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Abstract: A driver behaviour analysis tool is presented. The proposal offers a novel 

contribution based on low-cost hardware and advanced software capabilities based on data 

fusion. The device takes advantage of the information provided by the in-vehicle sensors 

using Controller Area Network Bus (CAN-BUS), an Inertial Measurement Unit (IMU) and 

a GPS. By fusing this information, the system can infer the behaviour of the driver, 

providing aggressive behaviour detection. By means of accurate GPS-based localization, 

the system is able to add context information, such as digital map information, speed 

limits, etc. Several parameters and signals are taken into account, both in the temporal and 

frequency domains, to provide real time behaviour detection. The system was tested in 

urban, interurban and highways scenarios. 

Keywords: human factors; CAN-BUS; driver behaviour 

 

1. Introduction 

Traffic accidents are one of the main source of injuries in twenty first century society. Most traffic 

accidents are caused with drivers’ inattention and misbehaviour [1]. Recent advances in computational 

technologies, artificial intelligence and perception technologies have led to a whole new set of 
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applications designed to prevent these kind of accidents, by assisting the driver using so called 

Advance Driver Assistance Systems (ADAS) that incorporate these new technologies. ADAS 

applications try to detect in advance dangerous situations and warn the driver or even in certain 

occasions taking control of the vehicle in order to avoid the dangerous situation. 

One of the key roles in avoiding dangerous situations is to identify potentially risky behaviour while 

driving. Modern techniques make possible the identification of these risky behaviours by means of 

sensors already available in the vehicle, which may include sensing devices that can easily be 

incorporated in everyday devices, e.g., Inertial Measurement Units (IMUs) and GPS, technologies that 

are available in modern smartphones, or even embedded in modern vehicles. 

In this paper a novel application designed to take advantage of the on-board information available 

by means of a Controller Area Network Bus (CAN-BUS) sensing device, and the information retrieved 

from an IMU and a GPS, in order to identify potentially dangerous driver behaviours is presented. By 

means of data fusion techniques, all this information is combined and an estimation of the behaviour of 

the driver is provided. All the devices were vehicle mounted and tested in real road scenarios. 

The work represents a step forward in two aspects: the first refers to the novel software sensor 

fusion architecture, which allows the identification of aggressive driver behaviour by means of low 

cost devices. The second novelty is in the hardware architecture, based on onboard information 

retrieved through CAN-BUS, and the specifically designed embedded sensing device information, 

based on IMU and GPS devices. 

The rest of the paper is organized as follows: Section 2 provides an overview of the state of the art. 

Section 3 presents a general overview of the work. In Section 4 the hardware architecture is presented. 

Section 5 describes the software module. Finally results are shown in Section 6 and conclusions and 

future works are discussed in Section 7. 

2. Previous Works 

Driver behaviour analysis is a common topic in Intelligent Transport System and human factor 

studies. Several works have tried to understand the human factors involved in the driving process. Two 

main trends are followed for driver behaviour analysis: the first trend is related to the use of external 

devices, designed and mounted specifically of a vehicle for this purpose, e.g., computer vision or 3D 

cameras. The second trend is the usage of the available information provided by the vehicle, embedded 

in the available sensors, to provide information related to the state of the driver and his/her behaviour. 

The first set of works achieves driver monitoring by the use of external data acquisition devices that 

provide further information to the system. In the work of Pelaez et al. [2], driver gaze is identified 

based on a low cost sensor (the Kinect from Microsoft), and 3D point cloud matching based on the 

Iterative Closest Point (ICP) method. In the work presented by Heo and Savvides [3], two cameras are 

used to provide frontal and profile accurate 3D face modelling and 2D pose synthesis.  

Murphy-Chutorian and Trivedi [4] performed 3D head pose estimation based on Localized Gradient 

Orientation (LGO) and Support Vector Regressors (SVRs). Oyini Mbouna et al. [5] provided  

model-based movement tracking based on optical flow. In the work presented by Garcia et al. [6], 

infrared cameras are used to identify the eye location. Li et al. [7] performed feature extraction from 

the camera used together with several biological parameters, such as percentage of eye closure, 
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quantity of eyed closed and the Current Car Position (CCP)). Commercial eye tracking systems such as [8] 

and [9] are mainly based on stereo systems. 

Other driver monitoring systems, such as the one described by Papadelis et al. [10], require 

measurements of biomedical signals. This requirement makes them less reliable due to the fact that 

these intrusive methods lead to driver behaviour changes, reducing the relevance of the measured data. 

Besides the lack of comfort hinders their generalization and usage in commercial applications. 

