
batches 1 and 2 have been prepared according to the same procedure, the comparison of the intensities
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of the 1050 cm−1 band indicate that batch 2 must have a higher βCD content than batch 1 (Figure 1,
zoomed view). Batch 3 shows, in turn, a considerable higher intensity for this band, as expected.
The reactions involving isocyanate groups are very sensitive to the experimental conditions (such as
the humidity) and special care must be taken to carry out this step. In batch 3, the amount of reactants
was increased in order to attain the highest addition of cyclodextrin moieties grafted to the surface
of the nanoparticles. Finally, with regard to the similarities with the TiO2 spectrum, the tendency
of increasing absorbance starting at ≈850 cm−1 can be also detected in the modified nanoparticles.
The differences in intensity between the spectra of modified nanoparticles from batches 1 and 2 with
respect to that batch 3 in the interval 2800–3000 cm−1 are due to the higher ratio of reactants used in
the latter case.
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Figure 1. (Left) Full Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR)
spectra. (Right) Zoomed view of the as-received TiO2 NPs, βCD, and βCDTiO2 NPs (batches 1, 2, and
3).

The functionalization of the nanoparticles has been checked by SEM. Figure 2 shows the
micrographs corresponding to the as-received and functionalized nanoparticles, in which the grafting
of the CD produces somewhat larger nanoparticles than the original ones and with uneven, ‘softer’
surfaces, due to the functionalization.
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Figure 2. Scanning electron microscopy (SEM) micrographs corresponding to (a) as-received TiO2 NPs
and (b) βCDTiO2 NPs.

Thermogravimetric analysis was performed on samples of βCD and the as-received and
surface-modified nanoparticles (Figure 3). In the TGA plots, TiO2 NPs show a flat profile as its
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decomposition temperature is not reached. In the case of the βCD sample, two weight losses can be
noticed. The first one starts at 40–50 ◦C and ends at ca. 100 ◦C, attributed to the loss of hydration water.
The second one corresponds to the βCD thermal decomposition that starts at ca. 320 ◦C [35]. When the
βCD-grafted nanoparticles are analysed, the losses due to hydration are much smaller in absolute
terms, and the second weight loss starts at a lower temperature (ca. 30 ◦C below). Some polyurethanes
have been reported to start decomposing at 300 ◦C [36], which might explain the slight differences
between the thermograms of βCD and the βCDTiO2 NPs, as the formed urethane groups after reaction
are considerably less stable than pure βCD. In addition, the decomposition does not occur in a single
step as it happens with the cyclodextrin, and the decomposition of batch 3 starting at ca. 260 ◦C is
clearly separated in two steps (the second of which is barely detected for the nanoparticles modified in
batches 1 and 2). Batches 1 and 2 show similar weight losses even though their corresponding βCD
amounts might be different, as FTIR results have shown. The weight loss in batch 3 is higher than that
of the other two batches, accordingly with the higher proportion of spacer and βCD used.
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3.2. Characterization of the Complexation Ability of the βCDTiO2 NPs

