
This document is published at:

Bellucci,A., Aedo,I., Díaz,P. (2017).ECCE Toolkit:
Prototyping Sensor-Based Interaction. Sensors,
17(3), 438.

DOI: https://doi.org/10.3390/s17030438

This work is licensed under a Creative Commons Attribution 4.0
International License
.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288500392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.is.2017.09.002
https://doi.org/10.1016/j.is.2017.09.002
https://doi.org/10.1016/j.is.2017.09.002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

sensors

Article

ECCE Toolkit: Prototyping Sensor-Based Interaction

Andrea Bellucci *, Ignacio Aedo and Paloma Díaz

Department of Computer Science, Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain;
aedo@ia.uc3m.es (I.A.); pdp@inf.uc3m.es (P.D.)
* Correspondence: abellucc@inf.uc3m.es; Tel.: +34-91-624-5935

Academic Editor: Gonzalo Pajares Martinsanz
Received: 20 September 2016; Accepted: 15 February 2017; Published: 23 February 2017

Abstract: Building and exploring physical user interfaces requires high technical skills and hours of
specialized work. The behavior of multiple devices with heterogeneous input/output channels
and connectivity has to be programmed in a context where not only the software interface
matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping
physical interaction is hindered by the challenges of: (1) programming interactions among physical
sensors/actuators and digital interfaces; (2) implementing functionality for different platforms
in different programming languages; and (3) building custom electronic-incorporated objects.
We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers
that copes with these issues by abstracting from low-level implementations, thus lowering the
complexity of prototyping small-scale, sensor-based physical interfaces to support the design process.
A user evaluation provides insights and use cases of the kind of applications that can be developed
with the toolkit.

Keywords: End-User Programming; toolkits; physical computing; sensor-based interaction

1. Introduction

Mark Weiser envisioned the real world to be pervaded by a wide range of computational devices
that harmonize with the environment, shaping ecosystems made up of coexisting and interweaved
devices, interactive surfaces, digital user interfaces, physical objects, sensors and actuators [1].
Such ecosystems, which rely on sensor-based interaction with physical devices, are packed with
opportunities to assist and enhance people’s everyday activities. Recent research projects, for
instance, have demonstrated how to integrate different sensing technologies in the physical space
and take advantage of multi-device interactions to effectively support collaborative tasks such as
programming [2] or collaborative learning [3]. However, these projects also reveal that effectively
prototyping sensor-based physical interfaces can be a difficult task [4] that, in most cases, requires
knowledge of electronics (e.g., build custom hardware with micro controllers), be familiar with
hardware drivers, communication protocols and many hours of programming work. The labor of
researchers and designers is hindered by challenges (C) that are intrinsic to the heterogeneity of the
devices in play and include:

C1. Programming interactions with physical components (e.g., sensors, physical inputs and actuators) and
digital interfaces (e.g., digital inputs). Physical systems rely on sensors and actuators to interact with
the real world. Sensors convert real world inputs into digital data, while actuators are used to
provide physical feedback or actions. Display-enabled devices allow interactions with graphical user
interfaces. This means that digital elements can trigger actions in the physical environment through
actuators, for instance a digital user interface can be displayed on a smartphone screen to manipulate a
pan-zoom-tilt outdoor camera. The same applies the other way round: data from physical sensors can
activate digital behaviors (e.g., send me an email when someone opens the door of my room, detected

Sensors 2017, 17, 438; doi:10.3390/s17030438 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 438 2 of 22

through a motion sensor). Programming the interaction among physical and digital components is not
a trivial task because it requires to define mapping strategies and interaction rules for devices with
heterogeneous inputs and outputs in order to generate the desired behaviors.

C2. Cross-device programming platforms and languages. Devices in an ecosystem vary not only in terms
of hardware capabilities but also for development platforms and languages used to program their
behavior. Considering, for example, mobile devices and micro-controllers: when the number and type
of devices grow, their integration produces a serious development overhead, because expert knowledge
is needed in specific programming languages, platforms, Integrated Development Environments
(IDEs) or Software Development Kits (SDKs). Solutions that are platform-agnostic (e.g., web-based
environments) and that abstract from low-level hardware details are therefore needed to lower the
threshold of developing interaction among heterogeneous devices and objects.

C3. Building custom interactive objects. Physical objects might be augmented with sensing capabilities
and actuators [5], e.g., adding a load sensor to a sofa would allow to notify when someone is seated.
This task introduces substantial hardware and software challenges. With respect to the hardware,
knowledge of electronics is required to build interactive objects, which in part is made it easier by
hardware toolkits such as Arduino [6] or Phidgets [7]. Regarding the software, low-level programming
against the particular technology is often necessary: this is a highly specialized task and, most of time,
developers cannot reuse the knowledge they acquired with a specific technology when they change to
another one.

The first two challenges are related to the need of reducing the effort in programming the user
interface and the behavior of multiple interconnected devices, and not just of one device, as addressed
by current programming tools. The third challenge addresses the need of building custom devices as
part of the ecosystem, as emphasized by the tangible computing research community [8]. Without the
appropriate development tools, the implementation of advanced designs is a task dependent on teams
of experienced developers. By lowering the skill barrier, toolkits for prototyping complex ecosystems
shift implementation efforts from low-level technical details to more sophisticated design nuances [9].
As a result, people without technical skills are empowered to explore and ideate innovative solutions
to their quotidian problems.

Even if there are many toolkits already available that ease different aspects of sensor-based
interaction, such as tinkering or rapid-prototyping [6], none of them has been designed to specifically
support researchers/designers in the integration of physical input/output with other interactive
devices, such as smartphones or interactive surfaces, and thus enable to seamlessly trying out different
design alternatives. In this paper, we describe Entities, Components, Couplings and Ecosystems
(ECCE), a toolkit for assisting researchers and designers with low electronics and programming
expertise in the rapid prototyping of small-scale sensor-based physical interfaces as part of their
research/design activities. The toolkit aims to lower technological barriers by abstracting from
low-level programming through tools for the quick definition of interactions between heterogeneous
devices through trigger-action [10] and programming-by-demonstration [11] approaches. While many
existing toolkits focus only on physical interaction (e.g., Phidgets [7]) or distributed interfaces and
cross-device interactions with existing devices (e.g., Weave [12] or Panelrama [13]), ECCE aims to offer
support to untrained end users in the design of custom-built interactive objects using off-the-shelf
sensors and actuators. It provides tools for the creation of platform-agnostic web-based interfaces
(JavaScript and HTML5) as well as platform-specific code (e.g., Arduino code for custom devices).
Finally, it guides the users in the deployment of the system logic into the actual devices of the
ecosystem. The toolkit, therefore, represents an advance of the state of the art with respect to the ease
of programming both the software and the hardware side of systems that interweave physical and
digital objects. This research advances our previous work [14,15] and provides novel contributions
to the body of knowledge on sensor-based interaction by (i) exposing the complexities of developing
small-scale physical systems; (ii) providing a survey of the state of the art; (iii) an in-depth discussion

Sensors 2017, 17, 438 3 of 22

of the design goals pursued by the ECCE toolkit; (iv) emerging designs from two workshops (8 and
16 participants) that shed light on the usefulness of the toolkit as well as on what functionality are
needed for an end-user toolkit to support novice users during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead for
future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications
that combine physical input/output with other platforms, such as smartphones, tablets or
interactive surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

meaning “no support”,
to

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

meaning “full support”.

Toolkit Physical/Digital
Interactions

Cross-Device
Programming

Build Custom
Interactive Objects

Arduino

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Phidgets

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Tinkerkit

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

iStuff/iStuff mobile

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Panelrama

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

WatchCONNECT

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

XDStudio

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Waive

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

d.tools/Exemplar

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Scratch4Arduino

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Node-RED

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

App Inventor

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Sensors 2017, 17, 438 3 of 22

the toolkit as well as on what functionality are needed for an end-user toolkit to support novice users
during the design process.

The remainder of the article is structured as follows: first, the contribution is framed with respect
to the state of the art. Then, the ECCE toolkit is presented, focusing on the challenges that led to the
design of functionality to support the design process. We then present results from two workshops
we conducted to evaluate the toolkit range and support to prototyping activities and to highlight the
strengths and limitations of this research. Finally, we draw conclusions and outline the road ahead
for future development.

2. Related Work

We discuss the state of the art of toolkits for sensor-based physical computing and cross-device
interactions. We also examine the literature on End-User Programming, focusing on techniques to
allow non-expert users to create physical interfaces. The goal of ECCE is to support the design process
through rapid prototyping by easing the programming of physical/digital interactions: it is therefore
out of the scope of this research to address infrastructure issues for the development of medium to
large scale ecosystems (e.g., HomeOS [16] and OpenHAB [17]). We frame our contribution according
to the three aforementioned challenges (see Table 1 for an overview):

1. Physical/digital interactions: does the toolkit support the development of applications that
combine physical input/output with other platforms, such as smartphones, tablets or interactive
surfaces?

2. Cross-device programming: does the toolkit simplify development by a common programming
environment and language for different platforms or devices?

3. Build custom interactive objects: does the toolkit offer support to the end user in building custom
sensor-based physical devices?

Table 1. Overview of the state of the art according to the challenges addressed by the ECCE toolkit.
We used Harvey Balls ideograms to provide a qualitative evaluation, from meaning “no
support”, to meaning “full support”.

Toolkit
Physical/Digital

Interactions
Cross-Device
Programming

Build Custom
Interactive Objects

Arduino
Phidgets
Tinkerkit

iStuff/iStuff mobile
Panelrama

WatchCONNECT
XDStudio

Waive
d.tools/Exemplar
Scratch4Arduino

Node-RED
App Inventor

Earlier evaluations of physical computing environments have been carried out [18,19] that
uncover the problems end users encounter when developing physical systems as well as the
functionality an end-user toolkit should expose to support untrained users in this kind of
programming task. In particular, the study from Booth et al. [19] showed that, to be successful, users

Earlier evaluations of physical computing environments have been carried out [18,19] that uncover
the problems end users encounter when developing physical systems as well as the functionality
an end-user toolkit should expose to support untrained users in this kind of programming task.

Sensors 2017, 17, 438 4 of 22

In particular, the study from Booth et al. [19] showed that, to be successful, users are expected to
be sufficiently proficient at both programming and building electronic circuits. The knowledge of
electronics required to build interactive objects is in part made it easier by the availability of hardware
toolkits [6,7]. Regarding the software, low-level programming against a particular technology is a
highly specialized task and developers have been found to struggle with debugging and program
construction. Other works [20] have outlined learning barriers end-users face in programming Arduino
micro-controllers with a textual and visual development environments. Issues span from design
barriers, for instance the user does not know if a sensor has to be connected as an input or output, to
understanding barriers, which occurs when users were not able to understand “why something did
not happened when it was supposed to” [20]. The study suggests that visual environments have a
positive impact on the user experience and that visual languages are a promising tool for supporting
untrained end users in physical programming tasks.

