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RESUMEN

Durante los últimos años, los componentes de radiofrecuencia que
forman parte de un sistema de comunicaciones necesitan simulaciones
cada vez más exigentes desde el punto de vista de recursos computacio-
nales. Para ello, se han desarrollado diferentes técnicas con el método de
los elementos �nitos (FEM) como la conocida como adaptatividad hp,
que consiste en estimar el error en el problema electromagnético para
generar mallas de elementos adecuadas al problema que obtienen una
aproximación de forma más efectiva que las mallas estándar; o métodos
de descomposición de dominios (DDM), basado en la división del pro-
blema original en problemas más pequeños que se pueden resolver en
paralelo. El principal problema de las técnicas de adaptatividad es que
ofrecen buenas prestaciones para problemas bidimensionales, mientras
que en tres dimensiones el tiempo de generación de las mallas adaptadas
es prohibitivo. Por otra parte, DDM se ha utilizado satisfactoriamente
para la simulación de problemas eléctricamente muy grandes y de gran
complejidad, convirtiéndose en uno de los temas más actuales en la co-
munidad de electromagnetismo computacional.

El principal objetivo de este trabajo es estudiar la viabilidad de algo-
ritmos escalables (en términos de paralelización) combinando DDM no
conformes y adaptatividad automática en tres dimensiones. Esto permi-
tiría la ejecución de algoritmos de adaptatividad independiente en cada
subdominio de DDM. En este trabajo se presenta y discute un prototi-
po que combina técnicas de adaptatividad y DDM, que aún no se han



tratado en detalle en la comunidad cientí�ca. Para ello, se implementan
tres bloques fundamentales: i) funciones de base para los elements �nitos
que permitan órdenes variables dentro de la misma malla; ii) DDM no
conforme y sin solapamiento; y iii) algoritmos de adaptatividad en tres
dimensiones. Estos tres bloques se han implementado satisfactoriamente
en un código FEM mediante un método sistemático basado en el método
de las soluciones manufacturadas (MMS). Además, se ha llevado a cabo
una paralelización a tres niveles: a nivel de algoritmo, con DDM; a nivel
de proceso, con MPI (Message Passing Interface); y a nivel de hebra, con
OpenMP; todo en un código modular que facilita el mantenimiento y la
introducción de nuevas características.

Con respecto al primer bloque fundamental, se ha desarrollado una
familia de funciones base con un enfoque sistemático que permite la
expansión correcta del espacio de funciones. Por otra parte, se han in-
troducido funciones de base jerárquicas de otros autores (con los que el
grupo al que pertenece el autor de la tesis ha colaborado estrechamente
en los últimos años) para facilitar la introducción de diferentes órdenes
de aproximación en el mismo mallado.

En lo relativo a DDM, se ha realizado un estudio cuantitativo del
error generado por las disconformidades en la interfaz entre subdomi-
nios, incluidas las discontinuidades generadas por un algoritmo de adap-
tatividad. Este estudio es fundamental para el correcto funcionamiento
de la adaptatividad, y no ha sido evaluado con detalle en la comunidad
cientí�ca.

Además, se ha desarrollado un algoritmo de adaptatividad con pris-
mas triangulares, haciendo especial énfasis en las peculiaridades debidas
a la elección de este elemento. Finalmente, estos tres bloques básicos
se han utilizado para desarrollar, y discutir, un prototipo que une las
técnicas de adaptatividad y DDM.

xx



ABSTRACT

In the last years, more and more accurate and demanding simula-
tions of radiofrequency components in a system of communications are
requested by the community. To address this need, some techniques have
been introduced in �nite element methods (FEM), such as hp adaptivity
(which estimates the error in the problem and generates tailored meshes
to achieve more accuracy with less unknowns than in the case of uni-
formly re�ned meshes) or domain decomposition methods (DDM, con-
sisting of dividing the whole problem into more manageable subdomains
which can be solved in parallel). The performance of the adaptivity tech-
niques is good up to two dimensions, whereas for three dimensions the
generation time of the adapted meshes may be prohibitive. On the other
hand, large scale simulations have been reported with DDM becoming a
hot topic in the computational electromagnetics community.

The main objective of this dissertation is to study the viability of
scalable (in terms of parallel performance) algorithms combining non-
conformal DDM and automatic adaptivity in three dimensions. Specif-
ically, the adaptivity algorithms might be run in each subdomain in-
dependently. This combination has not been detailed in the literature
and a proof of concept is discussed in this work. Thus, three build-
ing blocks must be introduced: i) basis functions for the �nite elements
which support non-uniform approximation orders p; ii) non-conformal
and non-overlapping DDM; and iii) adaptivity algorithms in 3D. In this
work, these three building blocks have been successfully introduced in a



FEM code with a systematic procedure based on the method of manu-
factured solutions (MMS). Moreover, a three-level parallelization (at the
algorithm level, with DDM; at the process level, with message passing
interface (MPI), and at the thread level, with OpenMP) has been de-
veloped using the paradigm of modular programming which eases the
software maintenance and the introduction of new features.

Regarding �rst building block, a family of basis functions which fol-
lows a sound mathematical approach to expand the correct space of
functions is developed and particularized for triangular prisms. Also,
to ease the introduction of di�erent approximation orders in the same
mesh, hierarchical basis functions from other authors are used as a black
box. With respect to DDM, a thorough study of the error introduced
by the non-conformal interfaces between subdomains is required for the
adaptivity algorithm. Thus, a quantitative analysis is detailed includ-
ing non-conformalities generated by independent re�nements in neighbor
subdomains. This error has not been assessed with detail in the literature
and it is a key factor for the adaptivity algorithm to perform properly.
An adaptivity algorithm with triangular prisms is also developed and
special considerations for the implementation are explained. Finally, on
top of these three building blocks, the proof of concept of adaptivity
with DDM is discussed.
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CHAPTER 0
NOTATION

In this chapter, de�nitions and notations used throughout this doc-
ument are introduced. Capital letters denote matrices while boldface
letters represent vectors. Unit vectors are distinguished with a hat �
e.g. n̂ denotes unit normal vector, always de�ned outward the element
or domain�. Imaginary unit is denoted as j. Regarding di�erential
operators, the gradient is de�ned as ∇•, the divergence is as ∇ · • and
the curl is denoted as ∇×•. When divergence and curl are applied to a
surface, subscript τ is used, such as ∇τ . Euclidean norm of a vector x

is de�ned as ‖x‖2. With respect to electromagnetic magnitudes, electric
�eld is denoted as E when de�ned in the whole volume and as e when
de�ned on a surface; J is the electric current; wavenumber and wave
impedance in free space are de�ned as k0 and η0; ε is the electric per-
mittivity while µ is the magnetic permeability for materials, and when
subscript •r is used, these magnitudes are relative to vacuum. The prop-
agation constant is included here as γ. Frequency and angular frequency
are denoted as f and ω respectively. Domain is denoted as Ω while its
boundary is ∂Ω.

Regarding domain decomposition methods (DDM), when the sub-
script i is applied to some magnitude, this magnitude is only de�ned in
the subdomain i. The interface between two neighbor subdomains i and
j is denoted as Γij . The tangential component of some vector magnitude
is obtained through the operator πτ de�ned as:

πτ (•) := n̂× (• × n̂) (1)

with n̂ being the outward pointing unit vector on the surface where this
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operator is applied. Analogously, the operator π×τ to obtain the twisted
tangential component is de�ned as:

π×τ (•) := n̂× • (2)

When dealing with basis functions, a reference element is used with
spatial coordinates denoted as ξ, η and ζ; while coordinates related to
real elements are x,y and z. The Nédélec mixed-order space of order
k is de�ned as Rk, and polynomial spaces are denoted as Pk. If these
spaces are applied to some geometry, T is the reference triangle while
I is the reference segment. Basis functions are de�ned as N, Nr in the
real element and reference element, respectively.

Dirichlet (to impose the value of the unknown �eld), Neumann (to
impose the value of the derivative of the unknown �eld) and Cauchy
(as a hybrid of the former two) boundary conditions are denoted as
ΓD, ΓN and ΓC respectively. If these boundary conditions belong to
the boundary of the domain, they are denoted as ∂ΩD, ∂ΩN and ∂ΩC.
Regarding spaces of functions, boldface letters are used for vector spaces
of functions while capital letters stand for scalar spaces of functions. The
space of curl-conforming functions, [7], is:

H(curl,Ω) :=
{
w ∈ [L2(Ω)]3

∣∣∇×w ∈ [L2(Ω)]3
}

(3)

where L2(Ω) stands for the space of square integrable functions over Ω.
To enforce the tangential continuity of a �eld and impose (weakly)

continuous curls in Ω, Dirichlet as essential boundary condition can be
used, so:

H0(curl,Ω) := {w ∈ H(curl,Ω)|πτ (w) = 0 on ∂ΩD} (4)

and in this space is where the electric �eld reside with the imposition
of Dirichlet boundary conditions on perfect electric conductor (PEC)
surfaces. Physically, the de�nition of this space means that electric and
magnetic energies are �nite.

For DDM trace spaces have to be de�ned on the surface; speci�cally:

H−1/2(curlτ , ∂Ω) :=
{

w ∈ H−1/2(∂Ω)
∣∣∣∇τ ×w ∈ H−1/2(∂Ω)

}
(5)

H−1/2(divτ , ∂Ω) :=
{

w ∈ H−1/2(∂Ω)
∣∣∣∇τ ·w ∈ H−1/2(∂Ω)

}
(6)

2



are the spaces of functions obtained when operators πτ (•) and π×τ (•) are
applied to functions which belong to H(curl,Ω), that is:

H−1/2(curlτ , ∂Ω) := {πτ (w)|w ∈ H(curl,Ω)} (7)

H−1/2(divτ , ∂Ω) :=
{
π×τ (w)

∣∣w ∈ H(curl,Ω)
}

(8)

Finally, for scalar variables, Sobolev space H1/2(Ω) is used, [7].
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CHAPTER 1
INTRODUCTION

1.1 Background

Nowadays, a system of communications can be decomposed into dif-
ferent parts: radio frequency (RF), control electronics, and signal pro-
cessing modules. The design of this system covers a number of di�erent
technical �elds such as electromagnetism, solid-state physics, data pro-
cessing techniques and information theory.

Lately, the design of these systems must be more and more accu-
rate due to the increase in the demand of bandwidth in the new com-
munication services. Regarding the RF module, full-wave electromag-
netic simulations are mandatory to address these requirements so dif-
ferent techniques have been developed in the last decades, including
the method of moments (MoM), �nite-di�erence time-domain (FDTD)
and �nite element method (FEM), [8, 9]. These techniques are focused
on providing a complete solution to Maxwell's equations from di�erent
approaches: MoM is based on integral equations through the de�ni-
tion of Green's functions, whereas FDTD uses a di�erential formulation
which discretizes di�erential equations with central-di�erence approxi-
mations. FEM is based on the de�nition of small elements where the
solution is computed (through a variational formulation obtained, e.g.,
by Galerkin's methods), and then assembled. The typical formulation of
MoM, [10], needs a surface mesh and generates a dense matrix which can
be accelerated with methods as the multilevel fast multipole algorithm
(MLFMA), [11]; it is commonly used for metallic and layered antennas
since no truncation box has to be de�ned for far-�eld radiation, but
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problems arise when complex geometries or materials (with anisotropies
or inhomogeneities) are modeled. On the other hand, FDTD, [12], is
highly e�cient in terms of computational e�ort since matrix solutions
are not needed and complex materials are easily handled. Moreover, with
only one simulation of a time pulse (e.g., a Gaussian pulse) a broadband
frequency simulation can be obtained through Fourier transforms. How-
ever, geometrically complex or resonant structures are very challenging
for this technique due to the rectangular grid commonly used for the
discretization of the space.

FEM, [1], has been proven as an accurate and �exible tool in the last
years since complex geometries and materials can be handled naturally
by its formulation. The research group to which the author belongs
has made an impact in the developing of FEM, [13�15], and this line is
continued in this dissertation. Main drawbacks of this method are the
generation of volumetric meshes and the need, as in FDTD, of de�ning
a truncation box to obtain far-�eld components, which is mandatory
for radar cross section (RCS) and antenna analysis. To overcome these
di�culties, more and more robust volume mesh generators have been
introduced in the last years, [16�18] while di�erent approaches have been
proposed to reduce the truncation box, [15] and references therein, [19].

FEM can be summarized into four steps: i) de�nition of the prob-
lem, including electromagnetic features (such as materials and boundary
conditions) in the geometry; ii) generation of the volume mesh, which
will provide smaller elements (the so-called �nite elements on which the
method is based); iii) �lling and assembly of the matrices related to
each element to build a system of equations which is solved; and, iv)
approximation of the electric or magnetic �eld by means of a weighted
sum of vector polynomial functions, where the weights or coe�cients
are obtained through the solution computed in the previous step. Thus,
these vector polynomials functions (from now on, called basis functions)
play a key role in vector FEM.

In fact, following the classic de�nition of a �nite element by Ciar-
let, [20], a �nite element is composed not only of its geometrical domain
but also of a space of functions (expanded by a set of basis functions) and
of a set of degrees of freedom. Vector �nite elements (commonly used in
computational electromagnetics (CEM)) can be decomposed in terms of
the continuity imposed between neighbor elements into curl-conforming
and div-conforming elements. Curl-conforming elements provide tan-

6
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gential continuity and leave the normal component to be discontinu-
ous between elements, whereas div-conforming elements impose normal
continuity between neighbor elements. Due to the tangential continu-
ity of the electric and magnetic �elds at the interface between media,
curl-conforming elements are more appropriate for the representation
of these magnitudes. Within curl-conforming �nite elements, a further
distinction can be made depending on the completeness of the space of
functions, being mixed-order elements commonly used. Mixed-order el-
ements are di�erentiated from polynomial complete elements by having
a constrained representation of the vector �elds with di�erent order of
polynomial approximations depending on the direction considered. This
kind of elements provides a mixed-order approximation of the �eld while
a full-order p − 1 representation of the curl of the �eld is retained. In
the literature, main references about curl-conforming mixed-order �nite
elements are [21, 22], although di�erent approaches have been proposed
as discussed in Section 1.2.

Basis functions are a key factor in the solution of the system of equa-
tions generated since conditioning of the matrix is determined by the
choice of these basis functions, and the solving step of the system of
equations is strongly a�ected by this conditioning, [23]. The order of ba-
sis functions also leads to di�erent approximations of the electric �eld:
although a better approximation of the �eld is obtained with higher or-
ders, the assembly of the �nite element matrices is more time-consuming
specially from third or fourth orders, [24]. Usually, second-order basis
functions are used, [2, 25], although non-uniform orders into the same
domain are also possible, [26]. This last option is called p re�nement,
and it consists of increasing the order p of the basis functions in suitable
areas. However, the most common re�nement is the so-called h re�ne-
ment, which means having smaller elements in some areas of the mesh.
Finally, hp re�nements are obtained when these two re�nements are
combined, [27�29], and although exponential convergence curves can be
obtained through the generation of adapted hp meshes, the time needed
to obtain an optimal hp mesh may be prohibitive in three-dimensional
problems.

The main characteristic of the system of equations obtained is re-
ferred to its population: the resulting FEM matrix is highly sparse so
normally direct solvers are used to obtain the coe�cients associated to
the basis functions. Direct solvers are commonly based on the so-called

7



CHAPTER 1. INTRODUCTION

LU decomposition, and accuracy up to machine precision is provided.
They are highly robust but their main drawback is the memory require-
ment constituting the limiting factor for large scale simulations, [30,31],
even though strong e�orts have been made for parallel versions, such as
multifrontal massively parallel solver (MUMPS), [32] and math kernel li-
brary (MKL) PARDISO, [33]. Finally, it is worth noting that out-of-core
strategies are available but performance is substantially deteriorated.

For this reason, direct solvers are not an option for very large scale
electromagnetic simulations. Iterative solvers are the other approach to
solve a linear system of equations, where di�erent estimations of the
solution are built until a good approximation (de�ned with some resid-
ual) is achieved. An important family within iterative solvers are Krylov
solvers, where the solution is inside the so-called Krylov subspace, [34].
The main advantage of this kind of methods is that only matrix-vector
and vector-vector products are required, allowing a good scaling on high
performance computing (HPC) infrastructures, [35]. However, tradi-
tional formulations of FEM when involving wave propagation problems
usually show a poor performance with iterative solvers and the main
problem becomes to �nd a good preconditioner to improve the conver-
gence of the solver. One of the most commonly used libraries to in-
troduce this kind of solvers is portable, extensive toolkit for scienti�c
computation (PETSc), [36], where several di�erent iterative solvers are
available.

To address this memory problem, di�erent DDM have been intro-
duced in the community in the last years. In short, DDM is based on
the division of the original problem into smaller subdomains and, then,
applying a two-step procedure to obtain the solution in the full prob-
lem: �rst, unknowns de�ned on the interface between subdomains are
extracted, constituting a smaller global surface problem not as sparse as
the original problem. Then, the solution on the surface is propagated to
the interior of each subdomain. DDM is an active topic on the �eld for
a number of important reasons:

DDM is inherently parallelizable since each subdomain can �ll and
assemble its local matrix, then construct the global surface prob-
lem which can be solved in parallel, and �nally each subdomain
computes the solution from the interface to other subdomains.

DDM formulation may support non-matching interfaces between

8
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subdomains, which can be used to mesh independently each sub-
domain (even with di�erent �nite element shapes).

DDM can be used as a preconditioner for iterative solvers.

DDM can be used to perform full-wave simulations of periodic
structures with only one local subdomain matrix.

The �rst three reasons are addressed in this work and are present in the
literature, as it is shown in the detailed review regarding time-harmonic
Maxwell's equations included in Section 1.2. This set of advantages
lead to perform full-wave simulations that without DDM would not be
possible.

On top of that, non-conformal DDM may be used as a technique to
obtain hp adaptivity scalable codes, in terms of parallelization, if the
hp re�nement is de�ned locally in each subdomain. This possibility can
alleviate the computational e�ort which makes prohibitive the generation
of hp re�nements in three dimensions. Furthermore, a reduced set of the
subdomains obtained with DDM may be repeatedly re�ned while the
remaining subdomains keep the same mesh and calculations associated.

Finally, the FEM implementation shown in this code is derived from
the in-house electromagnetic simulator from [37]. In the last decade,
this simulator has been written from scratch using modern Fortran con-
structions and object-oriented programming (OOP) paradigms following
a modular organization. This modular programming allows di�erent �-
nite element shapes, basis functions and solvers living simultaneously in
the same code, as shown in Figure 1.1. Since this code is in constant evo-
lution, an automatic set of tests based on the method of manufactured
solutions (MMS), [13, 38] has been introduced to debug new contribu-
tions. This code has been proven as a reliable tool for a number of dif-
ferent electromagnetic problems, [14, 31, 37, 39�41] so when introducing
new techniques as DDM or adaptivity in this dissertation no comparison
with commercial software or measurements are introduced.

1.2 Literature review

1.2.1 Basis functions

A growing interest in the mathematical and CEM communities has
arisen from seminal papers by Nédélec [21, 22], where curl-conforming
mixed-order �nite elements were established for a number of shapes

9
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(tetrahedra, triangular prisms and hexahedra). These curl-conforming
elements overcome the problem of the spurious modes (numerical ap-
proximations of non-physical solutions but mathematically valid for the
double-curl formulation) through the correct approximation of the spu-
rious solutions. A detailed review can be found in [1,27,42], and remark-
able works from the mathematical community are included in [43, 44],
including the analysis of commutavity with de-Rham diagrams to prove
the su�cient condition for stability. From the electromagnetics com-
munity, works from [45�49] have made an impact. Two main families of
basis functions can be distinguished: i) hierarchical, where a set of shape
functions of order p contains all the shape functions of lower orders, [3];
and interpolatory, where basis functions are designed to have non null
trace at one entity (edges, faces) and null at the others.

The systematic approach included in [50,51] for tetrahedra has been
expanded in this dissertation to triangular prisms, [52]. The space of ba-
sis functions proposed in this dissertation is based on a tensor product of
the two dimensional simplex (i.e., triangle) and the one dimensional (i.e.,
segment) spaces. This tensor product has to be de�ned in the spaces of
functions and not the basis functions themselves to preserve stability
and unisolvency of the degrees of freedom, [22]. A number of basis func-
tions with no de�nition of the space of functions a priori are available in
the literature for triangular prisms: [53], non curl-conforming in the gen-
eral case; [54], which use Sylvester polynomials to obtain basis functions
of generic order; [55, 56], generated with the imposition of a number of
constraints; and [57] which is a spectral version of the triangular prism.

1.2.2 DDM

As commented before, DDM is a hot topic in the FEM community
and contributions from di�erent �elds have been introduced in the lit-
erature, specially from the mathematical and CEM community. First,
di�erent concepts related to DDM have to be introduced: i) overlap-
ping is referred to the division of subdomains (non-overlapping DDM
is obtained when the division is disjoint); ii) conformality applied to a
surface usually means that the mesh is the same on both sides of the in-
terface between subdomains; however, in this dissertation, conformality
is also related to the �nite element of each subdomain; and iii) matching
meshes are relative to the discretization of the mesh on the interface.

In this work, non-overlapping DDM is used while di�erent schemes
of conformality and matching interfaces have been tested. E.g., in Fig-

10
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ure 1.2, two di�erent schemes for DDM are shown for illustration pur-
poses:

Between Ω1 and Ω2 a matching interface is present. Although the
�nite element shapes are di�erent, the division may be conformal
or non-conformal depending on the basis functions used for each
domain: i.e., if the elements belong to the same family of basis
functions and same approximation order p is used, this division is
conformal; otherwise, the division is non-conformal.

Between Ω2 and Ω3 a non-matching interface is de�ned, even al-
though Ω2 and Ω3 are discretized with the same �nite element.

Regarding the solution of time-harmonic Maxwell's equations, three
important families can be distinguished: i) optimized Schwarz methods
(OSM), mainly developed by the mathematical community which allows
overlapping between subdomains; ii) cement element method, leaded by
Prof. Jin-Fa Lee's group; and iii) �nite element tearing and intercon-
necting (FETI) techniques through the de�nition of Lagrange multipli-
ers whose main contributor is Prof. Jian-Ming Jin's group. It has to be
noted that the second family has been introduced in the framework of
the �rst family in [58] and in the machinery of the third family in [59].

Many contributions to the study of the transmission conditions (TC)
are introduced by the �rst family of DDM introduced here. First non-
overlapping DDM is proposed in [60], while one of the �rst contributions
regarding the optimization of TC is detailed in [61]. Convergence of the
iterative solver is strongly a�ected by the de�nition of TC and di�erent
optimizations can be found in the literature. Some of these contributions
are included in two libraries: HPDDM, [62] built with an interface to
FreeFEM++, [63], and GetDDM, [64], which makes use of Gmsh, [18].
Regarding the �rst library, some contributions are detailed in [65], where
optimized restricted additive Schwarz (ORAS) preconditioner is de�ned,
and [66], where a di�erent optimization of the TC is included. This
family of DDM can be used in a non-overlapping, [67], or overlapping
fashion through the de�nition of a partition matrix as thoroughly ex-
plained in [68]. Interesting results applied to brain microwave imaging
are also included in [69, 70]. With respect to GetDDM, contributions
from [71�73] are included. In these references DDM is integrated with
the on surface radiation condition (OSRC), [74], and �nite conductivity
in conductor materials is taken into account, [75]. In [72], it is explained

11
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that optimal convergence of the iterative solver can be obtained with
the so-called Magnetic-to-Electric map on the interface. However, this
map is global and it is computationally prohibitive to be found for a
general problem, so a new local approximation is proposed in [72]. The
second family of DDM developed by Prof. Jin-Fa Lee's group can be
understood, indeed, as a local approximation of this map. Moreover,
higher-order basis functions have been considered to approximate ancil-
lary variables involved in the de�nition of TC, [76,77]. Finally, in [67] a
non-overlapping ORAS preconditioner is used with an stochastic-based
optimization of the parameters associated to the TC, and an integral rep-
resentation for absorbing boundary condition (ABC) is included in [78].

