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AUTOMATIC TRANSCRIPTION OF LYRICS IN MONOPHONIC AND POLYPHONIC SONGS

Miguel Ángel Fernández-Torres1, Ascensión Gallardo-Antolı́n1

1Department of Signal Theory and Communications, Universidad Carlos III, Leganés (Madrid), Spain

ABSTRACT

The paper proposes the implementation of a system for au-
tomatic transcription of lyrics in monophonic and polyphonic
songs. The basis of the system is an automatic speech recogni-
zer. Taking into account the differences between singing and
spoken voice, acoustic models are adapted to singing voice,
using several methods, and Language Models (LM) trained
on songs lyrics are built. Moreover, background music is atte-
nuated in polyphonic music using the Robust Principal Com-
ponent Analysis (RPCA) algorithm, trying to facilitate the re-
cognition task avoiding its effect. The results show that, using
as adaptation data the same type of tracks that are transcri-
bed then, both adaptation methods and specific LM for songs
improve the performance of the baseline system at phoneme-
and word-level. However, the use of RPCA over polyphonic
songs introduces distortions in singing voice, and therefore,
in general, it is not useful for improving the performance of
the whole system.

Index Terms— Automatic lyrics transcription, singing
voice separation, RPCA, singing adaptation, MLLR, MAP,
n-gram language models.

1. INTRODUCTION

Thanks to the growing amount of music devices and ser-
vices, people are able to find songs in CDs, internet radios
and stores, music streaming services or personal music co-
llections, among others. Due to the great number of songs
available, there is need for automatic systems that facilitate
processing, searching and organization tasks. Knowing a frag-
ment of the textual lyrics of a song could be helpful to iden-
tify it and its author searching in lyrics databases. Moreover,
lyrics recognition would allow searching in audio databases,
automatically transcribing the lyrics of a song being played.

The objective of this work is to develop a system for au-
tomatic transcription of lyrics in songs. Apart from its use as
music information retrieval system, other applications for the
implementation can be considered: an automatic singing-to-
lyrics alignment, which finds the temporal relationship bet-
ween a music audio and its corresponding text; a tool for
musicians that allows recognizing immediately lyrics from
their new compositions; and an automatic subtitling genera-
tion system for live performances, which also facilitates the
simultaneous translation into other languages.

The basis of the system proposed is an automatic speech
recognizer. Although singing and spoken voice contain simi-
lar kind of semantic information and come from the same
production physiology, there are differences between them.
Vowels are substantially much longer in singing, and the in-
telligibility is often lower. In addition, singing adds rhythm to
the different parameters of speech, such as pitch, loudness and
timbre. The pitch range in a singing sentence is usually higher
than in a spoken phrase, and it stays approximately constant
during a note. On the other hand, songs lyrics are based on a
particular vocabulary and syntax, different from those used in
dialogues or news text, among others. Our implementation ta-
kes into account these aspects, adapting the models to singing
and using language models trained on songs lyrics. Further-
more, instrumental accompaniment is as important as singing
voice in polyphonic music, which could make even more dif-
ficult the recognition task. As can be seen in [1], where the
recognition of speech adding several noises is studied, the re-
cognition rate decreases more than 60 percent in the presence
of music at a similar volume. In order to try to avoid this nega-
tive effect, a source separation algorithm is used to attenuate
the presence of music in polyphonic songs.

The paper is structured as follows. Section 2 provides a
general review of the state-of-the-art on the fields of singing
voice recognition and separation. Section 3 includes the des-
cription of the different elements of the developed system.
Section 4 presents the databases and the evaluation measures
used, and provides an analysis of the results obtained in the
experiments. Finally, Section 5 extracts conclusions of the re-
search done and raises some future lines of work.

2. RELATED WORK

There are a lot of works that deal with songs processing
but, to our knowledge, almost none poses the automatic re-
cognition of lyrics problem. The complexity of this issue and
the need of finding more accurate methods for previous pre-
processing tasks to recognition could be two reasons to have
barely thought in studying these kind of systems before. An-
namaria Mesaros and Tuomas Virtanen consider in [2] the re-
cognition of lyrics, meaning recognition of the phonemes and
words from singing voice, where other instruments are used
together with singing. Their experiments show that it is pos-
sible to adapt speech recognition techniques to singing, and
they use also gender-dependent and singer-specific models. A



Fig. 1. Schematic diagram of the proposed automatic lyrics transcription system.

singing voice recognition algorithm that is able to automati-
cally recognize a word in a singing signal with background
music by using the concept of spectrogram pattern matching
is also introduced in [3].

On the other hand, some articles consulted for this work
deal with the singing voice separation problem, which con-
sists of extracting singing voice from music. An approxima-
tion to this task based on speech/music segmentation for au-
tomatic transcription of broadcast news is presented in [4].
In this approach, posterior probability based entropy and dy-
namism features are integrated over time through a 2-class
HMM with minimum duration constraints. In [5] and [6], the
non-negative matrix factorization algorithm is used for robust
automatic recognition of mixtures of speech and music and
for singing voice separation in mono-channel music, respec-
tively. The method employed by our system is the robust prin-
cipal component analysis proposed in [7], which is explained
in the next section.

