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Abstract: Credential-based authorization offers interesting advantages for ubiquitous
scenarios involving limited devices such as sensors and personal mobile equipment: the
verification can be done locally; it offers a more reduced computational cost than its
competitors for issuing, storing, and verification; and it naturally supports rights delegation.
The main drawback is the revocation of rights. Revocation requires handling potentially
large revocation lists, or using protocols to check the revocation status, bringing extra
communication costs not acceptable for sensors and other limited devices. Moreover,
the effective revocation consent—considered as a privacy rule in sensitive scenarios—has
not been fully addressed. This paper proposes an event-based mechanism empowering a
new concept, the sleepyhead credentials, which allows to substitute time constraints and
explicit revocation by activating and deactivating authorization rights according to events.
Our approach is to integrate this concept in IdM systems in a hybrid model supporting
delegation, which can be an interesting alternative for scenarios where revocation of consent
and user privacy are critical. The delegation includes a SAML compliant protocol, which
we have validated through a proof-of-concept implementation. This article also explains the
mathematical model describing the event-based model and offers estimations of the overhead
introduced by the system. The paper focus on health care scenarios, where we show the
flexibility of the proposed event-based user consent revocation mechanism.



Sensors 2012, 12 6130

Keywords: identity management; privacy; user-centric; federation; revocation consent;
delegation; health care; event; theory queue

1. Introduction

Sensors are the primary source for data collection. Often the collection process and the collected
data have to be taken into account when defining the privacy policies of systems. Privacy has a different
meaning for every individual: it is common to find differences among users when it comes to what
should be protected and how. Thus this is a very complex and subjective concept that relates the
sensitiveness of the information owner to the context in which the information is used. In a digital
context, users’ information is extensively collected and distributed to provide new added value services
and to improve availability. Whereas these new services have a positive impact on users’ life, they
also bring privacy problems. A good example are social networks. Pervasive computing and social
immersion have made users active broadcasters of their own life producing information streams and
multimedia that will be eventually published in a social network. Users are expected to deal responsibly
with the privacy agreements exposed by the participants in a digital transaction, but the complexity of
some agreements and the increasing number of participants overwhelm users. In the end, the privacy
issues that rise when distributing user information are considered by the users themselves as minimal
tradeoffs in comparison to the benefits of accessing services. This is extremely worrying, specially for
young people, since despite they have born into technology (i.e., “digital natives”), they are not conscious
about the consequences when it comes to spread their personal information all over the Internet.

The motivation behind this problem is the lack of comprehensive privacy frameworks. Individuals
want to have control of their information since the improper and unsecured management of their
information may lead to attacks, frauds, and identity misuse, as identity information can be exploited
whenever authentication and authorization based on those identity attributes are required. In [1], an
architecture that allows to identify different levels of Quality of Privacy based on user context is
proposed.

Often sensor networks, and specially wireless sensor networks, use encryption to provide data
protection and integrity, and key distribution has deserved important efforts, both for asymmetric
and symmetric keys [2,3]. There are not so many works in authorization, and the application of
flexible role-based or attribute-based authorization schemes has not been sufficiently addressed. One
of the main problems is that rights revocation requires the execution of complex processes, which are
simply not acceptable for limited sensor networks. Today identity is approached in a different way.
Modern digital identity is not just authentication or authorization data but a collection of attributes that
embraces different kind of information related to the user: attributes subject to verification (as age
or gender), history of previous interactions, preferences, reputation information. . . Service providers
employ Identity Management (IdM) Systems for managing the increasing volume of information. IdM
frameworks provide technical means for sharing users attributes among different participants typically
between an Identity Provider (IdP-the entity retaining user’s data) and Service Providers (SP-information
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consumers). IdM technology has developed quickly in the last decade and it has been widely adopted
by popular service providers since it has shown itself to be a reliable and efficient way to handle users
information. IdM systems mediate in every users’ information exchange, so they are the preferred target
where to deploy privacy solutions. For instance, in emerging mobile health applications based on Internet
of things, IdM enables to preserve privacy by ensuring anonymous consultation from external doctors [4].
As it will be discussed in this article, there are several approaches to identity management being the
most popular the federated and user-centric approaches. These approaches provide many services as
the popular Single Sign On (SSO) across multiple trusted domains. SSO allows users of one domain to
securely access resources of another domain seamlessly, requiring no redundant login processes. Both
approaches have benefits and shortcomings, for instance, the federated model has scalability issues which
the user-centric model solves, but both of them can be used for a better privacy management.

Current IdM systems are not ready to cope with some aspects of privacy. Specifically, the user consent
revocation is not covered by any of the aforementioned identity management approaches. This fits
with the privacy view as control over the use and flow of one’s personal information [5]. Revoking
consent allows users grant or withdraw consent of specific actions over data to certain individuals. So
this mechanism is useful to enforce user’s role in the task of preserving her privacy. This property
is part of the privacy rules described by the HIPAA (Health Insurance Portability and Accountability
Act) [6] for health, OECD (Organization for Economic Cooperation and Developments) principles and
GLBA (Gramm–Leach–Bliley Act) for financial institutions, and the COPPA (Childrens Online Privacy
Protection Act) for parental control. E.U. citizens also have the right to revoke consent. This is not
in the European Union, where a person’s consent cannot be given prospectively and where consent
must be fully informed [7]. The E-Privacy Directive [8] addresses particular concerns in the use of
electronic communications to deal with personal data; however it alone does not provide an adequate
revocation solution, conferring as it does only limited rights on individuals to prevent types of processing
by withdrawing consent to such processing [9]. For instance, a parent may revoke his consent to allow a
social network to use his child’s personal information. Nevertheless, the research in this field is still in
its early stage.