One of the most active groups regarding DDM is leaded by Prof.
Jin-Fa Lee. Transmission conditions here are classi�ed as �rst order
transmission conditions (FOTC), second order transmission conditions
(SOTC)-transversal electric (TE), SOTC-transversal magnetic (TM),
and a combination of these last two provides SOTC-FULL, and non-
conformality is managed through the de�nition of some cement variables
with physical meaning inspired by mortar element methods, [79�82]. In
all the references, the formulation is non-conformal although matching
meshes are used up to the de�nition of a corner-edge penalty term needed
to enforce the divergence-free condition, [83,84]. The convergence of the
iterative solver is predicted by a Fourier analysis, [85], also used on [61],
and periodicity is taken into account to achieve good performance for this
kind of structures, although matching interfaces are used and FOTC
(which takes into account only propagating TE and TM modes), as
in [86�88]. Details about a parallel implementation of this framework are
included in [89]. Massive parallel simulations are also included in [90],
although no cement variables are used to implement FOTC. SOTC are
�rst detailed in [91], where Fourier analysis is expanded to this kind
of transmission conditions which take into account evanescent TE and
TM modes. From this dissertation, and using Gauss-Seidel precondition-
ing, as in [92], interesting results are detailed in [93�95]. Non-matching
interfaces are introduced in [83] through the corner-edge penalty com-
mented above. Using this framework, di�erent variations and results are
included in [96] (where mixed-SOTC are proposed to accelerate conver-
gence in some problems using Fourier analysis), [84] (where a di�erent
testing to obtain the weak formulation is proposed and block Jacobi is
used as preconditioner) and [97]. Recently, in [98] an embedded DDM is
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presented to accelerate a number of speci�c problems, and a technique
called reverse operation self-consistent evaluation is used in [99, 100] to
improve the numerical integration over non-matching interfaces. More-
over, integral equations with DDM are introduced in [101�104] being
an active �eld of research in the last years; and in [105�107] DDM is
used with direct solvers in the reduced surface problem to accelerate
conventional direct solvers. Finally, collaboration between these last
two families has produced [77] and [58], where a uni�ed framework is
developed.

Last family is introduced by Prof. Jian-Ming Jin, developing a ma-
chinery which can be summarized in [108]. Dual-primal FETI is ex-
panded to electromagnetism in [109], and a parallel implementation is de-
tailed in [110]. The equivalent to FOTC are included in these references,
although an extension to the equivalent SOTC-TE is included in [59],
where also an uni�ed framework for conformal and non-conformal DDM
is introduced instead of treating all the interfaces as non-conformal,
which can lead to some ine�ciencies. Comparison with cement element
methods from the second family, [83], is also included in [59, 111], ob-
taining similar results. perfectly matched layers (PML) are introduced
in [112], together with an acceleration of the product matrix-vector. Par-
allel implementation of FETI-DPEM is detailed in [113] with a low-level
optimization. An improvement in the convergence of this method is
achieved in 2D in [114, 115], introducing PML and three dimensions
in [116]. A tree-cotree splitting is introduced in [117] together with DDM
to remove low-frequency breakdown, while a new transmission condition
based on the normal component of the electric �eld is proposed in [118].
Multilevel techniques are applied to this family of DDM in [119], obtain-
ing some acceleration. Finally, in [120] performance of iterative solvers
when solving the reduced surface problem is improved when having a
number of di�erent right-hand side (RHS).

1.2.3 hp adaptivity

Although hp adaptivity is included in this work as a proof of concept,
some useful references are included in the following. Di�erent estima-
tors can be found in [4,121�124]. Regarding h adaptive algorithms, red-
green technique used for triangular re�nement is detailed in [125, 126],
and some considerations for the quality of the mesh generated in ex-
truded meshes (including triangular prisms) are introduced in [127]. Re-
�nement with prisms can be found in [128] and in [129], where two
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dimensional adaptivity techniques are introduced in three dimensional
problems through the use of triangular prisms. Marking strategies for
h re�nement are found in [6], and for hp re�nement in [130], while an
analytical study about these strategies is included in [131]. An extensive
review of hp adaptivity strategies can be found in [132,133], and details
about a possible implementation are found in [27]. Finally, a success-
ful introduction of hp techniques for two-dimensional electromagnetic
problems is detailed in [134�136].

1.3 Objective, contributions and organization

The main objective of this dissertation is to study the viability of
scalable (in terms of parallel performance) algorithms combining non-
conformal DDM and automatic h and hp adaptivity in three dimensions.
To do that, three building blocks have to be introduced:

Basis functions which support non-uniform p re�nement.

A non-conformal, non-overlapping version of DDM.

An adaptivity algorithm to re�ne in suitable areas.

The use of non-conformal DDM gives the possibility of having scalable
codes in terms of parallelization; speci�cally, the adaptivity algorithms
might be run in each subdomain independently. However, the discon-
tinuities provided by the non-conformal interfaces between subdomains
introduce an error which may a�ect to the re�nement of the mesh. This
error has not been assessed with detail in the literature and it is a key
factor for the adaptivity algorithm to perform properly. In this con-
text, a quantitative analysis of the error due to non-conformal interfaces
(including non-conformalities generated by independent re�nements in
neighbor subdomains) is discussed in this work.

Contributions in this dissertation may be divided in three big blocks:

Basis functions: a systematic approach has been proposed to de-
velop a new family of basis functions with good mathematical prop-
erties. Results about di�erent assembly strategies are included and
discussed, and validation of this family of basis functions for the
particularization of triangular prisms is included. Also, hierarchi-
cal vector basis functions from [26] for tetrahedra, hexahedra and
triangular prisms are introduced to ease the non-uniform p re�ne-
ment needed for hp adaptivity. The introduction of the hierarchical
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basis functions has been possible due to the close collaboration be-
tween the two research groups in the last years. Validation of the
basis functions introduced through MMS is detailed, whose pro-
cedure may help to the development of new FEM codes. Results
related to the dispersion error (which is a limiting factor for large
scale problems) are also included.

Non-conformal DDM: a number of �nite element shapes (hexahe-
dra, tetrahedra and triangular prisms) are introduced to be used
with non-overlapping and non-conformal DDM in a parallel fash-
ion. Some variations for MMS are introduced and the procedure is
detailed to help the introduction of DDM in other FEM codes. Fur-
thermore, a detailed study of the e�ect of non-conformal meshes
is included, using a rectangular waveguide as wave propagation
problem.

Adaptivity algorithms: a new development of an adaptivity algo-
rithm particularized for the triangular prism introduced in the �rst
block of contributions is detailed. The semi-structured characteris-
tic of this element obliges to include non-standard considerations in
the adaptivity algorithm that are shown and justi�ed. Considera-
tions about the use of h adaptivity together with DDM are detailed
and some numerical results with MMS are included. A problem
with one singularity which is divided into �ve subdomains is used
as a proof of concept, obtaining interesting conclusions when h

adaptivity and non-uniform p re�nement is applied.

The dissertation is divided in the following chapters: �rst, formula-
tion on which all these contributions are based are detailed in Chapter 2.
Details about the parallel implementation of the code (and particularly,
of DDM) are included in Chapter 3. Contributions from the �rst block
are within the Chapter 4, while in Chapter 5 veri�cation and validation
of the DDM stated in Chapter 2 are included, with a detailed study of
the e�ect of the non-matching interface in the whole problem covering
all the contributions stated in the second block. In Chapter 6 all the
contributions from the third block are detailed, while in Chapter 7 a
summary of all the conclusions obtained in this dissertation is included
together with some future lines.
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CHAPTER 2
FEM FORMULATION

The general formulation of the FEM code to solve the vector wave
equations obtained through Maxwell's equations used in this document
is included in this chapter. First, the boundary value problem is stated;
then, Galerkin method is applied obtaining the so-called here classic

FEM. An expansion of this formulation is introduced to work with dif-
ferent subdomains using non-conformal, non-overlapping DDM inspired
by [96], emphasizing on the discretization of the formulation and the
two-step solution procedure adopted.

2.1 Variational formulation for classic FEM

Maxwell's equations have been used from 1862 to characterize the
electromagnetic phenomena, [137]. If the time dependence established
in these equations is assumed to be harmonic, the following boundary
value problem (BVP) for solving a general open-region electromagnetic
problem in a domain Ω in terms of the electric �eld (a dual case may be
obtained with the magnetic �eld) can be de�ned as

∇× 1

µr
(∇×E)− k2

0εrE = O, (2.1)

where O stands for the term related to the internal sources of the domain.
Indeed,

O = −γη0J−∇× 1

µr
M, (2.2)

J and M being the electric and magnetic current respectively. For sim-
plicity, isotropic materials are assumed. If anisotropic materials were
present, µr and εr may be represented as tensors.
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The boundary conditions considered to close the domain Ω and make
unique the solution obtained are homogeneous Dirichlet (used to imple-
ment PEC), Neumann (to introduce perfect magnetic conductor (PMC)
materials) and Cauchy (to include through Ψ either the exterior bound-
ary for open region problems or the excitation related to a waveport)
introduced as

n̂×E = 0, on ΓD,

n̂× µr−1(∇×E) = 0, on ΓN, (2.3)

n̂× µr−1(∇×E) + jk0n̂× (n̂×E) = Ψ, on ΓC.

Variational formulation for (2.1) is derived through Galerkin method,
testing with an appropriate weighting function W ∈ H0(curl,Ω) (i.e., in
the same space where the electric �eld belongs, E ∈ H0(curl,Ω)) over
the whole domain Ω as in

˚
Ω

W ·∇×
(
µ−1
r ∇×E

)
dΩ− k2

0

˚
Ω

W · εr E dΩ =

˚
Ω

W ·O dΩ, (2.4)

where dΩ is the di�erential volume.
This weak formulation can be rewritten more conveniently if diver-

gence theorem, ˚
Ω

∇ ·A dΩ =

"
Γ

A · n̂ dΓ, (2.5)

and following vectorial identities,

∇ · (A×B) = B ·∇×A−A ·∇×B, (2.6)

(A×B) · n̂ = −A · (n̂×B) , (2.7)

are applied to (2.4). Then, the double curl term in (2.4) can be trans-
formed into

˚
Ω

W ·∇×
(
µr
−1∇×E

)
dΩ =

˚
Ω

(∇×W) ·
(
µr
−1∇×E

)
dΩ

+

"
∂Ω

W ·
[
n̂×

(
µr
−1∇×E

)]
dS. (2.8)

Further simpli�cations can be applied to this equation. Indeed, last
term of (2.8) can be rearranged if boundary conditions are taken into
account, i.e.:
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"
∂Ω

W·
[
n̂×

(
µr
−1∇×E

)]
dS =

¨
∂ΩD

W·
[
n̂×

(
µr
−1∇×E

)]
dS+

¨
∂ΩN

W ·
[
n̂×

(
µr
−1∇×E

)]
dS+

¨
∂ΩC

W ·
[
n̂×

(
µr
−1∇×E

)]
dS,

(2.9)

and since Neumann boundary conditions are applied,

n̂× µr−1(∇×E) = 0→
¨
∂ΩN

W ·
[
n̂×

(
µr
−1∇×E

)]
dS = 0. (2.10)

Regarding Dirichlet boundary conditions ∂ΩD, due to the rearrange-
ment

W ·
[
n̂×

(
µr
−1∇×E

)]
= −n̂×W ·

(
µr
−1∇×E

)
, (2.11)

then it is straightforward to obtain that:
¨
∂ΩD

W ·
[
n̂×

(
µr
−1∇×E

)]
dS = 0. (2.12)

Finally, if Cauchy boundary conditions are de�ned as

n̂× µr−1(∇×E) = Ψ− jk0n̂× n̂×E, (2.13)

the surface integral equation in (2.9) simpli�es to

"
∂Ω

W ·
[
n̂×

(
µr
−1∇×E

)]
dS =

¨
∂ΩC

W ·ΨdS + jk0

¨
∂ΩC

(n̂×W) · (n̂×E)dS. (2.14)

Using (2.8) and (2.14) in (2.4), the �nal weak variational formulation
is

˚
Ω

∇×W ·
(
µr
−1∇×E

)
dΩ− k2

0

˚
Ω

W · εr E dΩ+

jk0

¨
∂ΩC

(n̂×W) · (n̂×E)dS =

˚
Ω

W ·O dΩ−
¨
∂ΩC

W ·Ψ dS.

(2.15)
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This formulation can also be expressed through bilinear and linear
forms.

Find E ∈ H0(curl,Ω) such that

c1(W,E)− k2
0 c2(W,E) + jk0 c3(W,E) =

l(W), ∀W ∈ H0(curl,Ω), (2.16)

with bilinear forms c1(W,E), c2(W,E), c3(W,E) and linear form l(W)

as

c1(W,E) =

˚
Ω

(∇×W) · (µr−1∇×E) dΩ,

c2(W,E) =

˚
Ω

W · εrE dΩ,

c3(W,E) =

¨
∂ΩC

(n̂× F) · (n̂×E) dS,

l(W) =

˚
Ω

(W ·O) dΩ−
¨
∂ΩC

(W ·Ψ) dS.

(2.17)

To obtain a numerical solution of (2.15), Ω has to be divided into
small �nite elements where electric �eld E is approximated using di�er-
ent sets of vector basis functions. Thus, a set of linear equations Ax = b

is built, where A is a highly sparse square matrix whose bandwidth
strongly depends on the order of basis functions used.

2.2 Variational formulation for DDM

Formulation for DDM is de�ned in the following. In short, the objec-
tive of DDM is to create a surface problem (generally not highly sparse)
from the whole FEM original problem. This surface problem can be
solved with an iterative solver and then, the surface solution is propa-
gated to the interior of each subdomain.

To use this technique, a smooth domain Ω is divided arbitrarily into
a number ndom of smaller and disjoints subdomains Ωi, i.e.,

Ω =

ndom⋃
i=1

Ωi, (2.18)

with

Ωi ∩ Ωj = ∅ ∀ i 6= j; i, j ∈ [1, ndom]. (2.19)
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Figure 2.1: A possible non-overlapping division in �ve subdomains of a

smooth domain Ω

For illustration purposes, Figure 2.1 shows a possible division of the
original domain Ω into subdomains with ndom = 5, denoting the interface
between subdomains i and j belonging to subdomain i as Γij . Moreover,
exterior boundaries of a subdomain Ωi can be decomposed into ∂Ωi =

∂̂Ωi ∪ Γij , with ∂̂Ωi = ∂Ω ∩ ∂Ωi.
To state the boundary value problem for a non-conformal and non-

overlapping DDM, the double curl wave vector equation

∇× 1

µri
(∇×Ei)− k2

0εriEi = Oi (2.20)

is de�ned in terms of the electric �eld, Oi being the term related to the
internal sources of the domain

Oi = −γη0Ji −∇× 1

µri
Mi. (2.21)
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Boundary conditions are imposed over each subdomain Ωi,

n̂i ×Ei = 0, on Γi,D, (2.22)

n̂i ×
1

µri
(∇×Ei) = 0, on Γi,N, (2.23)

n̂i ×
1

µri
(∇×Ei) + jk0n̂i × n̂i ×Ei = Ψi,on Γi,C, (2.24)

n̂i ×Ei × n̂i = n̂j ×Ej × n̂j , on Γij , (2.25)

n̂i ×
1

µri
(∇×Ei) = −n̂j ×

1

µrj
(∇×Ej), on Γij , (2.26)

where well-known Dirichlet, Neumann and Cauchy boundary conditions
are introduced in (2.22), (2.23) and (2.24) respectively. Additionally,
tangential continuity between subdomains for electric and magnetic �elds
are enforced in (2.25) and (2.26). This continuity has to be imposed
weakly since non-overlapping DDM is used: if it is enforced directly, the
subdomain problem may su�er non-negligible internal resonances, [84].
Thus, TC are used to impose this continuity.

The convergence of the surface problem is strongly a�ected by how
these conditions are de�ned, [58, 84]. In this formulation, SOTC are
used,

πτ (Ei) + π×τ (µ−1
ri ∇×Ei) + βi∇τ ×∇τ × πτ (Ei)+

γi∇τ∇τ · π×τ (µ−1
ri ∇×Ei) = πτ (Ej)− π×τ (µ−1

rj ∇×Ej)+

βj∇τ ×∇τ × πτ (Ej)− γi∇τ∇τ · π×τ (µ−1
ri ∇×Ej) (2.27)

. Particular versions of TC can be obtained from (2.27) with speci�c
values of the constants βi, γi: if βi, γi = 0, FOTC are obtained, while if
βi 6= 0, γi = 0, the so-called SOTC for TE modes are de�ned and, �nally,
if βi = 0, γi 6= 0 SOTC for TM modes are generated.

To ease the implementation of SOTC, cement variables related to the
physics of the problem, [91],

ei =πτ (Ei),

ji =
1

k0
π×τ

(
1

µri
(∇×Ei)

)
,

ρi =
1

k0
∇τ · ji,

(2.28)

are used. In (2.28), ei ∈ H(curlτ ,Γij) is the tangential electric �eld on
the interface, ji ∈ H(curlτ ,Γij) stands for the electric current on the
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same interface, and ρi ∈ H
−1/2
0 (Γij) is a scalar variable with dimen-

sions of charge. First two variables belong to the space H(curlτ ,Γij). It
has to be noted that ji should reside in H(divτ ,Γij) but a more clus-
tered distribution of eigenvalues (and a faster convergence) is found with
H(curlτ ,Γij), [93, 118].

Using (2.28) in (2.27), TC can be reformulated through operators,

(αI+βiSTE)(ei) + (I + γiSTM)(ji) =

(αI + βjSTE)(ej)− (I + γjSTM)(jj),
(2.29)

where I is the identity operator, STE = ∇τ×∇τ×• and STM = ∇τ∇τ ·•.
Another factor which strongly a�ects the convergence of the iterative

solver in the surface problem is the value of constants α, βi and γi, [91].
One possible choice is, [96],

α =− jk0,

βi =
−1

∆TE,i + jk0
,

γi =
1

k2
0 − jk0∆TM,i

,

∆TE,i =
√
k2
max,TE,i − k2

0,

∆TM,i =
√
k2
max,TM,i − k2

0,

kmax,TE,i =CTE

π

hmin,i
,

kmax,TM,i =CTMkmax,TE,i.

(2.30)

The chosen values are functions of the smallest edge in the discretiza-
tion of the domain, noted as hmin,i, while CTE and CTM can be adjusted
depending on the speci�c problem and usually they are set to CTE = 0.5

and CTM = 2.
The last step before de�ning the variational formulation is how to

include scalar variables ρi. Using Galerkin method, if the de�nition of
ρi in (2.28) is tested with a scalar function φi which belongs to the same
space as ρi, ¨

Γij

φiρjdΓij −
1

k0

¨
Γij

φi∇τ · jidΓij = 0, (2.31)

integration by parts can be applied, [117], to ease the implementation as
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in

k0

¨
Γij

φiρjdΓij +

¨
Γij

∇τφi · jidΓij = 0. (2.32)

Finally, if (2.20) is tested with Wi while (2.29) is tested with li,
together with (2.32) a variational formulation can be de�ned analogously
as in (2.16).

Find Ei ∈ Vi, ji ∈ Xi, ρi ∈ Yi such that

c1(Wi,Ei)−k2
0 c2(Wi,Ei)+

jk0 cτ,1(n̂i ×Wi, n̂i ×Ei) = l(Wi), ∀Wi ∈ Vi,
(2.33)

αcτ,1(li, ei) + k0cτ,1(li, ji)+k
2
0γicτ,1(li,∇τρi)+

βik0cτ,1(∇τ × li,∇τ × ei) = αcτ,1(li, ej)−
k0cτ,1(li, jj)−k2

0γjcτ,1(li,∇τρj)+

βjk0cτ,1(∇τ × li,∇τ × ej), ∀ li ∈ Xi,

(2.34)

cτ,1(∇τφi, ji) + k0cτ,2(φi, ρi) = 0, ∀φi ∈ Yi, (2.35)

where space of functions Vi, Xi and Yi are de�ned as

Wi ∈ Vi :=H0(curl; Ωi),

li ∈ Xi :=H0(curlτ ; Γij),

φi ∈ Yi :=H
−1/2
0 (Γij),

(2.36)

and bilinear forms c1(Fi,Ei), c2(Fi,Ei), cτ,1(li, ej), cτ,2(φi, ρj) and lin-
ear form l(Fi) are introduced as

c1(Wi,Ei) =

˚
Ωi

(∇×Wi) · µri−1(∇×Ei) dΩi,

c2(Wi,Ei) =

˚
Ωi

Wi · εriEi dΩi,

cτ,1(li, ej) =

¨
Γij

(li · ej) dΓij ,

cτ,2(φi, ρj) =

¨
Γij

(φiρj) dΓij ,

l(Wi) =

˚
Ωi

(Wi ·Oi) dΩi −
¨

Γi,C

(Fi ·Ψi) dΓi,C

(2.37)
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2.2.1 Discretization of the DDM variational formulation

The discretization of the weak formulation de�ned in (2.33) leads, in
the same way as in classic FEM, to a system of linear equations Ax = b.
However, the division into subdomains leads to a matrix A that can be
further decomposed into blocks,

A1 C12 . . . C1n

C21 A2 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . An




x1

x2

...

xn

 =


b1

b2

...

bn

 , (2.38)

where Ai is the subdomain i matrix and Cij is the cross matrix between
subdomains i and j which stores the interaction between both subdo-
mains. Obviously, Cij = 0 if i /∈ N (j), N (j) being the set of subdomains
which are neighbors of the subdomain j.