3. SYSTEM DESCRIPTION

This section describes the architecture proposed for the
automatic recognition of lyrics in music. As was mentioned
above, the basis of the developed system is an automatic
speech recognizer. In order to consider the particular aspects
of singing voice, models are adapted to singing, and the lan-
guage model is built from a database of song lyrics. The
system receives as input a fragment of a song. It should be
mentioned that the system is not able to differentiate between
vocal and nonvocal parts, so only vocal fragments, previously
manually segmented, are processed. If the input is a polypho-
nic song, singing voice is first separated from the instrumental
accompaniment. Then, after extracting several features from
the input song, the system tries to recognize automatically its
lyrics. The elements that compose the automatic lyrics recog-
nition system implemented, which is schematized in Figure
1, are described below.

3.1. Singing Voice Separation from Polyphonic Music

Instrumental accompaniment is as important as singing
voice in most of the existing polyphonic songs, sounding at
a similar volume. Its effect results in a background noise for
the speech recognizer that is necessary to eliminate. In order
to do that, Huang et al. proposed in [7] to use a Robust Princi-
pal Component Analysis [8], which is the algorithm we apply
in our system.

RPCA is a matrix factorization algorithm for solving un-
derlying low-rank and sparse matrices. It is based on the fo-
llowing convex optimization problem:

minimize ||L||∗+λ ||S||1
subject to L+S = M

(1)

where M, L and S are matrices of dimension n1×n2. M con-
tains the spectrogram of polyphonic songs, and L and S are
the low-rank and sparse matrices, respectively. || · ||∗ denote
the nuclear norm (sum of singular values), || · ||1 the L1-norm
(sum of absolute values of matrix entries) and λ > 0 is a trade-
off parameter between the rank of L and the sparsity of S. If
we increase the value of λ , the attenuation of the instrumental
accompaniment is higher, but also the singing voice is more
distorted.

Music can be considered as a low-rank signal (L matrix),
since musical instruments can reproduce the same sounds
each time they are played, and music usually has an underl-
ying repeating structure. Singing voice, however, has more
variation (higher rank, S matrix) and is relatively sparse in
time and frequency domains. The separation is performed
as follows. First, M is computed, calculated from the Short-
Time-Fourier Transform (STFT). Then, the inexact Augmen-
ted Lagrange Multiplier (ALM) method is employed to solve
the RPCA problem, obtaining the output matrices L and S.
Given these, binary time-frequency masking methods are
applied for better separation results. Binary time frequency
masking Mb is defined as follows:

Mb(m,n) =
{

1 |S(m,n)|> gain×|L(m,n)|
0 otherwise (2)



for all m = 1...n1 and n = 1...n2. Applying this mask to the
original STFT matrix M, Xsinging and Xmusic separation matri-
ces for singing voice and instrumental accompaniment, res-
pectively, are:

Xsinging(m,n) = Mb(m,n)M(m,n)

Xmusic(m,n) = (1−Mb(m,n))M(m,n)
(3)

for all m = 1...n1 and n = 1...n2. To obtain waveforms of
the estimated components, the phase of the original signal
P = phase(M) is recorded and appended to matrices Xsinging

and Xmusic by Xsinging(m,n) = Xsinginge jP(m,n), Xmusic(m,n) =
Xmusice jP(m,n), for m = 1...n1 and n = 1...n2, and the inverse
STFT (ISTFT) is calculated.

3.2. Automatic Speech Recognition System

The automatic speech recognizer that serves as the basis
of our system is a phonetic Hidden Markov Model (HMM) re-
cognizer, implemented using the Hidden Markov Model Tool-
kit (HTK) [9]. A HMM is composed by one or several states,
and transition probabilities between these states. In our ca-
se, the emission probability density function of each state is
modeled by a Gaussian Mixture Model (GMM).

The starting point of the speech recognizer is a set of
identical single-Gaussian monophone HMMs, with the sa-
me mean and variance. The transition matrix and the means
and variances of the Gaussian components in each state are
estimated in the training stage, in order to maximize the li-
kelihood of the observation vectors from the training data.
Short-pause models are added, and the silence model is ex-
tended slightly. The monophones are then retrained using
the Baum-Welch algorithm and, once reasonable monophone
HMMs have been obtained, a forced alignment of the training
data is done, together with a final re-estimation of the mo-
nophone HMMs. Finally, context-dependent triphone HMMs
are made from monophones in two steps. First, monophone
transcriptions are converted into triphone transcriptions and a
set of triphone models is obtained by copying the monopho-
nes and re-estimating. Then, similar acoustic states of these
triphones are tied to ensure that all state distributions can be
robustly estimated.