In this article, we focus on the privacy concept within identity management systems (IdM) in
ubiquitous environments. Particularly, we have selected health care scenarios since they are among the
most sensitive scenarios. Our privacy-aware identity system implements an effective consent revocation
with an innovative event management that can be used in other scenarios. For this purpose, we assume
that the development of patients care can be broken down into events. These events describe a specific
situation and can be related to some participant entities. We propose a delegation protocol, which
issues a sleepyhead credential containing user’s attributes and access privileges that have been granted
beforehand but are kept latent. To use these attributes, an activation process is necessary. Our solution
proposes events to awake dormant privileges or part of them and incorporates several new features that
allow better scalability. For instance, emergency services are the entities which manage trust indirectly
by triggering events that will be used to determine which participants can access to user’s medical
information. Moreover, we provide a mathematical model that describes and evaluates the processes
of event arrivals and notification message management.
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The rest of this paper is structured as follows: Section 2 presents background regarding the main
privacy principles and rules and current identity management approaches, identifying the advantages
and drawbacks of each one in terms of privacy. Section 3 highlights the importance of revoking
consent and provides a comparative analysis of the privacy support in identity management systems.
Section 4 explains our proposal to enhance privacy in health care scenarios. A mathematical model,
which describes the event-driven system behavior, is also illustrated. Then, Section 5 introduces
implementation issues and shows simulation results concerning the event engine. In Section 6, we give
an overview about related work. Finally, Section 7 summarizes the presented work and presents the main
conclusions and future research lines.

2. Background

As mentioned before, privacy is complex to handle and needs to cope with different sensitivities
that depend, among others, on the context in which the information is used. Privacy comprises several
principles and rules such as anonymity, pseudonymity, unobservability, unlinkability, and revocation
consent. These concepts might have different definitions in the literature [10]. This section firstly
defines such concepts. Afterwards, we discuss how these concepts are addressed in identity management
systems, as well as privacy policies languages.

2.1. Principles and Rules of Privacy

• Anonymity can be defined as the state of being not identifiable within a set of subjects or entities,
also called the anonymity set. Another definition provided by the Common Criteria [11], asserts
that this property ensures that a user may use a resource or service without disclosing the user
identity. Cryptographic techniques, such as encryption, do not guarantee anonymity since an
observer could analyze traffic, eavesdrop the sender of the message and follow the message up to
the receiver, establishing certain relationships without having access to the unencrypted message.
Therefore, IdM systems must provide additional mechanisms, such as opaque identifiers to prevent
such inference.

• Pseudonymity is the use of pseudonyms as identifiers. An advantage of pseudonymity
technologies is that accountability for misbehavior can be enforced. Thus, this enables IdPs that
can link identifiers to real identities to make appropriate decisions when a user commits a crime or
offense in an IdM scenario.

• Unlinkability ensures that a user may consume multiple resources or services without letting other
entities to link these multiple resource or service accesses together. In particular, this property
allows users to interact with multiple organizations (SPs or IdPs), each of them able to map a user
to a given identity, using different identities. Moreover, IdM systems should provide mechanisms
to prevent collaborating organizations from linking a given user profile at one organization with
the same user profile at another. While it is relatively easy to let users create and maintain multiple
identities for themselves, ensuring that these identities remain unlinkable is not straightforward.
In particular, there is always a risk since patterns of usage and attribute values might leak enough
information to link the identities of a given user.
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• Unobservability permits a user to access resources or services avoiding other entities, especially
third parties, to observe that the resource or service is being used. Regarding identity management,
traffic analysis is a well-known example, which tries to violate this principle.

• Revocation consent allows users to withdraw consent of specific actions over data to certain
individuals. So this rule is useful to enforce user’s role in the task of preserving her privacy.

2.2. Current Identity Models

According to Josang et al. [12], the fundamental privacy protection principle is that exposure
of personal information should be minimized. If we transfer this concept to identity management
approaches, this means that the fewer parties involved in the management of the identity information the
better. Nevertheless, achieving a good degree of privacy implies observing every aforementioned privacy
principle. Furthermore, although the property of anonymity is one of the four principles of privacy, it
would be desirable that IdM systems support mechanisms to break the anonymity of a user for the
purpose of analysis or evidence under certain circumstances (e.g., a malicious user, lawful interception).

For clarity, we introduce here the main actors in an identity management scenario. (i) The Principal,
or the End User, who has a particular digital identity and interacts (usually via an user agent) with SPs.
(ii) the Service Provider (SP), which provides services and takes decisions about a particular subject
based on the identity information provided by (iii) the Identity Provider, that authenticates users,
manages identity information and shares identity information with various SPs upon user request.

2.2.1. Federated Identity Model

The identity federation model can be defined as a set of standards, technologies and agreements that
enable SPs to recognize user identities and entitlements from other SPs or IdPs. Thus, this approach
is based on groups of SPs and IdPs that have a pre-existing mutual trust relationship. Consequently,
specifications, such as Security Assertion Markup Language (SAML) [13], recommend using Public
Key Infrastructure (PKI) [14] for establishing trust relationships. Regarding the terminology of Liberty
Alliance (ID-FF) [15], the above groups are called members of the circle of trust (see Figure 1).

Federated models bring user attribute exchange, user account provisioning, entitlement management
and personalized service provisioning. Nevertheless, as far as usability and scalability are concerned,
this model has several drawbacks. For instance, it adds further legal and technical complexity, since to
be part of the circle of trust, an entity would need to sign a legal agreement. In addition, federated model
presents scalability issues when deployed in dynamic open environments due to rigidity and staticity
of the agreements between federated organizations. A comparative analysis of the underlying trust
mechanisms of the current frameworks for federated identity management can be found in [16].

From a privacy perspective, the federated identity approach has both advantages and disadvantages.
Regarding its advantages, it allows users to have multiple identities within a given domain. Similarly, the
federated model enables an entity to have different identities or identifiers in different domains. These
features make it possible for a single identity to have different identifiers in different domains, e.g., as
patient in a health care domain, as employee or student in another domain, etc. Moreover, from the
SP perspective, the identifier mapping permits different SPs to refer to the same user through different
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identifiers. Whereas the IdP needs to know the “real world” identity of a user, this user identity can be
anonymous for a specific SP, which provides additional privacy protection. However, it must be noted
that users never participate in the trust establishment process so they need to believe that the IdP will
behave honestly.

Figure 1. Federated model scenario. A user, after a successful authentication, can access
services from any service provider within the circle of trust. For instance, booking a flight,
then renting a car, and finally buying tickets for a show. Note that the IdP stores identity
information on behalf of the user.