2.1. Toolkits for Physical Computing

Arduino [6] was developed to ease the creation of physical interaction. Arduino is an open-source
electronics prototyping platform based on flexible, easy-to-use hardware and software. It still requires
electronics and programming knowledge. Integration of sensors and actuators into a prototype, in fact,
requires the building of a circuit, which connects the sensors with the Arduino micro-controller, and
programming the software of the microcontroller to make sense of the data gathered. Arduino IDE,
moreover, offers basic functionality for programming and compiling the source code and lacks the
features of modern IDEs, such as automatic error detection and code completion. Phidgets [7] and
iStuff [21] are other toolkits that ease physical prototyping. Phidgets works on the level of electrical
components by providing an extensive range of ready-to-use physical input devices, such as buttons
or sliders, sensors such as touch or proximity and actuators such as servo motors or relays. It offers
an Application Programming Interface to define the behavior of physical widgets, thus targeting
users with programming expertise. iStuff does not have the versatility of the two previous toolkits in
terms of combinations of physical inputs/outputs but its design rationale and software architecture
focus on prototyping interactive physical environments. iStuff, in fact, provides a platform to connect
lightweight devices that enable users to interact with displays and user interface applications that
coexist in a digitally-augmented space.

2.2. Toolkits for Cross-Device Interactions

Given the increasing availability of multi-surface environments, many high-level tools have
been proposed for building applications that support distributed user interfaces that span across
multiple surfaces and devices [12,13,22,23]. The majority of tools use web-based technologies to build
device- and platform-agnostic interfaces. However, current solutions (i) focus only on off-the-shelf
devices and do not provide support for novel sensor-based interaction with custom-made interactive
objects; and (ii) they heavily rely on textual programming (e.g., scripting languages), thus targeting
tech-savvy users. Weave [12], provides an authoring environment for interweaving off-the-shelf
wearables and mobile devices. It uses JavaScript for the definition of cross-device behaviors and
HTML for the user interface components. Panelrama [13] targets web applications and enables
cross-device interaction by extending the HTML language with additional tags for the definition of
distributed interfaces. XDStudio [22] provides a visual tool for interactively designing cross-device
interfaces. It facilitates the simulation of target devices, thus enabling the authoring of cross-device
behaviors on a single device, and also the deployment of the generated interfaces on the devices.
WatchCONNECT [23] explores sensor-based interactions focusing on smartwatches. It represents an
exception to the previous toolkits and APIs since it provides a custom and extendable platform for
prototyping smartwatches interactions with other off-the-shelf devices. However, the toolkit focuses
on gestural interaction with wearable devices and does not support, for example, the implementation

Sensors 2017, 17, 438 5 of 22

of other types of custom tangibles. It also seems to support only interactions between one single
wearable device and another display-enabled device.

2.3. End-User Programming for Ubiquitous Interaction

As reported by Lieberman et al. [24], techniques to support end users in the programming
task include: scripting languages, domain-specific languages, programming-by-demonstration,
tailoring, configurability, visual languages and natural programming environments. Relevant for this
research is visual programming, which allow end-users to create programs by manipulating graphic
elements rather than by textual specification [25] and programming-by-demonstration, in which
“users provide example interactions and the system infers a routine from them” without requiring
textual programming [24] (p. 3).

d.tools [26] is one of the first attempts to introduce End-User Programming (EUP) techniques
for authoring ubiquitous interaction. It supports visual programming via a visual state chart editor.
The system was later extended by Exemplar [11], which exploits the programming-by-demonstration
technique to enable interaction via sensor data. iStuff mobile [27] is built on top of iStuff [21] and it
provides a software architecture and visual language to prototype interactions between physical objects,
enhanced with sensors and actuators, and mobile devices. The project pushes forward the vision of
interweaved devices, but no information is provided about (i) the implementation effort required to
program cross-device interactions; (ii) how the system bridges communication among heterogeneous
devices; or (iii) how the system could be extended to include new devices. Other environments have
embraced visual programming for prototyping physical interaction. For instance, Scratch4Arduino [28]
exploits the Scratch visual environment and visual syntax [29] to program the Arduino hardware
through the composition of logical blocks on the screen. However, Scratch4Arduino is meant for
educational purposes and to ease the transition to a classical textual programming language, thus it
does not provide support for building complex device ecosystems. More advanced tools for this task
are Node-RED [30] and MIT App Inventor [31]. Node-RED implements a visual data-flow language
to interweave smart things. It provides high configurability and extensibility and it is powered by
crowd-based development that enables people to reuse code created by others. However, users still
need to have programming knowledge to create useful programs, it does not support interactions with
mobile devices and does not offer direct support for interconnecting devices. MIT App Inventor offers
a visual environment for building mobile user interfaces via drag-and-drop graphical elements and
programming device behaviors (including sensors) via a Scratch-like approach. It is limited to mobile
devices and it does not support cross-device interfaces. Therefore, integrating different devices in the
same environment would still require considerable engineering effort.

3. The ECCE Toolkit

To address the previously mentioned challenges, the ECCE (Entities, Components, Couplings
and Ecosystems) Toolkit pursues the following design goals that has been informed by the analysis
of the state of the art, with a special focus on end-user development for physical computing [19,20],
and our personal experience in developing physical systems in our research laboratory (e.g., [32]):

G1 Support physical design: Prevent users’ error in circuit construction [19] by providing tools
that support the end user both in the circuit design as well as the physical assemblage of
electronic-incorporated objects.

G2 Span heterogeneous hardware: Support the seamless inclusion of diverse off-the-shelf devices
(e.g., smartphones and tablets) as well as hardware platforms for building custom electronic-
incorporated objects (e.g., low-cost microcontrollers).

G3 Extensibility: Extending the API both at the micro-level (adding new functionality within the
context of a single project) as well as at the macro-level (extending the toolkit for the entire end-user
community by adding new devices and functionality).

Sensors 2017, 17, 438 6 of 22

G4 Ease of physical/digital programming: Support end users in creating interactions between physical and
digital component with end-user development tools and techniques that ease program construction for
physical interaction. As the state of the art uncovers [19], in physical computing tasks users struggle
with basic programming activities, such as read data from sensors or define the correct threshold
values for triggering sensor-based events.

The state of the art shows that EUD is critical for the development of device ecosystems, since it is
inconceivable to determine at design time all the possible configurations of ubiquitous technologies
and the way users are willing to interact with them. There is also a clear evidence that coping with
the integration of heterogeneous technologies is a difficult task (G2) [4]. The technical complexity
of building device ecosystems limits their current design [7]: as a result, high level activities are
often inhibited by simplistic implementations. We cannot assume a high level of technical expertise
for the designers using ECCE. Supporting unexperienced users (G4) aims to include new design
participants [33] and favors faster adoption of the toolkit, which in turn would provide opportunities
to better understand the needs of designers/researchers working on the development of physical
computing systems. The main goal of the ECCE toolkit is to offer tools to bypass the technological
barrier, hence making the setup of device ecosystem less burdensome and allow end users to focus
on their primary task. Our toolkit builds on the top of previous research and adds EUD support in
terms of a comprehensive visual environment that allows to connect off-the-shelf mobile devices with
custom-built physical interfaces (G2), assisting the physical design (G1) as well as the implementation
and deployment of augmented devices together with the definition of interactions among them (G4).

The toolkit implements a graphical web-based interface for authoring sensor-based physical
interactions (Figure 1). The ECCE Authoring Environment provides three main modules (Figure 2):

1. The Entities & Components Editor assists the design of the user interface as well as the physical
assemblage of sensor and actuators. ECCE supports both readily available devices such as
smartphones, tablets or interactive tabletops and surfaces as well as electronic-incorporated
objects, e.g., Arduino-based physical user interfaces. This module addresses challenge C3,
(building custom sensor-based electronic-incorporated devices) through design goals G1
(support physical design) and G2 (span heterogeneous hardware);

2. The Couplings Editor enables the user to define interactions between devices by means of
event-based behaviors, taking into account the capabilities of the components of each device.
This module enables interaction with physical and digital elements (C1) adhering to design goals
G2 (span heterogeneous hardware) and G4 (ease of physical/digital programming). It enables
end users to define interaction rules and sensor trigger values by means of a graphical interface
and exploit the programming-by-demonstration paradigm, thus coping with aforementioned
issues of program construction for physical computing (G4).

3. The Ecosystem Code Generator automatically generates the Entity Runtime source code
(web applications as well as microcontrollers code) by parsing XML-descriptors created
with the authoring tool. The runtime code is deployed on target devices according to its
development environment and capabilities, thus addressing C2 (managing different platforms
and programming languages). The Ecosystem Code Generator also instantiates the logic of the
Ecosystem Server that embeds the functionality to setup and to transparently manage data routing
among heterogeneous networked devices and sensors (G2).

ECCE has been designed to provide a modular architecture based on definition of devices through
XML templates and to allow designers and developers to extend the features for a specific project or an
entire community (G3). The user interface of the authoring environment follows the rationale of similar
environments such as MIT App Inventor [31]; it provides editors that conceptualize the workflow into
separate tasks of (i) building the interface; (ii) programming the behavior and (iii) deploy and run
the application.

Sensors 2017, 17, 438 7 of 22

Sensors 2017, 17, 438 7 of 22

Figure 1. Web interface of the ECCE Authoring Environment to create an ecosystem: (1) add/edit new
entities via the Entity & Components Editor and (2) define their behavior (Couplings Editor). By
selecting an existing entity, a preview gives users a prompt feedback regarding the entity design. (3)
Users can automatically generate the runtime code of the entities as well as the server logic (Ecosystem
Code Generator).

Figure 2. The architecture for creating a device ecosystem with ECCE.

3.1. Composition of Interactive Devices with the ECCE Authoring Environment

The Entities & Components Editor (Figures 3 and 4) module enables new devices to be added to
the ecosystem by (i) using existing mobile devices such as tablets or smartphones, laptops and multi-
touch surfaces such as tabletops, see-through displays or projected surfaces or (ii) building custom
sensor-based interactive objects with off-the-shelf micro-controllers, sensors and actuators. In the
Entities & Components Editor, each entity is designed as the aggregation of different components
both physical and digital. Examples of physical components that are (i) sensors such as
accelerometers, gyroscopes, distance, luminosity, load and flex sensors; (ii) physical input devices
such as potentiometers, joysticks or RFID readers; and (iii) actuators such as speakers, motors or
LEDs. Digital components—the elements of the graphical interface—can be defined for entities that

Figure 1. Web interface of the ECCE Authoring Environment to create an ecosystem: (1) add/edit
new entities via the Entity & Components Editor and (2) define their behavior (Couplings Editor).
By selecting an existing entity, a preview gives users a prompt feedback regarding the entity design.
(3) Users can automatically generate the runtime code of the entities as well as the server logic
(Ecosystem Code Generator).

Sensors 2017, 17, 438 7 of 22

Figure 1. Web interface of the ECCE Authoring Environment to create an ecosystem: (1) add/edit new
entities via the Entity & Components Editor and (2) define their behavior (Couplings Editor). By
selecting an existing entity, a preview gives users a prompt feedback regarding the entity design. (3)
Users can automatically generate the runtime code of the entities as well as the server logic (Ecosystem
Code Generator).