The recognition system consists of 39 monophone HMMs
plus silence and short-pause models, which produce 65.561
triphones. A three state left-to-right HMM is generated for
each phone and the silence model, and the short pause is re-
presented by a one state HMM tied to the middle state of the
silence model. As features we use 12 mel-frequency ceps-
tral coefficients (MFCCs) plus energy, delta and acceleration
coefficients, calculated in 25 ms frames with a 10 ms hop bet-
ween adjacent frames.

3.3. N-Gram Language Models

The language model consists of a vocabulary and a set of
rules describing how the units in the vocabulary (phonemes,
syllables, letters or words) can be connected into sequences.
Through the use of language models, the linguistic informa-
tion in speech or singing can be modeled. An n-gram is a
sequence of n symbols, and an n-gram language model (LM)
[9, 10] is used to predict each symbol in the sequence given its
n−1 predecessors. Bigrams and trigrams, which are n-grams
of size two and three units, respectively, are commonly used
in automatic speech recognition.

Language models estimate the probability of a word se-
quence, which can be decomposed as a product of conditional
probabilities over all i units in the sequence:

P̂(w1,w2, ...,wn) =
n

∏
i=1

P̂(wi|w1, ...,wi−1) (4)

N-gram construction is a three stage process. First, trai-
ning text is scanned, and its n-grams are counted and stored.
Secondly, some words may be mapped to an out of vocabu-
lary class or other class mapping may be applied. Finally, in
the final stage, the counts in the resulting gram are used to
compute n-gram probabilities. The use of an essentially static
and finite training text makes difficult to generate a LM which
is always well-matched, independent of the recognition task.
Moreover, the vocabulary of an n-gram LM is finite and fixed
at construction time. For example, if the LM is word-based,
new words cannot be added without rebuilding the LM.

It is not possible having a language model with all pos-
sible words, so the percentage of out of vocabulary (OOV)
words affect the performance of the language model. Alt-
hough it seems that the vocabulary of the recognizer should be
as large as possible to avoid this problem, increasing the voca-
bulary size increases also the acoustic confusions and not al-
ways improve the results. The “goodness” of a language mo-
del can be evaluated computing its perplexity, which measu-
res how well the LM is able to represent the text to recognize.
A good LM should have a small perplexity and a small OOV
rate. The influence of the language model in the system can be
controlled by the grammar factor, and the number of words
output by the recognizer is also managed by the word inser-
tion penalty. The values of these parameters are determined
through a cross validation procedure.

3.4. Adaptation to Singing

It is difficult to find a large songs database to train the re-
cognizer, so acoustic models are trained for speech first, and
then a supervised linear adaptation to singing is applied, using
a small amount of audio tracks. The adaptation is done offli-
ne by finding a set of transforms that reduce the mismatch
between the current model set and the adaptation data. HTK
[9] performs the adaptation considering maximum likelihood



linear transformations such as MLLR and CMLLR, and ma-
ximum a-posteriori (MAP) techniques.

3.4.1. Maximum Likelihood Linear Regression (MLLR)

Maximum Likelihood Linear Regression (MLLR) [9, 11]
estimates a set of linear transformations for the mean and va-
riance parameters of a Gaussian mixture HMM system so that
each state is more likely to generate the adaptation data. The
transformation matrix used to give a new estimation of the
adapted mean ξ is given by

µ̂ =Wξ (5)

where W is the n× (n+1) transformation matrix, being n the
dimensionality of the data, and ξ is the extended mean vector
ξ = [w µ1 µ2 ... µn]

T , where w represents a bias offset fixed
at 1. Hence W can be decomposed into

W = [b A] (6)

where A represents the n×n transformation matrix and b is a
bias vector.

In Constrained MLLR (CMLLR) [9, 11], the original fea-
ture vectors are shifted so that each state of the initial acoustic
models is more likely to generate the transformed adaptation
data. Now, the transformation matrix is given by

ô =Wζ (7)

where W is the n× (n+1) transformation matrix, being n the
dimensionality of the data, and ζ is the extended observation
vector ζ = [w o1 o2 ... on]

T , where w represents a bias offset
fixed at 1. W can be decomposed as same as in MLLR.

In both cases, singing adaptation involves two passes. On
the first one, a global adaptation is performed. Then, the se-
cond pass uses the global transformation as input to trans-
form the model set, providing better state alignments which
are then employed to obtain a set of more specific transfor-
mations, using a regression class tree.

3.4.2. Maximum A-Posteriori (MAP)

Maximum A-Posteriori (MAP) [9, 12] adaptation invol-
ves the use of prior knowledge about the model parameter dis-
tribution. This type of prior is often called informative prior.
If we know what the parameters of the model are likely to be
before observing the adaptation data, we might be able to ma-
ke good use of the limited adaptation data. In this case, spoken
voice model parameters are used as the informative priors.