The main drawback of this kind of federated identity models is that the privacy protection depends on
the privacy policy and the adherence of the IdP or SP to the policy, which can be a threat. For instance,
different SPs could be able to match personal information of the same user because of the mapping
between identifiers. In order to prevent this problem, identity frameworks such as SAML and Liberty,
advise the use of pairwise, directional opaque identifiers.

2.2.2. User-Centric Identity Model

The user-centric model places the user in the middle of a transaction. Thereby, this approach gives
users total control over their identities, as well as control over authentication and attribute exchange
processes. In this way, the user is no longer aside of the trust establishment process. However, this does
not mean that users should approve every transaction, but that data always flow through the user’s identity
agent. This approach indeed empowers users and follows better than the federated model the philosophy
of minimal disclosure defined by Josang. Moreover, from the usability perspective, the user-centric
identity model solves scalability problems and provides similar services as SSO, whereas is compatible
with the federated model.
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With regard to privacy, this model has both advantages and drawbacks. It introduces the concept of
meta-idp, which allows users to assert several kind of claims: user-generated and provider-generated
claims. These user electronic identities are typically stored in user’s equipment, such as his mobile
phone. User-centric identity technologies, such as InfoCards [17], allow users to select among their
multiple identities through identity selectors to identify herself to a service. Regarding identity selectors,
in [18] two types of information cards are specified: Personal or Self-Issued (claims about the user itself,
e.g., phone number, e-mail address, web address); and a Managed Information Cards, issued by IdPs.
The latter can be auditing, non-auditing, or auditing-optional to accommodate the needs of different
business models. The identity cards are metaphors of real id cards whereas the identity selector mimics
a wallet. However, it is worth mentioning here that, in the case of provider-generated claims, the user
must rely on the IdP honesty, as occurred in the federated model (see Figure 2).

Figure 2. User centric model. A user can access services from any service provider accepting
his/her credentials. For instance, booking a flight, then renting a car and finally buying tickets
for a show. Note that the information is provided always by the user.

The main disadvantage of user-centric approach is that it requires a complex design in order to avoid
privacy and trust issues with authentication and attribute verification. In order to assist the reader in
understanding this aspect, we provide the following example. If we consider a real world example in
which Bob may show his driver licence to a bartender to prove he is above the legal drinking age, we can
see that Bob is able to use his Id card without the Id card issuer’s knowledge. However, if we transfer
this example to a user-centric scenario, trust and privacy problems emerge, because no SP is obliged to
believe Bob when he asserts that he is old enough to legal buy alcoholic beverages. In this sense, it is
necessary that a trusted third party corroborates the above statement by using a provider-generated card.
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3. Motivation

Current identity management technologies are not ready to cope with user consent revocation in an
appropriate way. This is a relevant issue with regard to privacy-enhancing mechanisms, especially in
sensitive scenarios when sensitive data and profiles are shared. For instance, in health, economy and/or
parental control scenarios. In a health care scenario, the system must protect user’s privacy and allow
authorized entities (including humans) to access medical records conveniently. Moreover, privileges
permitting access to user attributes should be revoked in an effective way.

3.1. Lack of Appropriate Revocation in Current Identity Management Systems

Nowadays, the several federated and user-centric identity management frameworks have not
addressed this privacy rule. The privacy support of the aforementioned technologies is analyzed below.
SAML is a federated specification, which supports two types of identifiers to refer to users: transient
or one-time identifiers and persistent identifiers. On the one hand, transient identifiers ensure that a
user anonymously accesses a service during SSO process, since these identifiers are created for use
during a session and they are destroyed at the end. Thus, correlation between identifiers is avoided.
On the other hand, the persistent identifiers provide a persistent federation and remain active until they
are explicitly deleted. The permanent federation implies an account linkage process, which relates two
accounts associated to a user in different SPs. Note that it is recommended to use different pseudonyms
for each SP, in order to avoid different SPs belonging to the same federation to infer user behavior.

SAML supports partial anonymity in the sense that the IdP itself is able to know which user
corresponds to each identity. Indeed, SAML does not provide a solution from preventing IdPs from
tracking user’s visits to SPs. Regarding privacy policies, this technology allows to obtain a principal’s
consent or describe specific attributes to satisfy requirements to preserve privacy within a health care
community, through the XSPA-SAML profile [19]. Nevertheless, SAML standard states that privacy
must be considered, but concrete decisions are left to the implementors.

With regard to the Liberty Alliance federated model, it defines an Identity Governance Framework
(IGF) [20], which enables the creation of policies or contracts between an Attribute Provider (AP) and a
SP. Therefore, IGF includes two XML syntaxes: Attribute Requirement Markup Language (ARML)
and Attribute Authority Policy Markup Language (AAPML). Moreover, IGF defines basic privacy
constraints such as usage, storage, propagation and display of identity data. Thus, an attribute provider
creates statements to access and use protected attributes. At the same time, a SP may specify whether
the requested attributes will be discarded after usage. Furthermore, the SP could request to modify the
data or forward it to another SP. However, in [21], Liberty proposes a multi-level policy approach, which
does not consider any specification or rules for storing user preferences in a manner that would facilitate
the SPs to match the privacy policy levels in the attribute request with the levels in user’s preferences. As
SAML, Liberty offers long-term and one-time pseudonyms. Correspondingly, it must be noted that this
specification only allows a user to have one long-term pseudonym per SP to prevent user tracking across
different transactions. This is a big limitation. In addition, it does not protect against SPs cooperating to
share user pseudonyms in order to track users behavior. In order to overcome these problems, a set of
rules and recommendations are proposed in [22].
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In the case of InfoCards, this technology includes authenticated anonymity and pseudonymity, as well
as the ability to express privacy policies of SPs or Relying Parties (RPs). This user-centric framework
is characterized by defining a message flow that eliminates direct communication between the IdP and
the SP. Moreover, InfoCards allow the identity selector to encrypt the SP identity to prevent the IdP
from learning the SP identity when it receives a request for a token. Note that, this identity selector
applies user-centric principles in collecting user consent. Both features together are necessary to ensure
that an IdP cannot learn which SPs visit a given principal. The SAML Enhanced Client Proxy profile
(ECP) is similar, but currently it only has the first characteristic. However, some IdPs may require
knowledge of the RPs identity before issuing a requested token, or even if the IdP cannot learn the
visited SPs, user profiling is possible by colluding parties. Regarding OpenID, privacy considerations
are not addressed in the main specification and SSO can be performed between previously unknown
parties without any configuration. Thus, there is no trust model, the protocol operates in accordance
with the trust-all-comers philosophy. Although for some services requiring no verification this model
may be sufficient, this mechanism is too simple and unsafe for many other applications, leading to
privacy breaches. Nevertheless, an OpenID extension called PAPE (Provider Authentication Policy
Extension) [23], provides the means for a RP to request previously agreed upon authentication policies
being applied by the OpenID Provider and for an OpenID Provider to inform an RP what policies will
be used. Therefore, the decision to trust can be based on the knowledge of the authentication mechanism
employed. Hence, with this user-centric framework, RPs must decide for themselves which providers
are trustworthy, being able to enforce policies to the OpenID Provider’s response.