The use of on-board sensors already available in the vehicle to analyze driver behaviour is a low 

cost and powerful alternative to the aforementioned systems. Modern vehicles include a wide variety 

of sensors and communication devices, which provide a large amount of data that can be used to 

identify specific driver behaviour, among other human factors. Some of these technologies are already 

available in the market, with applications such as recommended shifting points, which provides 

information to the driver about when to perform the gear shifting manoeuvre in order to save fuel  

and maximize the engine response. Other examples can be found in literature, for example,  

Wakita et al. [11] provided driver identification based on driving pattern information. Takei et al. [12] 

and Krajewski et al. [13] discussed driver fatigue identification based on steering wheel movement. 

Choi et al. [14] described a first attempt to perform driver behaviour analysis based on CAN-BUS 

information. By using Hidden Markov Models (HMM) action identification (event detection), 

distraction detection and driver identification, the authors reported success rates ranging from 30% to 

70% according to the number of unique conditions. Al-Doori et al. [15] utilized a CAN-BUS 

information-based system and fuzzy logic in order to extend the range of electric vehicles. 

The availability of modern smartphones with advanced sensing devices has led to the development 

of advanced applications that use these devices to provide driver analysis. For example, Johnson and 

Trivedi [16] provided driving style recognition by Dynamic Time Warping (DTW) and smartphone 

based sensor-fusion, Castignani et al. [17] used fuzzy logic to identify risky manoeuvres and improve 

driver efficiency, while Diaz Alvarez et al. [18] used neural networks to improve the efficiency in 

electric vehicles, and Eren et al. [19] used DTW to identify the risky behaviour of a driver through 

using a smartphone. Li and Busso [20] and Jain and Busso [21] fused the CAN-BUS information with 

other information sources, in the first case with a microphone array and video cameras, and in the 

second with a frontal camera. Both achieved driver behaviour analysis with different accuracy (i.e.,  

the first method provides approx. 40% positive detection, while the second provides up to 78.9% 

positive detection). 

The presented paper provides a step forward in the field of driver behaviour analysis. The data is 

retrieved from the available technologies in the IVVI 2.0 platform [22] (Figure 1). These technologies 

include the CAN-BUS monitoring system, as well as an advanced GPS system, equipped with an IMU. 

The latter is not typically included in commercial vehicles, however modern smartphones includes 

similar technologies, which combined with the CAN-BUS information would allow the proposed 

algorithm to be available in any vehicle. 
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Figure 1. Intelligent Vehicle based on Visual Information (IVVI) 2.0 research platform. 

3. General Overview 

Figure 2 depicts the overall information flow, obtained from the different available sensing devices. 

CAN-BUS information is used to retrieve information about both driver behaviour (brake use 

frequency, throttle usage) and vehicle state (engine rpm, velocity, steering angle ...). All this 

information is retrieved via the designed embedded system, based on a Raspberry Pi device, connected 

to a CAN-BUS decoder. IMU information and GPS data are provided by the sensing device presented  

in [23] and also displayed in Figure 3b. 

 

Figure 2. Information flow provided by CAN-BUS and GPS-IMU ground-truth device. 
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Figure 2 depicts all the information sources available in the system, together with the information 

that they are able to provide to the application. The retrieved CAN-BUS information provides full 

information about the vehicle state, including velocity, steering wheel angle, braking frequency and 

percentage of throttle pedal pressed. Further information is also available, such as the state of lights, air 

conditioning, etc., however this information was discarded as it did not represent relevant data for the 

application. On the other hand, the GPS-IMU module is able to provide accurate localization based on 

GPS with enhanced capacities and inertial information, such as acceleration and velocity. Among this 

information, GPS and acceleration proved to be the most useful, since velocity was already provided 

by the vehicle. Section 5 analyses all these sources providing full description of the signals and the 

information that can be inferred from each of them. 

The work presented in this paper has two different parts: the hardware module and the software 

module. The hardware module is based on an embedded system, which is able to retrieve all the 

necessary information in real time. Two different modules are designed: the first is based on an 

embedded low-cost platform, Raspberry Pi 2, with a shield as CAN-Bus adapter. It is able to retrieve, 

read and write in the CAN-BUS (Figure 3a) of the vehicle (IVVI 2.0) in real time. The second unit is a 

GPS system with IMU (Figure 3b). 

 

Figure 3. Embedded sensing devices. (a) Raspberry Pi and the CAN-Bus device  

(CANdiy-shield board from Watterott Electronic, Leinefelde-Worbis, Germany) for  

CAN-BUS information retrieval; (b) IMU and GPS installed in IVVI 2.0. 

The software module is a data fusion architecture that integrates the CAN-BUS information  

(i.e., throttle, rpm, brake pedal, velocity and steering angle) and GPS + IMU information. By means of 

this data, driver behaviour is identified. 