Figure 2. The architecture for creating a device ecosystem with ECCE.

3.1. Composition of Interactive Devices with the ECCE Authoring Environment

The Entities & Components Editor (Figures 3 and 4) module enables new devices to be added to
the ecosystem by (i) using existing mobile devices such as tablets or smartphones, laptops and multi-
touch surfaces such as tabletops, see-through displays or projected surfaces or (ii) building custom
sensor-based interactive objects with off-the-shelf micro-controllers, sensors and actuators. In the
Entities & Components Editor, each entity is designed as the aggregation of different components
both physical and digital. Examples of physical components that are (i) sensors such as
accelerometers, gyroscopes, distance, luminosity, load and flex sensors; (ii) physical input devices
such as potentiometers, joysticks or RFID readers; and (iii) actuators such as speakers, motors or
LEDs. Digital components—the elements of the graphical interface—can be defined for entities that

Figure 2. The architecture for creating a device ecosystem with ECCE.

3.1. Composition of Interactive Devices with the ECCE Authoring Environment

The Entities & Components Editor (Figures 3 and 4) module enables new devices to be added
to the ecosystem by (i) using existing mobile devices such as tablets or smartphones, laptops and
multi-touch surfaces such as tabletops, see-through displays or projected surfaces or (ii) building
custom sensor-based interactive objects with off-the-shelf micro-controllers, sensors and actuators.
In the Entities & Components Editor, each entity is designed as the aggregation of different
components both physical and digital. Examples of physical components that are (i) sensors such as
accelerometers, gyroscopes, distance, luminosity, load and flex sensors; (ii) physical input devices such
as potentiometers, joysticks or RFID readers; and (iii) actuators such as speakers, motors or LEDs.
Digital components—the elements of the graphical interface—can be defined for entities that feature a
display screen. They are labels, digital buttons, sliders, video streams and the like. New entities can be
created by selecting from a list of predefined entities (Figure 1).

Sensors 2017, 17, 438 8 of 22

Sensors 2017, 17, 438 8 of 22

feature a display screen. They are labels, digital buttons, sliders, video streams and the like. New
entities can be created by selecting from a list of predefined entities (Figure 1).

Figure 3. A screenshot of the web interface for the definition of Tinkerkit-based interactive entities.
Users can (a) drag-and-drop sensors and actuators from a palette of components to the desired port.

Figure 4. A screenshot of the web interface for editing off-the-shelf devices with a display screen. User
can (a) add sensors and interface elements from a palette, and (b) configure the properties of digital
elements on the screen.

Once the user chooses to add a new entity or edit an existing one (Figure 1), the web interface
allows to configure entities by dragging-and-dropping elements from a palette (Figures 3a and 4a).
The web interface generates an XML description of the interactive entity from templates of display-
enabled devices or micro-controller based interactive objects. Such description will be parsed by the
Ecosystem Code Generator to generate the software logic to manage physical and digital input/output
on host devices (the Entity Runtime). This approach provides the backbone for the development of
physical/digital interactions that are independent of the underlying hardware and can be extended
to include additional elements (Section 3.5). An XML file describes both the physical and the digital
components of an interactive object, and provides the references for the definition of interaction rules
between physical and digital elements [15].

As an example, Figure 5 shows excerpts from the XML file that stores the templates for physical
sensors in the ECCE toolkit. Each sensor has a field (sensor_type) that defines the type of sensor (e.g.,
button, touch, proximity), an optional controller that identifies different implementations of the same
sensor type (e.g., infrared proximity sensor versus ultrasonic range finder) and a unique identifier
(uuid). Each sensor generates data of a different datatype—(i) high/low boolean values; (ii) discrete
values within a range or; (iii) string—that can be mapped to produce output values according to
different mapping functions. For example, a proximity sensor can send raw values as directly read
from the sensor or use a utility function (getDistanceCm in the example in Figure 5) to convert raw

Figure 3. A screenshot of the web interface for the definition of Tinkerkit-based interactive entities.
Users can (a) drag-and-drop sensors and actuators from a palette of components to the desired port.

Sensors 2017, 17, 438 8 of 22

feature a display screen. They are labels, digital buttons, sliders, video streams and the like. New
entities can be created by selecting from a list of predefined entities (Figure 1).

Figure 3. A screenshot of the web interface for the definition of Tinkerkit-based interactive entities.
Users can (a) drag-and-drop sensors and actuators from a palette of components to the desired port.

Figure 4. A screenshot of the web interface for editing off-the-shelf devices with a display screen. User
can (a) add sensors and interface elements from a palette, and (b) configure the properties of digital
elements on the screen.

Once the user chooses to add a new entity or edit an existing one (Figure 1), the web interface
allows to configure entities by dragging-and-dropping elements from a palette (Figures 3a and 4a).
The web interface generates an XML description of the interactive entity from templates of display-
enabled devices or micro-controller based interactive objects. Such description will be parsed by the
Ecosystem Code Generator to generate the software logic to manage physical and digital input/output
on host devices (the Entity Runtime). This approach provides the backbone for the development of
physical/digital interactions that are independent of the underlying hardware and can be extended
to include additional elements (Section 3.5). An XML file describes both the physical and the digital
components of an interactive object, and provides the references for the definition of interaction rules
between physical and digital elements [15].

As an example, Figure 5 shows excerpts from the XML file that stores the templates for physical
sensors in the ECCE toolkit. Each sensor has a field (sensor_type) that defines the type of sensor (e.g.,
button, touch, proximity), an optional controller that identifies different implementations of the same
sensor type (e.g., infrared proximity sensor versus ultrasonic range finder) and a unique identifier
(uuid). Each sensor generates data of a different datatype—(i) high/low boolean values; (ii) discrete
values within a range or; (iii) string—that can be mapped to produce output values according to
different mapping functions. For example, a proximity sensor can send raw values as directly read
from the sensor or use a utility function (getDistanceCm in the example in Figure 5) to convert raw

Figure 4. A screenshot of the web interface for editing off-the-shelf devices with a display screen. User
can (a) add sensors and interface elements from a palette, and (b) configure the properties of digital
elements on the screen.

Once the user chooses to add a new entity or edit an existing one (Figure 1), the web
interface allows to configure entities by dragging-and-dropping elements from a palette (Figures 3a
and 4a). The web interface generates an XML description of the interactive entity from templates
of display-enabled devices or micro-controller based interactive objects. Such description will be
parsed by the Ecosystem Code Generator to generate the software logic to manage physical and digital
input/output on host devices (the Entity Runtime). This approach provides the backbone for the
development of physical/digital interactions that are independent of the underlying hardware and
can be extended to include additional elements (Section 3.5). An XML file describes both the physical
and the digital components of an interactive object, and provides the references for the definition of
interaction rules between physical and digital elements [15].

As an example, Figure 5 shows excerpts from the XML file that stores the templates for physical
sensors in the ECCE toolkit. Each sensor has a field (sensor_type) that defines the type of sensor
(e.g., button, touch, proximity), an optional controller that identifies different implementations of the
same sensor type (e.g., infrared proximity sensor versus ultrasonic range finder) and a unique identifier
(uuid). Each sensor generates data of a different datatype—(i) high/low boolean values; (ii) discrete
values within a range or; (iii) string—that can be mapped to produce output values according to
different mapping functions. For example, a proximity sensor can send raw values as directly read

Sensors 2017, 17, 438 9 of 22

from the sensor or use a utility function (getDistanceCm in the example in Figure 5) to convert raw
data in the actual distance in centimeters. The XML code in Figure 5 is provided by the toolkit
and it can be extended by users to create additional functionality or add new sensors as shown in
Section 3.5. The XML description provides templates for sensors and UI elements that are completed
with additional information at the time the user selects the component in his/her project. For example,
the actual pin for a sensor will be specified in the output tag once the user will drop the sensor in the
desired port (Figure 3).

Sensors 2017, 17, 438 9 of 22

data in the actual distance in centimeters. The XML code in Figure 5 is provided by the toolkit and it
can be extended by users to create additional functionality or add new sensors as shown in Section
3.5. The XML description provides templates for sensors and UI elements that are completed with
additional information at the time the user selects the component in his/her project. For example, the
actual pin for a sensor will be specified in the output tag once the user will drop the sensor in the
desired port (Figure 3).

Figure 5. Excerpts from the XML file with the templates for the definition of sensors: (a) a button; (b)
a touch sensor and; (c) a proximity sensor.

For interactive objects, the toolkit visually supports the physical design by providing an interface
that resembles the physical board and guides the users to plug the desired sensors and actuators in
the correct port (Figure 3). The physical board provides a color code—white for inputs components
and orange for outputs components—and the interface allows to drop components only in the correct
port, thus supporting users in avoiding configuration errors. In the case of available devices, the
toolkit grants access to built-in sensors (e.g., triple-axis accelerometer, magnetometer and light sensor
for Android devices) and supports the design of the graphical user interface (Figure 4). Users can
drag-and-drop digital components on the representation of the display screen (Figure 4a)—
proportional to the real screen size—and customize the look-and-feel and properties of each
component (Figure 4b).

3.2. Definition of Cross-Device Behaviors

The previous tool provides a coherent definition of all the objects in the ecosystem in terms of
their components and attributes. The Couplings Editor exploits these descriptions to link components
using rules that manage the interplay between physical and digital components. Again, a graphical
interface is provided for the end-user configurability of behaviors (Figure 6). ECCE has been
developed to allow a wide range of integration of physical and digital components following an
event-driven approach. At this stage of development, cross-device behaviors can be implemented
with two sensors/actuators couplings:

 Direct mappings: there is a one-to-one mapping of the input value into the outcome value. The
toolkit manages the mapping for the user and the interface enables users to select only viable
mappings (e.g., Boolean input values with boolean outputs, discrete input values with discrete
outputs, etc.). An example of a direct mapping is linking the movement of a potentiometer to
the rotation of a servomotor. The potentiometer provides values from the range 0..1023 and,
therefore, a mapping from 0..1023 to 0..179 will give the correct output for the servomotor. On
the target object, the actuator will update its status according to the output value;

 Trigger-action rules: “if-this-then-that” productions, which have demonstrated to be powerful
enough to enable a wide range of smart behaviors for device ecosystems [10]: if the value of the

Figure 5. Excerpts from the XML file with the templates for the definition of sensors: (a) a button; (b) a
touch sensor and; (c) a proximity sensor.

For interactive objects, the toolkit visually supports the physical design by providing an interface
that resembles the physical board and guides the users to plug the desired sensors and actuators in the
correct port (Figure 3). The physical board provides a color code—white for inputs components
and orange for outputs components—and the interface allows to drop components only in the
correct port, thus supporting users in avoiding configuration errors. In the case of available
devices, the toolkit grants access to built-in sensors (e.g., triple-axis accelerometer, magnetometer
and light sensor for Android devices) and supports the design of the graphical user interface
(Figure 4). Users can drag-and-drop digital components on the representation of the display screen
(Figure 4a)—proportional to the real screen size—and customize the look-and-feel and properties of
each component (Figure 4b).