The results obtained by FTIR and TGA indicate that the surface modification has taken place.
However, the functionality of the βCD layer covering the nanoparticle needs yet to be proven. This has
been carried out making use of two different model compounds that form stable inclusion complexes
with the βCD: Rhodamine B (RhB), to test the complexing ability of the CD-grafted nanoparticles,
and 1-naphthol, to analyse the sorption equilibria. Rhodamine B forms a sTable 1:1 stoichiometry
complex with βCD [37,38]. The ability of the βCD grafted to the nanoparticles to complex this
fluorophore can be extended to other molecules, which could bestow extra functionality to the
nanoparticles, like anti-inflammatory drugs or antibiotics, for instance. In order to carry out this
test, non-modified and βCD-grafted nanoparticles were dispersed in a 4 × 10−6 M RhB solution under
constant stirring and the precipitates and supernatants were analysed by fluorescence spectroscopy.
Figure 4 shows the emission of the solids, after being in contact with the solution according to the
procedure described above. It can be seen how the modified nanoparticles from batches 2 and 3
provided the highest emission, very similar each other, and closely followed by the nanoparticles from
batch 1, while the as-received TiO2 NPs showed a virtually null response. The fact that batches 2 and
3 show nearly the same emission intensity would point to a similar amount of functional βCDs on
their surface, despite the different proportions used in the synthesis that confirm the grafting of the
macrocycle to the nanoparticles surface, making it available for a further complexation with a molecule
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of interest that may fit into the cavity of the CD. Apart from the differences in intensity, a slight shift
towards higher wavelengths was observed in batches 2 and 3 with respect to batch 1. This spectral
shift to higher wavelengths may be due to either an increase of the polarity in the vicinity of the probe
fluorophore or a decrease in the rigidity of the immediate surroundings where the probe is immersed.
As explained above, batch 1 seems to be somewhat anomalous. A defective βCD substitution in batch
1 (caused by some deactivation of the reactive end of the isocyanate linkers) might be responsible for
the differences in the polarity of the nanoparticle surfaces. Thus, batch 1 would have produced a less
polar surface than those of batches 2 and 3, in line with the comparatively lower emission and slightly
blue-shifted band.
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Figure 4. Solid phase fluorescence spectra of the as-received TiO2 NPs and βCDTiO2 NPs (batches 1, 2,
and 3) after equilibration with a 4 × 10−6 M RhB solution.

It is interesting to compare these results with the emission of the solutions coming from the
supernatants, which are shown in Figure 5. In this case, the emission is compared to a 4 × 10−7 M RhB
reference solution which was not put in contact with any of the nanoparticles. It can be seen how the
substituted nanoparticles produce in all cases the reduction in the emission of the solutions, mirroring
qualitatively the fluorescence behaviour of the solids and, as in the case of the precipitates, the higher
the βCD grafted to the nanoparticles, the lower the amount of fluorophore left in the supernatant
solution. However, the as-received TiO2 NPs reduce significantly the emission in the solution,
which seems striking when compared to the fluorescence of the corresponding solid nanoparticles.
This must be attributed to the intrinsic photocatalytic activity of TiO2, which in fact is utilized to
degrade organic compounds, including dyes among them [15]. The results shown here are then
particularly interesting since the RhB complexed with the βCD on the surface of the nanoparticles does
not get photo-degraded. Thus, using appropriate component ratios, a multifunctional nanoparticle
could be synthetized, which would both present photocatalytic activity and, at the same time, efficiently
deliver compounds susceptible of being degraded by the TiO2.

An additional fact comes into play if we consider that, according to the literature, TiO2 can also
degrade βCD [39]. In their work, the authors showed the affinity of CDs for the photoactive surface of
TiO2 and their subsequent degradation under UV irradiation. We hypothesize that in our case this
effect must not be that important, since the cyclodextrin moieties are not contacting the TiO2 surface
but separated by the spacers in a certain extent. Nevertheless, additional investigations should be
carried out to evaluate in full the photocatalytic activity of the modified nanoparticles, topic which is
out of the scope of this work.
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The sorption capacity of the βCDTiO2 NPs as a function of the amount of sorbate is another
interesting property to be tested for practical purposes. In order to characterize the sorption equilibrium
at room temperature, both βCD-grafted and as-received nanoparticles were placed in contact with
1-naphthol solutions at different sorbate concentrations. This guest molecule has been frequently used
as a model molecule to study the complexation behaviour of cyclodextrin polymers [40] given its
high affinity to βCD, derived from its adequate size and hydrophobicity [41]. Once equilibrium was
reached, the supernatants were tested by UV-visible spectroscopy and the sorption isotherms were
obtained according to standard procedures. As can be seen in Figure 6, the sorption capacity of the
βCDTiO2 NPs is quite remarkable when compared to the bare ones, which show practically no affinity
towards this sorbate, in line with the results obtained by the fluorescence of the solid product in contact
with RhB. As occurs in most cases, the higher the concentration of sorbate in equilibrium, the higher
the sorption capacity is. In these experiments it was observed that as received TiO2 NPs formed more
stable colloidal dispersions than the βCD-modified ones, most likely due to the hydrophilic nature of
the outer part of the CDs, with a high density of non-reacted –OH groups.
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If we could consider the βCDTiO2 NPs as a homogeneous sorbate, a Langmuir fitting of the
sorption equilibrium data would yield the maximum coverage for 1-naphthol, which in this case
corresponds to ca. 20 mg of sorbate per gram of modified nanoparticle. In a previous work,
we reported the sorption behaviour of βCD polymers crosslinked with HMDI and other cross
linkers [42]. The corresponding isotherms showed that, for those CD-based networks, the sorption
capacity could be above 100 mg of 1-naphthol per gram of cyclodextrin polymer, in which the sorption
takes place both within the CD cavities and by association with the somewhat hydrophilic pockets
created in the polymeric networks (i.e., the crosslinking chains between the βCD moieties). In the case
of the composite materials studied in this work, it is expected that the association can be attributed
mainly to the CDs, the isocyanate crosslinking bridges playing just a minor role in the sorption capacity.
In any case, if we consider the TGA data as a valid estimation of the NP organic/TiO2 ratio, above 40%
of the weight of the nanoparticles (batch 3) correspond to the inorganic TiO2 component, with a scarce
influence in the sorption of 1-naphthol. With this correction, the adsorption efficiency of the βCD
organic shell of the modified nanoparticles would come closer to what is observed for typical hydrogel
networks based on βCD [42].