The adaptation for the state j and mixture component m
of a HMM is given by

µ̂ jm =
N jm

N jm + τ
µ̄ jm +

τ

N jm + τ
µ jm (8)

where τ is a weighting of the a priori knowledge to the adap-
tation data; N jm is the occupation likelihood of the adapta-
tion data; µ jm is each single mean component in the system;
and µ̄ jm is the mean of the observed adaptation data. MAP
adaptation requires more adaptation data to be effective when
compared to MLLR, because MAP is specifically defined at
mixture level.

4. EXPERIMENTS

The experiments carried out using the system described
above are explained in this section. First of all, the databases
employed and the evaluation measures considered are presen-
ted. Then, the recognition results obtained with different lan-
guage models and singing adaptation methods are provided,
discussing the most relevant ones.

4.1. Databases

Several databases are necessary to train and evaluate the
system. First of all, the Wall Street Journal database (WSJ0)
[13] is used to train the acoustic models of the baseline
speech recognition system. Moreover, a LM trained on news
text from this database is used. Its vocabulary consists of over
5.000 words.

On the other hand, a LM for songs is obtained using the
lyrics of more than 2.500 english songs, downloaded from
http://www.cancionario.net/. The vocabulary of
this LM contains over 20.000 unique words. Due to its large
size, a reduced version of this is obtained, keeping the words
that appear five or more times in the complete lyrics set. The
reduced set includes over 4.500 words. For all the LMs em-
ployed, the phonetic transcription of words is extracted from
the CMU pronouncing dictionary [14].

Finally, two different databases are used for testing and
adapting the models to singing, denoted as clean and poly.
The first set, provided by Annamaria Mesaros [2], contains
monophonic singing recordings of 39 fragments of popular
songs, and the second one contains 157 fragments manually
obtained after segmenting 25 polyphonic songs that belong to
five different genres: blues, country, jazz, pop and rock. Both
databases are divided in two sets: clean adapt and poly adapt
for adaptation, which suppose the 60% of each database, ap-
proximately; and clean test and poly test for testing, which
include the remaining 40%. The lengths of the fragments are
between 20 and 30 seconds, and the division into subsets is
done so that the same song appears in the adaptation or in the
test set, not in both. The lyrics of both databases are anno-
tated for the supervised adaptation and the evaluation of the
system.

http://www.cancionario.net/


LM: WSJ0 (5K) clean test poly test poly clean test

Phoneme-level 52.18 37.99 38.04

Word-level 9.30 7.72 7.85

Table 1. Recognition rates (%) obtained for each of the
test sets using the baseline automatic speech recognition
system with a LM trained on news text from WSJ0 data-
base [13].

4.2. Recognition Results and Discussion

In order to evaluate the improvements provided by the
different elements of the system proposed, several experi-
ments are done using as test data the subsets presented above
(clean test, poly test) and a clean version of the polyphonic
one (poly clean test), where the instrumental accompaniment
has been attenuated using RPCA with the default parameters
λ = 1 and gain = 1. First, the baseline speech recognizer is
tested, using a bigram LM trained on news text from WSJ0
database [13]. Then, this LM is replaced by another bigram
one trained on song lyrics. Finally, the recognizer is adapted
to singing, considering different supervised techniques. After
performing a cross validation procedure, the values chosen for
the grammar factor and the word insertion penalty are s = 9
and p = 4, respectively. These values remain unchanged in
all the experiments.

The recognition performance is evaluated taking into
account the correct recognition rate at phoneme- and word-
level. This measure depends of the number of substitution (S)
and deletion (D) errors with respect to the total number of
tested instances N, and is given as

correct (%) =
N−D−S

N
×100. (9)

Furthermore, the effect of applying some of the singing
adaptation methods tested is studied calculating the Relative
Error Reduction (RER) with respect to the baseline system,
which is not adapted. Mathematically, RER is defined as

RER (%) =
adapted (%)−baseline (%)

100−baseline (%)
×100, (10)

being baseline and adapted the correct recognition rates ob-
tained for the baseline and the singing-adapted systems, res-
pectively.

4.2.1. Baseline Speech Recognition System

The results obtained with the baseline automatic speech
recognition system and the bigram LM trained on news text
composed of over 5.000 words (WSJ0 (5K)) are presented in
Table 1. Although the recognition rates are low, due to the
complexity of the task proposed, we can achieve acceptable
results at phoneme-level. As can be seen, the transcription is

LM Vocabulary Size clean test poly test

WSJ0 (5K) 5194 329.8 415.6

CLEAN 187 4.5 −
POLY 863 − 36.1

SONG (4.5K) 4462 216.1 235.6

Table 2. Perplexity and vocabulary size of bigram word-
level language models used in the experiments.