3.2. Definition of Cross-Device Behaviors

The previous tool provides a coherent definition of all the objects in the ecosystem in terms of their
components and attributes. The Couplings Editor exploits these descriptions to link components using
rules that manage the interplay between physical and digital components. Again, a graphical interface
is provided for the end-user configurability of behaviors (Figure 6). ECCE has been developed to
allow a wide range of integration of physical and digital components following an event-driven
approach. At this stage of development, cross-device behaviors can be implemented with two
sensors/actuators couplings:

• Direct mappings: there is a one-to-one mapping of the input value into the outcome value.
The toolkit manages the mapping for the user and the interface enables users to select only
viable mappings (e.g., Boolean input values with boolean outputs, discrete input values with
discrete outputs, etc.). An example of a direct mapping is linking the movement of a potentiometer
to the rotation of a servomotor. The potentiometer provides values from the range 0..1023 and,
therefore, a mapping from 0..1023 to 0..179 will give the correct output for the servomotor. On the
target object, the actuator will update its status according to the output value;

• Trigger-action rules: “if-this-then-that” productions, which have demonstrated to be powerful
enough to enable a wide range of smart behaviors for device ecosystems [10]: if the value of the

Sensors 2017, 17, 438 10 of 22

event matches the trigger of the rule, then the corresponding output is activated on the target
object. An example is changing the color of a digital object (e.g., the background of a projected
display) when someone in the physical world is far from a particular physical object augmented
with a distance sensor (e.g., a door).

Sensors 2017, 17, 438 10 of 22

event matches the trigger of the rule, then the corresponding output is activated on the target
object. An example is changing the color of a digital object (e.g., the background of a projected
display) when someone in the physical world is far from a particular physical object augmented
with a distance sensor (e.g., a door).

(a)

(b)

Figure 6. Screenshot of the interface for configuring cross-device behaviors. (a) A direct mapping: The
button on port I2 (see Figure 3) is used to toggle the visibility of a label on the graphical interface of a
tablet; (b) A trigger-action: If I am at more than 10 cm from the distance sensor change the background
of the projected display to “red”.

3.3. Programming-by-Demonstration

To assist users in the definition of trigger-action rules, the toolkit implements programming-by-
demonstration (PBD) functionality [11]. By installing the ECCE PBD firmware on a target device, this
will act as a sampling unit for sensor data corresponding to the current entity design as defined with
the Entities & Components Editor. In this way users can configure trigger-action rules by completing
the rule with actual sensor readings, thus using the physical environment as an interface for
programming. For instance, in the case of the second rule in Figure 6, instead of having to type the
distance, the user can simply show the distance to the sensor, which will provide the corresponding
data (see Figure 7).

Figure 7. Programming-by-demonstration. The user interacts with the sensor to complete trigger-
action rules with live sensor data.

3.4. Running the Ecosystem

The interface of the authoring tool provides a button to run and test the current ecosystem
configuration, which will launch an instance of the Ecosystem Server. All the XML-based descriptions
are parsed by the Ecosystem Code Generator, which creates the logic of the Ecosystem Server in terms of
data structures that hold the description of interactive objects, their interactions and network-
agnostic data routing. As an example, once the XML description in Figure 8, on the left, is parsed, the
JavaScript code in the same Figure, on the right, is generated that allows the Ecosystem Server to
manage events from the Entity that holds such sensor; in this case it will turn on the LED on another
entity if the distance is lesser than 10 cm. The Ecosystem Code Generator also generates the source code

Figure 6. Screenshot of the interface for configuring cross-device behaviors. (a) A direct mapping:
The button on port I2 (see Figure 3) is used to toggle the visibility of a label on the graphical interface of
a tablet; (b) A trigger-action: If I am at more than 10 cm from the distance sensor change the background
of the projected display to “red”.

3.3. Programming-by-Demonstration

To assist users in the definition of trigger-action rules, the toolkit implements
programming-by-demonstration (PBD) functionality [11]. By installing the ECCE PBD firmware on a
target device, this will act as a sampling unit for sensor data corresponding to the current entity design
as defined with the Entities & Components Editor. In this way users can configure trigger-action rules by
completing the rule with actual sensor readings, thus using the physical environment as an interface
for programming. For instance, in the case of the second rule in Figure 6, instead of having to type the
distance, the user can simply show the distance to the sensor, which will provide the corresponding
data (see Figure 7).

Sensors 2017, 17, 438 10 of 22

event matches the trigger of the rule, then the corresponding output is activated on the target
object. An example is changing the color of a digital object (e.g., the background of a projected
display) when someone in the physical world is far from a particular physical object augmented
with a distance sensor (e.g., a door).

(a)

(b)

Figure 6. Screenshot of the interface for configuring cross-device behaviors. (a) A direct mapping: The
button on port I2 (see Figure 3) is used to toggle the visibility of a label on the graphical interface of a
tablet; (b) A trigger-action: If I am at more than 10 cm from the distance sensor change the background
of the projected display to “red”.

3.3. Programming-by-Demonstration

To assist users in the definition of trigger-action rules, the toolkit implements programming-by-
demonstration (PBD) functionality [11]. By installing the ECCE PBD firmware on a target device, this
will act as a sampling unit for sensor data corresponding to the current entity design as defined with
the Entities & Components Editor. In this way users can configure trigger-action rules by completing
the rule with actual sensor readings, thus using the physical environment as an interface for
programming. For instance, in the case of the second rule in Figure 6, instead of having to type the
distance, the user can simply show the distance to the sensor, which will provide the corresponding
data (see Figure 7).

Figure 7. Programming-by-demonstration. The user interacts with the sensor to complete trigger-
action rules with live sensor data.

3.4. Running the Ecosystem

The interface of the authoring tool provides a button to run and test the current ecosystem
configuration, which will launch an instance of the Ecosystem Server. All the XML-based descriptions
are parsed by the Ecosystem Code Generator, which creates the logic of the Ecosystem Server in terms of
data structures that hold the description of interactive objects, their interactions and network-
agnostic data routing. As an example, once the XML description in Figure 8, on the left, is parsed, the
JavaScript code in the same Figure, on the right, is generated that allows the Ecosystem Server to
manage events from the Entity that holds such sensor; in this case it will turn on the LED on another
entity if the distance is lesser than 10 cm. The Ecosystem Code Generator also generates the source code

Figure 7. Programming-by-demonstration. The user interacts with the sensor to complete trigger-action
rules with live sensor data.

3.4. Running the Ecosystem

The interface of the authoring tool provides a button to run and test the current ecosystem
configuration, which will launch an instance of the Ecosystem Server. All the XML-based descriptions
are parsed by the Ecosystem Code Generator, which creates the logic of the Ecosystem Server in terms of
data structures that hold the description of interactive objects, their interactions and network-agnostic
data routing. As an example, once the XML description in Figure 8, on the left, is parsed, the JavaScript
code in the same Figure, on the right, is generated that allows the Ecosystem Server to manage events

Sensors 2017, 17, 438 11 of 22

from the Entity that holds such sensor; in this case it will turn on the LED on another entity if the
distance is lesser than 10 cm. The Ecosystem Code Generator also generates the source code source code
for the user interface of display-enabled objects (a HTML5-CSS-JavaScript webpage), which can be
executed by scanning an auto-generated QR-Code. This avoids writing the URL of the generated
interface on the target device.

Sensors 2017, 17, 438 11 of 22

source code for the user interface of display-enabled objects (a HTML5-CSS-JavaScript webpage),
which can be executed by scanning an auto-generated QR-Code. This avoids writing the URL of the
generated interface on the target device.

Figure 8. An example of the JavaScript code on the server (on the right) that is generated by parsing
the XML definition of a proximity sensor (on the left).

The Ecosystem Server acts as a central communication unit. All the messages from one object to
another pass through it and it maintains the data structures for validating the interaction rules
between physical and virtual objects. As implemented by the Entity Runtime (see Figure 9), the server
receives events from remote sensors and dispatch the event to the corresponding entity. On the server
side, the Behavior Interpreter checks if the event meets a specific trigger value defined in the interaction
rules and, if there is any, it generates a message with the corresponding outcome to be routed to other
devices (including the source device) that (i) will activate an actuator or (ii) will update an attribute
of a digital element on a display-enabled device, according to the received output event.

Figure 9. The Entity Runtime. Input events from sensor data and remote events from other entities
are interpreted (Behavior Interpreter) and the corresponding output event to another remote endpoint
(or to the same entity as well) is generated.

Figure 8. An example of the JavaScript code on the server (on the right) that is generated by parsing
the XML definition of a proximity sensor (on the left).

The Ecosystem Server acts as a central communication unit. All the messages from one object to
another pass through it and it maintains the data structures for validating the interaction rules between
physical and virtual objects. As implemented by the Entity Runtime (see Figure 9), the server receives
events from remote sensors and dispatch the event to the corresponding entity. On the server side, the
Behavior Interpreter checks if the event meets a specific trigger value defined in the interaction rules and,
if there is any, it generates a message with the corresponding outcome to be routed to other devices
(including the source device) that (i) will activate an actuator or (ii) will update an attribute of a digital
element on a display-enabled device, according to the received output event.

Sensors 2017, 17, 438 11 of 22

source code for the user interface of display-enabled objects (a HTML5-CSS-JavaScript webpage),
which can be executed by scanning an auto-generated QR-Code. This avoids writing the URL of the
generated interface on the target device.

Figure 8. An example of the JavaScript code on the server (on the right) that is generated by parsing
the XML definition of a proximity sensor (on the left).

The Ecosystem Server acts as a central communication unit. All the messages from one object to
another pass through it and it maintains the data structures for validating the interaction rules
between physical and virtual objects. As implemented by the Entity Runtime (see Figure 9), the server
receives events from remote sensors and dispatch the event to the corresponding entity. On the server
side, the Behavior Interpreter checks if the event meets a specific trigger value defined in the interaction
rules and, if there is any, it generates a message with the corresponding outcome to be routed to other
devices (including the source device) that (i) will activate an actuator or (ii) will update an attribute
of a digital element on a display-enabled device, according to the received output event.

Figure 9. The Entity Runtime. Input events from sensor data and remote events from other entities
are interpreted (Behavior Interpreter) and the corresponding output event to another remote endpoint
(or to the same entity as well) is generated.

Figure 9. The Entity Runtime. Input events from sensor data and remote events from other entities
are interpreted (Behavior Interpreter) and the corresponding output event to another remote endpoint
(or to the same entity as well) is generated.

Sensors 2017, 17, 438 12 of 22

The server also bridges heterogeneous networking interfaces. It stores a lookup table of all the
objects and their networking interfaces so to provide a network-independent routing mechanism.
Users do not need to know or to program the communication between different networked objects:
the server automatically handles all the connections transparently thus abstracting from low-level
communication protocols.

3.5. Further Implementation Details

The current version of the toolkit has been implemented in Node.js [34]. The server is built upon
the Express Web framework [35]. It uses a combination of HTML5, JavaScript, and CSS to generate the
logic and the user interface for display-enabled entities and the Johnny-five JavaScript platform [36] to
manage Arduino-based devices.