3.3. Characterization of the Effect of the Nanoparticles Dispersion within Polymeric Matrices

Two ubiquitous crystalline thermoplastics were selected to disperse the nanoparticles within
a polymeric matrix: low-density polyethylene (LDPE) and polyethylene oxide (PEO). Focusing on
LDPE, Figure 7 shows how simple mortar grinding is inefficient to homogenize the dispersion. On the
other hand, ball milling under cryogenic conditions produces considerably more homogeneous
samples. In addition, the optical micrographs show that the βCDTiO2 NPs seem to yield a better
dispersion than the bare ones. SEM micrographs obtained with BSE (not shown) confirm the optical
microscopy analysis.
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A homogeneous dispersion of nanoparticles produces a considerable increase in the interphase
between the polymeric matrix and the filler and this will be reflected in the properties of the bulk
material. However, the calorimetry results corresponding to the crystallization and melting of LPDE
and its mixtures with TiO2 NPs did not show any significant differences. As can be seen in Table 1,
the crystallization temperatures are nearly the same in all cases. There is a small decrease in the
value of the crystallization enthalpy that seems somewhat more important in the case of the bare
nanoparticles. Coincidentally, the melting temperatures are equal in all cases within experimental error,
and the diminution of the melting enthalpies is also small. In addition, the thermogravimetric curves
of both 5% loaded LDPE (with either as-received or βCDTiO2 NPs are also identical (data not shown).
It can be concluded that, at least from the macroscopic thermodynamic point of view, the influence
of the nanofiller is too small to be unambiguously detected. In order to check if these effects are also
negligible at a molecular scale, an FTIR study of the samples crystallized under different conditions
has also been performed. Infrared and Raman spectra can be used to characterize semi crystalline
polymers because of their sensitivity to the conformation and packing of macromolecules [43]. We have
focused on the 735–715 cm−1 region for our study. Three rocking mode bands appear in this region,
two of them (730 and 722 cm−1) are associated with the crystalline fraction of the samples, and the
one corresponding to the amorphous fraction appears at 723 cm−1. Thus, the latter overlaps one of
the former, although this is a low-intensity and broad band partially hidden under the two narrow
crystalline bands. Several tests were performed using pure LDPE film samples. It was confirmed that,
using different crystallization conditions, the relative intensities of these two crystalline modes were
different. Figure 8 presents the results of two different crystallization experiments. It is remarkable
that, in both cases, there is a significant difference (especially for the band at 730 cm−1) between LDPE
and the polymer loaded with the TiO2 NPs, while the film produced with βCDTiO2 NPs yields a very
similar result to that of pure LDPE.

Table 1. Crystallization and melting (peak) temperatures and enthalpies of LDPE and its mixtures
with 5% TiO2 NPs and 1%, 3% and 5% βCDTiO2 NPs (values between parentheses correspond to
a secondary crystallization peak).