Table 1 summarizes the main privacy features grouped by IdM models. The technologies that have
been analyzed handle privacy by means of pseudonyms which can be transient or permanent. The
only exception is OpenID, which follows the trust-and-accept-all-comers principle and privacy is not
addressed. Moreover, it must be noted that InfoCards and SAML ECP profile address better the principle
of minimal disclosure. Current identity frameworks support partial anonymity, since authorities, as the
IdP, provides obfuscated identifiers. We want to stress the importance of privacy policies, since they are
the basic means that allow users to understand privacy implications in terms of attribute exchange or
delegation between different security domains. Though privacy policies are critical for users to give
their consent, they are often poorly defined, complex to implement, or simply out of scope of the
specifications.

3.2. The Need for a Time Independent Revocation System

The problem of revoking consent is covered by none of the aforementioned IdM technologies. Thus,
if personal data have been already shared, the effective revocation of consent implies an important
challenge to address. For instance, it requires dynamic updates to sticky policies.

Consider that Bob, a doctor, has been assigned to Alice for pre-diagnose. He should be authorized
to access Alice’s medical records (i.e., blood test) but after that evaluation, Bob privileges should be
revoked. If the revocation is based on time, as PKI-based solutions, Alice should wait some time until
Bob privileges expire to be sure he is no longer able to access her records. In this case, the time window
after Bob finishes the pre-diagnosis until the privileges are revoked is a window of opportunity Bob has,
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to access Alice records without explicit permission. This fact complicates the accounting, since after the
first legal access, further (illegal) accesses to records will be related to the initial authorization.

Table 1. Summary of privacy features in Identity Management.

IdM Technology Anonymity and
Pseudonimity

Unlinkability and
unobservability

Privacy Languages Revoking consent

Federated Model
(SAML/ID-FF)

Partial anonymity
(IdP knows user
identity).
No solution from
preventing IdPs
from tracking is
provided.

Transient and permanent
identifiers.
Different pseudonyms for
each SP recommended.
Confidentiality of
transaction recommended.
Cryptographic mechanisms
do not prevent from traffic
analysis attacks.

The XSPA-SAML
profile enables to obtain
user’s consent and
describe attributes to
preserve privacy in
health care.
An identity governance
framework is defined.

Not addressed

User-centric
Model
(InfoCards)

Included in the
specification

Message flow eliminates
direct communication
IdP-SP.
Identity selector may
encrypt SP identity to
prevent the IdP from
learning.

Allows to express
privacy policies of RPs.

Not addressed

Hybrid Model
(OpenID)

Not addressed Not addressed Not addressed Not addressed

To overcome this problem in time based revocation, the validity time of a given privilege set can be
set to a very short period of time, so the opportunity window is reduced. On the contrary, if the token
duration is longer than necessary, user’s sensitive information may be exposed to entities which should
not have access to that information during that time.

As a result of this previous discussion, our motivation is to provide a flexible event-based user
consent-revocation mechanism. So, in the previous scenario, after Bob finishes the pre-diagnosis, a
new event is issued (i.e., needs surgery) and Bob privileges are automatically revoked.

4. Enhancing Privacy: A Hybrid IdM Event-Driven Approach

In this section we present a hybrid identity model, because in health care scenarios attribute exchange
and delegation process cannot be completely user-centric, since in cases of critical accidents the user
cannot be able to give her consent. On the other hand, federated models raise privacy concerns since
medical records may be available to every entity within the circle of trust, even if there is no emergency.
Hence, we propose a hybrid model, which allows users to configure and track access to their medical
records while the identity providers are the entities in charge of storing and managing users’ sleepyhead
credential. Such sleepyhead credential is distributed through a delegation protocol for time-independent
revocation. The sleepyhead credential contains user’s attribute identifiers (i.e., her medical history),
as well as access privileges, which have been granted to beforehand but are latent. Thus, to use the
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aforementioned attributes or privileges, an activation process is necessary. Particularly, within health care
scenarios, we can model patients life cycle as event-driven [24,25]. Events are fired by trusted entities
when specific circumstances are met, and routed to required entities. We propose using these events
to awake the dormant privileges or part of them. Moreover, in order to prevent unauthorized access,
we require some entities to use a Privacy Engine, responsible for analyzing events and activating the
strictly needed attributes and privileges for each event. The following sections explain the assumptions
made during the design of our hybrid IdM event-aware as well as the proposed system and the way in
which the delegation protocol, along with the event engine, allows to revoke user consent. Finally, we
introduce a mathematical formulation of the event model.

4.1. Hypotheses

This section describes the assumptions on which our Sleepyhead Credential-based delegation protocol
has been built. We assume the existence of an event engine, which follows a notification model based
on the SIP-Specific Event Notify [26] specification to send events to entities (by means of broadcast
or unicast to registered entities). We assume that the entities persisting the medical records act as IdPs
and those requesting access to medical records acts as SPs. SPs, as hospitals, emergency services and
even individuals, as doctors, can issue events that will be routed to appropriate medical record holders
(IdPs) in order to unblock medical records. We assume that events follow well known workflows usually
triggered by well known trusted entities as emergency services. Moreover, events are achieved allowing
rogue entities to be traced if they interfere in the process. It should be noted that SPs and IdPs can
take the role of subscribers and notifiers, in some circumstances, either subscribing to different events
or notifying them. In order to clarify this last aspect, consider that some parts of the patient’s medical
history reside in different IdPs and depending on the required treatment, it is necessary to consult several
parts of the medical record, thereby an IdP can act as both client (subscriber) and server (notifier).
Besides, each entity can be subscribed to multiple types of events, as well as each event type can be
attended by several notifiers.