Driver behaviour is divided into aggressive and normal. Furthermore, given the specificity of the 

behaviour of the driver within the city, and in interurban scenarios. Four classes are defined: 

aggressive urban, normal urban, aggressive interurban and normal interurban. Figure 4 depicts the 

general software architecture that make up an expert system to obtain the driver behaviour 

classification. This work focuses mainly on presenting the hardware and software technology which 

allows driver behaviour identification. The available variables are identified, and a complete study is 

provided, in order to establish the values that allow the classification among the different behaviours. 
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Furthermore, we also present the architecture that uses a crisp ruled-based system, where the 

information injected into the system is explained along the manuscript, using the values that 

differentiate the driver behaviours. This information proves the usability of the presented technology 

for driver behaviour analysis. The classification is shown in the result graphs of the manuscript where 

the values that are embedded in the rules can be observed to establish the decision making process. 

 

Figure 4. Architecture description of the expert system, information and knowledge flow 

to provide driver behaviour classification. 

4. Hardware Architecture and Data Acquired 

As mentioned, the hardware module is composed by two devices: the CAN-BUS communication 

monitor and the GPS + IMU system. Each of the systems has specific behaviour traits that are detailed  

as follows. 

4.1. CAN-BUS Communication System 

The designed device is based on a low cost microcomputer device, Raspberry Pi 2, and a CAN-BUS 

adapter. This approach allows full communication monitoring, which allows both data send and 

receive. The device is connected to the OBD-II port of the vehicle which allows the retrieval of the 

information regarding to the internal parameters of the vehicle in real time. Among the data available, 

Table 1 lists the data used for driver monitoring. All the information is retrieved via the high speed 

CAN-BUS at 500 kbps. The incorporated microcontroller permits fast and intelligent data retrieval, 

which allows several configurations. The software designed to run in the system provides both on-line, 

and off-line data processing: 

Off-line data processing stores all the communication in a text file, which can be analysed later. The 

data format was designed to be compatible with all the main processing software. 

Decision
Making

Data Fusion 
Module

CAN-Bus                  
and GPS-IMU 

information

Context information

- Aggressive urban
- Normal urban
- Aggressive inter-urban
- Normal inter-urban

Behaviour

Dynamic environment analysis
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On-line data processing has two options, which were designed in order to allow on-line data 

retrieval and display. The first option is a self-designed software that displays the CAN-BUS 

information in real time (Figure 5b). The second option is the real time information delivery, which is 

sent to the IVVI 2.0 server via Ethernet. The IVVI 2.0 Server architecture is based on the Robotic 

Operative System (ROS) [23], thus the information retrieved by the CAN-BUS is provided within the 

ROS platform. 

Table 1. Data acquired from the CAN-BUS. 

Data Units 

Vehicle lineal velocity (km/h) 
Revolutions per minute (r.p.m.) 

Brake pedal  Binary data (pedal pressed or not) 
Throttle pedal (% of pedal pressed) 

Steering wheel angle (degrees) 

In order to allow the configuration of the system and the real time display of the information from 

the vehicle, a touch-screen was added to the system (Figure 5a). With this display, the system can be 

configured in real time, and monitor communications, and some vehicle parameters can be checked in 

real time as well (Figure 5b). Finally the system is installed in a box, which is equipped with a fan. In 

order to allow in-site operation, the touch screen is included in the box by the use of a 3D printed 

frame. The final result, shown in Figure 5b allows the manual operation and the interconnection with 

the vehicle architecture. 

 

Figure 5. Full driver monitoring system module (a) system with the display mounted;  

(b) Example of real time steering wheel angle and throttle display. 

4.2. GPS and IMU Subsystem 

This subsystem is presented in this section. The first device is a Differential Global Positioning 

System (DGPS), which is composed of a base station that transmits differential corrections in  

real-time, and a moving receiver that is integrated in-vehicle to provide the position of the vehicle in 

different environments; such as, urban or motorway environments, among others. The second device is 

an Inertial Measurement Unit (IMU), which has embedded accelerometers and gyroscopes. 
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The two receivers, base station and in-vehicle device, are two NovAtel OEMV-1G, which offer  

GPS + GLONASS L1 tracking and provide positioning even in complex environments such as urban 

canyons. These devices have the property of being embedded in a compact enclosure  

(FlexPak-G2-V1G) for outdoor applications. The main characteristics of the receivers are the 

following: (i) Pulse Aperture Correlator (PAC) with multipath mitigation which offers multipath-resistant 

processing at high data update rates, and (ii) high acquisition and re-acquisition times that allow it to 

operate in urban environments, where frequent signal interruptions can be expected. Moreover, the 

advantage of the NovAtel antenna (GPS-701-GG), from NovAtel (Calgary, Canada), used in base and 

on-vehicle, is multipath rejection. 