LM clean test poly test poly clean test

C
L

E
A

N Phoneme-level 56.91 − −

Word-level 22.59 − −

PO
LY

Phoneme-level − 39.98 40.55

Word-level − 12.16 11.86

SO
N

G
(4

.5
K

)

Phoneme-level 53.11 38.32 39.12

Word-level 10.96 9.81 9.09

Table 3. Recognition rates (%) obtained for each of the
test sets using the baseline automatic speech recogni-
tion system with LMs trained on the words to transcript
(CLEAN, POLY) and songs lyrics (SONG (4.5K)).

better in the case of monophonic music (clean test), thanks to
the absence of instrumental accompaniment. However, if RP-
CA is used to attenuate this in polyphonic music, the recog-
nition rate barely increases, due to the distortion that RPCA
introduces over the separated singing voice, which also makes
difficult the task to the system.

4.2.2. Language Model Adapted to Songs

As outlined before, specific vocabulary and syntax are
employed to write the lyrics of songs, and it is important to
consider them in our system. To do this, the bigram LM trai-
ned on news text taken first is substituted in this set of ex-
periments by three bigram language models trained on songs
lyrics. One of these is the LM based on songs described abo-
ve, which includes over 4.500 words (SONG (4.5K)), and the
other two contain only the words of the songs sets used for
testing (CLEAN, POLY).

Table 2 shows the vocabulary size and the perplexities of
the four language models used. The better a language model
is, the lower its test-set perplexity. As expected, CLEAN and
POLY language models present the lowest perplexities for ly-
rics texts from clean test and poly test sets used for testing,
respectively. Moreover, the perplexity of the SONG language
model is lower than that of the WSJ0 one, being this more
suitable for the transcription of lyrics in songs.
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Fig. 2. Relative error reduction (RER (%)) at phoneme- and word-level with respect to the baseline system (not adapted)
for the different adaptation methods used (MLLR, CMLLR, MTW and MAP), considering for adaptation and testing
the same type of tracks (clean, poly, poly clean).

The recognition rates obtained for the three LMs adap-
ted to songs are presented in Table 3. Comparing these with
those of the baseline system included in Table 1, it can be
stated that the use of a language model adapted to the con-
text in which recognition is performed improves the results at
phoneme- and word-level. If we use language models trained
on the songs lyrics to transcript (CLEAN, POLY), the impro-
vement is significant, especially in the case of monophonic
music. Although it is not possible to obtain these LMs in a
real scenario, we might be able to increase the recognition
rates extracting and processing all the information possible
from each song to transcribe, trying to limit the vocabulary
size and building the most precise LM. Furthermore, the LM
trained on songs lyrics (SONG (4.5K)) allows to achieve bet-
ter rates than the one trained on news text (WSJ0 (5K)). It
can be appreciated that the fact of attenuating the instrumen-
tal accompaniment in polyphonic music does not facilitate the
transcription, being the results in this case even worse. In the
following experiments, models are adapted to singing voice,
attempting again to enhance the recognition.

4.2.3. Adaptation to Singing

Four different methods are tested for adapting the mo-
dels to singing voice: MLLR, CMLLR and MAP, which were

explained above, and a version of MLLR where the varian-
ces are not updated called MTW. MLLR, CMLLR and MTW
carry out a single global transform in the first pass of the adap-
tation, and 8 transformations in the second pass. On the other
hand, the value of τ is fixed to 0.001 in the case of MAP
adaptation, given more importance to the mean of the obser-
ved adaptation data with respect to the mean of the original
models. As adaptation data we use the two subsets presen-
ted before (clean adapt, poly adapt), and a clean version of
the polyphonic one (poly clean adapt), where the instrumen-
tal accompaniment has been attenuated by applying RPCA
with the default parameters. Three adaptations are therefore
performed with each of the methods (clean, poly, poly clean).
In total, twelve different adaptations are tested for each of the
LM considered before.

All the results obtained for each of the test subsets are
presented in the Tables 6 and 7 of the Appendix. From the
evaluation of these results it can be seen that the best perfor-
mance is achieved if the models are adapted with the same
type of tracks that are transcribed then. Even in the case of
clean polyphonic music it is better to use as adaptation data
clean polyphonic tracks than monophonic ones. In order to
facilitate the discussion of the results depending of the adap-
tation method applied, the relative error reduction (RER) at
phoneme- and word-level with respect to the not-adapted ba-



Test Set LM Adaptation Correct Transcription Recognized

clean test

WSJ0 (5K)
MLLR (clean)

I’m going deeper
underground

On telling to turn on the ground

MAP (clean) I am die a wing Peter and out

CLEAN
MLLR (clean) I am killing day they’re underground

MAP (clean) I going I town now

SONG (4.5K)
MLLR (clean) I’d darling a turn on the ground

MAP (clean) I are darling Pete around

WSJ0 (5K)
MLLR (clean)

Things that
I will go through

Things debt Iowa to to through

MAP (clean) Things debt I would

CLEAN
MLLR (clean) Things that I away a go through

MAP (clean) Things at I way road all to

SONG (4.5K)
MLLR (clean) Things dead I away let go through

MAP (clean) Things to that I would all to

poly test

WSJ0 (5K)
MLLR (poly)

I walk this
empty street

And out hope to examine the state

MTW (poly) The like this M. E. street

MAP (poly) On a study and to I.