Patients life cycle modeled as event-driven, as well as Poisson distributed arrival rate of health care
events and service rate (i.e., patient arrivals at an emergency service) are widely adopted and well-known
by existing research work in the literature, such as [27–29]. Therefore, we suppose that the arrival
process of the events to our system conforms to Poisson distribution with parameter λ and the processing
time of these events conforms to exponential distribution, then from the queueing networks result [30],
the outgoing process of NOTIFY messages is also Poisson distribution (see Figure 3).

Concerning security, communication confidentiality should be granted specially for sensitive
environments like health care. For that reason we assume the use of HTTPS with mutual authentication
to handle message exchange. We assume as well that HTTPS certificates have been correctly issued and
distributed. Furthermore, note that it is necessary to take into account security considerations regarding
SIP SUBSCRIBE and NOTIFYmessages, given the high sensitivity of health care data considered in the
proposal. Therefore, both subscription and notification messages must be authenticated and authorized,
for instance to prevent the participating entities from subscribing multiple times or redirecting the
subscription of their neighbor either intentionally or accidentally. In this sense, SIP can use different
security mechanisms such as HTTP Digest or TLS. We recommend TLS for secure and encrypted SIP
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communications. Besides, all users utilize transient identifiers in order to preserve their anonymity while
enabling IdPs accountability enforcement in case of user’s misbehavior, according to the main principles
of privacy specified in Section 2. A Public Key Infrastructure (PKI) can be easily used to support secure
communication channels. Finally, we assume an underlying trust relationship based on PKI for entities
belonging to different domains.

Figure 3. Event queueing system.

4.2. SAML-Compliant Sleepyhead Credential

The Sleepyhead Credential (SC) has been defined as a new SAML assertion according to the SAML
proposal for delegation information defined in [31]. Thus, the Sleepyhead Credential is created with the
following tuple:

SC = {AttP1, AttP2, . . . , AttPn} (1)

where each component AttPi represents attributes and access privileges, which have been granted to
any entity beforehand but remains latent until activated. A Sleepyhead Credential is composed of fields,
including the following elements for delegation restriction: EventFilter, defines filters that will
be used by the Privacy Engine to analyze the received events and decide whether any attribute(s) may
be activated; TrustedEventSources, contains entity names whose events activate the credential;
EntityMedicalRepository, specifies the location and distribution of attributes and medical
records. The SAML assertion is defined as follows:

<complexType name="DelegationRestrictionType">

<complexContent>

<extension base="saml:ConditionAbstractType">

<sequence>

<element ref="del:EventFilter" maxOccurs="unbounded">

<element ref="del:TrustedEventSource" maxOccurs="unbounded">

<element ref="del:EntityMedicalRepository" maxOccurs="unbounded">
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</sequence>

</extension>

</complexContent>

</complexType>

This Sleepyhead Credential Assertion is exchanged using the SAML “Authentication
Request Protocol”. Therefore, the SAML requests and responses are exchanged using the bindings
defined in the specification and they are compliant with the rules defined for extending the schema.

Eventually, the IdPs will be the entities responsible for storing and managing the sleepyhead
credentials, since as we have mentioned before, in cases of serious accident, the user may not be able to
provide his credentials.

4.3. Privacy Engine

It is responsible for activating the latent attributes and privileges (following the principle of minimal
disclosure) depending on the different event filters and the defined privacy policies. To this end, it
analyzes the different elements which compose each event (i.e., issuer, situation, degree of severity),
as well as their purposes (i.e., health care treatment, operation, emergency treatment) and applies the
corresponding privacy policy. This policy includes the set of consent directives and other privacy
conditions (i.e., object filtering, user, role, purpose) that constrain enforcement.

On the other hand, the Privacy Engine includes an audit service for events, attribute activation, and
access control decisions. It monitors how user data is being used without compromising user’s identity.
To accomplish this, the fields that are logged must be able to show the auditor what information about
the user is being accessed without divulging the actual information. Note that this audit service itself will
not physically prevent privacy breaches from occurring, but it can act as a deterrent and allow individuals
and regulatory bodies to monitor how data is being shared, in order to prevent from linking and traffic
analysis attacks.

4.4. Mathematical Formalization of the Event-Based Model

The purpose of this section is to mathematically describe how our event-driven system operates. In
this sense, Markov’s chains provide support for problems involving decision on uncertainties through a
continuous period of time. Specifically, Markov models consider the patients in a discrete state of health,
and the events may represent the transition from one state to another. Moreover, these approaches enable
to model repetitive events and time dependence of probabilities [32]. So, we assume that events arrive
to the system according to a homogeneous Poisson process with rate λ and to be consistent with an
exponential distribution. A summary of the definitions and parameters that are used in this section is
shown in Table 2. Equation (2) defines the set of entities of the system (SPs or IdPs), Equations (3) and
(4) denote the notifiers and subscribers of the system, respectively. Finally, Equation (5) describes the
set of events that can be triggered by the system:

ES = {es1, es2, . . . , esNES
|ES|} (2)
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Table 2. Definition of the parameters for the event model.