The in-vehicle receiver calculates positioning based on two performance modes. The first mode is 

the basic positioning solution, called single point position mode (SINGLE mode), where all available 

GPS satellites are used in the position solution without differential corrections. The second mode is 

differential mode (DGPS), where the base station is positioned in an accurately known location that 

transmits the range corrections to the in-vehicle receiver. In this work, the configuration of the update 

rate associated with SINGLE or DGPS modes has been selected 5 Hz, where the in-vehicle receiver 

automatically switches between both modes, DGPS mode has priority if appropriate corrections are 

correctly received. Moreover, this system has been selected to use L1 C/A-code data (pseudoranges) 

for differential solution due to its advantages in urban, inter-urban and motorway environments instead 

of using carrier-phase DGPS. The first disadvantage of the carrier-phase DGPS, such as Real-Time 

Kinematic (RTK), is the age of RTK data, where a delay from 5 to 60 s is desirable, whereas the 

restriction for pseudorange differential age is a broad delay from 2 to 300 s. The second carrier-phase 

disadvantage is the initialization process, which is necessary under optimal conditions, and cm-level 

precision is reached after 30 to 40 min. The third disadvantage is that if the receiver uses less than four 

satellites in RTK mode after the initialization process, the receiver must restart this process to reach 

again cm-level precision. The fourth disadvantage is the line between base and in-vehicle receiver 

(baseline) for good accuracy in RTK mode, which is desirable to be less than 15 km. The single-frequency 

Global Navigation Satellite System (GNSS) receiver, model: OEMV-1G (from Novatel, Calgary, AB, 

Canada) used in this work, can reach RTK 20 cm position accuracy after static convergence, and RTK 

2 cm after convergence and maximum baseline of 3 km. However this DGPS system, using L1 C/A-code 

data, requires only a single epoch of common data, which is an advantage in urban, inter-urban and 

motorway environments, where the recovery time of the DGPS accuracy is minimized. Then,  

carrier-phase DGPS is relegated to high-accuracy applications in ideal conditions, and the experiments 

of this work are performed with a DGPS mode using L1 C/A-code data for differential solution, where 

accuracy is less than 1 m. 

The second device is an IMU, a 3DM-GX2, from MicroStrain (Williston, VT, USA) which 

integrates a triaxial accelerometer, triaxial gyroscope and triaxial magnetometer. The IMU data are 

highly appreciated in this work to compare it with data from CAN-BUS, that is, it allows the 

establishment of the IMU ground-truth data to be compared with CAN-BUS data. The IMU data, 

accelerometers and gyroscopes measurements, are acquired at 100 Hz. 
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5. Driver Behaviour Analysis Software Module 

Signals are merged and fused together based on an intelligent expert approach. The intelligent 

approach is based on the use of signal descriptors, which identifies specific patterns in the driver’s 

behaviour. These specific patterns are related with the signals shown in Table 1. The descriptors are 

obtained in both time and frequency domains, which are used later to train the system for the 

intelligent detection system. 

5.1. Accurate Localization and Digital Maps 

The accurate localization, based on the GPS + IMU, presented in [2] is used to provide reliable 

urban localization. By means of digital maps and this accurate localization, the system identifies when 

the vehicle is driving in urban environments, and adapts the configuration of the system to the 

situation. Figure 6 shows the vehicle trajectory at the urban environment where the experiments have 

been performed. 

 

Figure 6. Digital map localization example, used to configure the system based on  

context information. 

5.2. Time Domain Descriptors 

Time information related to the statistical value of the signal is used, and information such as the 

mean value, or the peak value was used to identify the behaviour patterns. This information was 

integrated into a given time window, configurable by software that gives an estimation of the driver 

behaviour in the defined window. 

Two values were provided by the fusion system; instant behaviour and aggregate behaviour. The 

first is based on the information provided in real time, and checks the proper behaviour of the driver 

given specific parameters. This information takes into consideration context information and is based 

on an expert system. Events are displayed as acoustic and visual alarms to the driver indicating the 
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improper behaviour, e.g., strong longitudinal acceleration from a static position triggers an alarm that 

indicates aggressive behaviour. 

Aggregated information provides driver estimation of the behaviour according to statistical values 

in a given time. This information is not based in the sole information of a single signal, but on the 

combination of the different signals, described in descriptor vectors based on both the time and 

frequency domain. All the information is combined in the final stage. Statistical and time information 

is different, according to the signal available, as presented in Sections 5.2.1 and 5.2.2. 