The toolkit supports different platforms for creating cross-device interactions. Being the user
interface for display-enabled devices built on top of web technologies, it can be deployed in any
modern browser thus supporting desktop (Windows, Mac OS and Linux) as well as mobile operating
systems (Android, iOS and Windows 10 Mobile). The user interface is designed and deployed on
the host device according to the display features such as dimensions and resolution. To ease the
development, the toolkit provides a set of predefined display-enabled devices: desktop or laptop
screens of different sizes and resolutions (ranging from 13 inches at 1280 × 800 pixels to 29 inches at
2560 × 1080) and a range of mobile devices such as Samsung Galaxy S4/S5/S6/S7, Samsung Galaxy
Note 10, Google Nexus 4/5/6/7, iPhone 4/5/6/6+ and the iPad family. Users can also add custom
devices by defining a device name, display dimensions, pixel ratio, available sensors and the type of
platform (either mobile or desktop). With respect to micro-controllers, the current implementation
supports the design of custom objects building on top of Arduino-based micro-controllers and the
Tinkerkit hardware toolkit [37]. The Entity Runtime for micro-controllers implements a custom version
of the Firmata protocol [38] to support Inter-Integrated circuit (I2C) communication. Available sensors,
input devices and actuators are listed in Table 2: The ECCE toolkit support Arduino-compatible
3-pins components (ground, 5V, signal) from a wide range of do-it-yourself electronic manufacturer,
such as Sparkfun [39], as well as commercial sensors kits (e.g., Duinotech 37-in-1 sensor kit [40]).
The communication with display-enabled entities occurs via WiFi and it makes use of WebSockets.
For electronic-incorporated objects, the toolkit supports Serial, nRF24L01+ Ultra Low Power 2.4Ghz
Radio Frequency [41] and Bluetooth Low Energy communications.

Table 2. List of sensors, input devices and actuators currently supported by the ECCE Toolkit.

Sensors Input Devices Actuators

Touch Linear Potentiometer Micro Servomotor 180◦

Light Dependent Resistor (LDR) Rotary Potentiometer Micro Servomotor 360◦

Force Sensitive Resistor (FSR) Push Button Led
GP2Y0A21YK IR Proximity Toggle Button Relay

Tilt Relay Firgelli PQ12 Micro Linear Actuator

3.6. Adding New Sensors/Actuators to the Toolkit

As discussed in Section 3.1, users can exploit the XML definition of sensors, actuators and
user interface elements to extend the functionality of the toolkit by adding new components or new
mappings for the sensors data. Taking as an example the definition of the proximity sensor in Figure 5,
users could extend the sensor functionality by adding a new data field and write a function that
transform the raw data into distances in inches. The new attribute will be then available to be used,
as shown in Figure 8 for the distances in centimeters. Users can add new sensors/actuators to the
platform by encapsulating components already supported by the Johnny-Five library into ECCE
toolkit components, which is achieved by extending the ECCE.Sensor class that encloses the logic to
define abstract sensors’ features and attributes (e.g., their names, ids, controllers, etc.) as defined in

Sensors 2017, 17, 438 13 of 22

the templates. This mechanism, which relies on the Firmata protocol, makes it easy for users with
limited technical skills to add new sensors to the platform. However, the design choice limits the
capabilities of the framework to the communication capabilities of Firmata. For instance, at the present
time, it is not possible to include RFID/NFC readers because they rely on Serial Peripheral Interface
(SPI) communication, which is not currently supported by Firmata. In this case, extending the toolkit
functionality would be readily possible for end users by creating a custom script to be uploaded on the
micro-controller which would replace the Firmata functionality for the specialized function (e.g., read
RFID tags). The script would write data according to the selected network interface once the RFID has
been discovered and a general purpose ECCE object would read for data from the micro-controller.

Figure 10 shows an example of this scenario for the RFID RC522 module. The toolkit provides a
template for a generic sensor that the user has extended to create an ECCE.Sensor.RFID sensor that
sends messages over nrf24l01. To this end, the user first has had to create the XML template for the
sensor (Figure 10, on the left) and then the JavaScript code that is generated once the XML is parsed.
The transmitting and receiving address of the nrf24l01 communication interface are automatically
generated by the toolkit when the user adds the new device (Figure 1). The tag_discovered input event
is registered by the ECCE.Board event listener that, in this case, will listen for tag_discovered events
over nrf24l01 (Figure 10, in the middle) and will fill in the code to handle the callback according to
the interaction rules previously defined. Figure 10, on the right, shows the Arduino code the user has
to write to implement the functionality to send tag_discovered events. Since this task requires specific
programming knowledge, the toolkit provides a library of predefined sample sketches that users could
use and tailor according to their needs. In this case, sketches are provided that setup basic nRF24L01
communication and the user only has to insert the correct address as provided by the toolkit and write
the loop functionality to send the message for the tag_discovered event type.

Sensors 2017, 17, 438 13 of 22

capabilities of the framework to the communication capabilities of Firmata. For instance, at the
present time, it is not possible to include RFID/NFC readers because they rely on Serial Peripheral
Interface (SPI) communication, which is not currently supported by Firmata. In this case, extending
the toolkit functionality would be readily possible for end users by creating a custom script to be
uploaded on the micro-controller which would replace the Firmata functionality for the specialized
function (e.g., read RFID tags). The script would write data according to the selected network
interface once the RFID has been discovered and a general purpose ECCE object would read for data
from the micro-controller.

Figure 10 shows an example of this scenario for the RFID RC522 module. The toolkit provides a
template for a generic sensor that the user has extended to create an ECCE.Sensor.RFID sensor that
sends messages over nrf24l01. To this end, the user first has had to create the XML template for the
sensor (Figure 10, on the left) and then the JavaScript code that is generated once the XML is parsed.
The transmitting and receiving address of the nrf24l01 communication interface are automatically
generated by the toolkit when the user adds the new device (Figure 1). The tag_discovered input event
is registered by the ECCE.Board event listener that, in this case, will listen for tag_discovered events
over nrf24l01 (Figure 10, in the middle) and will fill in the code to handle the callback according to
the interaction rules previously defined. Figure 10, on the right, shows the Arduino code the user has
to write to implement the functionality to send tag_discovered events. Since this task requires specific
programming knowledge, the toolkit provides a library of predefined sample sketches that users
could use and tailor according to their needs. In this case, sketches are provided that setup basic
nRF24L01 communication and the user only has to insert the correct address as provided by the
toolkit and write the loop functionality to send the message for the tag_discovered event type.

Figure 10. An example of the code to extend the toolkit’s functionality and include a RFID reader
input device. On the right, the XML descriptor of an entity with a RFID reader. In the middle, the
JavaScript code that is generated by parsing the XML descriptor. On the right, the custom Arduino
code for the RFID reader.

4. User Study

The contribution offered by the development of a new toolkit to technical HCI research is
indirect in nature and is framed under the concept of enabling research [42]: the researcher pursues
the goal to empower others to “address a need by making it possible, easier, or less expensive for
future inventive work to do so” [42] (p. 74). Performing a formal evaluation of a toolkit is impractical
[33] and, while usability metrics have been successfully applied to evaluate interactive applications,
there is no established technique to evaluate the toolkits that support the development of such
applications [43]. Myers et al. [44] propose five “themes” for the evaluation of toolkits that stem from

Figure 10. An example of the code to extend the toolkit’s functionality and include a RFID reader input
device. On the right, the XML descriptor of an entity with a RFID reader. In the middle, the JavaScript
code that is generated by parsing the XML descriptor. On the right, the custom Arduino code for the
RFID reader.

4. User Study

The contribution offered by the development of a new toolkit to technical HCI research is indirect
in nature and is framed under the concept of enabling research [42]: the researcher pursues the goal
to empower others to “address a need by making it possible, easier, or less expensive for future

Sensors 2017, 17, 438 14 of 22

inventive work to do so” [42] (p. 74). Performing a formal evaluation of a toolkit is impractical [33] and,
while usability metrics have been successfully applied to evaluate interactive applications, there is no
established technique to evaluate the toolkits that support the development of such applications [43].
Myers et al. [44] propose five “themes” for the evaluation of toolkits that stem from an analysis of
successes and failure in the history of user interface software tools. Evidence from the state of the
art [4,21,45] shows that the evaluation of a new toolkit for the development of ubiquitous environments
capitalizes on use cases to demonstrate how the toolkit allows to build relevant applications while
it eases the programming efforts. According to Myers et al. [44] definition, this is described by the
tradeoff between the threshold, or the capacity of lowering the skill barriers, and the ceiling, or the
capacity of enabling meaningful interactions. To investigate the threshold/ceiling of the toolkit, we opted
to run two workshops that would uncover the applications that could be constructed with ECCE, the
ease of programming and the qualitative differences in terms of programming effort by expert and
non-expert participants. We acknowledge that the chosen evaluation format prevents from reaching
reliable conclusions on the effectiveness of the toolkit.

Data was collected as both in video and personal observations during the workshops as well as
oral group interview at the end of the workshops. The results are presented as overall findings on
the use of the tool and examples of individual projects that were developed during the workshops.
We postpone empirical evidence for future research.

4.1. Workshops Overview

Both workshops consisted of two main phases:

1. A design task, in which participants discussed and came up with design ideas of a device ecosystem
for a specific context and,

2. An implementation task, in which participants used the ECCE toolkit to implement their
design ideas.

We framed the design task in the context of cultural heritage: participants would be designing
a digitally-augmented smart exhibit about the Mayan culture. The team were given sheets with a
description of some peculiar objects of the Mayan culture together with 3D-printed replicas: a Mayan
funerary mask, the Chicén Itzá pyramid and glyphs of the Mayan script that were combined to write
words or sentences. Each team would choose one (or more) of the proposed objects and use the
information on the sheet as a starting point to envision how they would like to create an interactive
exhibition by augmenting the object with digital technology. Participants had internet access and
could also look for additional information about the physical objects so that they were not constrained
by the design probes provided in the experiment. We introduced the design task before participants
had experimented with the toolkit. In this way, their design would not have been biased and limited
by the current toolkit functionality. Instead, participants were free to come up with design ideas
independently of the technical implementation and then verify whether the toolkit offers the means to
materialize their concepts or not.

4.2. Exploratory Workshop

We ran a one-day hands-on studio [14] at the Tangible, Embodied and Embedded Interaction
(TEI) conference (Figure 11). The studio accommodated 8 participants (3 females, age range from
22 to 42, M = 28, SD = 6.12): 3 master students in Interaction Design, 2 industrial designers, 2 Ph.D.
students in Computer Science and one Interaction Design researcher. Half of the participants already
had programming experience with Arduino, but none of them had used the Tinkerkit platform
before. The rest of the participants were new to the subject and they did not have any previous
programming experience.

The workshop adhered to the following schedule, with two twenty-minutes stops after step 2 and
step 4:

Sensors 2017, 17, 438 15 of 22

1. Introduction (one hour). Participants were given an introduction to the studio objectives, the
concept of device ecosystems, opportunities and challenges. The explanation focused on the
integration of digital material with physical objects for the creation of digitally-augmented
exhibits. At the end of the introduction, participants were arranged into two groups of four
members, balancing each group expertise according to the participants’ profile (e.g., two
tech-savvy members per group).