To get a deeper insight into (2.38), a further division in blocks can
be established. For the subdomain matrix Ai,

Ai =


Aiii Aisi 0 0

Aisi Assi Asji 0

0 Ajsi Ajji Ajρi

0 0 Aρji Aρρi

 , (2.39)

while for the cross matrix Cij ,

Cij =


0 0 0 0

0 0 0 0

0 Cjsij Cjjij Cjρij

0 0 0 0

 . (2.40)

Regarding superscripts, •i is to denote that interior electric �eld un-
knowns (i.e. unknowns associated to an entity (vertex, edge, face, vol-
ume) out of any interface Γij) are involved in the de�nition of that part
of the matrix, •s is related to surface electric �eld ei unknowns, •j in-
volves electric current ji unknowns and, �nally, •ρ is related to scalar
ρi variables. The �rst superscript is referred to the rows of the block
matrix, and the second superscript is related to the columns.
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Each block matrix is �lled by individual terms from (2.33), (2.34)
and (2.35). Indeed,

Aiii =c1(Wi
i,E

i
i)− k2

0 c2(Wi
i,E

i
i) + jk0 cτ,1(n̂i ×Wi

i, n̂i ×Ei
i),

Aisi =c1(Wi
i, ei)− k2

0 c2(Wi
i, ei) + jk0 cτ,1(n̂i ×Wi

i, n̂i × ei),

Asii =c1(Ws
i ,E

i
i)− k2

0 c2(Ws
i ,E

i
i) + jk0 cτ,1(n̂i ×Ws

i , n̂i ×Ei
i),

Assi =c1(Ws
i , ei)− k2

0 c2(Ws
i , ei) + jk0 cτ,1(n̂i ×Ws

i , n̂i × ei),

Asji =k0cτ,1(πτ (Ws
i ), ji)

Ajsi =αcτ,1(li, ei) + βik0cτ,1(∇τ × li,∇τ × ei),

Ajji =k0cτ,1(li, ji),

Ajρi =k2
0γicτ,1(li,∇τρi),

Aρji =cτ,1(∇τφi, ji),

Aρρi =k0cτ,2(φi, ρi),

Cjsij =− αcτ,1(li, ej)− βik0cτ,1(∇τ × li,∇τ × ej),

Cjjij =k0cτ,1(li, jj),

Cjρij =k2
0γicτ,1(li,∇τρj),

(2.41)

where the test function Wi and electric �eld Ei unknowns are divided
into two sets: interior unknowns (•i) and surface unknowns (•s). Obvi-
ously, Es

i = ei so this last notation is used for clarity purposes.
The block decomposition of Ai and Cij also a�ects the unknowns xi

vector, which can be decomposed into

xi =


Ẽi

ẽi

j̃i

ρ̃i

 , (2.42)

where •̃ means unknowns devoted to approximate magnitude •; and to
the excitations vector, whose block decomposition is

bi =


l(Wi

i)

l(Ws
i )

0

0

 . (2.43)
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2.2.2 Two-step solution procedure

More details about the solution of the block matrix de�ned in (2.38)
when DDM is used are given in the following. The idea behind this
procedure is to extract the surface unknowns from the original system of
equations, solve this reduced and global problem and, then, propagate
this unknown to the interior of each subdomain. To perform the ex-
traction, techniques based on the Schur complement can be used. This
reduced matrix is not highly sparse, so the performance of direct solvers
is worse and iterative solvers are very convenient to use. To assure the
convergence of the iterative solver, a preconditioning of the reduced ma-
trix is mandatory. Di�erent preconditioning matrices are available, but
one of the most commonly used is the known as Block Jacobi precondi-
tioning matrix,


A−1

1 0 . . . 0

0 A−1
2 . . . 0

...
...

. . .
...

0 0 . . . A−1
n

 . (2.44)

Extraction and preconditioning can be performed in the same step,
[84], just realizing that the surface problem can be extracted only apply-
ing boolean matrices to the resulting matrix. Indeed, if (2.44) is applied
to (2.38),


I A−1

1 C12 . . . A−1
1 C1n

A−1
2 C21 I . . . A−1

2 C2n

...
...

. . .
...

A−1
n Cn1 A−1

n Cn2 . . . I




x1

x2

...

xn

 =


A−1

1 b1

A−1
2 b2

...

A−1
n bn

 , (2.45)

is obtained, where I is the identity matrix.
Then, if the structure of the cross matrix Cij present in (2.40) is

recalled, it can be proved that only surface unknowns take part in the
preconditioned system of (2.45). For example, if A−1

1 C12 is expanded
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the resulting matrix is
Aii

−1

1 Ais
−1

1 Aij
−1

1 Aiρ
−1

1

Asi
−1

1 Ass
−1

1 Asj
−1

1 Asρ
−1

1

Aji
−1

1 Ajs
−1

1 Ajj
−1

1 Ajρ
−1

1

Aρi
−1

1 Aρs
−1

1 Aρj
−1

1 Aρρ
−1

1




0 0 0 0

0 0 0 0

0 Cjs12 Cjj12 Cjρ12

0 0 0 0




xi1

xs1

xj1

xρ1

 =
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(2.46)

where it is seen that xi1 does not appear in the �nal preconditioned vector
so, to extract the surface problem, a boolean restriction matrix can be
applied to (2.45) selecting the rows and the columns of the unknowns
present on the interface problem (i.e., unknowns related to ei, ji and ρi).

This surface problem can be solved with an iterative solver or a direct
solver depending on the problem and the accuracy that is wanted to be
achieved. When the solution of this interface problem is obtained, it can
be propagated to each subdomain i with

xi = A−1
i

bi −
∑
j 6=i

C̄ijx̄j

 , (2.47)

where •̄ has been used as an operator to select unknowns related to the
interface between subdomains, i.e.,

x̄i =

ẽi

j̃i

ρ̃i

 . (2.48)

2.3 Conclusions

FEM classic formulation used in Chapter 4 has been detailed, and
an expansion to non-overlapping and non-conformal DDM formulation
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is introduced by means of cement variables with a physical meaning.
Note that the formulation is independent of each �nite element shape
and, thus, these shapes may be within the same electromagnetic prob-
lem. The communication between subdomains is established through
cross matrices which are preconditioned to de�ne a global surface prob-
lem much smaller than the original classic FEM problem but more popu-
lated. This surface problem may be used to construct a two-step solution
procedure solving �rst the surface problem (that may be preconditioned
with, e.g., a Block Jacobi preconditioning matrix, to use a matrix-free
iterative solver) and then propagating the solution obtained to the in-
terior of each subdomain. The extraction of the surface unknowns from
the global problem is also detailed.
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CHAPTER 3
THREE-LEVEL PARALLELIZATION

Nowadays, parallelization is a key factor to achieve good performance
when solving real electromagnetic problems in FEM. In this work, a
three-level parallelization has been implemented:

Algorithm level: DDM is used for dividing the whole domain into
smaller subdomains of controlled size.

Process level: message passing interface (MPI) is employed to di-
vide the computation between di�erent machines.

Thread level: open multi-processing (OpenMP) is used to acceler-
ate loops in the same machine.

Regarding DDM, as stated in previous chapters, is an algorithm in-
herently parallelizable, [69,89,110]. The division in subdomains allows to
solve each subdomain with di�erent processes as it will be detailed in this
section, and then apply the subsequent two levels to each subdomain.

Well-known libraries used in this thesis such as MUMPS, [138] or
MKL, [139] make use of the so-called hybrid parallelism with MPI and
OpenMP (last two levels of this three-level parallelization), which is
based on the acceleration of the loops in the code through OpenMP
directives and the use of MPI to parallelize the same program in di�erent
machines. MPI is based on single program multiple data (SPMD), where
each process is an instance of the same program, i.e., each process has the
same priority and starts and ends at the same time although the stored
memory and the code to be run might be di�erent for each process.
However, in contrast with MPI paradigm, the memory is shared between
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pi pi...

Figure 3.1: Notation for MPI processes in Chapter 3

all the threads of OpenMP (except for private variables) which makes
this paradigm more suitable to accelerate loops in the same socket. A
typical setting of this kind of parallelization is to use one MPI process
per socket with as many threads as the number of cores on that socket.

The unifying thread of this chapter is a �owchart of the execution of
the FEM code which is divided into Figs. 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7.
Each section includes a thorough explanation of each part of the
�owchart. For the sake of clarity, only one frequency and is taken into ac-
count in this �owchart but it is straightforward to run the code through
di�erent frequencies. Likewise, no details about the adaptivity algorithm
are included. In each �gure of the �owchart, a process is denoted by a
box with one or two rows (see Figure 3.1). In the case of having two rows,
the �rst row is referred to the number of subdomains assigned to one pro-
cess and the number of threads running at the same time; whereas, in
the case of having only one row, it means the number of threads run-
ning simultaneously in each step of the �owchart. The distribution of
subdomains among processes is further explained in Section 3.1. Finally,
when the black dotted line is used to group di�erent processes pi, the
communication in that step uses the MPI global communicator between
all the processes; when a thick colored line is present, all the processes
included in that area use a (subdomain) communicator between each
other (and not the global communicator).

3.1 Assignation of processes to subdomains

The straightforward option to parallelize a DDM problem is to dis-
tribute the number of subdomains nDOM among all the nMPI processors.
This distribution depends on nDOM and nMPI yielding two cases: i) the
number of subdomains is higher than the number of processes; and ii)

the number of processes is higher than the number of subdomains. These
two cases are found in Figure 3.2. In the �rst case, each subdomain is ex-
ecuted sequentially from the point of view of MPI, but nDOM subdomains
are solved simultaneously. However, in the second case each subdomain
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MPI Division

... 1. Assign pi

to domain
p1p0 p3p2 pnpn-1

p0 p1 pn-1 pn

... 1. Assign pi

to domain

Yes

No

... ... ... ... ... ...... ...

... ... ... ... ... ...
Figure 3.2: Flowchart for the distribution of processes in a DDM

problem

is solved in parallel with, at least,
⌊
nMPI

nDOM

⌋
processes. This is the most

balanced assignation possible in terms of the number of processes solving
each subdomain since subdomains are chosen to have similar number of
unknowns. In the following �gures of the work�ow of the simulator, it is
assumed that nDOM ≥ nMPI, and that four threads are available to each
process.

3.2 Creation of subdomain matrices

Details about the division of the whole geometry problem into pro-
cesses, keeping only the data necessary for the subdomains assigned to
each process, are given in this section.

First, each process reads the input data and the geometry for the
whole subdomain. Two possibilities arise to introduce the division in
subdomains: i) from the input FEM mesh, letting the user decide where
to make the divisions; and ii) with ParMETIS, [140], which is more �ex-
ible and provides optimum subdivisions, although the implementation
has to deal with non-planar interfaces. These two possibilities are com-
patible with each other, so the user can decide where to introduce a �rst
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Figure 3.3: Flowchart to build local subdomain matrices

coarse division into subdomains and, then, specify the number of divi-
sions with ParMETIS to apply in each subdomain. This scheme allows
an independent mesh in the coarse division and then, applying a �ner
conformal and optimal division within each subdomain with ParMETIS.
Note that, independently of how the division into subdomains is per-
formed, the machinery applied is always non-conformal. Although better
performance can be achieved if conformality in the mesh between subdo-
mains is taken into account, when each subdomain is re�ned iteratively,
non-conformality divisions can appear in former conformal divisions.

Thus, in step 2 user-driven division is read from all the processors
(although this is not necessary since the distribution in subdomains to
each process is known at this point, so in the future this step will be im-
proved) and, in step 3, a second division with ParMETIS is performed to
reduce the size of each subdomain. This division is implemented in prac-
tice marking the faces which belong to the interface between subdomains
and setting a subdomain attribute in the element object as detailed in
Section 3.7. When ParMETIS is executed, only a list of elements is
obtained. Then, all the faces in the mesh are run and when the same
face belongs to di�erent subdomains, it is marked with boundary con-
ditions (BC) which will be created if the interaction between these two
subdomains were not registered before. Therefore, a new set of BC not
given by the user in the input geometry is created to represent the new
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interactions which arise from the conformal division with ParMETIS.
Also, when executing steps 2 and 3 a container with all the elements

which belongs to a DDM interface (and classi�ed by interfaces between
subdomains) is stored to ease step 4, which consists of building a local

subdomain mesh object (di�erent for each process) and a global surface
mesh object (common to all processes which store all the elements be-
longing to a DDM interface). These mesh objects are containers where
all the elements, points and subdomains are located. Since one process
can have one or more subdomains, the local subdomain object is indeed
an array of mesh objects. This creation of local meshes is due to memory
purposes and alleviates the memory stored by each process: indeed, a
�rst approximation to this problem is to build a global mesh object and
apply DDM machinery to this global mesh. This last approach is easier
for the �lling of cross matrices Cij presented in (2.38), but is prohibitive
from the point of view of memory when dealing with large scale simu-
lations (which need several computers). For this reason, in this array
of local mesh objects only the information related to the subdomain is
stored, while in the surface mesh object only information related to the
DDM interfaces is present. Finally, in step 5 the global mesh object is
deallocated since each process can work independently: to �ll the sub-
domain matrices, the local mesh objects are used, and when interaction
with other subdomains is needed (specially to �ll cross matrices) the
global surface mesh object is used.

3.3 Use of shared points

In the part of the �owchart included in Figure 3.4, some non-
conformal DDM structures are created and �lled. A classic FEM code
needs to number each degree of freedom (DOF) (i.e., to run through all
the vertices, edges and faces and assigning the same number for each en-
tity although they belong to di�erent elements) for doing the assembly
when �lling the matrix to be solved. In step 6, the numbering of DOFs
is performed independently for each subdomain and they are classi�ed
into four di�erent kinds of DOFs: interior (used to approximate electric
�eld E out of any interface between subdomains), surface (DOFs which
approximate electric �eld e in entities which belong to any interface be-
tween subdomains), current (used to approximate j in TC as de�ned in
(2.28)) and charge (scalar DOFs involved in the approximation of ρ as
introduced in (2.28)) DOFs. To e�ciently perform this classi�cation,
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Figure 3.4: Flowchart to implement the interaction between

subdomains

vertices (for charge DOFs) and edges are numbered �rst and, for each
face in the element, if it belongs to an interface between subdomains,
each DOF related to this face (including not only face but also vertices
and edges DOFs) is sorted. When non-planar interfaces (easily gener-
ated with ParMETIS division of tetrahedra and triangular prisms) are
present, special considerations have to be made. Two di�erent cases have
to be taken into account: i) an element has two or more faces with the
same TC marker, which means that they belong to the same interface
between subdomains; and ii) di�erent interfaces between subdomains
are present in the same element. From the point of view of classi�cation
and generation of DOFs, in the �rst case current DOFs are assembled,
i.e., shared edges between faces only have one instance of DOFs (e.g.,
for order 2, only two DOFs are assigned to one shared edge); while, in
the second case, current DOFs are not assembled so, in each face, new
DOFs are de�ned (e.g., for order 2, four DOFs are assigned to one shared
edge).

Apart from that, the assignment of some global variables needed for
an e�cient p re�nement (explained in Section 4.6) and the creation of
shared points to build cross matrices in (2.38) (used in step 8) are in-
troduced at the same time. Shared points are a procedure to implement
non-conformality between subdomains. When a face belongs to an in-
terface between subdomains, a set of shared points that needs to be
evaluated by other elements in the neighbor subdomains to implement
(2.34) are created. In this way, the numerical integration for one ele-
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ment which requires values of the functions from other subdomains can
be evaluated for more than one element, which might belong to di�erent
subdomains.

Once step 6 is completed by all the processes, numbering and global
variables (for p re�nement) are communicated through the global MPI
communicator to �ll the global surface mesh with this numbering and
classi�cation of the DOFs. Note that a local numbering is de�ned for
each subdomain and a translation to a global numbering in the surface
global mesh is performed in this step.

In step 8, every shared point requested by each subdomain is evalu-
ated. A routine detecting if one shared point is geometrically inside of
an element from other subdomain is implemented. When detected, this
subdomain is added as neighbor of the requesting subdomain and, apart
from the geometry information (subdomain, element, and face on which
the point has been detected) of the neighbor element, values of the func-
tions (i.e., πτ (Ni) and ∇τ × Ni in (2.34)) evaluated by this neighbor
element are stored. The search for this element can be introduced as a
brute-force search, but more e�cient and balanced ways have been im-
plemented: indeed, only elements with a face with the same BC marker
as the face on which the shared point has been created are searched; and
a certain balance is included in this search. This balance is based on the
distribution of the numbers of subdomains: likely, neighbor subdomains
are close in the numbering, i.e., for a subdomain i neighbors might be,
e.g., i− 2 and i+ 1. For this reason, elements from subdomains subdo-
mains i+ 1, i− 1, i+ 2, i− 2... are searched in this order with modular
arithmetic.

Note that step 6 and 8 can be performed in parallel since subdomains
are independent of each other thanks to the introduction of the global
surface mesh. In these steps, OpenMP acceleration is not used since
loops involved here are not time-consuming enough.

3.4 Factorization of subdomain matrices

To perform the factorization of each subdomain matrix, some special
considerations are detailed in this section. In Fig 3.5 a summary of the
steps to follow is shown.

In step 9, the number of nonzero entries of the matrices to be solved
is computed, since every direct solver (MUMPS, PARDISO) supported
by the code developed in this dissertation needs a special sparse stor-
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Figure 3.5: Flowchart to factorize subdomain matrices in a DDM

problem

age format. Moreover, a machinery to obtain the index and value from
the dense matrix is created. Apart from that, the matrix is distributed
among the di�erent processes when nDOM ≥ nMPI, so the number of
nonzeros is not the same for each process. The distribution of the ma-
trix is implemented by elements, e.g., with 2 MPI processes and 1000
elements, elements from number 1 to number 500 will be assigned to
the �rst process and elements from number 501 to 1000, to the second.
Other divisions are possible (e.g., by rows) but no better performance
was obtained. The structure for cross matrices Cij is also created, and
the same sparse storage format is used due to the high sparsity as shown
in (2.40).

The �lling of the subdomain and cross matrices is implemented in
step 10, where each process �lls its portion of the matrix. In step 11, the
direct solver performs the factorization of the subdomain matrix with
all the distributed portions, storing the factorized object. Regarding
cross matrices, same �lling of the matrix as for subdomain matrices is
performed, but then the matrix is MPI-reduced in all the processes. To
alleviate the computational e�ort of step 12, where the surface matrices
are created, a structure storing nonzero columns is created and �lled
in step 10. To assembly cross matrices, only elements in the global
surface mesh are considered, and an e�cient loop using the shared points
container �lled in step 8 is implemented to create the cross matrix Cij .

Note that an OpenMP acceleration has been introduced in step 10
and 11. Regarding step 10, loops for numerical integrations have been
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Figure 3.6: Flowchart to solve the surface matrix in a DDM problem

accelerated through multi-threading. With respect to step 11, the par-
allelization management is performed by the direct solver.

3.5 Solution of the problem

The two-step procedure explained in Section 2.2.2 is developed in
steps 12 to 15 as shown in Figure 3.6. First, using factorized objects of
each subdomain matrix created in step 11 and cross matrices computed
in step 10, surface matrix is generated through (2.45). The explicit
generation of this surface matrix is cumbersome and special tricks have
to be applied to alleviate the computational e�ort: sparse RHS may be
used when using MUMPS as direct solver; a processing to get a column-
ordered cross matrix may be introduced (the transpose of the unordered
matrix is transformed through MKL libraries to well-known CSR format,
then this matrix is converted to COO format taking rows as columns and
columns as rows, since values are ordered through MKL libraries row-
wise), and columns may be processed by the direct solver in blocks of
25, which experimentally has been shown as a good tradeo� between
time and memory used. However, it is convenient to use a matrix-free
iterative solver (as it has been introduced in the code) where this matrix
is not explicitly constructed and each iteration is based only in matrix-
vector products. The version with the explicit generation of the surface
matrix is included for debugging purposes.
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Figure 3.7: Flowchart to implement the postprocessing in a DDM

problem

The surface global matrix built in step 12 is not as highly sparse as
the subdomain matrices, so an iterative solver is used. In some cases, due
to accuracy reasons, this matrix might be solved through a direct solver
since the matrix is still sparse. PETSc, [141], is used in steps 13 and 14
as an iterative solver. Since the use of OpenMP threads is not allowed
in PETSc, and the distribution of the matrix among processes has to be
performed by rows, only MPI processes are employed and the matrix is
�lled in step 13 through a balanced distribution of rows among all the
processes. Finally, the solution obtained through an iterative solver is
propagated to the interior of each subdomain with the matrix factorized
obtained in step 11 through (2.47).

3.6 Postprocessing and adaptivity

For postprocessing, a global mesh object is created and then, the
same module of postprocessing used in classic FEM without DDM is
employed, as shown in Figure 3.7. A possible improvement in the future
is to implement a postprocessing step separately by subdomains, but
the weight in computational time of this step compared to the previous
steps is not high enough to justify building a new postprocessing module.
Regarding adaptivity, implementation details are included in Chapter 6
due to its distinctive features. In short, when the solution is obtained, an
estimator of the error is computed and a re�ned mesh object is created.
With this new mesh object, steps 6 to 15 are repeated until convergence
criteria are achieved.
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3.7 Data structures

Di�erent data structures are necessary to support the �owchart
shown in previous sections. The most important global variables are
detailed in the following:

Array for local subdomain mesh objects, fully independent from
other subdomains.

A global surface mesh object containing only information related
to elements belonging to an interface between subdomains.

Maximum number of DOFs in an element needed for automatic
arrays and p adaptivity.

Maximum number of Gauss points used in numerical integration
for any element in the problem.

Array of size nDOM where, in each position, the master process
for each subdomain communicator is stored. This array is used
for broadcast in intra-domain communications (mainly, to �ll the
global surface mesh).

On the other hand, the most important Fortran structures (similar
to objects in an OOP paradigm) are:

Mesh, which mainly stores:

� Array of subdomain objects belonging to this mesh (usually,
only one except when a global mesh object is created where
an array of subdomains is used).

� Array of point objects used to represent the elements in the
mesh, local numbered.

� Array of element objects which belong to the mesh.

� Array of shared points requested in step 8 and �lled by other
subdomains in step 10.

� Array of element types which includes the di�erent elements
(segment, rectangle, triangle, tetrahedron, hexahedron and
triangular prism) supported by the code.
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Domain, which contains an array with the number of elements
belonging to that subdomain, the number of total and surface un-
knowns of the subdomain, an array which stores the neighbor sub-
domains, the number of non-zeros for the subdomain matrix, arrays
which represent sparse format for cross matrices, local RHS, and,
�nally, the solution of the problem for the subdomain.

Element type, which is composed of routines related to the geom-
etry of all the shapes supported in the mesh: e.g., the location of
points for a given entity (vertices, edges, faces) in the element, the
number of points for each entity in the element (very important
for hierarchical basis functions of variable order p), and so on.

Element, which stores the identi�ers (references) of the points and
boundary conditions which form the geometry of the element, the
numbering of DOFs included in the element, the order of each en-
tity, the subdomain in which the element is contained, the identi-
�ers of shared points requested by the element and di�erent arrays
to handle non-planar interfaces between subdomains.

Shared point, which contains the physical point requested by the
element on the interface between subdomains, the function values
evaluated by the elements in the neighbor subdomains, the Gauss
point which generated the shared point and the geometry infor-
mation (subdomain, element, face) of each element involved in the
shared point.

Solver, which stores the arrays (e.g., sparse storage arrays for sub-
domain matrices) and parameters involved in the factorization and
solution of the system of equations by the direct solver.

3.8 Conclusions

A three-level parallelization of a FEM code is thoroughly explained in
this chapter. Details about a balanced distribution of the MPI processes
are included, although further improvements can be introduced taking
into account the number of unknowns or the re�nement in adaptive
meshes (i.e., to assign more processes to the subdomains expected to
be more re�ned). The division into subdomains is also explained, with
two possible choices (ParMETIS or user-driven through the geometry
input data), and the introduction of shared points to communicate the
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subdomains is also justi�ed. Finally, a short insight about the variables
and structures used in the code to represent the entities presented in this
chapter is given in Section 3.7.
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CHAPTER 4
BASIS FUNCTIONS

To discretize the FEM formulation introduced in Chapter 2, di�erent
kinds of basis functions with a number of distinctive features are found in
the literature. As commented in Chapter 1, the choice of basis functions
plays a key role in the condition number of the resulting FEM matrix
and, thus, in the solving step of the method. In this work, a system-
atic procedure to obtain basis functions is detailed in Section 4.1, which
makes use of the spaces of functions de�ned in Section 4.2 for tetrahedra,
hexahedra and triangular prisms. Then, a set of degrees of freedom as
introduced by [21, 22] are de�ned in Section 4.3 which have to be dis-
cretized, i.e., a basis for each space present in the degrees of freedom has
to be established and this choice leads to di�erent strategies of assembly
explained in Section 4.4. Numerical results comparing these strategies
are included. Finally, for this family of basis functions, a comparison
with functions from other authors particularized for triangular prisms,
and a number of numerical results are detailed in Section 4.5.