5.2.1. CAN-BUS Based Descriptors 

(1) Vehicle Lineal Velocity 

The signal represented as v[t], and expressed in kilometres per hour [km/h]. This information is 

essential to identify important behaviours such as (maximum) speed limit infringements. Aggregated 

information such as the mean can be used to identify the speed over a specific period of time and 

standard deviation can be used to identify high changes of velocity, which may correspond to erratic 

and aggressive behaviour: 

Max amplitude [km/h]: 

v[t] max = max(v[t]) (1)

Mean value [km/h]: 

̅ = 1 [ ] (2)

Standard deviation [km/h]: 

= 1 ̅ − [ ]  (3)

Median value [km/h]: = 2 + 1  (4)

(2) Revolutions per Minute 

Signal represented as r[t], and expressed in number of revolutions per minute [r.p.m.]. This 

information is valuable to identify specific behaviour. In this application, it was used to identify 

aggressive behaviour through the identification of extreme use of the vehicle engine (i.e., high values). 

However, this information, together with the gear use information, can be used to identify other 

important parameters, such as fuel consumption. Here, the maximum value can be used to identify 

instantaneous misbehaviour, and aggregated values can be used to differentiate a continuous misuse 

(where our method uses the mean and the median). Furthermore, standard deviation can be used to 

detect high change rate of the revolutions, which identifies fast and erratic movements, and in many 
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occasions, implies aggressive behaviour. Here, formulation is similar to Equations (1)–(4), thus no 

further formulation is needed: 

Max amplitude [r.p.m.]: 

r[t]max (5)

Mean value [r.p.m.]: ̅ (6)

Standard deviation [r.p.m.]: 

 (7)

Median value [r.p.m.]: ̃  (8)

(3) Brake Pedal 

It is a signal represented by b[t] which is a binary signal with a value of 0 when the pedal is not 

pressed and 1 when it is pressed. Strong braking actions can identify aggressive manoeuvres and are a 

danger to road safety. Besides, the successive repeated use of the pedal is a sign of erratic driving. All 

this information can be inferred from the study of the braking manoeuvres, however the information 

available was limited to pedal pressed or not, which is not enough to identify strong braking 

manoeuvres. Further information, such as the one provided by the IMU, is combined with the brake 

pedal information, in order to provide identification of these strong braking manoeuvres: 

Braking time (time pedal pressed) [%] =  (9)

Braking frequency (times pedal pressed) [Hz] = #
 (10)

(4) Throttle Pedal 

The percentage of the throttle pedal pressed, represented as thr[t] and expressed in a percentage 

[%]. The throttle pedal press percentage provides direct information of the driver intention, as a high 

percentage of pedal pressing identifies a clear intention to exceed the limits provided by the vehicle, so 

here maximum, mean and median can provide important information. Besides, standard deviation 

identifies erratic behaviours: 

Max amplitude [%]: 

thr[t]max (11)

Mean value [%]: thr (12)
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Standard deviation [%]: 

 (13)

Median value [%]: 

 (14)

Acceleration frequency [Hz]: = #
 (15)

(5) Steering Wheel Angle Movement 

Signal with the angular velocity of the steering wheel, represented as ω[t] and expressed in degrees 

per second (°/s). The steering wheel information may not provide information by itself, since the 

absolute degree of the movement usually remains constant whether the driver behaves in an aggressive 

way or not while driving along the same roads. However, steering wheel velocity may provide 

significant information. Fast changes of lanes, strong lateral movements, may be identified by fast 

steering wheel movement. Here, the study of all different values, such as maximum, mean, median and 

standard deviation, together with the lateral acceleration explained later, are important to identify  

such movements: 

Max amplitude (°/s): 

ω[t]max (16)

Mean value (°/s): ω (17)

Standard deviation (°/s): 

 (18)

Median value (°/s): ω (19)

5.2.2. IMU Based Descriptors 

Linear Acceleration 

Acceleration represented as a[t], and expressed in meters per square seconds (m/s2). Three signals 

are available, ax, ay, az, all of them corresponding to a different axis. All of them have similar 

descriptors presented in the following equations. Accelerations are important to measure the comfort 

level of the vehicle occupants. Besides, combined with some of the aforementioned information, such 

as steering wheel movement, or brake pedal information, it is possible to identify the behaviour of the 

driver. Here, the two most important were lateral (x) and longitudinal (y). Although vertical 

acceleration was included in the information retrieved, it did not provide extra information, and thus it 

was not used for identification: 

Max amplitude (m/s2): 
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a[t]max (20)

Mean value (m/s2): a (21)

Standard deviation (m/s2): 

 (22)

Median value (m/s2): a (23)