2. Technology (one hour). Participants were introduced to Arduino and TinkerKit. With a step-by-step
tutorial we guided participants into learning the basics of Arduino programming and the
Tinkerkit environment. The tutorial covered the following subjects: (1) project setup; (2) Arduino
and Tinkerkit IDE and coding; (3) sensors and actuators; (4) serial connection; (5) servomotors.
Each group was given an Arduino and a TinkerKit starter pack to follow and reproduce
practical examples.

3. Design task (90 min). The use case of a Mayan exhibit was introduced. An example of how a device
ecosystem could be developed to enhance the user experience of the exhibit was also provided
as reference for the participants. Then, each group chose at least one object and envisioned the
interaction they wanted to implement. Participants were free to use whatever technique they
might like for conceptualizing the interaction, such as sketching, storyboarding, paper-based
mockups or stop motion animations.

4. ECCE toolkit (30 min). Participants were introduced to the ECCE toolkit. Again, participants were
guided into the basics of the toolkit by means of a step-by-step tutorial. Each step focused on one
of the phases defined by the toolkit. Participants learnt: (1) how to create/edit devices; (2) how to
to define interaction rules; and (3) how to run and test the resulting device ecosystem.

5. Implementation task (90 min). Each group was asked to implement at least one of their design
concepts by using the ECCE toolkit and the hardware at their disposal: TinkerKit and Arduino
boards with a number of sensors and actuators, Android tablets and smartphones, pico-projectors
and laptops.

6. Presentations and conclusions (30 min). To conclude, participants presented their designs to the
other groups. Presentations focused on the envisioned interaction and implementation issues.
The feedback from each group were used as seeds for a wrap-up discussion on the benefits and
drawbacks of the ECCE toolkit as well as for closing the studio and highlight directions for
future work.

We organized participants in groups because we wanted to observe how the toolkit would be
used by a design team with different expertise and background. During the workshops, we did not
offer help in the design and implementation tasks.

Sensors 2017, 17, 438 15 of 22

members, balancing each group expertise according to the participants’ profile (e.g., two tech-
savvy members per group).

2. Technology (one hour). Participants were introduced to Arduino and TinkerKit. With a step-by-
step tutorial we guided participants into learning the basics of Arduino programming and the
Tinkerkit environment. The tutorial covered the following subjects: (1) project setup; (2) Arduino
and Tinkerkit IDE and coding; (3) sensors and actuators; (4) serial connection; (5) servomotors.
Each group was given an Arduino and a TinkerKit starter pack to follow and reproduce practical
examples.

3. Design task (90 min). The use case of a Mayan exhibit was introduced. An example of how a
device ecosystem could be developed to enhance the user experience of the exhibit was also
provided as reference for the participants. Then, each group chose at least one object and
envisioned the interaction they wanted to implement. Participants were free to use whatever
technique they might like for conceptualizing the interaction, such as sketching, storyboarding,
paper-based mockups or stop motion animations.

4. ECCE toolkit (30 min). Participants were introduced to the ECCE toolkit. Again, participants were
guided into the basics of the toolkit by means of a step-by-step tutorial. Each step focused on
one of the phases defined by the toolkit. Participants learnt: (1) how to create/edit devices; (2)
how to to define interaction rules; and (3) how to run and test the resulting device ecosystem.

5. Implementation task (90 min). Each group was asked to implement at least one of their design
concepts by using the ECCE toolkit and the hardware at their disposal: TinkerKit and Arduino
boards with a number of sensors and actuators, Android tablets and smartphones, pico-
projectors and laptops.

6. Presentations and conclusions (30 min). To conclude, participants presented their designs to the
other groups. Presentations focused on the envisioned interaction and implementation issues.
The feedback from each group were used as seeds for a wrap-up discussion on the benefits and
drawbacks of the ECCE toolkit as well as for closing the studio and highlight directions for
future work.

We organized participants in groups because we wanted to observe how the toolkit would be
used by a design team with different expertise and background. During the workshops, we did not
offer help in the design and implementation tasks.

Figure 11. Hands-on experiences with the ECCE toolkit at the TEI studio. On the left, one of the
organizers preparing a demonstration of the toolkit. On the right, participants going through the
Arduino/Tinkerkit tutorial.

4.3. Implemented Designs in the Exploratory Workshop

We tested the robustness of the software in a real scenario and confirmed that there were no
serious software issues that would incapacitate the toolkit use outside the laboratory and in semi-in-
the-wild setting. The exploratory study also showed that the current implementation of the toolkit is
mature enough to provide insights about its usefulness for end users.

Figure 11. Hands-on experiences with the ECCE toolkit at the TEI studio. On the left, one of the
organizers preparing a demonstration of the toolkit. On the right, participants going through the
Arduino/Tinkerkit tutorial.

Sensors 2017, 17, 438 16 of 22

4.3. Implemented Designs in the Exploratory Workshop

We tested the robustness of the software in a real scenario and confirmed that there were no serious
software issues that would incapacitate the toolkit use outside the laboratory and in semi-in-the-wild
setting. The exploratory study also showed that the current implementation of the toolkit is mature
enough to provide insights about its usefulness for end users.

Figure 12 shows examples of two implemented designs, one for each group using the same
artifact (a 3D replica of a funerary mask). The first group wanted to develop a console with physical
buttons that would display/hide projected content on the mask (on the left). To this end, the group
used a pico-projector to overlay the additional content on the mask—they created a custom device as
explained in Section 3.5—and an Arduino with Tinkerkit and four buttons, each one to display/hide
the content accordingly. While the first group envisioned that the users would not be able to interact
with the artifact directly (they considered the replica as if it were the real artifact), the second group
decided to use the 3D replica as a prop to interact with the real artifact. Participants attached touch
sensors on the replica (on the right), which would activate digital content. They decided to prototype
the interface on the laptop and they envisioned the content to be displayed in the room or directly on
the mask.

Sensors 2017, 17, 438 16 of 22

Figure 12 shows examples of two implemented designs, one for each group using the same
artifact (a 3D replica of a funerary mask). The first group wanted to develop a console with physical
buttons that would display/hide projected content on the mask (on the left). To this end, the group
used a pico-projector to overlay the additional content on the mask—they created a custom device as
explained in Section 3.5—and an Arduino with Tinkerkit and four buttons, each one to display/hide
the content accordingly. While the first group envisioned that the users would not be able to interact
with the artifact directly (they considered the replica as if it were the real artifact), the second group
decided to use the 3D replica as a prop to interact with the real artifact. Participants attached touch
sensors on the replica (on the right), which would activate digital content. They decided to prototype
the interface on the laptop and they envisioned the content to be displayed in the room or directly on
the mask.

Figure 12. Physical buttons (left) and touch sensors (right) are used to interact with a 3D replica of a
funerary mask.

4.4. Second Workshop

After the TEI studio, we ran a second four-hour workshop with 16 participants (nine females,
age range from 22 to 40, M = 29.5, SD = 4.95): 3 HCI/Interaction Design researchers, six PhD students
in Computer Science and seven Master students in Computer Science. We ran two different sessions
(nine and seven participants) at the University Carlos III de Madrid. Participants were grouped in
teams of three and four people according to their technical skills. Participants’ technical skills were
assessed with a 7-point scale pre-test questionnaire: they were familiar with ubiquitous computing
issues (M = 3.5, SD = 1.8) and have direct experience with the design and implementation of
interactive systems (M = 4.8, SD = 1.2), even if most of them (10 out 16) have had no previous
experience with the physical computing, electronics and programming micro-controllers. The
workshop followed the same design and protocol of the TEI 2014 studio. Additionally, each
participant was given a USE questionnaire [46] which assesses the preliminary usefulness, ease of
use, ease of learning and satisfaction. Participants’ answers were collected on a 5 points Likert scale.

4.5. Designs Implemented during the Second Workshop

All groups provided an implementation of at least one design idea at the end of the workshop.
The final solutions implemented simple interactions and were quite similar. This is ascribable to
several factors: the limitations of the laboratory setup (time constraints), the fact that participants
used the toolkit for the very first time and also the set of sensors and actuators that are supported by
the current implementation. Most of the implemented prototypes made use of proximity sensors to
show or hide some digital content depending on the distance of a visitor from an exhibition piece.
The augmented information, textual or pictorial, was in generally displayed directly over the piece

Figure 12. Physical buttons (left) and touch sensors (right) are used to interact with a 3D replica of a
funerary mask.

4.4. Second Workshop

After the TEI studio, we ran a second four-hour workshop with 16 participants (nine females, age
range from 22 to 40, M = 29.5, SD = 4.95): 3 HCI/Interaction Design researchers, six PhD students
in Computer Science and seven Master students in Computer Science. We ran two different sessions
(nine and seven participants) at the University Carlos III de Madrid. Participants were grouped in
teams of three and four people according to their technical skills. Participants’ technical skills were
assessed with a 7-point scale pre-test questionnaire: they were familiar with ubiquitous computing
issues (M = 3.5, SD = 1.8) and have direct experience with the design and implementation of interactive
systems (M = 4.8, SD = 1.2), even if most of them (10 out 16) have had no previous experience with
the physical computing, electronics and programming micro-controllers. The workshop followed
the same design and protocol of the TEI 2014 studio. Additionally, each participant was given a
USE questionnaire [46] which assesses the preliminary usefulness, ease of use, ease of learning and
satisfaction. Participants’ answers were collected on a 5 points Likert scale.

Sensors 2017, 17, 438 17 of 22

4.5. Designs Implemented during the Second Workshop

All groups provided an implementation of at least one design idea at the end of the workshop.
The final solutions implemented simple interactions and were quite similar. This is ascribable to
several factors: the limitations of the laboratory setup (time constraints), the fact that participants
used the toolkit for the very first time and also the set of sensors and actuators that are supported by
the current implementation. Most of the implemented prototypes made use of proximity sensors to
show or hide some digital content depending on the distance of a visitor from an exhibition piece.
The augmented information, textual or pictorial, was in generally displayed directly over the piece
by means of pico-projectors. Three groups exploited the tablets. One of them placed a tablet near
an exhibition piece and used it to present interactive digital information (see Figure 13). The tablet
offers the advantage, if compared to projected content, to allow visitors to interact with digital content
via multi-touch input. For instance, the group used a distance sensor to perceive the presence of a
visitor and show a graphical interface on the tablet. The graphical interface provided touch areas that
displayed multimedia content related to the piece. Two other groups used the tablets as personal
mobile devices to display and interact with digital information.

Sensors 2017, 17, 438 17 of 22

by means of pico-projectors. Three groups exploited the tablets. One of them placed a tablet near an
exhibition piece and used it to present interactive digital information (see Figure 13). The tablet offers
the advantage, if compared to projected content, to allow visitors to interact with digital content via
multi-touch input. For instance, the group used a distance sensor to perceive the presence of a visitor
and show a graphical interface on the tablet. The graphical interface provided touch areas that
displayed multimedia content related to the piece. Two other groups used the tablets as personal
mobile devices to display and interact with digital information.