However, to ease p re�nement, it is convenient to use hierarchical
basis functions which allow di�erent approximation orders within the
same problem, [26]. In Section 4.6, some details about the introduction
of these function in the code are given, and an exhaustive validation of
the basis functions using MMS is introduced in Section 6.2, obtaining
convergence results of smooth functions. Finally, since the dispersion
error may be a limiting factor in some special cases, [142], experiments
related to the phase error are included in Section 4.8.
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4.1 Procedure

The vector basis functions developed belong to the curl-conforming
mixed-order family de�ned by Nédélec in [21, 22]. Vector instead of
scalar basis functions are used to avoid spurious (i.e., non-physical) so-
lutions found when discretizing with FEM the Helmholtz equation (2.1).
Curl-conformity means that the tangential continuity between elements
is assured, so electromagnetic magnitudes such as electric and magnetic
�elds (which are tangentially continuous) can be directly approximated
by this kind of functions. There exists another family of functions with
div-conformity properties, which impose normal continuity between ele-
ments, so electric and magnetic inductions can be directly approximated
by these functions and electric and magnetic �elds should have to be
derived from them. Regarding the mixed-order property, this means
that the order of polynomial representation of the vector �eld is not uni-
form in all directions. The missing terms belong to the null space of the
curl operator and they are not involved in the approximation of physical
solutions, so they can be removed without loss of accuracy.

If Ciarlet classic de�nition of �nite element is taken into consider-
ation, [143], a geometrical domain, a space of functions, and a set of
DOFs have to be de�ned. A systematic approach is followed here to
obtain each �nite element: the domain and the space is de�ned a priori,
and the de�nition of DOFs from Nédélec is taken. This de�nition, used
in [21, 22] to prove unisolvency (i.e., the basis functions generated are
linearly independent) has to be discretized with basis for each one of the
polynomial spaces which appears in that de�nition.

Then, basis functions are obtained as the dual basis of the degrees
of freedom, i.e., discretized DOFs are de�ned as functionals, gi(u), and
the system of equations

gi(Nj) = δij , i, j = 1 . . . nDOF (4.1)

is solved Nj being the basis functions and nDOF the number of DOFs
corresponding to each shape and order. In other words, a system of equa-
tions of dimension nDOF is solved with nDOF RHS, being the unknowns
the coe�cients for each basis function. For clari�cation purposes, a pseu-
docode of this procedure is shown in Pseudocode 4.1, although a deeper
insight particularized for the triangular prism is included in Section 4.3.

With this procedure, each one of the basis functions Ni is related to
one DOF (and, therefore, to a particular region of the element); never-
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Pseudocode 4.1 Generation of the values of the coe�cients for each
basis function
Require: gi(entity,u, q,q) ← evaluation of DOF

Input: qe . Scalar polynomials de�ned on segment (edge)
Input: q . Vector polynomials de�ned on plane (face)
Output: [COEF] . Coe�cient matrix that de�nes basis functions
1: procedure Ni_coef(qe,q,[COEF])
2: De�nition of vector monomials ui associated with coe�cients

[COEF], see Pseudocode 4.3
3: De�nition of DOF functionals, see Pseudocode 4.4

. Coe�cients [COEF] obtained by the imposition of (4.1):
[A]× [COEF] = [B]

4: A(i, j)← gi(uj) . Filling of matrix A

5: B← InDOF . RHS is identity matrix
6: [COEF] ← solve([A], [B])

7: end procedure

theless, the basis functions here obtained are not interpolatory strictly
speaking since interpolatory points are not involved in their de�nition.
The interpolator character and the association of basis functions with
certain areas of the element is indirect through the interpolator charac-
ter of the bases chosen for the discretization.

Although real coordinates can be used with this procedure, to ease
the implementation and assembly (see Section 4.4) a reference/master
�nite element is used. Thus, basis functions are obtained in the master
element and transformed into the real element through Jacobian matrix
J

u = J−1ur (4.2)

where ur is the vector in the reference element and u is the mapped
vector in the real element (which corresponds to the actual element of
the mesh). Further details about this procedure are included in Pseu-
docode 4.2.

This systematic approach is applied to a number of di�erent shapes
as detailed in the following sections: tetrahedron, hexahedron and trian-
gular prism. These spaces of functions have very di�erent characteristics
depending on the shape, from the fully unstructured space of the tetra-

47



CHAPTER 4. BASIS FUNCTIONS

Pseudocode 4.2 Computation of the basis functions in the real ele-
ment from the reference element
Require: real_to_ref_coords(elem, x, y, z)

Input: elem . The element number in the mesh
Input: [COEF] . Coe�cient matrix that de�ne basis functions
Input: r . Position vector r = (x, y, z)

Output: Ni . Vector value of each basis function at r

1: procedure Ni_eval(elem,[COEF],r,Ni)
2: (x, y, z)← r

3: (ξ, η, ζ)← real_to_ref_coords(elem, x, y, z)

. Evaluation of space monomials at (ξ, η, ζ)

4: monomials ← 0 . Initialization of the variable
5: monomials(1, :) ← Monomials of x component of the space
6: monomials(2, :) ← Monomials of y component of the space
7: monomials(3, :) ← Monomials of z component of the space

. Evaluation of basis functions in the reference element
8: for i = 1, . . . , nDOF do

9: Ni(1, i) = monomials(1,:) × COEF(:, i)

10: Ni(2, i) = monomials(2,:) × COEF(:, i)

11: Ni(3, i) = monomials(3,:) × COEF(:, i)

12: end for

. Transformation (4.2) from reference to real element
13: J ← jacobian_matrix(elem)
14: Ni ← J−1Ni

. Return of the vector values of the nDOF basis functions
15: Ni ← Ni(1 : 3, 1 : nDOF)

16: end procedure

48



4.2. SPACES OF FUNCTIONS

hedron to the rigid tensor-product based space of the hexahedron, being
the triangular prism a hybrid of those spaces. The construction of these
spaces a�ects the performance as it is shown in Section 4.8.

4.2 Spaces of functions

The �rst step of the systematic approach followed here is to obtain the
space of functions for each shape in a way that the order of approximation
is not the same in all directions to obtain mixed-order basis functions.

4.2.1 Tetrahedra

Using Nédélec's notation, the space spanned by the basis functions
for triangles (n = 2) and tetrahedra (n = 3) is

Rk =
{
u ∈ (Pk)n; εk(u) = 0

}
, (4.3)

where (Pk)n stands for the n-dimensional full polynomial space of order
k and εk(u) is a multilinear form which constrains the space, [21], to
remove the null space of the curl of order k.

Thus, this operator εk makes that Rk lies between the full space of
polynomials of order k and order k − 1, i.e.,

(Pk−1)n ⊂Rk ⊂ (Pk)n, (4.4)

so Rk can be decomposed into the sum of the full space (Pk−1)n and a
space Sk,

Rk = (Pk−1)n ⊕ Sk, (4.5)

where ⊕ means direct sum between subspaces.
This particular space Sk is composed of homogeneous polynomials

u of exact order k satisfying the condition εk(u) = 0 or, equivalently,
r · u = 0, with r as the position vector.

A descriptive �gure of the properties of a mixed-order space (for a
triangle) is shown in Figure 4.1, where the vector u is decomposed into
two components: i) uξ along the direction of observation, represented as
r, and ii) uη normal to r. It has to be noted that uξ resides in (Pk−1)2

while uη resides in Sk building a mixed-order space Rk when u is built
from the two normal components.

An explicit expression for the space of functions R2 for tetrahedra
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Figure 4.1: Di�erent orders of approximation for Nédélec space

particularized for second order (k = 2) is

R2 =



a
(i)
1 + a

(i)
2 ξ + a

(i)
3 η + a

(i)
4 ζ +D(i)η2 − F (i)ξη − ...

...−G(i)ξζ +H(i)ζ2 + J (i)ηζ

b
(i)
1 + b

(i)
2 ξ + b

(i)
3 η + b

(i)
4 ζ −D(i)ξη − E(i)ηζ + ...

...+ F (i)ξ2 + I(i)ζ2 − J (i)ξζ +K(i)ξζ

c
(i)
1 + c

(i)
2 ξ + c

(i)
3 η + c

(i)
4 ζ + E(i)η2 +G(i)ξ2 − ...

...−H(i)ξζ − I(i)ηζ −K(i)ξη


, (4.6)

where coe�cients •(i) are real coe�cients speci�c for the ith basis func-
tion. Obviously, basis functions for tetrahedra Ni belongs to the same
space as R2 in (4.6), with i = 1, . . . , 20.

4.2.2 Hexahedra

A mixed-order curl-conforming space of functions is built through
tensor products (noted as ⊗) of one-dimensional polynomials on the ref-
erence segment Pk(I) and taking into account the mixed-order property
of the space, i.e.,

Phexa
k = (Pk−1(I)⊗ Pk(I)⊗ Pk(I))

× (Pk(I)⊗ Pk−1(I)⊗ Pk(I))

× (Pk(I)⊗ Pk(I)⊗ Pk−1(I)) . (4.7)

An explicit expression for this space particularized for second order
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(k = 2) is

Phexa
2 =



a
(i)
1 + a

(i)
2 ξ + a

(i)
3 η + a

(i)
4 ζ + a

(i)
5 ξη + a

(i)
6 ξζ + ...

...+ a
(i)
7 ηζ + a

(i)
8 ξηζ + a

(i)
9 η2 + a

(i)
10 ζ

2 + ...

...+ a
(i)
11 ξη

2 + a
(i)
12 ξζ

2 + a
(i)
13 ηζ

2 + a
(i)
14 η

2ζ + ...

...+ a
(i)
15 ξη

2ζ + a
(i)
16 ξηζ

2 + a
(i)
17 η

2ζ2 + a
(i)
18 ξη

2ζ2

b
(i)
1 + b

(i)
2 ξ + b

(i)
3 η + b

(i)
4 ζ + b

(i)
5 ξη + b

(i)
6 ξζ + ...

...+ b
(i)
7 ηζ + b

(i)
8 ξηζ + b

(i)
9 ξ2 + b

(i)
10 ζ

2 + b
(i)
11 ηξ

2 + ...

...+ b
(i)z
12 ηζ2 + b

(i)
13 ξζ

2 + b
(i)
14 ξ

2ζ + b
(i)
15 ξ

2ηζ + ...

+b
(i)
16 ξηζ

2 + b
(i)
17 ξ

2ζ2 + b
(i)
18 ξ

2ηζ2

c
(i)
1 + c

(i)
2 ξ + c

(i)
3 η + c

(i)
4 ζ + c

(i)
5 ξη + c

(i)
6 ξζ + ...

...+ c
(i)
7 ηζ + c

(i)
8 ξηζ + c

(i)
9 ξ2 + c

(i)
10 η

2 + c
(i)
11 ξ

2ζ + ...

...+ c
(i)
12 η

2ζ + c
(i)
13 ξη

2 + c
(i)
14 ξ

2η + c
(i)
15 ξη

2ζ + ...

...+ c
(i)
16 ξ

2ηζ + c
(i)
17 ξ

2η2 + c
(i)
18 ξ

2η2ζ



,

(4.8)
where the same notation as in (4.6) has been used. The monomials
present in (4.8) are straightforward to obtain from the tensor product:
e.g., monomials in x-component of Phexa

2 are obtained from the tensor
product {1, ξ}⊗{1, η, η2}⊗{1, ζ, ζ2}. Finally, the dimension of the space
is 54 for this kind of element so the space of functions is formed by a set
of 54 basis functions Ni, i.e., Phexa

2 ≡ Ni(i = 1, ..., 54).
It has to be noted that the resulting space Phexa

2 de�ned in (4.8) is
not isotropic as in the case of tetrahedra, (4.6), where any three of the
coordinates can be interchanged obtaining the same space of functions.
This characteristic a�ects the performance of the problems solved with
this element, as shown in Section 4.8.

4.2.3 Triangular prism

This element is a hybrid between the former two elements, containing
characteristics from the two shapes. Indeed, the space of basis functions
for the prism Pprism

k is constructed by taking the tensor product of the
mixed-order space for the reference triangle Rk(T ) with the space of
one-dimensional polynomials on the reference segment Pk(I), i.e.,

Pprism
k = (Rk(T )⊗ Pk(I))× (Pk(T )⊗ Pk−1(I)) , (4.9)
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where Pk(T ) means the full order space applied to the reference triangle.
In (4.9), mixed-order curl conformity is obtained through the properties
of Rk(T ) and using one order less (k − 1) in the z-component. This
space also satis�es commutavitiy of de-Rham diagram, [44].

If (4.9) is particularized for order k = 2, the spaceR2(T ) for triangles
is

R2(T ) =

{
α1 + α2ξ + α3η + γ1η

2 − γ2ξη

β1 + β2ξ + β3η − γ1ξη + γ2ξ
2

}
, (4.10)

while for Pprism
2 is

Pprism
2 =



a
(i)
1 + a

(i)
2 ξ + a

(i)
3 η + a

(i)
4 ζ + a

(i)
5 ξζ + ...

...+ a
(i)
6 ηζ + a

(i)
7 ζ2 + a

(i)
8 ξζ2 + a

(i)
9 ηζ2 + ...

...+ C(i)η2 +D(i)ξη + E(i)η2ζ + F (i)ξηζ + ...

...+G(i)η2ζ2 +H(i)ξηζ2

b
(i)
1 + b

(i)
2 ξ + b

(i)
3 η + b

(i)
4 ζ + b

(i)
5 ξζ + ...

...+ b
(i)
6 ηζ + b

(i)
7 ζ2 + b

(i)
8 ξζ2 + b

(i)
9 ηζ2 − ...

...− C(i)ξη −D(i)ξ2 − E(i)ξηζ − F (i)ξ2ζ...

...−G(i)ξηζ2 −H(i)ξ2ζ2

c
(i)
1 + c

(i)
2 ξ + c

(i)
3 η + c

(i)
4 ξ2 + c

(i)
5 η2 + c

(i)
6 ξη + ...

...+ c
(i)
7 ζ + c

(i)
8 ξζ + c

(i)
9 ηζ + c

(i)
10 ξ

2ζ + ...

...+ c
(i)
11 η

2ζ + c
(i)
12 ξηζ



. (4.11)

Same notation as in (4.6), (4.8) has been used, and the dimension of this
space is 36, i.e., Pprism

2 ≡ Ni(i = 1, ..., 36). Since this space of functions
has been constructed by tensor product, the same property regarding
the isotropy of the space (as shown in hexahedra) is obtained here. This
a�ects the performance of the basis functions as shown thoroughly in
Section 4.7.

4.3 Degrees of freedom

With the de�nition of the spaces of functions, DOFs gi(u) are intro-
duced as functionals to obtain basis functions as dual basis through the
imposition of (4.1). In the following, these DOFs are particularized for
second order (k = 2).
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First, DOFs related to edges are de�ned as

g(u) =

ˆ
e

(u · τ̂ )q de,∀q ∈ P1(e), (4.12)

where e means edge, τ̂ is the unit vector tangent to the considered edge,
and P1(e) is the scalar space of �rst order polynomials in the correspond-
ing edge local coordinate. There are 2 DOFs per edge.

Then, DOFs associated with faces have to be de�ned. For second
order basis functions, two di�erent DOFs can be present depending on
the shape. For triangular faces, present in tetrahedra and triangular
prisms, DOF are de�ned through the expression

g(u) =

¨
ft

(u× n̂) · q dft,∀q ∈ P0(ft), (4.13)

where ft stands for the triangular face considered, n̂ is the outward
unit normal vector to ft, and P0(ft) is the two-dimensional vector space
of zero degree polynomials in the two local coordinates of ft. In each
triangular face, 2 DOFs are found.

DOFs associated with quadrilateral faces, present in hexahedra and
triangular prisms, are introduced as

g(u) =

¨
fq

(n̂× u) · q dfq ∀q = (q1, q2); q1 ∈ Q0,1; q2 ∈ Q1,0, (4.14)

where fq is the quadrilateral face under consideration, n̂ is, again, the
outward unit normal vector to fq and Ql,m is the two-dimensional scalar
vector space of polynomials (i.e., a vector space composed of scalar poly-
nomials) in the corresponding local variables (x1, x2) which constitute
a basis on the quadrilateral face so that so that the maximum degree
is l in x1 and m in x2. With this choice of q, the approximation is of
one order less in the direction of the component considered. There are
4 DOFs per quadrilateral face.

Finally, for triangular prisms and hexahedra, DOFs associated to
the volume (i.e., the interior of the element) have to be introduced. For
second order basis functions interior DOFs are not present in tetrahe-
dra and only one kind of interior DOFs is present in triangular prisms,
de�ned as

g(u) =

˚
V

u · q dV ∀q ∈ P0(ft), (4.15)
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where a vector polynomial q is de�ned equivalently as in (4.13). For tri-
angular prisms, there are 2 DOFs of this kind. In the case of hexahedra,
DOFs associated with the volume are de�ned as

g(u) =

˚
V

u · q dV ∀q = (q1, q2, q3), (4.16)

where q1 ∈ Q1,0,0, q2 ∈ Q0,1,0 and q3 ∈ Q0,0,1; and Ql,m,n is the
three-dimensional space of scalar vector polynomials in the variables
(x1, x2, x3) of the reference hexahedron so that the maximum degree is
l in x1, m in x2 and n in x3.

All these DOFs are associated with a basis function as explained in
Section 4.1. Thus, basis functions are intrinsically associated with edges,
faces and interior volume of the element. Due to the curl-conformity
characteristic of the basis functions, in the de�nition of DOFs related to
boundaries (edges and faces), only tangential components are present.
Therefore, on a certain part of the boundary, only basis functions associ-
ated with that particular entity will give nonzero trace in the tangential
sense. As a consequence, basis functions associated with the volume of
the element are not involved in the assembly (due to its null trace on the
boundaries of the element), and, since all the shapes (tetrahedra, trian-
gular prism and hexahedra) use the same de�nition of DOFs in edges and
faces, meshes with di�erent shapes are possible without non-conformal
DDM.

4.3.1 Discretization

When the de�nition of each DOF is implemented to obtain the basis
functions, a basis for each one of the polynomial spaces which appears in
these de�nitions has to be chosen. This process is called here discretiza-
tion, and leads to reference elements as shown in Figure 4.2, 4.3 (where
volume DOF are not included for clarity purposes) and 4.4. In all these
�gures, the numeration of vertices is plotted within a circle, the chosen
numeration for DOFs (and basis functions) is included and the length of
all the edges parallel to any axis is 1.

Regarding DOFs associated with edges, a basis for P1(e) has to be
chosen. For example, consider the edge from vertex 1 to vertex 2 in any
reference element. For that edge, the local coordinate e is ξ, so a possible
basis for P1(e) could be q1 = 1 and q2 = ξ. Another possible basis,
with improved properties such as better conditioning of the resulting
basis and easier implementation of the assembly (since DOFs can be
associated with nodes placed in particular locations of the edge), is to
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Figure 4.4: Reference triangular prism of second order

choose an interpolatory basis such as Lagrange polynomials, so q1 = 1−ξ
and q2 = ξ. Thus, the �rst DOF in this edge should be associated with
vertex 1 and the second one, with vertex 2, and they are numbered as
DOF 1 and 2 in the �gures. To make this process more clear, consider
the edge from vertex 2 and 3 in Figure 4.4. Here the local coordinate
e in the edge is (1 − ξ + η)/2, so q1 = 1 − e = ξ and q2 = e = η since
1− ξ = η is true along the edge.

In the case of triangular faces, the bases to choose belong to P0(ft),
i.e., space of constant vector on the plane formed by the two local coor-
dinates of the face. Thus, q is reduced to choose two di�erent directions
(noted here as α̂ and β̂) on the plane constituted by these two local
coordinates. Consider the case of the face formed by vertex 1, 2, and 3
in Figure 4.2 or, equivalently, any triangular face in the reference prism
shown in Figure 4.4, where the local coordinates are ξ and η. In this
case, a possible choice is α̂ = ξ̂ and β̂ = η̂, which corresponds to DOFs
13 and 14 in Figure 4.2, DOFs 19 and 20 for the bottom triangular face
in Figure 4.4 and DOFs 21 and 22 for the top triangular face. Di�erent
choices and how the performance in the conditioning of the obtained
matrices is a�ected are discussed in Section 4.4.

For quadrilateral faces, the two-dimensional vector q has to be de-
�ned and is not only composed of directions as in the case of triangular
faces. For the sake of clarity, let consider the plane ξ−η, which contains
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Table 4.1: Discretization of DOF for the reference tetrahedron

DOF q DOF q or q

1 1− ξ 11 η

2 ξ 12 ζ

3 ξ 13 ξ̂

4 η 14 η̂

5 η 15 η̂

6 1− η 16 ζ̂

7 1− ζ 17 ξ̂

8 ζ 18 ζ̂

9 ξ 19 (−ξ̂ − η̂ + 2ζ̂)/2

10 ζ 20 (−ξ̂ + η̂)/
√

2

the face formed by vertices 1, 2, 4 and 5 in Figure 4.4 and the face formed
by vertices 1, 2, 5, and 6 in Figure 4.3. The choice of scalar polynomials
q1 and q2 has to take into account the mixed-order property of this ele-
ments, so a suitable basis for q is q1 = (1− ζ)ξ̂, q2 = ζξ̂, q3 = (1− ξ)ζ̂,
q4 = ξζ̂. If the particular case of the triangular prism is considered,
DOFs 23, 24, 25 and 26 can be identi�ed with q1, q2,q3 and q4 while,
for the hexahedron, DOFs 29, 30, 31 and 31 are identi�ed with the same
q de�ned above. Note the association of these DOFs to di�erent areas
and directions in the �gures.

Finally, discretization for DOFs associated with the interior volume
is de�ned. In the case of the triangular prism, the space P0(ft) is the
same as for triangular faces so the same choice can hold here. Regarding
the case of hexahedron, 6 di�erent q has to be chosen and the same scalar
interpolary bases chosen for edges might be an option, so a suitable basis
is q1 = (1 − ξ)ξ̂, q2 = ξξ̂, q3 = (1 − η)η̂, q4 = ηη̂, q5 = (1 − ζ)ζ̂ and
q6 = ζζ̂.

All these choices for the discretization of DOFs in the reference ele-
ment are summed up in Tables 4.1, 4.2 and 4.3. Obviously, for di�erent
DOFs, the choice of q can be the same but the gi is applied to di�erent
areas of the �nite element so di�erent results are obtained.

With this discretization, now Pseudocode 4.1 can be completed
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Table 4.2: Discretization of DOF for the reference hexahedron

DOF q or q DOF q

1, 5, 17, 21 1− ξ 31, 37 (1− ξ) · ζ̂
2, 6, 18, 22 ξ 32, 38 ξ · ζ̂
3, 7, 19, 23 1-η 33, 43 (1− ζ) · η̂
4, 8, 20, 24 η 34, 44 ζ · η̂
9, 11, 13, 15 1− ζ 35, 41 (1− η) · ζ̂
10, 12, 14, 16 ζ 36, 42 η · ζ̂

25, 47 (1− ξ) · η̂ 49 (1− ξ) · ξ̂
26, 48 ξ · η̂ 50 ξ · ξ̂
27, 45 (1− η) · ξ̂ 51 (1− η) · η̂
28, 46 η · ξ̂ 52 η · η̂
29, 39 (1− ζ) · ξ̂ 53 ζ · ζ̂
30, 40 ζ · ξ̂ 54 (1− ζ) · ζ̂

Table 4.3: Discretization of DOF for the reference triangular prism

DOF q or q DOF q

1, 7 1− ξ 24 ζ · ξ̂
2, 8 ξ 25 (1− ξ) · ζ̂
3, 9 ξ 26 ξ · ζ̂
4, 10 η 27 (1− ζ) · (−ξ̂ + η̂)/

√
2

5, 11 η 28 ζ · (−ξ̂ + η̂)/
√

2

6, 12 1− η 29 ξ · ζ̂
13, 15, 17 1− ζ 30 η · ζ̂
14, 16, 18 ζ 31 (1− ζ) · η̂
19, 21, 35 ξ̂ 32 ζ · η̂
20, 22, 36 η̂ 33 η · ζ̂

23 (1− ζ) · ξ̂ 34 (1− η) · ζ̂
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with Pseudocode 4.3 for the de�nition of vector monomials and Pseu-
docode 4.4 for the de�nition of DOFs as functionals. Since the triangu-
lar prism comprises every DOF, these pseudocodes are particularized for
that case.