5.3. Frequency Domain Descriptors 

In order to provide spectral information, frequency information is included as a descriptor, based on 

the frequency information of the signal. The frequency descriptor is the basis in the spectral analysis of 

the signal within the corresponding window. This spectral analysis is shown in Figure 7, based on a 

specific time window. Here the third dimension depicts the evolution along time of this spectral 

analysis. Relevant frequency information provides useful information for driver behaviour analysis, 

such as working frequency identification, and fast movements. However, this information is too 

extensive to be processed. Thus information obtained with the spectral analysis has to be processed by 

means of frequency descriptors. These frequency descriptors summarize the relevant information 

provided by this spectral analysis. This way, the information obtained and represented in Figure 7, 

which is difficult to process, can be converted into Figure 8 by these frequency descriptors. Once the 

spectral analysis is performed, the frequency domain is divided into five sections. Each section 

corresponds to a continuous frequency interval. Once the spectral signal is divided into five different 

intervals, the percentage of the power of the signal in each interval is calculated, returning five 

different descriptors. As these descriptors are calculated based on a time window, which is overlapped, 

and these descriptors evolve in time, as depicted in Figure 8. Therefore, Figure 8 represents a 

bidimensional representation of Figure 7, based on the aforementioned spectral descriptors which 

summarize the spectral information contained in the signal. 

 

Figure 7. Spectral analysis of the steering wheel movement in highway environment. 

Signal power (db) is represented in the vertical axis, frequency (Hz) and time representing 

the moment where the spectral analysis is calculated, are represented in horizontal axis. 



Sensors 2015, 15 25981 

 

 

(a) (b) 

Figure 8. Frequency interval evolution of the steering wheel movement in a highway 

environment: (a) normal driver, (b) aggressive driver. The vertical axis represents the 

percentage of power on this part of the spectrum. 

5.4. Context Information 

In addition to the aforementioned signal information, context information is used in this approach. 

Context information refers to on-line or off-line information, which can be retrieved from the context 

situation and helps to enhance the estimation. In this case, the context information is exploited to 

understand the real situation of the vehicle, consequently providing comparison of the vehicle situation 

in relation to the ideal. Among the context information, the following points should be addressed. 

5.4.1. Maximum Recommended Acceleration 

For both braking and accelerating manoeuvres, the maximum acceleration is identified according to 

human factors research. This way, the real time values obtained from the IMU to identify aggressive 

instant behaviour are used to identify uncomfortable movements. According to [24], stable  

non-emergency accelerations in the range 0.11 g to 0.15 g fall in the “acceptable range” for most 

studies in acceleration comfort of ground vehicles. It is unlikely that values of jerk larger than 0.30 g 

can be acceptable as comfortable. This way, movements higher than 0.3 g were identified as  

non-conformable, and 0.5 g ones were identified as aggressive instantaneous behaviours. This values 

were both identified in order to allow a detection of aggressiveness in two ways. First, an 

uncomfortable movement repeated in time would lead to the identification of the behaviour as 

aggressive, the second allows an instantaneous identification by the detection of an aggressive 

manoeuvre. > 3	 , non-conformable movement, > 5	 , aggressive movement. 
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5.4.2. Maximum Allowed Speed 

Based on the digital map information and the accurate localization, the vehicle provides information 

of the maximum speed allowed on the road. This way it can be compared with the measured value. 

This value is also used as descriptor in the algorithm according to Equation (24): 

= 1 − [ ]  (24)

where vr represents the maximum velocity allowed in the road. Furthermore an index (ivtp) is provided 

indicating how many times the maximum velocity is trespassed during a given period. 

5.4.3. Urban/Interurban Location 

GPS localization is used to indicate whether the vehicle is located within an urban environment or not. 

6. Tests and Results 

With the information presented in Section 5, an expert intelligent system is developed. This system 

provides both event detection and aggregate identification. Both detection systems are trained to 

identify specific patterns provided by the aforementioned descriptors. 

6.1. Configuration Tests 

The performed tests involved three different scenarios: downtown urban environment (dense 

traffic), suburban scenario (clear traffic) and highway scenario. In every scenario different behaviours 

are trained, both normal and aggressive. The collected data was used to identify the patterns of aggressive 

manoeuvres, and normal manoeuvres over the three scenarios. All possible manoeuvres were tested, 

identifying the specific values which describe every situation. This information was used to create the crisp 

ruled-based system which identifies the behaviour patterns of aggressive drivers in the three scenarios. 

 

Figure 9. Standard deviation for vehicle velocity, for an interval time = 20 s. Red indicates 

aggressive driver, and blue line, a normal driver. Top downtown environment, centre 

interurban environment and bottom highway environment. 
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Figure 9 depicts the standard deviation for vehicle velocity, the obtained values show higher values 

in the standard deviation for the vehicle velocity in aggressive driver behaviour. Here the environment 

is important since the value is higher in interurban environments with higher velocities, than 

downtown urban environments where the velocities are lower, thus the obtained values are lower. Here 

different threshold were used for each environment. The environment identification is obtained based 

on GPS and digital maps. Besides as it can be observed, this information is more helpful in highways 

and interurban environments where the ranges of velocities available are wider, than in urban 

environments where these velocities are more limited. 