Parameter Definition

NES Total number of entities in the system

NE Number of possible event types (matches the Markov’s chain states)

NN Number of notifier entities in the system

NS Number of subscriber entities in the system,

N t
N Number of notifiers in the system delivering events of type et

N t
S Number of entities subscribed to events of type et

ptN Percentage of notifiers in the system delivering events of type et

ptS Percentage of entities subscribed to events of type et

M t Message size to be transferred, considering the overhead introduced by the protocol, when an et

event is delivered

λt Rate of et event arrival

λt,k Rate of et event notification rate for notifier nk

λt
j Rate of arriving events of type et to entity ej

λt,k
j Rate of notified events of type et by the nk notifier that arrives to the entity ej

P t
en,j Percentage of notified events of type et by the nk notifier that arrives to the entity ej

µ Service time for notification of events of type et

c Number of servers or notifiers attending notification of et

ρ = λ/(cµ) Congestion of the system with parameters λ, µ and c

K Maximum number of notification messages that can be buffered by the queue

PN Probability of having n notification messages in the system

P0 Probability of having 0 notification messages in the system

Lq Notification message queue size

L Average notification messages in the system

Wq Average waiting time of notification messages in the queue

N = {n1, n2, . . . nNN
|N |} (3)

S = {s1, s2, . . . sNS
|S|} (4)

E = {e1, e2, . . . eNE
|E|} (5)
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where
NN,NS≤NES

NN +NS≤2NES

Nt
N =pt

NNN ≤NN

Nt
S=pt

SNS≤NS

(6)

Furthermore,being{N1,...,Nt,Nu,Nv,...,NNE}asubsetofN,i.e,notifiersubsetsofeventse1,

et,eu,ev,etc.,then

NE∪

t=1

Nt =

NE∑

t=1

Nt −
∑

t,u

Nt
∩

Nu +
∑

t,u,v

Nt
∩

Nu
∩

Nv +...+(−1)NE 1

NE∩

t=1

Nt (7)

NN =

NE∑

t=1

Nt −

NE∑

t=1

∪
Nt (8)

Similarlywithsubscribers,itcanbeestablishedthat,if{S1,...,SNE}aresubsetsofS,then

NS=

NE∑

t=1

St −

NE∑

t=1

∪
St (9)

Also,wedefineMtasthemessagesizetobetransferred(consideringtheoverheadintroducedbythe

protocol)whenaeventoftypeetisdelivered. Moreover,λtandλt,karetheeteventarrivalrateandet

eventnotificationratefornotifiernk,respectively.λt
j,λt,k

j andPt
en,jaretherateofeventsoftypeetthat

arrivestoentityej;andtherateandpercentageofeventsoftypeetnotifiedbythenknotifierthatarrive

totheentityej,respectively.Thus,wedefinetheratesas:

λt,k
j =Pt

en,jλ
t,k (10)

λt
j=

NNt∑

k=1

λt,k
j (11)

λt=

NNt∑

k=1

λt,k (12)

λ=

NNE∑

t=1

λt (13)

Hence,anentitycanbesubscribedtoseveralnotifiers.Onceaneteventhappens,thecorresponding

NOTIFYmessagesarescheduledtobesenttoalltheentitieswhicharesubscribedtothistypeofevent.

Figure3illustratestheprocesswhenaneteventisreceived,Nt
S NOTIFYmessagesaregenerated.

Thus,λtNt
S isthearrivalrateformessagesnotifyingeteventsandthereareNt

N notifiersorservers.

Inaddition,asexplainedbefore,theservicetimeforaneteventNOTIFYmessageisassumedtobe

exponentiallydistributedwithmean1/µ.Therefore,ifweconsideraqueueingsystemthathascservers

(beingc=Nt
N)withK finitecapacity,Poissondistributedincomingratesandexponentialdistributed

servicerates,thisqueueingsystemcanbedenotedbyM/M/c/K [33].Itisworthnotingthat,when

arrivinghealthcareeventsareplacedindifferentqueues,eachwillhaveadifferentservicepriority.

Weproposeaprioritydisciplinefordifferentcategoriesofeventsandthenafirst-in-first-outdiscipline
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foreachcategory.Forinstance,urgenteventswillhaveahigherprioritythannon-urgentevents,since

anemergencydepartmentshouldtreatpatientswithlife-threateninginjuriesbeforeothers. Moreover,

knowingtheaveragefrequencyofeventsperperiod,itispossibletoderivetheprobabilityofacertain

numberofeventstoarrivetothesystemforagivenperiod.ThisisderivedusingPoisson’sprobability

distribution:

Pn=

{
λn

n!µnP0 if l≤n<c
λn

cn cc!µnP0 if c≤n<K
(14)

P0=






(
c=1∑

n=0

rn

n!
+rc

c!
1 ρK c+1

1 ρ

) 1

if ρ̸=1
(

c=1∑

n=0

rn

n!
+rc

c!
(K−c+1)

) 1

if ρ=1

(15)

Besides,wehavetocalculatetheaveragelengthofeachNotifyqueueinordertoestimatetheoverhead

SIP-Event-Notifymessages:

Lq=
P0r

cρ

c!(1−ρ)2
[1−ρk c+1 −(1−ρ)(K−c+1)ρK c] (16)

L=Lq+r(1−PK),W = L
λ(1 Pk)

,Wq= L
λ(1 Pk)

− 1
µ

(17)

ForEquations(14)–(17)wedefineλ= λtNt
S andc= Nt

N. Eventually,accordingto[34]andusing

Equation(17),theaverageSIP-Event-Notify messagestosubscribetom resourcesandreceivethe

correspondingnotifications(irrespectivelyofthenumberofresourcesthattheentitysubscribesto)can

bedefinedas:

AverageSIP-Event-Notifymessages=6+2L (18)

5. Validation

Withtheaimtoevaluateourproposal,ontheonehandwehavecarriedoutaproof-of-conceptfocused

onvalidatingthedeliveryprocess(overSAML)ofsecuritydataandinformationrelatedtothedifferent

eventsthatarehappeninginthesystem.Thesleepyhead-baseddelegationprotocoloperation,thePrivacy

Engineandtheinteractionsamongdifferententitiesofoursystemhavebeenexaminedaswellfor

correctness.Inthisway,wecanprovethefeasibilityofourproposalandmakeeasierthedetermination

ofdeploymentrequirements.

Ontheotherhand, weconsidereditnecessarytoperformsomesimulationstoestimatethe

SIP-Event-Notifymessageoverheadgeneratedduringthesystemoperation.Thisisveryimportantin

ourapproach,becauseitisthemainextrapartthathasbeenaddedtothesystem.Theperformanceof

credentialissuingisnotrelevantwithregardtotime-basedcredentialissuingsystems,assofarwedo

nothaveasufficientlyrichecosystemoralargenumberofentitiestoconductarealexperiment. To

thisend,wehavesimulatedaneventenginethroughMatlab/Simulinktool[35],includingvariousevent

sequenceswithdifferentarrivalratesandservicetimesinarandomway.