POLY
MLLR (poly) And out rock to Jackson east

MTW (poly) Oh walk this empty street

MAP (poly) Oh a and He

SONG (4.5K)
MLLR (poly) And out hot legs

MTW (poly) A walk this empty street

MAP (poly) Ah ah and He’s

WSJ0 (5K)
MLLR (poly)

My shallow heart’s
the only thing
that’s beating

Company will come on the space on

MTW (poly) The auto parts the only thing that’s betting

MAP (poly) Hit us into out heads in the audit and

POLY
MLLR (poly) With a lot heart’s the at all drifted hey that’s bit

MTW (poly) My shallow heart’s the only thing that’s beating

MAP (poly) Sat how all heart It’s a it on

SONG (4.5K)
MLLR (poly) You’ll come on the dark space and at

MTW (poly) Sky whoa whoa hearts the only thing that’s beating

MAP (poly) The instant whoa whoa whoa whoa It’s a it on

poly clean test

WSJ0 (5K)
MLLR (poly clean)

I walk this
empty street

A lot is and its stated another big

MTW (poly clean) A low this M. P. street

MAP (poly clean) Along this attempt E. street

POLY
MLLR (poly clean) A lot is and you stay to me

MTW (poly clean) I walk this empty street

MAP (poly clean) I walk this empty street

SONG (4.5K)
MLLR (poly clean) A rock it isn’t he stated

MTW (poly clean) I walk this empty street

MAP (poly clean) I walk this empty street

WSJ0 (5K)
MLLR (poly clean)

My shallow heart’s
the only thing
that’s beating

You could match its top onto parts making a look at I.

MTW (poly clean) The side meeting on parts the only that an odd thing that’s meeting

MAP (poly clean) Might sell out parts the only that can own thing that’s meeting

POLY
MLLR (poly clean) To tide goes out heart’s the at on the check at I.

MTW (poly clean) My shallow heart’s the only that and thing that’s beating

MAP (poly clean) A shallow heart’s the only that and thing that’s beating

SONG (4.5K)
MLLR (poly clean) Too much to hide all our hearts they cut a look at a kid

MTW (poly clean) Take you so I shall our hearts the only that and thing that’s beating

MAP (poly clean) Tonight I shall our hearts the only that and thing that’s beating

Table 4. Examples of recognized fragments in monophonic and polyphonic songs, using different language models and
singing adaptation methods.



seline system is shown in Figure 2 for the adaptations tested
of each method that provide the best recognition rates in each
test subset.

As can be seen in Figure 2, while MLLR is the singing
adaptation method with the highest RER at phoneme-level
for the three test subsets, the use of MAP technique provides
a significant improvement in the recognition at word-level,
which is the main objective of the system. MTW method
works even better than MAP when we try to recognize ly-
rics in polyphonic songs without attenuating the instrumental
accompaniment. However, not all the methods tested outper-
form the baseline system. CMLLR, for example, decreases
the correct recognition rates at phoneme-level, and barely in-
creases these at word-level. The recognition results are better
again in the case of monophonic songs at phoneme-level, but
similar at word-level to those achieved if the transcription of
lyrics is carried out in polyphonic songs.

It should be remarked in the case of polyphonic music
that RER barely decreases if the LMs trained only on the
test songs lyrics (CLEAN, POLY) are substituted by the ge-
neral LM trained on songs lyrics (SONG (4.5K)). Moreover,
RER is higher if this LM is used instead of the LM trained on
news texts (WSJ0 (5K)). This shows once again the importan-
ce of using a language model adapted to songs. Considering
this LM and employing the MAP method, a recognition rate
around 15− 16% at word-level for monophonic and polyp-
honic songs is achieved. The fact of determining a closed vo-
cabulary that contains mainly the words to recognize would
facilitate the automatic transcription of lyrics. In that case, ra-
tes could be increased to approximately 31% if CLEAN is
used as LM and MLLR as adaptation method in monophonic
songs, and to 17−19% if POLY is used as LM and MAP as
adaptation technique in polyphonic songs.

It has been observed in some experiments with polypho-
nic tracks that the system tends to “hum” the song and repeat
words, due to the presence of background music. When using
RPCA to attenuate the music, this effect is sometimes preven-
ted. However, the relative error reduction barely increases at
word-level, being even lower at phoneme-level, due to the dis-
tortions that the algorithm introduces over the singing voice
when it is separated from the instrumental part, which genera-
te the insertion of wrong words in the transcription. It can be
concluded, therefore, that, in general, (partly) removing the
background music does not improve significantly the recog-
nition rates.