Figure 10, on the other hand, shows the standard deviation of the vehicle engine r.p.m. These data 

allowed the identification of the behaviour, since the aggressive behaviour showed a great variation  

in the use of the engine, with high changes in the revolutions and thus representing a higher  

standard deviation. 

 

Figure 10. Standard deviation for revolutions per minute (r.p.m.) of the engine, for an 

interval time = 20 s. Red indicates an aggressive driver, and blue line, a normal driver. Top 

downtown environment, centre interurban environment and bottom highway environment. 

Urban environments with more stop and go manoeuvres derives in higher changes in the engine 

r.p.m., thus standard deviation proved to be a good tool on this environment, as well as interurban 

environment. On other scenarios, where the stops are less frequent, such as highways environments, 

absolute values, such as mean or peaks provide more information about the driver behaviour. 

Figure 11 provides the mean percentage of throttle pressed during a time interval of 20 s and its 

evolution along time. As shown, the provided data shows a considerable higher value with the 

aggressive driver, almost 100% of the time whereas for normal driving conditions, the driver showed a 

considerably lower value. This difference is higher in urban environments than in highway 

environments, as shown in the figure, which is due to the fact that in highway environments, the 

driving process is more stable, thus the percentage of pedal pressed is more continuous. 
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Figure 11. Mean percentage of throttle pressed for an interval time = 20 s. Red indicates 

an aggressive driver, and blue a normal driver. Top: downtown environment, centre: 

interurban environment and bottom: highway environment. 

Further information is also useful for aggressive driver identification. In Figure 12, the standard 

deviation of the steering wheel movement (angular velocity), shows a higher value again for the 

aggressive behavior in all environments, even in highway environments, with lower lateral 

movements, proving the significance of identifying these kinds of behavior in most of the cases. 

Accelerations, on the other hand, didn't show stable values that could be used in the aggregated 

information. Tests showed that the identification of peak values in the aggregated time is not enough 

information to identify these behaviors. As depicted in Figures 13 and 14, these values showed a 

significant oscillation that is not enough to use them in the aggregated time. On the other hand these 

values can be used to identify instant behaviour identification. By identifying strong lateral or 

longitudinal accelerations, the system identifies the corresponding manoeuvres as aggressive. In order 

to allow the system to include this kind of information, it counted the number of times these signals are 

triggered. Therefore, it can identify over time the driver who showed this behaviour as aggressive. 

 

Figure 12. Standard deviation of steering for an interval time = 20 s. Red indicates an 

aggressive driver, and blue a normal driver. Top: downtown environment, centre: 

interurban environment and bottom: highway environment. 
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Figure 13. Local peaks for acceleration of longitudinal axis, for an interval time = 20 s. 

Red indicates an aggressive driver, and blue a normal driver. Top: downtown environment, 

centre: interurban environment and bottom: highway environment. 

 

Figure 14. Local peaks for acceleration of transversal axis for an interval time = 20 s. Red 

indicates an aggressive driver, and blue a normal driver. Top: downtown environment, 

centre: interurban environment and bottom: highway environment. 

6.2. Field Tests 

A total of 20 further test were performed with 10 different subjects in order to test the algorithm. 

Then, the different thresholds and feature identified in the previous sections were used to identify the 

aggressive or non-aggressive behavior, in both urban and interurban scenarios. These tests involved an 

urban scenario and interurban scenarios (Figure 15). The test involved one aggressive and one normal 

behavior per subject. Although the drivers were asked to drive aggressively all the tests were done 

obeying all the traffic regulations. 
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Figure 15. Driving scenarios used for the test, urban (left) and interurban (right). 

Each scenario involved around 10 minutes, and the classification was based on the 23 descriptors 

shown in Section 5.2 and different test were performed. The configuration tests explained in  

Section 6.1 helped to identify the rules and the thresholds to define an aggressive behavior. When a 

given number of descriptors provides aggressive behavior identification, the system identifies the 

behavior as aggressive. In all the tests performed the system was able to identify the aggressive, and 

non-aggressive driving behavior after around 1 min of driving. As stated before, the beginning of the 

sequence did not provide enough information of the driving behavior, thus no accurate identification 

was provided in this part of the sequence. 

Figures 16–18 show some of the signals obtained during these test, focusing on three subjects. The 

three subjects were selected as a representative set of the whole experiment. The discussion of the 

processes followed to identify the subject are also provided. 

(A) (B) (C) 

Figure 16. Lateral acceleration (standard deviation), for three subjects (A, B and C). In 

interurban scenarios (down) and urban scenarios (up). The threshold for this feature is 

identified in green. 
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In Figure 16, lateral acceleration (standard deviation) is displayed. Subjects B and C provide 

enough information to identify aggressive behaviour, however, for subject A, this information is not 

enough in an urban environment, but it is identified. 