Pseudocode 4.3 De�nition of the monomials, in the case of triangu-
lar prisms, used in Pseudocode 4.1
Output: u . Monomials related to the space of the triangular prism

Pprism
2

1: procedure monomial_definition(u)
. Vector monomials ui associated with matrix [COEF]
. COEF(:,i) =[a1, . . . , a9, b1, . . . , b9, C, . . . ,H, c1, . . . , c12]

2: u1 = (1, 0, 0) . Vector monomial associated to a1

...
3: u10 = (0, 1, 0) . Vector monomial linked to b1

...
4: u19 = (η2,−ξη, 0) . Vector monomial associated with C

...
5: u36 = (0, 0, ξηζ) . Vector monomial linked to c12

6: end procedure

4.4 Assembly

In a FEM code, the procedure of assembly is based on making equal
the values of the matching pairs of DOFs between neighbor elements.
This easy procedure is possible here since each basis function is ob-
tained as dual basis of the DOFs functionals which are associated with
a certain area of the �nite element. Two kinds of DOFs participate in
the assembly: edges and faces.

For edges, since DOFs can be considered as vectors with location
and direction, the di�erence in the senses has to be managed through
the de�nition of a global sign function. For faces, two cases have to
be distinguished: triangular faces (an example of assembly between two
elements is shown in Figure 4.5) and quadrilateral faces (another example
is illustrated in Figure 4.6). In both �gures, numeration of vertices are
within circles, while the superscript •(i) in the DOFs denotes the number
of the element.
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Pseudocode 4.4 De�nition of DOFs as functionals in the triangular
prism to obtain basis functions
Require: ge(edge,u, q) ← evaluation of (4.12)
Require: gft(face,u,q) ← evaluation of (4.13)
Require: gfq (face,u,q) ← evaluation of (4.14)
Require: gv(u,q) ← evaluation of (4.15)

Input: u . Vector monomial related to the basis function
Input: qe . Scalar polynomials de�ned on segment (edge)
Input: q . Vector polynomials de�ned on plane (face)
Output: gi(u) . Degrees of freedom de�ned as functionals
1: procedure dof_definition(u,qe,q, gi(u))
2: g1(u) ← ge(1,u, q1) . First DOF of �rst edge
3: g2(u) ← ge(1,u, q2) . Second DOF of �rst edge

...
4: g18(u) ← ge(9,u, q18) . Second DOF of ninth edge
5: g19(u) ← gft(bottom_face,u,q19) . First DOF of bottom

triangular face
...

6: g22(u) ← gft(upper_face,u,q22) . Second DOF of upper
triangular face

7: g23(u) ← gfq (face ξ − ζ,u,q23) . First DOF of face ξ − ζ
(vertices #1-#2-#5-#4)

...

8: g35(u) ← gv(u,q35) . First DOF of volume
9: g36(u) ← gv(u,q36) . Second DOF of volume
10: end procedure
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To assemble the di�erent basis functions, in Figure 4.6 the equalities
g

(1)
23 = g

(2)
24 , g

(1)
24 = g

(2)
23 , g

(1)
25 = −g(2)

25 and g(1)
26 = −g(2)

26 have to be imposed
while, for the Figure 4.5, g(1)

19 = g
(2)
21 and g(1)

20 = g
(2)
22 . Regarding edges,

the di�erence in the senses can be managed through the imposition of
the same global sign criterion commented before.

As shown in Section 4.3, di�erent choices of q to discretize the DOFs
are available in this family of basis functions, but they must be taken
into account when assembling the elements. For clari�cation purposes,
let us choose an arbitrary q in the reference element and obtain basis
functions for two di�erent neighbor elements of the mesh through Jaco-
bian transformation included in (4.2). In that case, the traces (in the
tangential sense) of basis functions of one element and its neighbor on a
shared face of the mesh will not be equal in general and curl-conformity
of the �nite element approximation will be lost. Two strategies to deal
with this issue are proposed and compared in the following.

4.4.1 vq assembly

The so-called in this dissertation vq strategy consists of choosing
unique sets of q on each face of the mesh and transforming them to the
reference element using the Jacobian matrix for each one of the two �-
nite elements sharing that face. An example of this strategy is shown in
Figure 4.7a. Vector qr will denote q converted to the reference element.
In general, di�erent qr will be obtained for one element and its neigh-
bor. Thus, the coe�cients of the basis functions need to be computed
for each element, although the choice of q on one face of the element
only a�ects the coe�cients associated with the basis functions of that
face. In the code, this strategy is implemented in parallel by a �nite ele-
ment initialization routine that loops over every element in the mesh and
calculates the coe�cients of the basis functions for each element. More
details can be found in Pseudocode 4.5, where Pseudocode 4.1 is up-
dated with the two di�erent assembly strategies. Thus, curl-conformity
is preserved while arbitrary directions for pairs of q on each (triangular
or quadrilateral) face can be chosen. Speci�cally, orthogonal directions
for q (denoted as α̂ and β̂, see Figure 4.7) may be de�ned with a pos-
itive impact in the conditioning of the resulting �nite element matrices
in some cases as it is shown in Section 4.4.3. This strategy has been
proven better for tetrahedra than for triangular prisms and hexahedra.
In the last two shapes, the choice of q in (4.14) seems to provide a better
performance when they are parallel to the edges involved in the tensor
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product than when they are orthogonal. This is due to the construction
of the space based on the tensor product for these shapes, [21].

4.4.2 vc assembly

The other strategy, denoted here as vc, is based on choosing pairs of
q on each face of the mesh in such a way that each q vector is parallel
(directions α̂ and β̂) to the edges of the face. It can be proven that
with this choice of q, transformation to the real element yields to qr

with identical components parallel to the edges of the face, i.e., same
edge trace is obtained on both neighbor elements sharing a common
face of the mesh. This feature allows to construct a limited set of pairs
of qr in the reference element such that the coe�cients are obtained
once in the reference element, being valid for all the elements of the
mesh. In some sense, this strategy resembles the case of working with
basis functions expressed in a�ne coordinates, and can be implemented
by a simple initialization routine, as shown in Pseudocode 4.5. This
initialization routine computes a super-set of basis functions coe�cients
corresponding to the di�erent pairs of directions that can be chosen on
a face in the general case. For example, directions parallel to the edges
1-2 (from vertex 1 to vertex 2), edges 2-3 or edges 3-1 for the triangular
face (see Fig 4.7b for more details), and parallel to edges 1-2, edges 2-
3, edges 3-4, or edges 4-1 for the quadrilateral face might be selected.
Later, the routine that performs the �lling of the FEM matrices through
a numerical integration selects a pair of edge directions for each face of
the mesh based on some global criterion (typically, choosing the pair
α̂ and β̂ the closest to the orthogonal case as possible). Thus, curl-
conformity is preserved without computing di�erent coe�cients for each
element of the mesh. However, the behavior of the vc strategy concerning
the condition number with severe elongated elements may be not as good
as with vq strategy previously described as it is shown in Section 4.4.3.
This di�erence between strategies arises because the directions α̂ and
β̂ may be far from orthogonal since they are necessarily chosen to be
parallel to the edges of the face.

In the case of assembling quadrilateral faces, not only directions (α̂
and β̂) as in the case of triangular faces but also directions and scalar
polynomials (q) must match between elements. As an example, in Fig-
ure 4.6, the DOF associated with q

(1)
24 has to match to q

(2)
23 instead of

q
(2)
24 although they have the same direction. This particularity is imple-

mented through a local parametrization of arbitrary directions.
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Pseudocode 4.5 Generation of numerical values for the coe�cients
depending on the assembly strategy chosen (vc or vq)
Require: gi(u,q) ← evaluation of (4.12)-(4.14)
Require: [COEF]ref(q

r, coords) ← select precalculated [COEF] in
reference element

Input: vq . Flag to choose vq or vc version
Input: coords . Coordinates from real element
Input: global_num . Global numeration of vertices
Output: [COEF] . Coe�. matrix that de�nes basis functions

1: procedure Ni_coef(vq,coords,global_num,[COEF])
. In each face q are de�ned

2: for face ≤ nfaces do
. If vq version, q are chosen in the real element

3: if vq is selected then
. qf,vq returns two orthogonal vectors on the face

4: qreal ← qf,vq(coords,face)
. qr in ref. element obtained through Jacobian matrix J

5: qr ← J × qreal
6: else

. qf,vc returns two vectors parallel to the edges
7: qr ← qf,vc(global_num)
8: end if

9: end for

10: if vq is selected then
. Use of (4.1) to obtain [COEF].

11: A(i, j)← gi(uj ,q
r) . Filling of matrix A

12: B ← Indof . RHS is identity matrix
13: [COEF] ← solve(A,B)

14: else

. [COEF] are selected from the precalculated family
15: [COEF] ← [COEF]ref(q

r, coords)
16: end if

17: end procedure
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Figure 4.7: Illustration of the two assembly-oriented strategies for basis

functions design

4.4.3 Numerical experiments

To estimate the best assembly strategy for all the shapes, numerical
results of the condition number of the FEM matrix, with di�erent dis-
tortions in the shape of the �nite element are included and discussed in
the following.

The condition number is de�ned as the ratio of the maximum and
minimum eigenvalue of the matrices corresponding to the inner products
of the vector basis functions N i in a �nite element �i.e., element mass
matrix M�,

Mij = c2(N i ·N j), (4.17)

and of their curls, �i.e., sti�ness matrix K�,

Kij = c1(N i ·N j). (4.18)

It has to be noted that numerically null eigenvalues of the sti�ness matrix
are discarded.

Normalized versions of the basis functions involved are used in order
to balance possible di�erences in conditioning only due to scale factors.
Thus, preconditioned matrices Mp and Kp are de�ned, respectively, as

Mp = D−1MD−1,Kp = D−1KD−1, (4.19)

where D is a diagonal matrix with Dii =
√
Mii.

The tetrahedron is considered �rst. In this case, the deformation is
introduced by changing the z coordinate of the top vertex of the reference
element while holding the same bottom face. Speci�cally, the coordinates
of the four vertices are compactly expressed in Table 4.4. The results
obtained are included in Table 4.5 and 4.6. Three cases of the vc version
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Table 4.4: Coordinates of tetrahedra used in the analysis of the

condition number

Tetrahedron deformation

Vertex Coordinates

r1 (0, 0, 0)

r2 (1, 0, 0)

r3 (0, 1, 0)

r4 (0, 0, ε)

Table 4.5: Condition numbers for tetrahedron deformation (mass

matrix)

Reference Tetrahedron deformation

tetrahedron ε = 4 ε = 8 ε = 16

Version [Mp] [Mp] [Mp] [Mp]

vc 38 185 670 2615

vc 66 464 1657 6411

vc 70 142 505 1964

vq 34 154 547 2124

of the basis functions proposed in this paper are considered depending if
the directions α̂ and β̂ of vectors q are chosen parallel to edges 1-2, 2-3
or 3-1 of the triangular faces of the tetrahedron. Only one case of the
vq version of the basis functions is shown, where directions α̂ and β̂ are
chosen orthogonal in all faces. It may be observed how the vq version
shows a better performance than the vc version, as expected. In the
particular case of deformation considered here, one of the vc versions
corresponds to the choice of orthogonal directions for α̂ and β̂ and,
hence, the vc strategy is very similar to the vq assembly.

The triangular prism is considered next. Due to the hybrid character
of its space of functions and the fact that contains triangular and quadri-
lateral faces two deformations have been de�ned: �triangle deformation�
and �rectangle deformation�. In the �rst case, triangular top and bot-
tom faces of the prisms are stretched out whereas quadrilateral faces are
kept rectangular. In the second case, the prism under study is generated
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Table 4.6: Condition numbers for tetrahedron deformation (sti�ness

matrix)

Reference Tetrahedron deformation

tetrahedron ε = 4 ε = 8 ε = 16

Version [Kp] [Kp] [Kp] [Kp]

vc 12 69 670 2615

vc 12 108 422 1676

vc 14 66 246 969

vq 11 66 246 965

Table 4.7: Coordinates of the prisms used in the analysis of the

condition number for the two cases under study

Triangle deformation Rectangle deformation

Vertex Coordinates Vertex Coordinates

r1 (0, 0, 0) r1 (0, 0, 0)

r2 (ε, 0, 0) r2 (1, 0, 0)

r3 (0, 1, 0) r3 (0, 1, 0)

r4 (0, 0, 1) r4 (2, 2, 1/κ)

r5 (ε, 0, 1) r5 (3, 2, 1/κ)

r6 (0, 1, 1) r6 (2, 3, 1/κ)

by extrusion in an inclined direction non-orthogonal to the triangular
base. Thus, rectangular faces of the reference element are transformed
into parallelograms more and more stretched out. The position of the
vertices in these two cases are summarized in Table 4.7.

Condition numbers are shown in Tables 4.8, 4.9, 4.10, and 4.11. Ta-
bles 4.8 and 4.9 show condition numbers obtained with the triangle de-
formation for the mass and sti�ness matrices, respectively. As in the case
of the tetrahedron, three cases of the vc version are considered for the
two triangular faces (with the same directions α̂ and β̂ selected on the
upper and bottom faces), while the vq version is included with α̂ ⊥ β̂.
Di�erent choices of orthogonal pairs of q have been studied, providing
similar condition numbers.

It is clearly observed that the vq strategy always returns better condi-
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Table 4.8: Condition numbers for prisms under triangle deformation

(mass matrix)

Reference Triangle deformation

prism ε = 4 ε = 8 ε = 16

Version [Mp] [Mp] [Mp] [Mp]

vc 81 1587 18826 276385

vc 81 217 738 2827

vc 71 215 737 2825

vq 72 215 737 2826

Table 4.9: Condition numbers for prisms under triangle deformation

(sti�ness matrix)

Reference Triangle deformation

prism ε = 4 ε = 8 ε = 16

Version [Kp] [Kp] [Kp] [Kp]

vc 37 210 791 3096

vc 37 199 733 2856

vc 38 197 732 2854

vq 37 197 732 2854

Table 4.10: Condition numbers for prisms under rectangle deformation

(mass matrix)

Reference Rectangle deformation

prism κ = 2 κ = 4 κ = 8

Version [Mp] [Mp] [Mp] [Mp]

vc 72 3107 12270 48926

vq 72 2187 8435 33432

tion numbers compared with each vc version. Note that in the particular
case of the triangle deformation considered here, there is one vc combi-
nation that corresponds to orthogonal directions and, hence, it provides
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Table 4.11: Condition numbers for prisms under rectangle deformation

(sti�ness matrix)

Reference Rectangle deformation

prism κ = 2 κ = 4 κ = 8

Version [Kp] [Kp] [Kp] [Kp]

vc 37 2566 10205 40765

vq 37 2066 8171 32599

identical conditioning to those of the vq strategy as in the case of tetra-
hedra. In the case of arbitrarily distorted elements, the di�erence in
the condition number, even between the best vc combination and the
vq strategy, may be remarkable. Thus, it is concluded that the best
choice for α̂ and β̂ when de�ning DOFs in triangular faces,(4.13), is
that α̂ ⊥ β̂.

Tables 4.10 and 4.11, show the results for the rectangle deformation.
Due to the particular case of rectangle deformation considered here in
which the rectangular faces are parallelograms, only one vc case is pos-
sible. Again, regarding vq strategy orthogonal directions for α̂ and β̂
are selected. Similar comments to those just made about the impact of
triangle deformation in the condition number hold here. However, as it
is observed in the tables, the e�ect of orthogonality in the vq vectors
has a lower impact in the case of rectangle deformation, at least, for the
deformation considered.

The di�erent performance observed between triangle and rectangle
deformations is a consequence of the tensor product structure of the
prismatic space of functions that somewhat hybridizes tetrahedron and
hexahedron types of behavior.

In this context, and to draw de�nite conclusions about the choice of
α̂ and β̂ in (4.14), the case of the hexahedron is considered. The defor-
mations used in the analysis are expressed in Table 4.12. The condition
numbers obtained are shown in Tables 4.13, 4.14, 4.15, and 4.16. In this
case, the vc strategy is better than the vq strategy showing the in�uence
of the tensor-product nature of the space of functions in the condition
number. For prisms, in Tables 4.10 and 4.11 the results obtained with
both strategies are similar and, since here the DOFs to take into account
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Table 4.12: Coordinates of the hexahedra used in the analysis of the

condition number

Two-face deformation Four-face deformation

Vertex Coordinates Vertex Coordinates

r1 (0, 0, 0) r1 (0, 0, 0)

r2 (1, 0, 0) r2 (1, 0, 0)

r3 (0, 1, 0) r3 (1, 1, 0)

r4 (0, 1, 0) r4 (0, 1, 0)

r5 (2, 0, 1/κ1) r5 (2, 2, 1/κ2)

r6 (3, 0, 1/κ1) r6 (3, 2, 1/κ2)

r7 (2, 1, 1/κ1) r7 (3, 3, 1/κ2)

r8 (2, 0, 1/κ1) r8 (2, 3, 1/κ2)

Table 4.13: Condition numbers for hexahedra with two-face

deformation (mass matrix)

Reference Rectangle deformation

hexahedron κ1 = 2 κ1 = 4 κ1 = 8

Version [Mp] [Mp] [Mp] [Mp]

vc 19 912 3552 14112

vq 19 1503 5923 23607

are the same as in the hexahedra case, the only di�erence is the space
of functions, being the tensor product of hexahedra �stricter� than the
one used for prisms. Thus, the main conclusion that can be drawn here
is that vq strategy is discouraged for elements whose space of functions
is constructed through a tensor product, whereas for simplices based on
(4.3) vq strategy shows a better performance.
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Table 4.14: Condition numbers for hexahedra with two-face

deformation (sti�ness matrix)

Reference Rectangle deformation

hexahedron κ1 = 2 κ1 = 4 κ1 = 8

Version [Kp] [Kp] [Kp] [Kp]

vc 30 2131 8721 35168

vq 30 2155 8738 35182

Table 4.15: Condition numbers for hexahedra with four-face

deformation (mass matrix)

Reference Rectangle deformation

hexahedron κ2 = 2 κ2 = 4 κ2 = 8

Version [Mp] [Mp] [Mp] [Mp]

vc 19 1869 7405 29552

vq 19 2696 10531 41883

Table 4.16: Condition number for hexahedra with four-face

deformation (sti�ness matrix)

Reference Rectangle deformation

hexahedron κ2 = 2 κ2 = 4 κ2 = 8

Version [Kp] [Kp] [Kp] [Kp]

vc 30 3689 14616 58318

vq 30 4553 17970 71635
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4.5 Comparison with other families of triangular

prisms

To measure the robustness of some basis functions, the condition
number of the resulting FEM matrices is commonly used. In this sec-
tion, robustness of the family of basis functions developed here and par-
ticularized for triangular prisms is compared against two representative
sets of basis functions.

Basis functions provided in [54] and a version inspired in [57] are
included. A second order version of the basis functions of [54] and a sec-
ond mixed-order prism inspired in the spectral element proposed in [57]
(using Lagrange interpolatory polynomials instead of polynomials based
on Gauss-Legendre-Lobatto integration points) have been introduced in
the code. Speci�cally, the bases coded for the last case are

LmL
2
lWij ; i, j = 1, 2, 3; j > i;m = i, j; l = 4, 5,

L2
iLl∇Ll; i = 1, 2, 3; l = 4, 5,

LkL
2
lWij ; i, j, k = 1, 2, 3; j > i; k 6= i, j; l = 4, 5,

LmLlLl+1Wij ; i, j = 1, 2, 3; j > i;m = i, j; l = 4,

LiLjLl∇Ll; i, j = 1, 2, 3; j > i; l = 4, 5,

LkLlLl+1Wij ; i, j, k = 1, 2, 3; j > i; k 6= i, j; l = 4,

(4.20)

where the set (L1, L2, L3) corresponds to the a�ne coordinates for the
triangle and (L4, L5) are the a�ne coordinates for the segment which
connects triangular faces; �nally, Wij stands for the Whitney functions
Li∇Lj −Lj∇Li. The third subset of bases are face functions associated
to the upper and bottom triangular faces. For each face, only two of
the three possible bases must be selected. The sixth subset of bases are
interior functions and only two basis functions must be chosen.

The three families to be compared (interpolatory bases provided by
Graglia, spectral bases and the family obtained with a systematic ap-
proach proposed here) are checked to span Nédélec mixed-order space
for the prism described in expression (4.11). Second order basis func-
tions of [54] (denoted there as p = 1) and those of (4.20) are based on an
explicit construction using Whitney functions multiplied by appropriate
polynomials. In the case of [54], polynomials are constructed based on
fully interpolatory properties on a number of points on the whole prism
(while basis functions proposed in this dissertation are not interpolatory
in that sense). The case of functions described in (4.20) is somewhat
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Table 4.17: Condition number of mass matrices for di�erent cases of

prisms (triangle deformation)

Reference Triangle deformation

prism κ = 4 κ = 8 κ = 16

Version [Mp] [Mp] [Mp] [Mp]

vq 72 215 737 2826

Interpolatory,(2-3)+(1-2) 33 173 638 2497

Interpolatory,(3-1)+(1-2) 37 174 639 2498

Spectral(3-1) 301 1020 3967 15871

Spectral(2-3) 171 1021 3967 15871

Spectral(1-2) 171 842 3468 14046

halfway between those two. Basis functions are naturally associated to
edges, faces and interior, and interpolatory polynomials used on the ex-
plicit construction of the basis are de�ned in terms of points only on
the corresponding entity (edges, faces or volume) but not over the whole
prism.

All the matrices taken here into consideration are normalized follow-
ing (4.19). In the case of functions of [54], the speci�c normalization
factors proposed by their authors are used prior to the pre-scaling using
[D]. In all cases, the condition number after preconditioning by [Mp]

and [Kp] is always improved.
Same kind of deformations speci�ed in Tab. 4.7 are used on this anal-

ysis. Condition numbers are shown in Tables 4.17, 4.18, 4.19 and 4.20,
only showing the vq version (choosing orthogonal q vectors) for basis
functions proposed in this dissertation. Moreover, di�erent combinations
of basis functions of [54] and (4.20) associated to triangular faces have
been considered. Basis functions of [54] provide the best conditioning
in all cases. Basis functions proposed here are competitive with respect
to [54] in terms of condition number, since both sets of basis functions
provide the same order of magnitude for the mass and sti�ness matrices,
whereas basis functions of (4.20) have the worst condition number for
both types of deformation, with roughly one order of magnitude higher
than with the other sets of basis functions.
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Table 4.18: Condition number of sti�ness matrices for di�erent cases of

prisms (triangle deformation)

Reference Triangle deformation

prism κ = 4 κ = 8 κ = 16

Version [Kp] [Kp] [Kp] [Kp]

vq 37 197 732 2854

Interpolatory,(2-3)+(1-2) 16 102 394 1555

Interpolatory,(3-1)+(1-2) 19 104 394 1551

Spectral(3-1) 24 108 417 1659

Spectral(2-3) 20 109 418 1659

Spectral(1-2) 20 101 398 1588

Table 4.19: Condition number of mass matrices for di�erent cases of

prisms (rectangle deformation)

Reference Rectangle deformation

prism ε = 2 ε = 4 ε = 8

Version [Mp] [Mp] [Mp] [Mp]

vq 72 2187 8435 33432

Interpolatory 37 1484 5889 23509

Spectral 301 5967 23559 93928
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Table 4.20: Condition number of sti�ness matrices for di�erent cases of

prisms (rectangle deformation)

Reference Rectangle deformation

prism ε = 2 ε = 4 ε = 8

Version [Kp] [Kp] [Kp] [Kp]

vq 37 2066 8171 32599

Interpolatory 19 1067 4279 17131

Spectral 24 1209 4226 16923

4.6 Hierarchical basis functions

To ease the introduction of p re�nement, hierarchical vector basis
functions from [3] have been included in the code. In short, a new
family of high order shape functions with two important features are
introduced: i) fully compatibility between all the shapes and ii) non-
uniform p re�nement within the same element. Among the four clas-
sical energy spaces (H1, H(curl), H(div) and L2) available in [3], only
curl-conforming (H(curl)) and interpolatory (H1) are included in the
code. With these two families all the spaces of functions introduced in
Chapter 2 can be represented. Mathematical properties are thoroughly
explained by the authors in [3]; in this section, only some details about
the introduction of functions with non-uniform p order in the code are
explained.