Table 4 includes some examples of recognized fragments
in monophonic and polyphonic songs, using the different LM
and MLLR, MAP and MTW techniques, and Table 5 summa-
rizes the best recognition rates obtained for each of the test
sets at phoneme- and word-level. As commented above, they
show that MAP and MTW methods provide the best trans-
criptions in clean test and poly test sets, respectively. Both
MAP and MTW works well in poly clean test set, and it can
be appreciated, comparing its examples with their correspon-

Set LM Best Adaptation Method correct (%)

cl
ea

n
te

st

WSJ0 (5K)
Phoneme-level MLLR (clean) 52.72

Word-level MAP (clean) 12.13

CLEAN
Phoneme-level MLLR (clean) 61.85

Word-level MLLR (clean) 30.90

SONG (4.5K)
Phoneme-level MLLR (clean) 56.65

Word-level MAP (clean) 16.78

po
ly

te
st

WSJ0 (5K)
Phoneme-level MLLR (poly) 46.30

Word-level MAP (poly) 11.90

POLY
Phoneme-level MLLR (poly) 49.21

Word-level MTW (poly) 17.75

SONG (4.5K)
Phoneme-level MLLR (poly) 47.49

Word-level MTW (poly) 15.57

po
ly

cl
ea

n
te

st

WSJ0 (5K)
Phoneme-level MLLR (poly clean) 45.25

Word-level MAP (poly clean) 11.90

POLY
Phoneme-level MLLR (poly clean) 47.52

Word-level MAP (poly clean) 18.98

SONG (4.5K)
Phoneme-level MLLR (poly clean) 46.87

Word-level MAP (poly clean) 16.51

Table 5. Best recognition rates (%) obtained for each of
the test sets using the automatic speech recognition system
adapted to singing and the different language models.

ding ones in poly test, that the attenuation of the instrumental
part allows to recognize better some words, but introduces
new ones due to the noise and distortion added to tracks, not
being possible to improve the overall recognition rate.

5. CONCLUSIONS AND FUTURE WORK

This paper has presented a system for automatic transcrip-
tion of lyrics in songs. Despite the complexity of the task, it is
possible to obtain acceptable results starting from an automa-
tic speech recognizer, at least at phoneme-level. Furthermore,
it can be concluded that, due to the differences between sin-
ging and spoken voice, it is necessary to adapt the acoustic
models to singing voice and use a language model trained on
songs lyrics, in order to improve the performance at word-
level. It has also been shown that models have to be adapted
with the same type of tracks that are transcribed (monopho-
nic, polyphonic or clean polyphonic) to obtain the best recog-
nition rates. The more the system can be adapted to the song
that is going to be transcribed, the better the recognition. This
would require extracting and processing all the information
possible from the song, attempting to limit the vocabulary si-
ze and determining the most precise language model.

With respect to the different adaptation methods evalua-
ted, while MLLR provides the highest RER at phoneme-level,
MAP and MTW achieve the best results at word-level in mo-
nophonic and polyphonic songs, respectively. Finally, with



respect to the type of song to be transcribed, the recognition
of lyrics in monophonic songs is more effective, due to the
absence of background music. However, if we attenuate the
instrumental part in polyphonic music with RPCA, the results
barely improve, because this algorithm introduces distortions
over the separated singing voice that generate the insertion of
wrong words in the transcription.

Among the future work lines devised, three can be high-
lighted. First, since it has seen that models have to be adjusted
to the input track to transcript as much as possible, it is inten-
ded to detect first the genre of the song, adapting those only
with tracks of the same genre, and generating LM based on
lyrics belonging to this genre. Second, a text processing stage
after the transcription task is proposed, to avoid humming as
well as the repetition of words, which is frequent in the ca-
se of polyphonic songs. Finally, it has been observed that the
transcription of lyrics is better in those tracks where the sin-
ger’s voice pitch does not change so much. If we were able to
achieve this always in a prior voice equalization stage, maybe
the recognition could be enhanced.
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APPENDIX: RECOGNITION RATES OBTAINED USING
AN AUTOMATIC SPEECH RECOGNITION SYSTEM ADAPTED TO SINGING

LM Adaptation Method clean test poly test poly clean test

W
SJ

0
(5

K
)