  

(A) (B) (C) 

Figure 17. Throttle (standard deviation) for three subjects (A, B and C). In interurban 

scenarios (down) and urban scenarios (up). Threshold for this feature is identified in green. 

In Figure 17, throttle information (standard deviation) is displayed for the three same subjects. Here 

subjects A and B are identified as being over the selected threshold, however, for subject C normal 

behaviour falls over the threshold in several occasions during interurban mode. This more aggressive 

normal driving during acceleration was inconclusive for conclusive aggressive behaviour identification 

since all other features did not identify it as aggressive (see Figures 16 and 18). 

 

(A) (B) (C) 

Figure 18. R.p.m. (standard deviation), for three subjects (A, B and C). Here, all the 

drivers reach a level over 400 r.p.m. in the vehicle while performing aggressive driving. 

Figure 18 shows the revolutions per minute information (standard deviation). Here all three subjects 

were above the threshold, and only subject B presented some periods of time where it fell under the 

threshold, but in these situations, the other features (see Figures 17 and 19) where enough to provide 

an accurate estimation. 

Figure 19 shows the information observed through the standard deviation of the longitudinal 

acceleration, again, the behaviour is clearly identified in most of the cases. Only in subject C there are 
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some problems in the urban environment. However, in all the previous data (Figures 16 to 18) it is 

possible to identify this specific scenario. 

 
(A) (B) (C) 

Figure 19. Longitudinal acceleration (standard deviation), for three subjects (A, B and C). 

Here, all the drivers reach to a level over 400 r.p.m. in the vehicle while performing 

aggressive driving. 

7. Conclusions 

A novel system for driver behaviour identification is presented. The system takes advantage of the 

on-board information provided by the vehicle i.e., CAN-BUS, and the information provided by an 

embedded IMU-GPS system. The application is able to identify and classify normal and aggressive 

manoeuvres in real time and aggregate behaviour based on a time window. The presented system 

provides an advanced driver behaviour monitoring system, based on the on-board information and 

advanced embedded sensors. 

The developed system proved to be a robust behaviour identification algorithm with advanced 

capabilities. Thanks to the use of on-board information based on CAN-BUS, the system can be 

installed in any vehicle. Furthermore, the GPS and IMU sensors are embedded in many of the modern 

smartphones. Therefore, the presented algorithm can be used in any vehicle, providing a low-cost 

application, which is able to provide a full understanding of driver attitude and behaviour, detecting 

misbehaviour in real time. 

The presented work is a step forward in driver monitoring system design by providing a robust  

multi-platform device based on both affordable hardware and advanced software capabilities. 

Furthermore the system provides a solution for driver monitoring applications, which can provide 

feedback for both public and private sectors about the real behaviour of a driver. 

As proved in the Results section, the application represents a novel contribution in both the software 

and the hardware architecture. The software architecture presented is based on data fusion techniques 

and temporal and frequency descriptors, merged in a crisp ruled-based expert system. On the other 

hand, the hardware device is the second contribution of the paper. Thanks to the design of a novel 

processing unit, based on the on-board information retrieved through the CAN-BUS, and the  

IMU + GPS information, this system can be applied to a wide variety of current vehicles with a  

limited cost. 
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In light of the results obtained, one of the weaknesses of the presented results is the initial data 

comparison delay, that is, a certain time interval is required to retrieve enough data to provide an 

aggregate detection. As it can be observed in Figures 9–14, during the initial period, the data can be 

misinterpreted due to the necessity of further analysis. However, as can be observed, over time, the 

data becomes stable, thus reliable behaviour identification is possible. Another important point to 

consider is the necessity for multiple signals in order to provide an accurate identification. Analysis 

based on a single signal can lead to misinterpretation, e.g., an urban driver behaving normally while 

driving along a closed curve; in this case strong lateral movement may be expected, however, the 

absence of other indicators of aggressive driving, leads to the interpretation of this movement as 

normal behaviour. Here, the fusion of several descriptors is very important to allow accurate behaviour 

identification. On the other hand, event detection, based on a single signal, may identify dangerous 

manoeuvres or behaviours in real time, e.g., strong longitudinal acceleration identifies strong braking 

actions, identifying possible dangers in the driving process in real time. 

This application has great potential and direct application in several fields and markets, including 

insurance companies, public entities, human factor research and more. Future works will focus on the 

testing and development of further novel expert system-based technologies to enhance the presented 

work by means of advanced data fusion techniques. Besides, further capabilities will be added to the 

system, based on an advanced perception system developed in our laboratory, including among other 

features a lane departure system, and driver gaze detection, that all are already available in the IVVI2.0 

research platform. 
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