Itisworthtomentionthataquantitativevalidationinordertoshowtheadvantagesobtainedwith

respecttotime-dependentrevocationsolutionshasnotbeenperformed,becauseofthescarcedeployment

ofconsentmanagementsystemsthatavoidstogetmeanvalues(e.g.,meantimeofcredentialvalidity)
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to do a fair comparison. Although metrics are not defined yet in this area and metrics used for PKC
revocation [36] do not apply directly to our proposal, we could use metrics as credential issuing overhead,
revocation list management cost, etc. These metrics can be calculated without taking into account
qualitative advantages, such as credentials being expired when these would be required, for example.
In addition, metrics related to delegation chain length are considered as future line.

5.1. Health Care Application Scenario

Let us start with some naming conventions for our health care scenario. We will use the term IdP for
entities archiving medical records, and with the term SP we refer to consumers of the medical records:
hospitals, ambulances and even individuals (doctors). Alice can authenticate by means of a credential
to the hospital that persists her medical history (i.e., IdP1). In case of an accident, IdPs will provide
access to SPs to Alice’s medical record (or part of it), according to the events. SPs should demonstrate to
IdPs, by means of any sort of authentication, that they are eligible (trusted entity as a hospital) to access
medical records.

In our scenario, Alice suffers an accident that triggers several events. The emergency service or 911
(SP1) requests access to Alice’s medical records in order to send them to an ambulance company (SP2)
in another trusted domain, which needs access to her medical records to provide Alice the appropriate
treatment. Thus, as events happen, they are notified to the involved parties, such as the medical record
service (IdP1) and the ambulance (SP2) which treats Alice. So the IdP1 may know which ambulance
should be allowed to access to medical histories.

Furthermore, every medical record access request should be related to an event and bound to a
purpose, which enables the IdP to filter the access to certain parts of medical history according to a
policy. Thus, in this example the following events could be distinguished:

• Event 1: There is an accident. SP1 notifies this event and calls all ambulance services close to the
area.

• Event 2: SP2, that is subscribed to SP1 events, arrives on the scene and requests access to Alice’s
medical history. It must give a description of the severity of the problem (event) to allow IdP1 to
give access to certain parts of Alice’s medical records or her full history to treat her (purpose).
To illustrate this, consider that Alice has broken her femur, has lost her consciousness and needs
surgery. In this case, access to the whole medical record could be provided. However, if the
problem is minor, as a sprained ankle, SP2 is allowed to access only to trauma and drug allergies
sections of the history.

• Event 3: Although not depicted in the Figure 4, another possible event would be fired if Alice is
taken to hospital (SP3). The hospital diagnoses her with trauma during the triage and determines
that Alice requires an operation. Therefore, a doctor belonging to the hospital (SP3) could read
Alice’s records.

It must be noted that events may be fired by authorized entities, like the emergency service or a
hospital urgency service. Likewise, events happen asynchronously and the duration of each event lasts
from the beginning of the event itself (T1) until another event arrives (T2) whose circumstances and
context have changed; and it may contain new requested attributes or privileges. Thus, certain attributes
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or privileges previously granted will be deactivated and new components of the sleepyhead credential
will be activated.

Figure 4. Health care event-based scenario across different domains.

5.2. Implementation Details

We have deployed our own identity management infrastructure using Lasso [37], a C library which
implements the full SAML 2.0/ID-FF stack. The IdPs of the systems are based on Authentic [38],
a software that has been developed from Lasso. This library uses OpenSSL as the underlying
cryptographic library and Apache2 as the web server. Regarding SPs, we have used ZXID [39].
Furthermore, with the aim to simulate the system of medical events through the SIP-Notify-Event
specification, we have deployed a Sailfin Application Server [40] and implemented a set of modules
that handle the associated logic to subscribe or register events as well as send appropriate notifications to
each of the participating entities. Moreover, we have deployed a Registrar Server to ensure participants
are authenticated and registered before exchanging any subscription or notification messages. Once
registered, entities might exchange messages containing an Event header that indicates the event type
to which the entity is subscribed. As for the Expire header, it specifies subscription duration. Finally,
event descriptions are sent through XML messages embedded in SIP requests.

The identity management architecture used for the experiments is depicted in Figure 5. We used that
architecture to introduce the modifications proposed in Section 4. For this purpose, we developed a
preliminary version of the Privacy Enginemodule that we are currently refining, which is able to receive
a data structure that represents the event filter and a hash table that contains the event sources. This
building block is in charge of checking that event notifiers are in its Dynamic Trust List (DTL) [16] and
accomplishes the decision making process that would determine under which conditions or restrictions
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can the attributes of the medical record be disclosed or the privileges be activated. Since the IdP is the
entity handling the medical records as well as the credentials, the Privacy Engine operation is closely
related to the IdP. Thus, the Privacy Engine in our solution is an addition to the original IdP.

Figure 5. Test architecture. It can be seen the different interactions between the entities (an
IdP and two SPs) through the exchange of SIP and SAML messages. Firstly, the SIP clients
are registered in the Registrar Server by sending REGISTER messages. Then, the SIP clients
subscribe to different events by means of SUBSCRIBE Requests. The SIP Server notifies
events to the subscribed entities through NOTIFY Responses. Once events are received, they
are analyzed by the Privacy Engine and the sleepyhead credentials are exchanged through
SAML requests and responses.

Besides, we have extended the Lasso library defining a new structure that represents the sleepyhead
credential SAML assertion, as well as its different fields and associated attributes. Such assertion
is exchanged through SAML messages. To do this, we have modified the metadata exchanged
by the IdP and the SPs in order to include the URL or the endpoints to which the sleepyhead
credential messages would be sent or from they would be received, i.e., the location of the
Sleepyhead Credential Consumer Service. In addition, it must be noted that the SP and
IdP have been extended by implementing the SAML-based delegation protocol. Thus, we are currently
working in order to integrate the new software components with the SIP-based event system to offer a
really enhanced privacy experience and to apply audit services for events.
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5.3. Simulation of the Event Engine

In this section we present and analyze initial results of the simulations carried out in order to calculate
the SIP-Notify-Eventmessages overhead and to demonstrate our system robustness and scalability.
Firstly, we have simulated an event engine by using the MATLAB mathematical tool, which generates
generic health care events that arrive to anM/M/c/K notification queueing system and they are served
as described in Section 4.4. For this purpose, we used a set of statistical data collected by the HES
(Hospital Episode Statistics) online service [41], which reflects basic information related to patient
arrival rates and waiting times within Emergency Departments of the main hospitals in England.