MLLR (clean) Phoneme-level 52.72 29.69 30.62
Word-level 7.97 7.25 7.04

MLLR (poly) Phoneme-level 44.23 46.30 44.12
Word-level 4.32 8.62 7.89

MLLR (poly clean) Phoneme-level 45.42 44.91 45.25
Word-level 5.81 7.89 7.64

CMLLR (clean) Phoneme-level 40.18 19.06 18.63
Word-level 6.15 4.56 3.97

CMLLR (poly) Phoneme-level 33.46 24.10 22.41
Word-level 5.81 9.94 7.38

CMLLR (poly clean) Phoneme-level 33.16 19.20 25.14
Word-level 6.31 6.10 10.96

MTW (clean) Phoneme-level 46.13 14.99 12.49
Word-level 8.97 3.16 2.22

MTW (poly) Phoneme-level 39.46 29.81 20.90
Word-level 4.98 11.52 5.16

MTW (poly clean) Phoneme-level 39.04 22.49 27.05
Word-level 6.15 6.83 11.05

MAP (clean) Phoneme-level 48.25 13.45 11.89
Word-level 12.13 2.47 2.18

MAP (poly) Phoneme-level 36.71 35.17 28.23
Word-level 5.15 11.90 7.21

MAP (poly clean) Phoneme-level 37.73 29.56 34.08
Word-level 6.81 9.13 11.90

SO
N

G
(4

.5
K

)

MLLR (clean) Phoneme-level 56.65 31.31 31.52
Word-level 15.28 8.70 7.89

MLLR (poly) Phoneme-level 47.44 47.49 45.19
Word-level 10.63 12.76 10.49

MLLR (poly clean) Phoneme-level 47.11 45.87 46.87
Word-level 10.47 11.95 12.12

CMLLR (clean) Phoneme-level 41.57 19.95 19.23
Word-level 8.97 5.03 5.63

CMLLR (poly) Phoneme-level 35.32 27.64 25.69
Word-level 10.47 13.44 11.01

CMLLR (poly clean) Phoneme-level 34.09 21.29 27.98
Word-level 10.96 9.64 15.32

MTW (clean) Phoneme-level 47.78 16.36 13.91
Word-level 13.12 4.27 2.99

MTW (poly) Phoneme-level 40.81 32.75 24.41
Word-level 7.31 15.57 9.60

MTW (poly clean) Phoneme-level 40.98 25.14 30.40
Word-level 8.14 10.54 16.21

MAP (clean) Phoneme-level 50.36 14.51 13.19
Word-level 16.78 5.42 4.39

MAP (poly) Phoneme-level 38.28 38.04 30.89
Word-level 9.30 15.15 10.41

MAP (poly clean) Phoneme-level 38.99 31.52 37.78
Word-level 8.47 11.09 16.51

Table 6. Recognition rates (%) obtained for each of the test sets using the automatic speech recognition system adapted
to singing with several techniques and language models trained on news text from WSJ0 database [13] (WSJ0 (5K)) and
song lyrics (SONG (4.5K)).



LM Adaptation Method clean test poly test poly clean test
C

L
E

A
N

MLLR (clean) Phoneme-level 61.85 − −
Word-level 30.90 − −

MLLR (poly) Phoneme-level 48.71 − −
Word-level 20.43 − −

MLLR (poly clean) Phoneme-level 49.43 − −
Word-level 19.77 − −

CMLLR (clean) Phoneme-level 40.64 − −
Word-level 15.45 − −

CMLLR (poly) Phoneme-level 32.83 − −
Word-level 12.96 − −

CMLLR (poly clean) Phoneme-level 34.69 − −
Word-level 14.62 − −

MTW (clean) Phoneme-level 50.23 − −
Word-level 23.59 − −

MTW (poly) Phoneme-level 39.12 − −
Word-level 11.96 − −

MTW (poly clean) Phoneme-level 39.80 − −
Word-level 12.29 − −

MAP (clean) Phoneme-level 50.40 − −
Word-level 21.43 − −

MAP (poly) Phoneme-level 36.08 − −
Word-level 11.79 − −

MAP (poly clean) Phoneme-level 32.78 − −
Word-level 12.24 − −

PO
L Y

MLLR (clean) Phoneme-level − 31.64 32.63
Word-level − 12.07 11.18

MLLR (poly) Phoneme-level − 49.21 45.95
Word-level − 16.72 14.16

MLLR (poly clean) Phoneme-level − 46.48 47.52
Word-level − 14.76 14.29

CMLLR (clean) Phoneme-level − 19.54 20.05
Word-level − 5.97 7.21

CMLLR (poly) Phoneme-level − 28.73 27.16
Word-level − 15.70 13.99

CMLLR (poly clean) Phoneme-level − 21.55 29.57
Word-level − 9.43 17.62

MTW (clean) Phoneme-level − 16.55 13.53
Word-level − 6.61 4.65

MTW (poly) Phoneme-level − 34.21 25.25
Word-level − 17.75 11.01

MTW (poly clean) Phoneme-level − 26.42 31.46
Word-level − 11.09 17.32

MAP (clean) Phoneme-level − 14.23 13.03
Word-level − 7.72 6.44

MAP (poly) Phoneme-level − 39.73 32.12
Word-level − 17.45 11.60

MAP (poly clean) Phoneme-level − 37.56 39.11
Word-level − 13.46 18.98

Table 7. Recognition rates (%) obtained for each of the test sets using the automatic speech recognition system adapted
to singing with several techniques and language models trained on words to transcript (CLEAN, POLY).
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