Figure 13. The implementation of a design idea with ECCE during the second workshop: (left) a
participant connecting the sensors and, (right) the final implementation.

Two groups explored other kinds of touch-based interactions. For instance, they used touch
sensors for implementing interactive areas on a replica of a piece in the same way other group did in
the exploratory workshop: if a visitor touches the interactive area some content is displayed. Only
one group explored more complex interactions. They used a rotary potentiometer and a high power
LED to simulate the sun lighting up the Chicén Itzá pyramid at different hours of the day. They also
connected the rotary potentiometer with a servomotor and put the 3D representation of the pyramid
on a platform attached to the servomotor. In this way, they were able to simulate the shadows casted
by light, depending of the hour. Another group used the Mayan glyphs and implemented a game-
based application that would unveil multimedia content, provided the glyphs are ordered in the
correct sequence. To this end, they had to extend the functionality of the toolkit as shown in Section
3.6. One of the groups also designed motion gestures interaction devices to activate events and
retrieve content: they envisioned 3D replicas of other common objects of the Mayan culture (such as
daggers, hats or staffs) with embedded motion sensors that can enable the detection of gestures like
shaking, swiping, etc. This scenario highlighted one of the current limitations of the toolkit: motion
detection is only supported to a basic level (e.g., acceleration on the three axis, tilt or orientation) and
the data is not exploited to enable more complex interactions. This is one feature that will be
considered for the future development of the toolkit, since gestural interaction would increase the
breadth of interactive prototypes that can be built.

4.6. Results of the Questionnaire

Figure 14 shows the results of the USE questionnaire according to the four categories. The
questionnaire points out a general positive acceptance of the toolkit. The one-sample Wilcoxon
Signed-rank test shows that Likert scores were significantly different (higher) from a neutral value of
3 for all the criteria of the USE approach: satisfaction (M = 3.554, SD = 1.145, ρ < 0.05, 95% CI [3.5, 4.5]),
perceived usefulness (M = 3.455, SD = 1.328, ρ < 0.05, 95% CI [3.0, 4.0]), ease of use (M = 3.767, SD =
1.148, ρ < 0.05, 95% CI [4.0, 4.5]), ease of learning (M = 4.359, SD = 0.804, ρ < 0.05, 95% CI [4.5, 5.0]).

Figure 13. The implementation of a design idea with ECCE during the second workshop: (left) a
participant connecting the sensors and, (right) the final implementation.

Two groups explored other kinds of touch-based interactions. For instance, they used touch
sensors for implementing interactive areas on a replica of a piece in the same way other group did in
the exploratory workshop: if a visitor touches the interactive area some content is displayed. Only
one group explored more complex interactions. They used a rotary potentiometer and a high power
LED to simulate the sun lighting up the Chicén Itzá pyramid at different hours of the day. They also
connected the rotary potentiometer with a servomotor and put the 3D representation of the pyramid
on a platform attached to the servomotor. In this way, they were able to simulate the shadows casted by
light, depending of the hour. Another group used the Mayan glyphs and implemented a game-based
application that would unveil multimedia content, provided the glyphs are ordered in the correct
sequence. To this end, they had to extend the functionality of the toolkit as shown in Section 3.6. One
of the groups also designed motion gestures interaction devices to activate events and retrieve content:
they envisioned 3D replicas of other common objects of the Mayan culture (such as daggers, hats or
staffs) with embedded motion sensors that can enable the detection of gestures like shaking, swiping,
etc. This scenario highlighted one of the current limitations of the toolkit: motion detection is only
supported to a basic level (e.g., acceleration on the three axis, tilt or orientation) and the data is not
exploited to enable more complex interactions. This is one feature that will be considered for the

Sensors 2017, 17, 438 18 of 22

future development of the toolkit, since gestural interaction would increase the breadth of interactive
prototypes that can be built.

4.6. Results of the Questionnaire

Figure 14 shows the results of the USE questionnaire according to the four categories.
The questionnaire points out a general positive acceptance of the toolkit. The one-sample Wilcoxon
Signed-rank test shows that Likert scores were significantly different (higher) from a neutral value of 3
for all the criteria of the USE approach: satisfaction (M = 3.554, SD = 1.145, $ < 0.05, 95% CI [3.5, 4.5]),
perceived usefulness (M = 3.455, SD = 1.328, $ < 0.05, 95% CI [3.0, 4.0]), ease of use (M = 3.767,
SD = 1.148, $ < 0.05, 95% CI [4.0, 4.5]), ease of learning (M = 4.359, SD = 0.804, $ < 0.05, 95% CI
[4.5, 5.0]).Sensors 2017, 17, 438 18 of 22

Figure 14. Results of the USE questionnaire according to the four categories: satisfaction, perceived
usefulness, ease of use and ease of learning.

5. Overall Findings

All the participants of the two workshops were able to successfully use the toolkit in the design
process and implement their designs. They appreciated the toolkit support in arranging the hardware
medium and abstracting from the technical implementation. After their experience with basic
Arduino tasks, participants found the web interface of ECCE as well as the fact that they were not
required to employ textual programming to be a major improvement. We, in fact, confirmed findings
from the study of Booth’s et al. [19] and found that participants, when using the Arduino IDE,
struggled the most in correctly reading data from sensors and that, most of the time, participants
were not sure if the source of a problem was hardware or software. ECCE offers a path of least resistance
[44] that supports user in both circuit and program construction who, thus, can avoid fatal problem
such as miswirings or not using sensor readings correctly.

Participants learned quickly how to use the toolkit even if they feel they will need time to get
really proficient with it and be able to develop prototypes that involve more complex interactions.
They also recognized that the toolkit provides features that are easy to remember: this is an important
factor for the adoption of the toolkit by casual or non-technical end users. However, due to the limited
range of the experiment, it is not really possible to evaluate to what extent the memorability of the
toolkit still holds after longer periods of not use.

The prototypes developed during the workshops provide tentative evidence that ECCE enables
end users to be involved in the design process. To the best of our knowledge, there are no other tools
that support the integration of physical and digital components in the same application without
making use of textual programming. Given the lack of a baseline, the user study can only show that,
by providing an easy entry point for end users with no programming expertise, ECCE allowed multi-
disciplinary design teams to implement interactive prototypes in a limited amount of time. ECCE
showed potential to support the design process of physical interfaces. All the groups used the toolkit
as a “constructive” tool in the design process; ECCE allowed them to quickly materialize their concept
designs and use the prototypes for discussion and iteration. Non tech-savvy users observed that they
would not have been able to implement even the simplest interaction in one day without the toolkit,
due to the high technical knowledge needed to integrate all the different technologies. They reported

Figure 14. Results of the USE questionnaire according to the four categories: satisfaction, perceived
usefulness, ease of use and ease of learning.

5. Overall Findings

All the participants of the two workshops were able to successfully use the toolkit in the design
process and implement their designs. They appreciated the toolkit support in arranging the hardware
medium and abstracting from the technical implementation. After their experience with basic Arduino
tasks, participants found the web interface of ECCE as well as the fact that they were not required to
employ textual programming to be a major improvement. We, in fact, confirmed findings from the
study of Booth’s et al. [19] and found that participants, when using the Arduino IDE, struggled the
most in correctly reading data from sensors and that, most of the time, participants were not sure if the
source of a problem was hardware or software. ECCE offers a path of least resistance [44] that supports
user in both circuit and program construction who, thus, can avoid fatal problem such as miswirings
or not using sensor readings correctly.

Participants learned quickly how to use the toolkit even if they feel they will need time to get
really proficient with it and be able to develop prototypes that involve more complex interactions.
They also recognized that the toolkit provides features that are easy to remember: this is an important
factor for the adoption of the toolkit by casual or non-technical end users. However, due to the limited
range of the experiment, it is not really possible to evaluate to what extent the memorability of the
toolkit still holds after longer periods of not use.

Sensors 2017, 17, 438 19 of 22

The prototypes developed during the workshops provide tentative evidence that ECCE enables
end users to be involved in the design process. To the best of our knowledge, there are no other
tools that support the integration of physical and digital components in the same application without
making use of textual programming. Given the lack of a baseline, the user study can only show
that, by providing an easy entry point for end users with no programming expertise, ECCE allowed
multi-disciplinary design teams to implement interactive prototypes in a limited amount of time.
ECCE showed potential to support the design process of physical interfaces. All the groups used the
toolkit as a “constructive” tool in the design process; ECCE allowed them to quickly materialize their
concept designs and use the prototypes for discussion and iteration. Non tech-savvy users observed
that they would not have been able to implement even the simplest interaction in one day without
the toolkit, due to the high technical knowledge needed to integrate all the different technologies.
They reported that they would not even have tried to design and implement such interactions among
heterogeneous devices, scared by the technological barriers. This is resonant with findings that toolkits
for novel and unfamiliar applications foster creative design [9]. From the other side, participants with
high technical expertise felt somewhat limited by the high-level abstraction. One group was able to
integrate the basic functionality for an RFID reader using the procedure described in Section 3.6 and
with guidance from the researchers. However, they considered that the toolkit would benefit from
providing different level of support that span from untrained to skilled programmers. In particular,
they would have liked the interface to provide a JavaScript text editor to customize interaction rules
once defined. They considered that expert users and developers would benefit from the availability of
an API that would allow them to directly program the JavaScript code and add custom functions to
the auto-generated code.

The limited time of the workshop did not allow to test thoroughly whether or not the toolkit raises
the ceiling. The kind of interactions developed were also constrained by the set of sensors, actuators,
interface elements and interaction rules. It would be difficult to assess which of these factors—available
functionality/components and time for prototyping—had a greater impact on the variety of outcomes.

6. Conclusions and Future Work

Developing interactive systems that span across heterogeneous devices is complex. In this paper
we have presented the ECCE toolkit that aims at supporting this task by providing tools to ease
the design and development of sensor-based physical interaction. ECCE advances the state of the
art by providing a toolkit that ease both the physical and software construction so that users avoid
typical errors of physical computing and can focus on their design without having to struggle with
low-level problems. With our toolkit, end users will be able to rapidly build low-cost functional
prototypes that combine interactions between real world data from sensors/actuators and digital
user interfaces. They will be encouraged to explore different alternatives, thanks to the easiness of
modifying the behavior of existing interactive components and/or integrating new components in the
design. Overall, participants felt satisfied with the toolkit. They enjoyed using it, which in most cases
stimulated exploration through the generation of different prototypes just for the fun of it.

We plan to develop the toolkit as an open-source project, which would allow a community of
users from different backgrounds to use and contribute to the development of the toolkit by adding
and sharing new functionality themselves or showing the kinds of projects that have been developed
with the toolkit.