Figure 6 represents several plots of Equation (18) for an scenario composed by 10 subscribed entities
and distinct number of notifiers (from 5 to 35), with 1/µ = 1.25 events per minute,K = 100 and different
event arrival rates. As it is shown in Figure 6, the event engine based on the SIP-Specific-Event-Notify
protocol introduces an assumable message overhead, which grows linearly with the arrival frequency of
events to the system. It must be noted that, in the performed simulation the message overhead starts to
grow exponentially when the event arrival rate doubles the notifiers. This is clearly seen for 5 notifiers;
therefore, the parameter that represents congestion of the system is approaching to its saturation value
(ρ ≈ 1). So, it will be necessary to establish a trade-off between the number of notifiers that serve the
different type of events, the number of entities subscribed to them and the maximum size of the queue
for each event type, in order to avoid loss of messages without saturating the system.

Figure 6. Overhead SIP-Event Notify messages by varying the notification arrival rates and
the number of notifiers.

Currently, we are working on improving the event engine, by defining a Simulink model that enables
to represent our multi-server notification queueing system in a more realistic manner. Basically, this
model consists of the following components: Time-based Generators, Priority Queues, Event-based
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random Generators and Servers acting as notifiers. Regarding the priority queues, our system only
classifies the simulated health care events into two categories: “Urgent Events” and “Non-urgent
Events”. Thus, the system will serve first the events assigned with higher priority. Figure 7 illustrates
an example of the architecture of the multi-server notification queueing model. Furthermore, we aim
to use a more complete data set of the accident and emergency (A&E) attendance within HES, which
covers the period from April 2010 to March 2011 [42], in order to take into account aspects related
to emergency attendances and average times in the different patient’s treatment phases (i.e., primary
diagnosis, admission, diagnosis, treatment, etc.), depending on the month, day, hour of arrival, etc.
Further research could be done to contemplate more event categories and define new priority levels.

Figure 7. Multi-server notification queueing system that serves urgent events first. Example
of Simulink block diagram.

6. Related Work

As far as the related work is concerned, due to the increasing interest in e-health applications, security
and privacy are becoming important concerns for researchers. However, there is still scarce work
on effective revoking consent mechanisms within health care environments. The approach presented
in [43] is close to our work. The authors propose an activity-oriented access control model to protect
the confidentiality of health information, which consists of three levels: user level, activity level and
privilege level. Thus, this proposal is based on user activity to authorize access privileges and defines two
revocation mechanisms called single-step and multi-step revocations. However, possible activities in the
hospital and policies need to be defined in advance. In [44], a privacy-aware role-based access control
(P-RBAC) is presented, in order to express privacy policies. These policies are seamlessly integrated
with access control. In this same way, paper [45] presents the notion of consent and revocation policies
to express user’s preferences, within the context of the EU FP7 EnCoRe project [46]. This work has been
extended in [47] and [48] by proposing a conceptual model for privacy policies that can be integrated with
XACML (eXtensible Access Control Markup Languages). They also consider revocation of personal
data as well as previously granted privileges. Nevertheless, these works propose traditional revocation
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mechanisms such as temporal information being used to predefine policies. They do not take into account
dynamic scenarios or information systems designed for emergency situations.

7. Conclusions and Future Work

We have reviewed and analyzed the main identity models and current frameworks to preserve privacy
in identity management systems, identifying its main lacks and drawbacks. Specifically, in this work
we have addressed the relevant issue of effective consent revocation, since it is covered by none of the
analyzed IdM technologies and it is a must-have requirement in sensitive environments, such as health
care scenarios. Current approaches are focused on temporal information-based revocation mechanisms
being used to predefine policies. Thus, we have proposed a hybrid IdM event-driven model, which
includes a sleepyhead credential-based delegation protocol compliant with the SAMLv2 standard to
provide a more flexible user consent-revocation mechanism within health care scenarios. The main
advantages are that this credential is issued only once and would be used any time; while time-based
credentials have to be periodically re-issued, for short windows of time to minimize unauthorized
accesses, as required. Note that, a quantitative validation showing the advantages achieved has not
been provided, due to the scarce deployment of consent management infrastructure that avoids to obtain
mean values to perform a fair comparison.

Our solution proposes using events to wake up dormant privileges or part of them and it incorporates
new features that allow better scalability, since the emergency services are the entities which manage
trust indirectly. Moreover, in this paper we have presented a mathematical model based on Markov’s
chains and theory queues to determine and study different health care event arrivals to the system and
how they are handled and notified to the corresponding subscribed entities. To validate our solution, on
the one hand, we have implemented a proof-of-concept focused on testing the operation of the sleepyhead
credential-based delegation protocol and the Privacy Engine. On the other hand, we have applied the
aforementioned mathematical model to estimate the SIP-Event-Notify message overhead. Initial results
show that the event engine introduces an assumable message overhead. However, important parameters
such as the number of notifiers and the maximum size of the notification queue must be controlled in
order to avoid loss of messages without saturating the system. In addition, it must be noted that the usage
of the system also affects privacy and should be present in users consents. The auditing processes should
verify that the design and assumptions regarding future usage match its actual usage.

For future work, we want to test this last issue on real health care scenarios in order to demonstrate
how the privacy is managed by the system actors. Likewise, further analysis is needed in the topic
of self-revocation of sleepyhead credentials. We also plan to take into account different privacy
requirements for identity attributes, including biometric and health care data. Further research is also
needed in preserving user privacy during the exchange and sharing of attributes in different trust domains,
also considering usability of the system. Finally, as immediate future lines with regard to the event
engine, we plan to study in-depth aspects related to emergency attendances and average waiting times in
the different patient’s treatment phases to tackle more complex event arrival patterns.
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