First, since the order of the basis functions is no longer �xed to p = 2,
some considerations about the size of the structures of the code have to
be taken into account in order to have an e�cient use of memory. Three
options for memory management are available in Fortran: i) dynamic
arrays (also called allocatable) which are allocated and deallocated with
instructions ALLOCATE and DEALLOCATE called by the user; ii) static ar-
rays whose size is known at compile time; and iii) automatic arrays
whose size is known at run time and allowed from Fortran 2003. The
di�erence between ii) and iii) is that the dimension of the array in the
former is �xed by some parameter (or even a constant number) set at
compile time while in the latter the dimension is determined by some
variable which can change in runtime. Regarding performance, both are
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similar since they are allocated in the stack. With respect to the use of
dynamic arrays, a little degradation in time and memory performance
can be found if the size of the arrays is not large enough; however, there
is no limit on the stack space for them since they are not allocated in
this space.

In the code, variables with size depending on the number of DOFs
per entity (edge, face or volume) and on the number of Gauss points
for numerical integration are mandatory in the �lling of the FEM ma-
trix. The straightforward option is to establish some parameter called
MAX_NUM_DOF and MAX_NUM_GAUSS at compile time setting a maximum
order to be run. However, this leads to a waste of resources if lower
orders are used since the increase in the order means an exponential
growth in these parameters. Furthermore, the management of dynamic
arrays is tedious from the point of view of the implementation and not a
good solution either since the size of these arrays are in the order of 500
for polynomials of order 5. Therefore, automatic arrays are used and the
value of these two parameters are determined in the numbering of DOFs
(step 6 in the �owchart of Chapter 3).

Secondly, since in DDM formulation DOFs related to some edge or
face have to be extracted, a variable order has to be taken into account.
When only second order basis functions are used, with a lookup table is
enough; however, in the case of non-uniform order within the element,
orders in each entity have to be checked and then, the correct number of
DOFs and their local numeration have to be selected within the element.

Moreover, a di�erent assembly strategy has to be coded. For this
family of hierarchical vector basis functions, the concept of orientation
is thoroughly described in [3]: in short, this orientation allows the assem-
bly between elements just de�ning the relative position of the element
with respect to its neighbor. In the implementation introduced in the
code, this is performed when numbering DOF. In this loop through all
elements, the �rst element which appears sets the reference for each edge
and face, and the subsequent elements sets the orientation accordingly
to the reference comparing the relative position of the vertices.

Finally, special considerations about the imposition of non-
homogeneous Dirichlet BC for this family are detailed in the following.
For each edge, the following system of ne equations (with ne equal to
the number of DOFs in the edge),

AxD = b, (4.21)
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has to be solved, where xD are the values imposed for each DOF with
Dirichlet, and left-hand side (LHS) matrix A is

Aij =

ˆ
e

(Ni · τ̂ )(Nj · τ̂ )de ∀i, j = 1, . . . , ne, (4.22)

while RHS b is

bi =

ˆ
e

(Ni · τ̂ )(d · τ̂ )de ∀i, j = 1, . . . , ne, (4.23)

where, in both equations, e stands for the edge a�ected by the Dirichlet
BC, Ni is one of the basis functions related to e, τ̂ is the unit vector
tangential to e and d is the value of the non-homogeneous Dirichlet BC.

Regarding faces, another system of equations taking into account xD
for edges is formulated, i.e.,

AxD = b, (4.24)

where the dimension of matrix A is nf + hf , with nf as the number of
DOFs on the face f , and hf as the number of scalar H1 DOFs in the
same face f . Each position of the LHS matrix A is de�ned as

Aij =

¨
f

((∇×Ni) · n̂)((∇×Ni) · n̂)df ∀i, j = 1, . . . , nf , (4.25)

Ai,nf+j =

¨
f

(πτ (Ni) ·∇τφj)df ∀i = 1, . . . , nf ; j = 1, . . . , hf , (4.26)

and

Anf+i,j =

¨
f

(∇τφj · πτ (Ni))df ∀i = 1, . . . , hf ; j = 1, . . . , nf . (4.27)

And RHS vector b is formulated with

bi =

¨
f

((∇×Ni) · n̂) · (d∇ · n̂)df ∀i = 1, . . . , nf , (4.28)

and
bnf+i =

¨
f

(∇τφi) · πτ (d)df ∀i = 1, . . . , hf (4.29)

where d∇ is the curl of the Dirichlet value to be imposed without the
contributions of the edges belonging to that face, i.e.,

d∇ = ∇× d−
∑
k

xk · (∇×Nk) ∀k = 1, . . . , ne. (4.30)

More details about this procedure are found in [27].
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4.7 Veri�cation with MMS

Apart from showing the robustness of the developed basis functions,
they have to be veri�ed to show the correctness of the approximation
of the �eld. This veri�cation is usually implemented by comparing with
well-known analytic results but here MMS, [13], is used. This method
is based on manufacturing an analytical solution to some di�erential
equation by solving the problem backwards. If an equation of the type
D(u) = f �where D is the di�erential operator, u is the vector solution
and f is the source term� has to be solved, u is manufactured and then
the operator is applied to �nd f .

Formulation de�ned in Section 2.1 is tested next, so an analytic elec-
tric �eld E (denoted here as EMMS) is obtained and O in (2.1) and Ψ

in (2.3) are computed. Then, O and Ψ are plugged into the FEM code
through (2.16) and a numerical approximated solution EFEM is obtained.
Finally, the energy error between EMMS and EFEM is computed in the
�eld itself and its curl separately, i.e.,

ς =
‖c2
(
(EFEM −EMMS) , (EFEM −EMMS)

∗) ‖2
‖c2 (EMMS,E∗MMS) ‖2

, (4.31)

ςcurl =
‖c1
(
(EFEM −EMMS) , (EFEM −EMMS)

∗) ‖2
‖c1 (EMMS,E∗MMS) ‖2

. (4.32)

In this section, three kinds of results are included: i) simple test of
the machinery of the code; ii) test of the full variational formulation
included in (2.1); and iii) test with smooth functions. The �rst two
tests use monomials belonging to the space of functions and the error
obtained is expected to be numerically zero, while in the last test smooth
functions such as exponential functions are included to get convergence
results. Speci�cally, for the last case, the error is expected to converge
asymptotically to zero when the number of elements is increased. As
predicted by the theory (for example, [1, 144]) the behavior of the error
in the asymptotic regime is error = C hp where h stands for the diameter
of the element.

For the sake of brevity, the whole test bench is not included for all
the shapes implemented in the code. Results i),ii) and iii) are included
for triangular prism developed in this dissertation, results i) and ii) are
applied to the tetrahedra with hierarchical vector basis functions and,
�nally, result ii) is tested with hexahedra and prisms implemented with
the same hierarchical vector basis functions from Section 4.6.
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First test consist of introducing only Dirichlet BC, which is the sim-
plest equation that tests the machinery of the code with the least number
of terms possible: in (2.16), c1(W,E) and c3(W,E) are set to 0 and only
Dirichlet BC are imposed through

n̂×E = n̂×EMMS, on ΓD. (4.33)

Second and third tests are implemented through the Cauchy BC and
machinery and formulation are checked at the same time. In this case,
the formulation is the same as for a real problem except for Ψ in (2.3)
which now is called ΨC and de�ned as

ΨC = n̂× 1

µr
(∇×EMMS) + jk0n̂× n̂×EMMS, on ΓC. (4.34)

In the case of second test, EMMS is every monomial inside of the
space of basis functions while for the third test a smooth function such
a complex exponential function is used as manufactured solution, i.e.,

EMMS = Epole
−jk0(k̂p·r), (4.35)

where Epol is the polarization vector, k̂p, the unit propagation vector
and r the position vector.

4.7.1 Systematic triangular prism

Basis functions obtained with the systematic approach introduced in
Section 4.1 are tested in this section. Regarding �rst and second tests,
they are applied to the 36 monomials belonging to the space of basis
functions obtaining similar results for all of them; for brevity purposes,
only one monomial (related to coe�cient G(i)) is chosen here to illustrate
results, i.e.,

EMMS =


y2z2

−xyz2

0

 . (4.36)

First test: machinery

In this section, only (4.33) is enforced, with c1, c3 = 0 in (2.16). The
FEM domain of the problem is a cube 1m × 1m × 1m with a working
frequency of 100MHz, as shown in Fig 4.8, where also the analytical
solution EMMS, FEM solution EFEM and error |EMMS −EFEM| are dis-
played. Values for both energy errors in a problem with 260 elements and
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 4.8: First MMS test using basis functions obtained with

systematic approach applied to triangular prisms

4330 unknowns is ς = 0.3109e−14 and ςcurl = 0.4006e−13. In following
subsections tests varying the size of the mesh are performed; here, since
it is a debugging test to check the machinery, only results for one mesh
are shown.

Second test: formulation

Next, every term in the formulation is checked varying the size of
the problem under study, which is the same as in the previous section.
Four di�erent meshes have been generated as shown in Table 4.21 where
results for the monomial in (4.36) are included. All the results are nu-
merically low although the �ner the discretization, the bigger the error.
This is due to the accumulation of numerical error which is higher when
more elements (which means more operations) are used. These results
hold for all the 36 monomials which reside on the space of basis func-
tions de�ned in (4.11). The last case in the Table 4.21 is displayed in
Figure 4.9, where same representation as in Figure 4.8 is plotted. Note
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 4.9: Second MMS test using basis functions obtained with

systematic approach applied to triangular prisms using a cube as domain

to solve

that no red areas are present in that �gure and that the error in the
approximation of the �eld is of the same order in all the mesh.

Finally, a test with a curved element is included in the following
to test the performance of the code with this kind of structures. A
cylinder with radius of 0.2m and height of 1m is now the domain of
the problem to be solved, and the size of elements tested are included in
Table 4.22, where comparable results to straight elements are obtained.
In Figure 4.10, the same set of �gures as in Figure 4.8 and 4.9 is shown.
Error is slightly bigger in the curved surfaces but bounded by the same
order of magnitude found in Figure 4.9.

Third test: convergence

This last test consists of a convergence analysis with the smooth func-
tion introduced in (4.35). The same cube used in Section 4.7.1 has been
used as problem to solve, and two polarizations, Epol = θ̂ and Epol = φ̂,
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Table 4.21: Relative errors for the second test for triangular prisms

using a cube as domain to solve

Elements Unknowns ς ςcurl

16 340 0.869e−14 0.646e−14

260 4330 0.476e−13 0.111e−13

2080 31820 0.200e−12 0.204e−13

4272 64160 0.334e−12 0.253e−13

Table 4.22: Relative errors for the second test for triangular prisms

using a cylinder as problem to solve

Elements Unknowns ς ςcurl

48 910 0.128e−12 0.530e−14

80 1462 0.151e−12 0.627e−14

520 8544 0.537e−12 0.908e−14

1350 21576 0.935e−12 0.933e−14
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM (d) Detail of the mesh

Figure 4.10: Second MMS test using basis functions obtained with

systematic approach applied to curved triangular prisms using a cylinder

as problem to solve

and di�erent angles of incidence have been considered. Results are shown
in Figure 4.12 (where di�erent incidence angles, di�erent polarizations
and di�erent meshes with a frequency of 100MHz are tested), and the
convergence for each simulated excitation follow almost perfect straight
lines. Di�erent error levels are obtained depending on the polarization
and angle of incidence with respect to the prisms. The relative position
of the angle of incidence with the triangular faces of the prism is better
detailed in Figure 4.11. Apart from this di�erence on the levels, in some
speci�c cases the slope is even greater in absolute value than 2, which
is the value predicted by the theory. Speci�cally, a sort of superconver-
gence behavior (slope equal to 3) is observed for an angle of incidence
θ = 0◦ independently of the polarization, and for θ = 90◦ only with
θ-polarization. By departing a few degrees from those speci�c angles the
superconvergence behavior is lost and the slope is reverted to 2.

For comparison purposes with an unstructured space of basis func-
tions, results with the tetrahedra of the same family of basis functions
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Figure 4.11: Detail of the mesh with triangular prisms including

system of coordinates

are included in the �gure. The error observed using this kind of un-
structured elements is the same independently of the angle of incidence
and polarization. This is due to the di�erent construction of the spaces
of functions: �nite element space of the prism (4.11) is not symmet-
ric/isotropic: there is a coordinate (local ζ coordinate of the prism) in
which the approximation is di�erent with respect to the other two coor-
dinates. In contrast, tetrahedral elements expanding true Nédélec spaces
(which are symmetric) approximate functions independently of the rel-
ative �orientation� of the mesh with respect to the solution coordinates.

Cavities

In this section, a number of cavity problems are analyzed to fur-
ther validate the prismatic element with di�erent materials and reso-
nant structures, although the correctness of the basis functions and the
machinery associated has already been tested with sections above. Vari-
ational formulation included in (2.16) is converted into a generalized
eigenvalue problem setup with k2

0 as eigenvalue by means of removing
bilinear form c3(F,V) and linear form l(F).

Results of one empty (homogeneous) cavity and one non-homogenous
cavity used before in the literature as benchmark structures have been
selected. Speci�cally, the empty cavity has the shape of a triangular
prism, with an equilateral triangular base of size 1m and a height equal
to the length of the triangular side (see [54]), with a working frequency of
f = 100MHz. Same working frequency is used for the non-homogeneous
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Figure 4.12: Convergence rate of the error over a cube using a smooth

function as manufactured solution

cavity, formed by a metallic half-�lled geometry of rectangular shape
and dimensions 1m × 0.1m × 1m, with the upper half part of the third
dimension �lled with dielectric of εr = 2. Convergence rate of the average
error in the computation of the �rst eigenvalues of these two cavities are
included in Figure 4.13. In both cases, the obtained rate of convergence
is very close to the expected theoretical rate of h2p, [1], i.e., h4 in our
case.

4.7.2 Hierarchical tetrahedra

First and second test with MMS are applied to tetrahedra from [3] to
check the correctness of the functions in this section. Since the strategy
of assembly is di�erent than the family obtained with the systematic
approach, these tests have been a key factor to implement this kind of
basis functions in the code.

First test: machinery

Same domain as in as in Section 4.7.1 is solved in this section, where
the machinery of the code and the introduction of non-homogeneous
Dirichlet BC explained in Section 4.6 are checked. The order of the basis
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Figure 4.13: Convergence rate of the triangular prism with two

di�erent cavities

functions varies from order 2 to order 5 in order to check the machinery
for di�erent orders. The monomial from the space of functions with
p = 2 chosen to show the results is

EMMS =


yz

−xz
0

 , (4.37)

while for order p = 5 is

EMMS =


−y3z2

0

xy3z

 , (4.38)

but, as in the sections above, all the 20 monomials for order p = 2 and
120 monomials for order p = 5 have been tested obtaining similar results.

In the Figure 4.14 the same set of �gures shown in Figure 4.8 are
included for order p = 2, and same comments can be extracted. Here,
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 4.14: First MMS test using hierarchical basis functions of order

p = 2 applied to tetrahedra

higher error is not present in the points where the �eld has higher mag-
nitude; this is due to the characteristic of the test since not all the
machinery is tested. For the sake of brevity, and since similar conclu-
sions can be extracted independently of the order used in the family of
basis functions, results with order p = 2 are included for the �rst test
while, for the second test, order p = 5 is used.

Regarding numerical results, for order p = 2 the numerical error
obtained is, e.g., for monomial introduced in (4.37), ς = 0.5257e−15

and ςcurl = 0.2547e−14; while for order p = 5 and monomial de�ned in
(4.38), ς = 0.1511e−12 and ςcurl = 0.8709e−12. An increase in the error
is detected due to the numerical error which is increased with the growth
of numerical operations.

Second test: formulation

Same test bench as in Section 4.7.1 is applied, with the same domain.
All the 20 monomials belonging to the space of basis functions for p = 2

are tested but again, for brevity, only results corresponding to the same
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Table 4.23: Relative errors for the second test for second order

hierarchical vector basis functions in tetrahedra

Elements Unknowns ς ςcurl

324 2340 0.101e−13 0.457e−14

1152 8112 0.191e−13 0.500e−14

2949 20200 0.343e−13 0.625e−14

9882 65814 0.851e−13 0.771e−14

Table 4.24: Relative errors for the second test for �fth order

hierarchical vector basis functions in tetrahedra

Elements Unknowns ς ςcurl

324 2340 0.186e−11 0.264e−12

1152 91740 0.313e−11 0.273e−12

2949 231850 0.516e−11 0.274e−12

9882 766815 0.113e−10 0.304e−12

monomial of the previous section are detailed.
In Tables 4.23 and 4.24 results decreasing the size of the elements

in the mesh are included for order p = 2 and p = 5 respectively. The
same conclusions about the correctness of the basis functions and e�ect
of numerical error on the results with a decrease on the size of the ele-
ments can be drawn. For the last case included in Table 4.24, the same
set of results as in �gures shown in previous sections is included, and
apart from a lower level in the absolute error due to the increase in the
order (which makes more appreciable the division into elements of the
mesh), no further conclusions di�erent from the already commented can
be extracted.

4.7.3 Hierarchical hexahedra

Regarding hexahedra, only the second test is included in the following
for brevity. For order p = 2, the monomial used in Table 4.25 is EMMS =

(0, 0, x2y2z) but the whole set of 54 monomials belonging to the space of
basis functions has been tested; while for higher orders, e.g., p = 3, the
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 4.15: Second MMS test using hierarchical basis functions of

order p = 5 applied to tetrahedra

representative monomial used is EMMS = (0, x3y2z3, 0) in Table 4.26,
although the 144 monomials have been checked. As in previous sections,
the last case in Table 4.26 is used to show the results included in the
Figure 4.16, where the same performance as with the other shapes is
observed.

4.7.4 Hierarchical prisms

Finally, the second test is used to validate triangular prisms with
hierarchical vector basis functions. Now, for order p = 2, the repre-
sentative monomial used to obtain the results shown here is EMMS =

(xyz2,−x2z2, 0) but any monomial out of the 36 which build the space
of functions for the triangular prism would have generated the same
kind of results. In Table 4.27 results increasing the number of elements
are shown and the same performance as in previous sections has been
obtained. Regarding higher orders, e.g., p = 3, the monomial used is
EMMS = (0, 0, x3z2) although the 90 monomials belonging to this space
have been tested. In Table 4.28, the same test bench as in the other ta-
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Table 4.25: Relative errors for the second test for hierarchical vector

basis functions of p = 2 in hexahedra

Elements Unknowns ς ςcurl

64 1944 0.237e−14 0.112e−13

512 13872 0.115e−13 0.238e−13

1000 26460 0.183e−13 0.316e−13

3375 86490 0.467e−13 0.814e−13

Table 4.26: Relative errors for the second test for hierarchical vector

basis functions of p = 3 in hexahedra

Elements Unknowns ς ςcurl

64 6084 0.681e−14 0.304e−13

512 45000 0.176e−13 0.533e−13

1000 86490 0.286e−13 0.946e−13

3375 285660 0.666e−13 0.201e−12
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(a) Absolute value for the

analytic solution

(b) Absolute value generated

by FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 4.16: Second MMS test using hierarchical basis functions of

order p = 3 applied to hexahedra

bles related to this section is applied, obtaining the same performance,
and in Figure 4.17 the same set of results are included, leading to the
same conclusions.
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Table 4.27: Relative errors for hierarchical bases of order p = 2 applied

to triangular prisms

Elements Unknowns ς ςcurl

16 340 0.646e−14 0.354e−14

260 4330 0.107e−13 0.408e−14

2080 31820 0.355e−13 0.532e−14

4272 64160 0.600e−13 0.532e−14

Table 4.28: Relative errors for hierarchical bases of order p = 3 applied

to triangular prisms

Elements Unknowns ς ςcurl

16 966 0.340e−14 0.115e−13

260 13191 0.366e−13 0.107e−13

2080 99474 0.602e−13 0.119e−13

4272 201708 0.835e−13 0.127e−13
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(a) Absolute value for the

analytic solution

(b) Absolute value generated

by FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 4.17: Second MMS test using hierarchical basis functions of

order p = 3 applied to triangular prisms
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4.8 Phase error

Regarding dispersion error, the use of unstructured meshes of tetra-
hedra is more advantageous in FEM code, [145], although all the shapes
included in previous sections can be used. In this section, the three-
dimensional shapes included in this dissertation are measured in terms
of the dispersion error and its use in real elements is discussed, with
special focus on the structured features of the triangular prism and hex-
ahedron.

The dispersion error is closely related to the approximation of the
phase magnitude of the solution which is not negligible for large scale
problems. Thus, a phase error is obtained with MMS and results regard-
ing the approximation of the phase in a long waveguide are included.
Comparison between the three di�erent elements are included in these
two cases of study.

4.8.1 Phase error with MMS

The excitation of the problem to be solved is the exponential function
de�ned in (4.35) while the domain problem is the same cube de�ned in
Section 4.7.1 with the same working frequency of 100MHz.

First, a comparison between triangular prisms and tetrahedra are
included in Figure 4.18. Here, results corresponding to θ-polarization,
i.e., Vpol = θ̂, and di�erent angles of incidence, are included. In the
case of triangular prisms, note that this direction θ̂ is approximated
by di�erent components in the space of basis functions depending on
the angle of incidence; e.g., for θ = 0◦, θ̂ is approximated by a linear
combination of x and y components (associated with the triangle simplex
space), while for θ = 90◦, θ̂ is approximated by z component, associated
with the segment space. Remaining θ angles of incidence between 0◦ and
90◦ are linear combinations of the three Cartesian components.

The error shown in Figure 4.18, denoted as ςphase, is computed as

ςphase =

ˆ
Ω

∣∣]Vθ
FEM − ]Vθ

MMS

∣∣ dΩ
ˆ

Ω

∣∣]Vθ
MMS

∣∣ dΩ

, (4.39)

where ]Vθ
FEM denotes the phase angle of the θ component of the �eld.

It is worth noting that dispersion error is not strictly represented
by ςphase, since dispersion error is the di�erence between the numer-
ical and the exact values of the wavenumber (propagation constant).
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Figure 4.18: Convergence history of ςphase de�ned in (4.39) using a

complex exponential as manufactured solution with di�erent angles of

incidence

However, the observation of the behavior of ςphase provides interesting
conclusions. The �rst observation is that nice straight lines are obtained
in all cases exhibiting an algebraic type of convergence. Furthermore,
all lines present the same slope, which seems to be a value between 2
and 3. Note that theory predicts a slope equal to 2 for the second-order
case and for the error in the whole �eld, and not only the phase error
de�ned through (4.39). A second observation is the slight di�erences in
the level of the error for the prism depending on the angle of incidence
and, hence, on the �eld components excited. This is qualitatively the
same behavior that is shown for the whole �eld in Figure 4.12; although
no superconvergence is observed in the phase error. Similar results in
directionality to the obtained with prisms can be found for hexahedra
and they are not included in the graph for clarity purposes.