Future development for ECCE and the field of end-user development for physical computing will
focus on extending the toolkit functionality in order to seamlessly support different users’ expertise.
Providing scripting mechanisms for expert users would increase the user population of ECCE and
allow to understand programming strategies for physical computing of both novice and experienced
programmers. We also plan to include features that enable to program spatial relations among devices
and users, as already supported in previous scripting toolkits such as XDStudio [22] or Proximity
Toolkit [47]. We are also investigating [32] how to extend the toolkit in order to define “virtual sensors”,

Sensors 2017, 17, 438 20 of 22

that is, how to include sensor events from virtual worlds. This would enable end users to seamlessly
setup cross-reality environments that interweave the physical and the virtual world.

Acknowledgments: This research project has been partially funded by the EU FP7 project meSch (Grant agreement
600851) and national Spanish project CREAx (TIN2014-56534-R). We thank participants of the TEI 2014 studio and
the DEI Laboratory staff and students at Universidad Carlos III de Madrid for their valuable feedback.

Author Contributions: A.B., I.A. and P.D. equally contributed to (i) the analysis of the state of the art in order to
identify the challenges addressed by this research; and (ii) the design and execution of the experiments as well as
the analysis of the data. A.B. wrote the bulk of the paper and implemented the ECCE toolkit software.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–104. [CrossRef]
2. Bragdon, A.; DeLine, R. Code space: Touch+ air gesture hybrid interactions for supporting developer

meetings. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces,
Calgary, AB, Canada, 23–25 November 2011; pp. 212–221.

3. Arif, A.S.; Manshaei, R.; DeLong, S.; East, B.; Kyan, M.; Mazalek, A. Sparse Tangibles: Collaborative
exploration of gene networks using active tangibles and interactive tabletops. In Proceedings of the
International Conference on Tangible, Embedded and Embodied Interaction, Eindhoven, The Netherlands,
14–17 February 2016.

4. Klemmer, S.; Landay, J. Toolkit Support for Integrating Physical and Digital Interactions.
Hum. Comput. Interact. 2009, 24, 315–366. [CrossRef]

5. O’Sullivan, D.; Igoe, T. Physical Computing: Sensing and Controlling the Physical World with Computers;
Course Technology Press: Boston, MA, USA, 2004.

6. Mellis, D.; Banzi, M.; Cuartielles, D.; Igoe, T. Arduino: An open electronic prototyping platform.
In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, San Jose,
CA, USA, 30 April–3 May 2007; pp. 1–11.

7. Greenberg, S.; Fitchett, C. Phidgets: Easy development of physical interfaces through physical widgets. In
Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, Orlando, FL,
USA, 11–14 November 2001.

8. Wu, A.; Jog, J.; Mendenhall, S.; Mazalek, A. A Framework Interweaving Tangible Objects, Surfaces and Spaces.
In International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2011.

9. Greenberg, S. Toolkits and interface creativity. Multimed. Tools Appl. 2007, 32, 139–159. [CrossRef]
10. Ur, B.; McManus, E.; Pak Yong Ho, M.; Littman, M.L. Practical trigger-action programming in the smart

home. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Toronto,
ON, Canada, 26 April–1 May 2014; pp. 803–812.

11. Hartmann, B.; Abdulla, L.; Mittal, M.; Klemmer, S.R. Authoring sensor-based interactions by demonstration
with direct manipulation and pattern recognition. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, San Jose, CA, USA, 30 April–3 May 2007; pp. 145–152.

12. Chi, P.Y.P.; Li, Y. Weave: Scripting Cross-Device Wearable Interaction. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 3923–3932.

13. Yang, J.; Wigdor, D. Panelrama: Enabling easy specification of cross-device web applications. In Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada,
26 April–1 May 2014; pp. 2783–2792.

14. Bellucci, A.; Díaz, P.; Aedo, I.; Malizia, A. Prototyping device ecologies: Physical to digital and viceversa.
In Proceedings of the International Conference on Tangible, Embedded and Embodied Interaction, Munich,
Germany, 16–19 February 2014; pp. 373–376.

15. Bellucci, A.; Aedo, I.; Diaz, P. ECCE toolkit: Prototyping UbiComp device ecologies. In Proceedings of the
International Conference on Advanced User Interfaces, Haifa, Israel, 24–27 February 2014; pp. 339–340.

http://dx.doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1080/07370020902990428
http://dx.doi.org/10.1007/s11042-006-0062-y

Sensors 2017, 17, 438 21 of 22

16. Rosen, N.; Sattar, R.; Lindeman, R.W.; Simha, R.; Narahari, B. HomeOS: Context-Aware Home Connectivity.
In Proceedings of the International Conference on Wireless Networks, Las Vegas, NE, USA, 21–24 June 2004;
pp. 739–744.

17. OpenHAB. Available online: http://www.openhab.org/ (accessed on 20 September 2016).
18. Markopoulos, P.; Mavrommati, I.; Kameas, A. End-user configuration of ambient intelligence environments:

Feasibility from a user perspective. In Proceedings of the European Symposium on Ambient Intelligence,
Eindhoven, The Netherlands, 8–11 November 2004; pp. 243–254.

19. Booth, T.; Stumpf, S.; Bird, J.; Jones, S. Crossed Wires: Investigating the Problems of End-User Developers in a
Physical Computing Task. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems, San Jose, CA, USA, 7–12 May 2016; pp. 3485–3497.

20. Booth, T.; Stumpf, S. End-user experiences of visual and textual programming environments for Arduino.
In Proceedings of the International Symposium on End User Development, Copenhagen, Denmark,
10–13 June 2013; pp. 25–39.

21. Ballagas, R.; Ringel, M.; Stone, M.; Borchers, J. iStuff: A physical user interface toolkit for ubiquitous
computing environments. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems, Ft. Lauderdale, FL, USA, 5–10 April 2003; pp. 537–544.

22. Nebeling, M.; Mintsi, T.; Husmann, M.; Norrie, M. Interactive development of cross-device user interfaces.
In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON,
Canada, 26 April–1 May 2014; pp. 2793–2802.

23. Houben, S.; Marquardt, N. WatchConnect: A Toolkit for Prototyping Smartwatch-Centric Cross-Device
Applications. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
Seoul, Korea, 18–23 April 2015; pp. 1247–1256.

24. Lieberman, H.; Paternò, F.; Klann, M.; Wulf, V. End-User Development: An Emerging Paradigm. In End User
Development; Springer: Dordrecht, The Netherlands, 2006; pp. 1–8.

25. Myers, B.A. Visual programming, programming by example, and program visualization: A taxonomy.
ACM SIGCHI Bull. 1986, 17, 59–66. [CrossRef]

26. Hartmann, B.; Klemmer, S. Reflective physical prototyping through integrated design, test, and analysis.
In Proceedings of the ACM User Interface Software and Technologies Symposium, Montreux, Switzerland,
15–18 October 2006; pp. 299–308.

27. Ballagas, R.; Memon, F. iStuff mobile: Rapidly prototyping new mobile phone interfaces for ubiquitous
computing. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems,
San Jose, CA, USA, 30 April–3 May 2007; pp. 1107–1116.

28. Rosenbaum, E.; Eastmond, E.; Mellis, D. Empowering programmability for tangibles. In Proceedings of
the International Conference on Tangible, Embedded, and Embodied Interaction, Cambridge, MA, USA,
25–27 January 2010; pp. 357–360.

29. Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.; Eastmond, E.; Brennan, K.; Millner, A.;
Rosenbaum, E.; Silver, J.; Silverman, B.; et al. Scratch: Programming for all. Commun. ACM 2009, 52,
60–67. [CrossRef]

30. Node-RED. Available online: http://nodered.org/ (accessed on 20 September 2016).
31. App Inventor. Available online: http://ai2.appinventor.mit.edu/ (accessed on 20 September 2016).
32. Bellucci, A.; Zarraonandia, T.; Diaz, P.; Aedo, I. End-User Prototyping of Cross-Reality Environments.

In Proceedings of the ACM International Conference on Tangible, Embedded and Embodied Interaction,
Yokohama, Japan, 2017. (Unpublished).

33. Olsen, D.R., Jr. Evaluating User Interface Systems Research. In Proceedings of the ACM User Interface
Software and Technologies Symposium, Newport, RI, USA, 7–10 October 2007; pp. 251–258.

34. Node.js. Available online: https://nodejs.org/es/ (accessed on 20 September 2016).
35. Expressjs. Available online: http://expressjs.com/ (accessed on 20 September 2016).
36. Johnny-five. Available online: http://johnny-five.io/ (accessed on 20 September 2016).
37. Tinkerkit. Available online: https://github.com/TinkerKit (accessed on 20 September 2016).
38. Firmata. Available online: https://github.com/firmata/protocol (accessed on 20 September 2016).
39. Sparkfun. Available online: http://www.sparkfun.com (accessed on 20 September 2016).
40. Duinotech. Available online: https://tkkrlab.nl/wiki/Arduino_37_sensors (accessed on 20 September 2016).

http://www.openhab.org/
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1145/1592761.1592779
http://nodered.org/
http://ai2.appinventor.mit.edu/
https://nodejs.org/es/
http://expressjs.com/
http://johnny-five.io/
https://github.com/TinkerKit
https://github.com/firmata/protocol
http://www.sparkfun.com
https://tkkrlab.nl/wiki/Arduino_37_sensors

Sensors 2017, 17, 438 22 of 22

41. nRF24L01. Available online: http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
(accessed on 20 September 2016).

42. Olson, J.; Kellogg, W. Ways of Knowing in HCI; Springer: New York, NY, USA, 2014.
43. Edwards, W.K.; Bellotti, V.; Dey, A.K.; Newman, M.W. The challenges of user-centered design and evaluation

for infrastructure. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems,
Ft. Lauderdale, FL, USA, 5–10 April 2003; pp. 297–304.

44. Myers, B.; Hudson, S.E.; Pausch, R. Past, present, and future of user interface software tools. ACM Trans.
Comput. Hum. Interact. 2000, 7, 3–28. [CrossRef]

45. Parkes, A.; Ishii, H. Bosu: A physical programmable design tool for transformability with soft mechanics.
In Proceedings of the 8th ACM Conference on Designing Interactive Systems, Aarhus, Denmark,
16–20 August 2010; pp. 189–198.

46. Lund, A.M. Measuring usability with the USE questionnaire. STC Usabil. SIG Newsl. 2001, 8, 3–6.
47. Marquardt, N.; Diaz-Marino, R.; Boring, S.; Greenberg, S. The proximity toolkit: Prototyping proxemic

interactions in ubiquitous computing ecologies. In Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 315–326.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
http://dx.doi.org/10.1145/344949.344959
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Toolkits for Physical Computing
	Toolkits for Cross-Device Interactions
	End-User Programming for Ubiquitous Interaction

	The ECCE Toolkit
	Composition of Interactive Devices with the ECCE Authoring Environment
	Definition of Cross-Device Behaviors
	Programming-by-Demonstration
	Running the Ecosystem
	Further Implementation Details
	Adding New Sensors/Actuators to the Toolkit

	User Study
	Workshops Overview
	Exploratory Workshop
	Implemented Designs in the Exploratory Workshop
	Second Workshop
	Designs Implemented during the Second Workshop
	Results of the Questionnaire

	Overall Findings
	Conclusions and Future Work