SAMPLE
Crystallization Melting

Tc (◦C) ∆Hc (J·g−1 PE) Tm (◦C) ∆Hm (J·g−1 PE)

LDPE 99.0 (60.7) 87.7 (6.0) 111.3 109.7
LDPE + 5% TiO2 NPs 100.1 (61.4) 80.4 (5.2) 111.6 101.0
LDPE + 1% βCDTiO2 NPs 99.2 (60.4) 79.1 (4.7) 112.0 97.1
LDPE + 3% βCDTiO2 NPs 99.0 (60.6) 83.3 (4.8) 112.2 105.6
LDPE + 5% βCDTiO2 NPs 100.8 (61.6) 82.5 (5.5) 111.6 104.7
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Figure 8. FTIR-ATR spectra in the 750–680 cm−1 region of LDPE, LDPE + 5% TiO2 NPs, and LDPE + 
5% βCDTiO2 NPs films: (a) Crystallized at 123 °C for 2 h; (b) annealed at 123 °C for 24 h from a 
molten sample quenched at −70 °C. 

Figure 8. FTIR-ATR spectra in the 750–680 cm−1 region of LDPE, LDPE + 5% TiO2 NPs, and LDPE + 5%
βCDTiO2 NPs films: (a) Crystallized at 123 ◦C for 2 h; (b) annealed at 123 ◦C for 24 h from a molten
sample quenched at −70 ◦C.
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The influence of bare nanoparticles and surface modified ones on the crystallization and melting
of PEO has also been considered (Table 2). Similar results have been found in this case to those of LDPE.
Firstly, the thermodynamic parameters corresponding to the phase change of PEO are slightly altered
in the presence of both additives. Secondly, additional optical microscopy studies on the crystallization
patterns of these samples show that the behaviour of the βCDTiO2 NPs in the spherulite morphology
of PEO is not as important as the one corresponding to bare nanoparticles. In other words, the strong
nucleation effect found for the TiO2 NPs is not as relevant in the case of the βCDTiO2 NPs with PEO,
where a small number of crystallites grow up to a similar size to that of pure PEO (see Figure 9). We can
hypothesize that the βCD shell of the nanoparticles is more compatible with the PEO chains in the
liquid-like state, so they are not acting as nuclei for the crystallization processes.

Table 2. Crystallization and melting temperatures and enthalpies of PEO and its mixtures with 1% and
3% TiO2 NPs and βCDTiO2 NPs.

SAMPLE
Crystallization Melting

Tc (◦C) ∆Hc (J·g−1 PEO) Tm (◦C) ∆Hm (J·g−1 PEO)

PEO 39.6 133.9 64.5 125.9
PEO + 1% TiO2 NPs 38.9 129.8 63.5 124.8
PEO + 1% βCDTiO2 NPs 39.5 138.7 63.8 130.8
PEO + 3% TiO2 NPs 40.7 140.4 65.2 132.7
PEO + 3% βCDTiO2 NPs 38.9 132.1 64.4 125.8
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4. Conclusions

The surface of TiO2 NPs has been successfully modified with βCD in a two-step reaction that
involves firstly the incorporation of a spacer (HMDI) and then the grafting of the CD moieties.
The surface modification has been characterized by TGA, FTIR, and SEM, which prove the validity of
the procedure. The grafted nanoparticles are capable of incorporating guest molecules that remain
lodged in the CD cavities, according to the results obtained with model compounds, Rhodamine B
and 1-naphthol, obtaining adsorption efficiencies comparable to those of other sorbents based on
βCD. In addition, the presence of the CD attached to the surface, avoids the photo-degradation of
the guest, which is of interest in order to combine the photocatalytic activity of TiO2 and, at the same
time, achieve an efficient delivery of compounds susceptible of being photo-degraded. The feasibility
of the use of the functionalized nanoparticles for biomedical applications has also been explored by
testing its dispersion in polymeric matrices of polyethylene (LDPE) and polyethylene oxide (PEO),
to produce nanocomposites in the form of films. Up to a 5% by weight load of filler, the range studied,
the nanoparticles do not seem to alter the crystallization properties of the polymer and, at the same time,
the surface modification helps to produce a better homogenization of the filler in the polymer matrix.
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