In order to further explore the non-symmetric features of the prism
and the hexahedra spaces regarding the phase error, results of ςphase
obtained with a mesh of h = 0.1m modifying the angle of incidence
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Figure 4.19: Behavior of ςphase for a given mesh and di�erent angles of

incidence for the complex exponential as manufactured solution

θ are displayed together in Figure 4.19. The pattern generated with
tetrahedral meshes is close to an omnidirectional case, while in the case
of prismatic and hexahedral meshes the pattern clearly depends on the
angle of incidence. Note that the directionality of the hexahedra follows
an expected pattern: the variation from 0◦ to 45◦ is the same that the
variation from 45◦ to 90◦ due to the construction of the space of functions
for hexahedra.

4.8.2 Phase error in waveguides

Next, convergence behavior of the phase error obtained through the
FEM analysis of a section of X-band rectangular WR-90 waveguide is in-
cluded. The waveguide is excited with the fundamental mode at 7.5GHz,
and its length is 10λ at this frequency in a �rst simulation. Then, to make
a comparison with higher orders, results with a length of 1λ are obtained.
The phase error denoted here as ∆k is obtained as ∆k = kanal − kFEM,
where kanal is the analytic phase constant while kFEM is the phase con-
stant provided by FEM code computed through the phase of the S21
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(a) Prism (mesh 1) (b) Prism (mesh 1)

(c) Tetrahedra (d) Hexahedra

Figure 4.20: Di�erent types of meshes of the rectangular waveguide

parameter between the two waveguide ports of the section. Four kinds
of discretization are used (see Figure 4.20). Two types of discretization
with prisms are considered: Prism (mesh 1) and Prism (mesh 2). For
Prism (mesh 1) the waveguide is tessellated with triangles lengthwise
which are extruded along the transverse direction, meshing the wave-
port with quadrilaterals, while for Prism (mesh 2) the cross-section of
the waveguide is meshed with triangles that are extruded lengthwise.
The �rst option is the best option to discretize a waveguide with an
arbitrary shape lengthwise, while the last option is the straightforward
way in which an arbitrary cross-section waveguide would be meshed with
prisms. Finally, the discretizations with hexahedra and unstructured
tetrahedra have also been considered. The convergence of the phase
error with respect to λ/h, where h is the size of the elements length-
wise, for the four types of discretization is displayed in Figure 4.21. The
cross section is meshed with 20× 10 elements in each case to have a fair
comparison.

Next, results with higher polynomial orders for hierarchical vector
basis functions are included. For computational reasons, now the length
of the waveguide to be simulated is reduced to 1λ obtaining the same
shape of results for order 2 (see Figure 4.22), where structured meshes
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Figure 4.21: Convergence history of the phase error for the rectangular

waveguide section

have been used for the four discretizations. Di�erent polynomial orders,
up to order p = 5, are applied to the same meshes obtaining the results
included in Figure 4.23. The slopes obtained in this logarithmic �gure
are explicitly detailed in Table 4.29.

Note that the slopes obtained are close to those predicted by the
theory included in [146]: error = Ch2p. Each solution follows smooth
straight lines. Moreover, the error obtained with Prism (mesh 1) over-
laps with the error obtained with hexahedra as expected since the phase
is approximated by the same space of functions (which is the polynomial
space for the segment, while Rk is used here to approximate the �eld
on the transverse face). Nevertheless, Prism (mesh 2) is not exactly the
same as tetrahedral discretization since the construction of the space
of basis functions is not the same, i.e., the propagation direction is ap-
proximated by di�erent spaces of functions obtaining di�erent results.
Also, note that same conclusions drawn from Figure 4.22 hold for higher
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Figure 4.22: Convergence history of the phase error for the rectangular

waveguide section with basis functions from [1,2]

orders shown in Figure 4.23.
In [145], meshes in 2D with triangular faces are used to get the phase

error, obtaining best results with unstructured or non-uniform meshes.
This analysis is expanded to 3D getting better results with a non-uniform
mesh composed of tetrahedra. However, in Figure 4.22 and 4.23, struc-
tured meshes have been used to perform a fair comparison between tetra-
hedra and semi-structured (prisms) or structured (hexahedra) meshes.
In Table 4.30, some results with unstructured and structured meshes in
one point of the graph where they can be compared (obtaining a mesh of
20×10 elements in the waveport for the unstructured case) are included.
There, better results with unstructured meshes are obtained but with a
similar order of magnitude. Finally, note that the discretization used
in [145] to divide an hexahedron is tailored (5 tetrahedra for the non-
uniform case and 6 tetrahedra for the uniform case) whereas the mesher
used in these results, [147], takes up to 11 or 12 tetrahedra to discretize
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Figure 4.23: Convergence history of the phase error for the rectangular

waveguide section with di�erent element types from [3]

one hexahedron so the results obtained in [145] cannot be translated
directly to the results presented here.

4.9 Conclusions

Two families of basis functions have been introduced in this chapter.
The �rst family follows a systematic approach to obtain basis functions,
providing stable and well-conditioned bases. On the other hand, the
second family is based on [26] and it eases the introduction of non-
uniform p re�nement within the same domain. All the concepts needed
to formulate the systematic basis functions has been introduced, from the
space of functions to the DOFs. Also, di�erent assembly strategies which
arise from the discretization of the DOFs have been studied, showing in
Sec 4.4.3 that the so-called vq strategy is better for assembly between
triangular faces and that a better performance for assembly between
rectangular faces is obtained by the so-called vc strategy due to the
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Table 4.29: Slopes obtained experimentally with 1λ waveguide

Theory Experimental value

Element type All Prism 1 Prism 2 Tetrahedra Hexahedra

Order 2 4 2.917 3.600 3.128 2.895

Order 3 6 5.138 5.883 5.201 5.806

Order 4 8 7.368 7.885 7.419 7.887

Order 5 10 9.498 9.847 9.437 9.764

Table 4.30: Phase error ∆k(◦) with structured and unstructured

meshes

Structured mesh Unstructured mesh

Tetrahedra 9.596e-05 8.414e-05

Prism (mesh 1) 1.461e-03 4.526e-04

structured characteristic of the elements. Particularizing the systematic
family of �nite elements to triangular prisms (which can be understood
as a hybrid between structured elements as hexahedra and simplices as
tetrahedra), a detailed comparison with other families well-known in the
literature is introduced in Section 4.5, obtaining comparable results.

Veri�cation of the two families through MMS is introduced in Sec-
tion 4.7, showing a detailed procedure of debugging basis functions that
can be applied in general to other cases. Basically, if monomials which
belong to the space of functions are taken as manufactured solutions,
the solution provided by the code should be close to machine precision
(apart from some accumulation of numerical error). On the other hand,
if smooth functions such as complex exponential functions are under test,
convergence results should follow straight lines with slopes predicted by
the theory for all the three elements (tetrahedra, hexahedra, and trian-
gular prisms) under test.

Finally, since a number of di�erent shapes are being used in this dis-
sertation, some experiments related to the phase error are included in the
Section 4.8. The obtained results are promising, showing di�erent per-
formance in the structured elements depending on the angle of incidence
of the wave propagation, but further studies increasing the electrical size
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of the problem with the same mesh will follow in the future.
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CHAPTER 5
VERIFICATION OF DDM

DDM is a technique introduced in electromagnetism in the last
decade with many aspects to be considered and studied for its correct im-
plementation. In this chapter, a procedure to verify and validate a DDM
implementation introduced in a FEM code is thoroughly explained. This
chapter is subdivided in four blocks:

Veri�cation of the formulation, introduced in Section 5.1.

Study of the expected convergence of the iterative solver through
the obtainment of the eigenspectra, detailed in Section 5.2.

Veri�cation of the implementation shown in Chapter 3, included
in Section 5.3.

Validation of DDM with some real problems and study of non-
conformalities in a wave propagation problem, introduced in Sec-
tion 5.4.

For the �rst and third block, MMS is used in a similar way as ex-
plained in Chapter 2. MMS is applied using a two-step procedure to
isolate the di�erent aspects involved in the introduction of DDM. First,
the so-called uncoupled MMS is introduced, where cement variables are
included as analytic solutions to check the formulation. Here, no ma-
chinery associated to the construction of the cross matrices is checked;
but integration terms included in the formulation are veri�ed. This part
of the code is common to all the available shapes and orders, so only
results with triangular prism with systematic space of basis functions
de�ned in Section 4.2.3 are included.
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Since the convergence of the iterative solver cannot be checked with
MMS a priori, results showing the eigenspectra of the preconditioned
matrix for the di�erent TC are included with di�erent combinations in
the second block. This study makes possible to assure the convergence
of subsequent results included in the third and fourth blocks.

After, MMS is applied as usual in formulations without DDM so all
the machinery to create cross matrices and solve the surface problem
with iterative solvers is checked. For this reason, a number of problems
covering di�erent combinations of shapes and orders is included in this
block, and the e�ect of non-conformalities, hybrid and non-uniform p

meshes is studied.
In the fourth block, a representative set of real problems are included

to validate the technique. An expansion of the number of subdomains
in one dimension (based on waveguides), two dimensions (using a square
array of antennas) and three dimensions (through the computation of
RCS of a plane) are included. Some performance results to check the
right behavior of the implementation are also included.

5.1 Uncoupled MMS

Two new sets of variables have to be taken into account when ap-
plying MMS in DDM, corresponding to cement variables ji and ρi. Two
steps which compose an approach not documented before in the litera-
ture to debug DDM in electromagnetism are proposed: �rst, an uncou-

pled MMS is de�ned through the introduction of analytic ji and ρi in
the RHS without any assembly of the cross matrices; then, only the elec-
tric �eld Ei is introduced analytically to the problem whereas cement
variables are approximated by the code. The �rst step is designed to
test only the formulation, without the burden of checking the machinery
to communicate subdomains (i.e., the use of shared points proposed in
Chapter 3). The formulation and machinery are checked in the second
step in the same way as MMS is used for classic FEM and results are
included in Section 5.3, after the eigenspectra study. For some problems
related to the implementation with scalar variables ρi, only developments
with SOTC-TE are given in this section.

The formulation used in uncoupled MMS is introduced in the follow-
ing. Let's consider the matrix equation for DDM in (2.38) and set cross
matrices Cij to zero, so communication with the other subdomains is
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included in the RHS, i.e.,
A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . An




x1

x2

...

xn

 =


b̂1

b̂2

...

b̂n

 , (5.1)

where the new RHS b̂i for each subdomain i is constructed by

b̂i =


l(Wi

i)

l(Ws
i )

lMMS(li)

0

 , (5.2)

where l(Wi
i) is the linear form already de�ned in (2.37) and a new linear

form is introduced here lMMS(li) through

lMMS(li) = αcτ,1(li, eMMS)+

βik0cτ,1(∇τ × li,∇τ × ei) + k0cτ,1(li, jMMS). (5.3)

The bilinear form cτ,1 is de�ned in (2.37). In (5.3), di�erent signs are
found for terms related to π×τ since the normal used is the normal for each
subdomain, and not the normal from the neighbor subdomain, which
only di�ers in the sign.

The triangular prism derived from the systematic approach is chosen
to test the formulation due to its hybrid characteristic which means that
both kinds of faces (triangular and rectangular) present in all the shapes
are tested in the integration terms. For brevity purposes, only results
with one monomial (de�ned in (4.36)) is included next, although each
monomial included in the space of functions has been checked. How-
ever, in Section 5.3, all the �nite element shapes are used to test both
machinery and formulation through the second step of veri�cation with
MMS.

The domain under test is a cube of dimensions 1m×1m×1m where
2 subdomains have been de�ned through an interface set by the user
(input data) in the diagonal along the top face. The working frequency
is set to 100MHz in all the MMS problems shown in this chapter. A
matching and conformal mesh is used on the interface between subdo-
mains, and errors de�ned in (4.31) and (4.32) are used. In Table 5.1
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 5.1: Uncoupled MMS with systematic triangular prisms applied

to a cube

di�erent meshes decreasing the size of the elements are generated and
the same phenomena as in Section 4.7.1 is observed: the numerical er-
ror is accumulated but still kept under control. Note that the iterative
solver is not used yet since the accuracy of the iterative solver might
mask errors in the formulation. Moreover, in Figure 5.1 the analytical
solution provided to the code, the solution generated by the code, the
absolute error between those two and the detail of the mesh used (last
case in Table 5.1) are shown. The division between subdomains can be
observed in the Figure 5.1, where a slight increase in the error is present
on the boundary between subdomains. However, the red area is present
where the �eld is stronger, so in order to discard errors only due to the
division into subdomains, a new simulation with the approximation of
zero order monomial EMMS = (1, 1, 1) is tested in the Figure 5.2, where
no red areas are detected on the interface between subdomains.

Three parts of the code are tested through the following problem: di-
vision in more than two subdomains, use of ParMETIS to obtain di�er-
ent subdomains and curved structures in the outer boundary. Now, the
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Figure 5.2: Absolute value of EMMS −EFEM for uncoupled MMS with

systematic triangular prisms approximating zero order monomials

Table 5.1: Relative errors for the uncoupled MMS for triangular prisms

Elements Unknowns ς ςcurl

144 3446 0.187e−12 0.137e−13

270 5722 0.261e−12 0.178e−13

2080 36542 0.111e−11 0.287e−13

3864 64902 0.183e−11 0.366e−13
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Table 5.2: Relative errors for the uncoupled MMS for triangular prisms

using a cylinder as problem to solve

Elements Unknowns ς ςcurl Overhead (%)

48 1552 0.221e−12 0.106e−13 70.5%

80 2256 0.479e−12 0.133e−13 54.3%

520 10844 0.986e−12 0.142e−13 26.9%

1350 26274 0.141e−11 0.163e−13 21.8%

problem under test is the cylinder already used in Section 4.7.1 where
ParMETIS is con�gured to generate 4 subdomains, same meshes in-
cluded in Table 4.22 are used, and monomial EMMS = (y2z2,−xyz2, 0)

is introduced. In Table 5.2 error energy results for the problem are in-
cluded increasing the number of elements in the mesh. Moreover, to
better understand the e�ect in the number of unknowns of the introduc-
tion of DDM, a measure of the so-called here overhead for using DDM
(due to the inclusion of cement variables) is computed and included in
Table 5.2. This overhead is de�ned as

Overhead(%) =
nunkn, DDM − nunkn, no DDM

nunkn, no DDM

× 100, (5.4)

where nunkn, no DDM and nunkn, DDM stand for the original problem with-
out any call to ParMETIS and the number of unknowns of the DDM
problem, respectively. In the following, to ensure a fair comparison, the
overhead is only included in results when ParMETIS is called since the
same mesh with and without DDM is compared. The magnitude of the
errors are as expected, which means that the accuracy of the approxi-
mation is not a�ected by the introduction of DDM formulation, while
the overhead is decreased with the size of the mesh since the number of
subdomains is the same for all cases. Note that the overhead is not neg-
ligible, especially for smallest meshes: however, real problems are bigger
and this overhead is not a problem as it is appreciated in Section 5.4.
Finally, in Figure 5.3 results for the last mesh are shown, where no dif-
ference between subdomains is appreciated.

5.2 Study of the eigenspectra

As explained in Section 2.2, the introduction of DDM involves solv-
ing a surface problem for which an iterative solver is commonly used.
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(a) Absolute value for the

analytic solution

(b) Absolute value generated by

FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 5.3: Uncoupled MMS with systematic triangular prisms applied

to a cylinder

Due to the characteristics of iterative solvers, the convergence of the
preconditioned problem included in (2.45) has to be checked for the dif-
ferent possibilities relative to shapes and orders available in the code.
For this reason, the eigenspectra as introduced in [96] is studied in this
section. In short, FEM matrix A obtained with DDM included in (2.38)
can be decomposed into two matrices M , resulting from block-Jacobi
preconditioning, and N , i.e.,

A = M−N ;M =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . An

 ;N =


0 −C12 . . . −C1n

−C21 0 . . . −C2n

...
...

. . .
...

−Cn1 −Cn2 . . . 0

 ;

(5.5)
so (2.45) can be expressed as

M−1A = M−1(M −N) = I −M−1N, (5.6)
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and the eigenspectra will be centered into the point (1.0, 0.0) in the
complex plane. The convergence of the iterative solver is assured if each
eigenvalue is constrained into the unit circle centered in (1.0, 0.0). If
some eigenvalues are outside this circle, the iterative solver can converge
if those eigenvalues are not excited by the electromagnetic problem. Be-
sides, the convergence is faster with a more clustered set of eigenvalues
around the center which can be achieved with di�erent TC.

In the following, a representative set of cases which covers all the
possible combinations in the code is included. The objective is to test
i) problems fully meshed with all the available shapes (triangular prisms,
tetrahedra and hexahedra); ii) the in�uence of di�erent orders in the dif-
ferent subdomains; iii) division into subdomains through input data and
through ParMETIS (which generates non-planar interfaces for tetrahe-
dra and triangular prisms); iv) the e�ect of di�erent elements for each
subdomain with the same mesh on the interface; v) the in�uence of non-
conformal interfaces between subdomains; and vi) the e�ect of Dirichlet
BC which appear in, e.g., waveguides.

First, systematic vector basis functions in triangular prismatic el-
ements to solve the problem shown in Figure 5.4, where a conformal
division into two subdomains is introduced through input data. The
eigenspectra generated for FOTC and SOTC-TE is shown in Figure 5.5,
where a smooth exponential function has been used as excitation al-
though the eigenspectra is not altered by the excitation (imposed in the
RHS).

In the following, hexahedra with hierarchical vector basis functions
of order p = 3 are used to discretize the FEM formulation to generate
the eigenspectra included in Figure 5.7. A conformal division into 2
subdomains is introduced in the problem shown in Figure 5.6 through
ParMETIS although the division between subdomains is planar since
hexahedra are used.

Last shape to be tested is tetrahedra so the domain included in Fig-
ure 5.8 is divided with ParMETIS into two subdomains and the elec-
tric �eld is approximated with order p = 4, generating the eigenspectra
shown in Figure 5.9. Note that in this case the interface between sub-
domains is non-planar and conformal.

Same characteristics are shared by all the eigenspectra shown so far:
each eigenvalue is inside the unit circle so convergence of the iterative
solver is assured for each possible excitation of the problem. Moreover,
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Figure 5.4: Mesh using a planewave as excitation to generate the

eigenspectra for triangular prisms with systematic basis functions
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Figure 5.5: Eigenspectra from problem shown in Figure 5.4
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Figure 5.6: Mesh using a planewave as excitation to generate the

eigenspectra for hexahedra
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Figure 5.7: Eigenspectra from problem shown in Figure 5.6
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Figure 5.8: Mesh using a planewave as excitation to generate the

eigenspectra for tetrahedra
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Figure 5.9: Eigenspectra from problem shown in Figure 5.8
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Figure 5.10: Mesh using a planewave as excitation to generate the

eigenspectra for triangular prisms with p = 4

eigenvalues are more clustered around the center in the case of SOTC,
where approximation of evanescent TE �elds are included in the TC.
No special di�erences are detected using di�erent shapes and families of
basis functions.

Now, a conformal division into 4 subdomains through ParMETIS
is introduced in the problem included in Figure 5.10, where hierarchical
vector basis functions of order p = 4 are used to approximate the electric
�eld. Note that here the interface between subdomains is non-planar and
the problem of corner edge is present, [96]. This problem is unavoidable
to face (through some penalty term or other options) in non-conformal
division; however, in this case, it can be seen in the eigenspectra shown
in Figure 5.11 that the preconditioned eigenspectra has nonzero null
eigenspace but since the excitation never belongs to that nullspace, the
solution can be obtained. Note that, in this case, a direct solver cannot
be used since the matrix is singular.

One of the remaining points to be tested is the division into subdo-
mains discretized with di�erent elements and matching mesh on the in-
terface. For this speci�c case, a problem with two subdomains, where one
subdomain is fully meshed with hexahedra and the other is meshed with
triangular prisms, are created as shown in Figure 5.12. This problem is
simulated generating the eigenspectra of Figure 5.13, where hierarchical
vector basis functions of order p = 3 have been used for both shapes.
A similar problem with a mix of tetrahedra and triangular prisms with
triangular faces on the common interface between subdomains (see Fig-
ure 5.14) is simulated with hierarchical vector basis functions of order
p = 4, obtaining the eigenspectra shown in Figure 5.15. No abnormali-
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Figure 5.11: Eigenspectra from problem shown in Figure 5.10

ties in the eigenspectra are detected, so the convergence of the iterative
solver is not a�ected by the shape used (even when di�erent shapes are
used in di�erent subdomains).

The e�ect of non-conformality between subdomains in the sense of
non-matching meshes on the interface is tested next. First, the problem
shown in Figure 5.16 is simulated where tetrahedra are used to discretize
each one of the two subdomains, and a non-conformal mesh is used
on the interface. The eigenspectra obtained is shown in Figure 5.17,
where systematic basis functions are used to approximate the solution.
Moreover, to observe the e�ect on the convergence of the iterative solver,
a mix between tetrahedra and triangular prisms is simulated as shown
in Figure 5.18, where hierarchical vector basis functions have been used
with di�erent orders for each subdomain (order p = 2 for tetrahedra
and order p = 3 for triangular prisms). The eigenspectra obtained is
shown in Figure 5.19. In these two cases, more sparsity in the eigenvalue
distribution is appreciated but same properties in terms of convergence
of the iterative solver hold, even for di�erent orders of approximation in
the di�erent subdomains.

Finally, the e�ect of Dirichlet BC is tested with a WR-90 waveguide
where hierarchical vector basis functions of order p = 3 have been used
to approximate the electric �eld and each subdomain is discretized with
hexahedra, as shown in Figure 5.20. The working frequency is set to
10GHz and the length l of the structure is set to l = λg, where λg is
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Figure 5.12: Mesh using a planewave as excitation to generate the

eigenspectra for hybrid meshes between prisms and hexahedra
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Figure 5.13: Eigenspectra from problem shown in Figure 5.12
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Figure 5.14: Mesh using a planewave as excitation to generate the

eigenspectra for hybrid meshes between tetrahedra and triangular prisms
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Figure 5.15: Eigenspectra from problem shown in Figure 5.14
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Figure 5.16: Mesh using a planewave as excitation to generate the

eigenspectra for a non-conformal division of the problem with tetrahedra
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Figure 5.17: Eigenspectra from problem shown in Figure 5.16
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Figure 5.18: Mesh using a planewave as excitation to generate the

eigenspectra for a non-conformal division of the problem with tetrahedra

(p = 2) and prisms (p = 3)
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Figure 5.19: Eigenspectra from problem shown in Figure 5.18
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Figure 5.20: Mesh using hexahedra in a WR-90 waveguide
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Figure 5.21: Eigenspectra from problem shown in Figure 5.20

the wavelength within the guided structure. For clarity purposes, when
λ is used for waveguides, it means λg. A conformal division along the
transversal face is performed through input data generating two sec-
tions of 0.5λ, obtaining the eigenspectra shown in Figure 5.21, where
the eigenvalue shown in the center correspond to the trivial solution and
the propagating modes can be shown for FOTC in the x-axis. Evanes-
cent TE modes are displaced from the circumference to the center in
the two braces shown for SOTC-TE transmission conditions, while the
remaining evanescent TM modes are closer to the circumference. More
details about the physical meaning of the eigenspectra are found in [91].

To sum up, no abnormalities have been found in any combination
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studied in this section, in which a representative set of possibilities has
been studied. The convergence of the iterative solver is expected to be
better for SOTC-TE since a higher number of eigenvalues are clustered
around the center of the circle.
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5.3 Veri�cation with MMS

So far, DDM formulation introduced in the code and the convergence
of the iterative solver with a number of possible combinations has been
tested. In this section, the same scheme followed in Section 4.7 to verify
FEM formulation is included here for the DDM formulation de�ned in
(2.38). Now, the special treatment to cement variables (even knowing
its analytical solution) is not applied, so machinery to build cross ma-
trices is tested since the formulation itself has already been checked in
Section 5.1. PETSc iterative solver using generalized conjugate residual
(GCR) method with a relative tolerance of 1e−12 has been introduced
for checking possible stagnation in the results. FOTC and SOTC-TE are
applied for comparison purposes. A representative set of combinations
is included to cover all the possible situations, as in Section 5.2: i) all
the shapes available; ii) higher orders; iii) use of ParMETIS; iv) hybrid
meshes between elements with a matching mesh between subdomains;
v) non-conformality between subdomains.

First shapes to be checked are tetrahedra using the systematic fam-
ily of vector basis functions introduced in Section 4.2.1. The domain to
be solved is a cube of dimensions 2m × 1m × 1m which has been split
by the user (through input data) in two halves, obtaining two identical
cubes of dimensions 1m× 1m× 1m, constituting one subdomain each.
The monomial used is EMMS = (xy,−x2, 0) although the same kinds
of results are obtained with the other monomials within the space of
functions for tetrahedra. Results with an increase in the number of un-
knowns are included in Table 5.3. A better convergence is achieved with
SOTC-TE as expected, with a higher number of iterations for problems
with a higher number of elements, but no stagnation occurs in any case.
Error results included here are limited by the accuracy of the iterative
solver, so no e�ect related to the numerical error present in Section 4.7
is observed. In order not to mask results obtained with the accuracy of
the iterative solver, a direct solver (MUMPS) is used to solve the global
surface problem, generating results included in Table 5.4. The same
phenomena related to the numerical error is obtained while the solution
obtained is not a�ected by the user-driven division into subdomains.

In Figure 5.22, the same set of results as in Figure 5.3 is included
using the last mesh shown in Table 5.3. It is observed (as expected
since the formulation has been tested and shown in Figure 5.2) that the
matching division between subdomains is not a source of error when us-
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Table 5.3: Relative errors for systematic tetrahedra using a cube split

in two domains with an iterative solver

Elements Unknowns
Iterative solver Iterations Iterations

ς ςcurl (FOTC) (SOTC-TE)

26 302 0.333e−11 0.102e−11 29 20

274 2378 0.266e−10 0.214e−10 94 43

5321 38394 0.118e−10 0.218e−10 147 59

11532 80860 0.110e−10 0.221e−10 161 67

Table 5.4: Relative errors for systematic tetrahedra using a cube split

in two domains with a direct solver applied to the surface problem

Elements Unknowns
Direct solver

ς ςcurl

26 302 0.295e−13 0.118e−13
274 2378 0.932e−13 0.194e−13
5321 38394 0.574e−12 0.301e−13
11532 80860 0.594e−11 0.219e−12

123



CHAPTER 5. VERIFICATION OF DDM

(a) Absolute value for the

analytic solution

(b) Absolute value

generated by FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 5.22: Results of MMS test with a monomial belonging to the

space of functions of tetrahedra of order p = 2 with a cube as domain to

solve

ing an iterative solver and, from the accuracy point of view, the division
into subdomains is transparent. To avoid any mask of the error due
to the use of the iterative solver, in Figure 5.23 the absolute error ob-
tained through a direct solver is included, holding the same conclusions
extracted before.

Now, in order to check the use of ParMETIS to generate the divi-
sion into subdomains, 4 subdomains are generated automatically to solve
the same problem introduced in Section 4.7.2. The monomial used to
compute solutions is EMMS = (xy, 0, 0), and hierarchical vector basis
functions of order p = 4 are used so higher-order vector basis functions
are also checked. In Table 5.5, results from the direct solver and the
number of iterations needed to achieve convergence with di�erent TC
are obtained. The trend on the results is similar to Tables 5.3 and 5.4
with a higher numerical error than in Section 4.7.2. This increase in the
numerical error is attributed to the machinery of DDM, which is much
more complex numerically speaking that classic FEM and more opera-
tions are needed to obtain the solution in the whole domain. Finally, in
Figure 5.24 results with the last mesh included in Table 5.5 are shown.
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Figure 5.23: Absolute value of EMMS −EFEM for the same problem as

in Figure 5.22 using a direct solver for the surface problem

Table 5.5: Relative errors for hierarchical tetrahedra (p = 4) using 4

subdomains through METIS

Elements Unknowns
Direct solver Iterative solver

ς ςcurl (FOTC) (SOTC-TE)

74 4984 0.468e−11 0.170e−11 315 170

324 17664 0.501e−11 0.171e−11 455 188

1152 57336 0.620e−11 0.195e−11 468 215

2949 139564 0.937e−10 0.234e−10 845 326

The division into more subdomains a�ects slightly the approximation of
the electric �eld although the relative order of the error in other areas
of the domain is not altered.

In the following, hexahedra as shape to discretize the FEM domain is
checked. In Table 5.6, di�erent meshes are applied to a cube of dimension
1m×1m×1m using ParMETIS to divide the problem into 4 subdomains,
order p = 3 for the basis functions and monomial EMMS = (x2y2z2, 0, 0)

which belongs to the space of basis functions for p = 3. Same e�ect
related to numerical error reported in former sections is obtained. The
iterations needed to achieve desired convergence for the global surface
problem are also included.
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(a) Absolute value for the

analytic solution

(b) Absolute value

generated by FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 5.24: Results of MMS test with a monomial belonging to the

space of functions of tetrahedra of order p = 4 with a cube as domain

divided into 4 subdomains through ParMETIS

A graphical representation of the last solution obtained in Table 5.6
is included in Figure 5.25. The same conclusions as in previous section
can be extracted: although the division into subdomains can be distin-
guished in the error, approximation of the solution does not have any
discontinuity because of that division.

To end with the test of the three available di�erent shapes, hierarchi-
cal vector basis functions of order p = 3 applied to triangular prisms are
used in Table 5.7 with monomial EMMS = (0, 0, x3z2) and same cubic
domain as for hexahedra generating 4 subdomains through ParMETIS.
The numerical error increases when the mesh is smaller, attributed to
the same explanation commented in previous section. In Figure 5.26,
the same set of graphical results as in other sections are included, where
the divisions in subdomains is detected but the approximation of the
solution is not a�ected.

Now, a higher number of domains obtained through ParMETIS is
tested. Tetrahedra are chosen to discretize the electromagnetic problem
since non-planar interfaces are more demanding from the point of view
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Table 5.6: Relative errors for hierarchical hexahedra (p = 3) using 4

domains through METIS

Elements Unknowns
Direct solver Iterative solver

ς ςcurl (FOTC) (SOTC-TE)

64 8040 0.157e−12 0.565e−13 171 142

512 52320 0.846e−12 0.103e−12 235 206

1000 97800 0.775e−11 0.541e−11 261 228

3375 311859 0.606e−10 0.668e−10 354 314

Table 5.7: Relative errors for hierarchical triangular prisms (p = 3)

using 4 subdomains through ParMETIS

Elements Unknowns
Direct solver Iterative solver

ς ςcurl (FOTC) (SOTC-TE)

16 1500 0.594e−12 0.139e−12 179 113

260 16257 0.998e−12 0.190e−12 320 195

2080 111393 0.775e−11 0.108e−11 372 189

4272 220983 0.300e−10 0.339e−10 552 292
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(a) Absolute value for the
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(b) Absolute value

generated by FEM code
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(d) Detail of the mesh

Figure 5.25: Results of MMS test with a monomial belonging to the

space of functions of hexahedra of order p = 3 with a cube as domain to

solve and using METIS to create the division into subdomains

of implementation. A cube with dimensions of 10m × 10m × 10m de-
composed into 24 subdomains is simulated, using a smooth exponential
function as excitation and systematic family of basis functions (order
p = 2) to approximate the electric �eld. The desired accuracy in the
iterative solver is achieved in 554 and 181 iterations with FOTC and
SOTC-TE respectively, while an error of 0.4497e−2 is achieved, which is
the same error as the one obtained without DDM. In Figure 5.27 the so-
lution is shown where no red areas on the interface between subdomains
are detected.

Finally, non-uniform p re�nement with DDM is tested next. The
cube shown in Figure 5.28 is simulated. For illustration purposes, tetra-
hedra of order p = 2 have been used, and entities (edges or faces) with
their x-coordinate in the range [0.2−0.8] are discretized with p = 3. The
problem has been divided into 4 conformal and non-planar subdomains
through METIS, and results are shown in Figure 5.28.

Once several results regarding domains discretized with the same
shape have been introduced, the e�ect of using di�erent shapes for each
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(a) Absolute value for the

analytic solution

(b) Absolute value

generated by FEM code

(c) Absolute value of
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(d) Detail of the mesh

Figure 5.26: Results of MMS test with a monomial belonging to the

space of functions of triangular prism of order p = 3 with a cube as

domain to solve and using METIS to create four subdomains

subdomain with a matching mesh on the interface between subdomains
is tested. Thus, two di�erent combinations can be checked: tetrahe-
dra with triangular prisms using triangular faces on the interface, and
hexahedra with triangular prism using rectangular faces on the interface.

First, a 1m3-cube is discretized with a mix of tetrahedra and trian-
gular prisms and a smooth exponential function is approximated with
hierarchical vector basis functions of order p = 2. as shown in Fig-
ure 5.29. With that problem, 233 iterations are needed to solve the
surface problem with FOTC while, with SOTC, the solution is obtained
in 136 iterations with an error of 0.1478e−3 for both TC. Regarding
the number of iterations, with SOTC, it is reduced as anticipated in
Section 5.2, while to detect if some loss of accuracy is generated due to
domain decomposition, a simulation with the same problem discretized
with tetrahedra of the same size as in Figure 5.29 is performed, ob-
taining an error of 0.1482e−3. Hence, no loss of accuracy is obtained
when applying DDM between di�erent shapes of �nite elements using a
conformal interface.
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Figure 5.27: Results of MMS test of a 10m-cube with a smooth

exponential function approximated by systematic basis functions and a

division into 24 subdomains obtained through ParMETIS

In the following, the same domain is used with a combination of tri-
angular prisms and hexahedra as shown in Figure 5.30 using hierarchical
vector basis funcitons of order p = 4, and obtaining the solution in 243
and 170 iterations with FOTC and SOTC-TE respectively, both with an
error of 0.2854e−7. When solving the same problem with prisms of the
same size and order the error obtained is 0.2694e−7, so no loss of accu-
racy is obtained with matching meshes even although the the interface
is non-conformal.

So far, although the formulation and implementation shown in this
dissertation supports non-matching meshes on the interface, the e�ect
has not been studied yet. In the following, three non-matching meshes
are tested: triangular with triangular faces, rectangular with rectangular
faces and, �nally, triangular with rectangular faces.

First, the domain shown in Figure 5.31 is divided into two sub-
domains meshed independently with tetrahedra and generating a non-
matching mesh on the interface. 151 iterations for SOTC-TE and 2739
for FOTC are needed to solve the problem, showing the results in Fig-
ure 5.31. No abnormalities in the distribution of the error are detected
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Figure 5.28: Results of MMS test with a smooth function in a mesh

with conformal division with di�erent p in the same mesh

due to the non-conformality between subdomains.
Now, let's consider non-conformality between rectangular faces. In

Figure 5.32, hierarchical vector basis functions are used with order p = 2,
and a hotspost is detected in the non-conformal interface between sub-
domains, due to the di�erence in the approximation between hexahedra
and prisms but the �nal solution is not a�ected. The number of itera-
tions needed in this case is 117 for SOTC and 3458 for FOTC.

Finally, the interface between triangular and rectangular faces is
tested. First, the domain shown in Figure 5.33 is divided into two subdo-
mains, one meshed with tetrahedra and the other with triangular prisms
in the way that on the interface there is a interaction between trian-
gular and rectangular faces. In the results, no distinctive performance
is obtained with respect to other combinations even when di�erent or-
ders have been used for the di�erent subdomains (p = 2 for the case of
tetrahedra and p = 3 for triangular prisms). Regarding the number of
iterations, 224 iterations for SOTC and 4148 for FOTC are needed to
obtain the solution. No additional comments to the already explained for
Figure 5.32 can be extracted, so the e�ect of non-conformality between
meshes is very reduced when using smooth exponential functions.
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Figure 5.29: Results of MMS test with a smooth function in a mesh

with conformal division with tetrahedra and triangular prisms
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Figure 5.30: Results of MMS test with a smooth function in a mesh

with conformal division with hexahedra and triangular prisms
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(a) Absolute value for the

analytic solution

(b) Absolute value

generated by FEM code

(c) Absolute value of

EMMS −EFEM

(d) Detail of the mesh

Figure 5.31: Results of MMS test with a smooth function in a mesh

with non-conformal division with tetrahedra
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Figure 5.32: Results of MMS test with a smooth function in a mesh

with non-conformal division with triangular prisms and hexahedra
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Figure 5.33: Results of MMS test with a smooth function in a mesh

with non-conformal division with triangular prisms (p = 3) and

tetrahedra (p = 2)
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5.4 Real structures

Real structures are used here to validate DDM introduced in this
work. Results obtained with DDM are compared against the results
obtained without using DDM. Note that, generally, no direct comparison
with any measurements or analytical solution is included for the sake of
brevity since the code without DDM has already been tested in a number
of papers showing a good agreement with other commercial softwares and
measurements, [148].

In terms of the propagation of the domains, problems simulated
in this section can be classi�ed into one-, two- and three-dimensional
problems. Here, the dimension is related to the direction in which
the division into subdomains is performed: e.g., a waveguide is a one-
dimensional problem since the division into subdomains is introduced
along the longitudinal face whereas a two-dimensional antenna array is
a two-dimensional problem if each radiating element is considered as
a di�erent subdomain. A representative set of di�erent electromagnetic
problems is included in this section, covering the following topics: propa-
gation in waveguides, interface between subdomains with di�erent mate-
rials, frequency �lters with dielectric resonators, computation of far-�eld
directivity and computation of monostatic RCS.

5.4.1 One-dimensional problems

Each one-dimensional problem reported here is based on rectangular
waveguides. Despite its simplicity, this propagation problem is one of
the most demanding from the point of view of DDM if the division
into subdomains is introduced transversal to the longitudinal direction
of the waveguide as shown in Figure 5.34 since the convergence of the
DDM problem strongly depends on the approximation of propagating
and evanescent modes. For each subdomain, all the modes are excited
with the introduction of TC and this might be a problem specially for
non-conformal interfaces. In this section, PETSc iterative solver using
GCR method with a relative tolerance of 1e−6 and a maximum number
of iterations set to 5999 has been used, and SOTC-TE are used since a
better convergence is achieved in all cases.

First, a conformal division with ParMETIS is introduced in an X-
band rectangular WR-90 waveguide with length of 1λ for a working
frequency of 7.5GHz. Systematic family of basis functions particular-
ized for triangular prisms is used and results obtained are included in
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Figure 5.34: Example of division in a WR-90 waveguide

Table 5.8: Results of 1λ-waveguide using ParMETIS

#dom. #unkn. #surf. unkn. # iter. Overhead |s21|

1 81436 � � � 0.999999

2 41426 1888 415 1.7 % 0.999999

3 28257 4448 435 4.1 % 0.999999

5 17658 9136 658 8.4 % 0.999999

Table 5.8, where # unkn. stands for the mean number of unknowns
for each subdomain in the case of DDM, and #dom. is the number
of subdomains introduced by ParMETIS. First, it is observed that the
accuracy of the results in terms of transmission parameter |s21| is not
a�ected when matching interfaces are constructed, being limited by the
resolution of the iterative solver. Overhead as computed in (5.4) is in-
creased with the number of subdomains as expected, while the number
of iterations is also higher. This may be expected since the number
of unknowns of the surface problem is higher for the same propagation
problem. Finally, the number of surface unknowns is increased with the
number of subdomains. This increase is linear if planar interfaces are
generated: when using ParMETIS, the increase is approximately linear.

Once the impact of using ParMETIS to generate the division into
subdomains is evaluated, let's consider a last case of matching meshes
on the interface: hybrid meshes in the way of connecting di�erent shapes.

136



5.4. REAL STRUCTURES

(a) Detail of the mesh (b) Absolute value of E

Figure 5.35: Results of waveguide with l = 1λ and with hybrid mesh

and matching mesh with triangular faces

(a) Detail of the mesh (b) Absolute value of E

Figure 5.36: Results of waveguide with length l = 1λ and with hybrid

mesh and matching mesh with rectangular faces

First, tetrahedra and triangular prisms are connected in the same waveg-
uide of length l = 1λ used before as shown in Figure 5.35 and divided
into two subdomains, each one of them corresponding to a section of
the waveguide of length l = 0.5λ . Numerical details are included in
Table 5.9, while the representation of the �eld is present in Figure 5.35.
Note that no loss of accuracy is detected and convergence is good as ex-
pected. Next, triangular prisms and hexahedra are connected using the
same decomposition into subdomains as shown in Figure 5.36, drawing
similar conclusions from the results shown in Table 5.9.

Now, let's consider non-matching meshes on the interface. First, the
same division into two subdomains is meshed with unstructured tetra-
hedra obtaining results included in Table 5.9. A non-negligible loss of
accuracy is obtained due to this non-conformality, so a �ner mesh is
tested, obtaining similar results but with a reduced number of itera-
tions. Results with the �ner mesh are shown in Figure 5.37, obtaining
a discontinuity on the interface which a�ects strongly the propagation
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(a) Detail of the mesh (b) Absolute value of E

Figure 5.37: Results of waveguide with length l = 1λ and meshed with

unstructured tetrahedra and non-matching mesh on the interface

(a) Detail of the mesh (b) Absolute value of E

Figure 5.38: Results of waveguide with length l = 1λ and meshed with

triangular prisms and hexahedra with a non-matching mesh on the

interface

close to that interface but slightly to the whole solution (hence the loss
of accuracy). In the case of non-matching meshes between rectangular
faces, hexahedra and triangular prisms are used to discretize each sub-
domain as included in Table 5.9, where a coarse and a �ne mesh are
tested; and results for the �ne mesh are shown in Figure 5.38. The loss
of accuracy is not as remarkable, as observed in Figure 5.37 where the
�ne mesh is represented. However, the number of iterations needed to
achieve relative error is higher than for the case of triangular faces.

Last case considered in Table 5.9 is the interaction between triangu-
lar and rectangular faces on the interfaces. A coarse and a �ne mesh
are used, showing best accuracy in the last case with a higher number
of iterations. Results and detail of the mesh are shown in Figure 5.39,
where the same performance obtained with non-matching meshes with
triangular faces are obtained. The most important conclusions that can
be drawn from this thorough set of propagation results are that non-
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(a) Detail of the mesh (b) Absolute value of E

Figure 5.39: Results of waveguide with length l = 1λ and meshed with

tetrahedra and hexahedra

Table 5.9: Results of 1λ-waveguide with a user-driven division into 2

subdomains

Case #unkn. 1 #unkn. 2 #iter. |s21|

Hybrid match pri-tet 53400 71544 354 0.999997

Hybrid match hex-pri 46200 41426 717 0.999999

Non-match tet coarse 78640 60038 732 0.994761

Non-match tet �ne 469484 186688 266 0.998458

Non-match hex-pri coarse 46200 64902 394 0.999999

Non-match hex-pri �ne 197672 204504 3018 0.999984

Non-match tet-pri coarse 78640 41426 526 0.994267

Non-match tet-hex �ne 469484 204504 1710 0.999288

conformal interfaces introduce a non-negligible but acceptable source of
error, and that the interface between elements is not a source of error by
itself since with matching meshes no loss of accuracy is detected. Specif-
ically, from Table 5.9, as expected by FEM theory, connection between
di�erent �nite element shapes does not introduce an additional source
of error, for both matching and non-matching interfaces. This provides
�exibility to the code presented in this dissertation since di�erent ele-
ments can be assigned to each subdomain depending on the geometry
of the particular subdomain without adding any additional error. Fi-
nally, from the same set of results, it is worth noting that more accurate
results are not obtained with a �ner (and uniform) re�nement on the
non-matching interface.

A further study of the non-conformality follows to assess the e�ect of
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Figure 5.40: E�ect of non-conformality in a WR-90 waveguide of one

wavelength

the non-matching interface in the error for a propagation problem. To
test the di�erence between the size of the elements on the interface, the
same problem is meshed with a given size for the volumetric mesh but
changing the number of elements on the interface for the domain Ω2 to
modify the aspect ratio (as a measurement of the di�erence in the size
of elements). The error is computed here as

ςprop =
|s21,DDM − s21,no DDM|

|s21,no DDM|
, (5.7)

and a direct solver is used for the surface problem to measure the relative
error in order not to mask the error with the accuracy of the iterative
solver as shown in Figure 5.40a. It is observed that the error is quite
�at (note the scale on Y axis), and no additional error is detected from
the interface between triangular and rectangular faces. Regarding the
number of iterations when an iterative solver is used, as included in
Figure 5.40b, no special correlation is obtained from the aspect ratio
but better results are appreciated for rectangular faces.

Secondly, the original WR-90 waveguide with length l = 1λ becomes
in a waveguide with length l = 0.5Nλ, N being the number of subdo-
mains introduced. Thus, the original problem sets N = 2 and wave
propagation only goes trough one discontinuity. Now, the e�ect of go-
ing trough N − 1 discontinuities is to be studied, so an aspect ratio of
1.5625 is set on the interface and same results are obtained in Figure 5.41
up to nine discontinuities (generated with ten subdomains). Interesting
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Figure 5.41: E�ect of non-conformality in a WR-90 waveguide with

variable wavelength

conclusions can be drawn from this set of results: i) a clear trend can
be observed in the error which is more pronounced for triangular non-
matching interfaces although the dynamic range of the Y axis is still
quite reduced; and ii) a quasi-linear growth of the number of iterations
is observed.

Finally, a waveguide with length l = 10λ with the same
working frequency is simulated, where each section with length
l = 1λ corresponds to one subdomain discretized with a dif-
ferent shape: tetrahedra-hexahedra-prism-tetrahedra-hexahedra-prism-
tetrahedra-hexahedra-prism-tetrahedra. Matching meshes on the inter-
face are used for interfaces between triangular prisms and hexahedra,
and the solution is obtained in 786 iterations and shown in Figure 5.42,
obtaining a transmission parameter of |s21| = 0.995835. It can be seen
that a loss of accuracy is present due to the non-matching interfaces be-
tween triangular and rectangular faces as expected from above results,
and that the whole solution of the problem is slightly a�ected by this
mismatch.

To test di�erent materials within the same waveguide, let's assume
three waveguide sections with length l = 1λ , where the �rst and third
sections are �lled with air while the second one is �lled with a dielectric
material of εr = 2. Each section corresponds to one subdomain, so a
problem with three subdomains is considered. The fact that the inter-
face between subdomains corresponds to the interface between materials
might be problematic since propagating and evanescent modes have to
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(a) Detail of the mesh (b) Absolute value of E

Figure 5.42: Results of 10 − λ waveguide meshed with di�erent shapes

(a) Without DDM (b) With DDM

Figure 5.43: Results of a waveguide �lled with di�erent materials

be perfectly approximated. The working frequency is set to f = 7.5GHz
which is within the monomode bandwidth of each section, and a user-
driven conformal division is introduced in the problem, which is fully
discretized with triangular prisms. Results obtained are shown in Fig-
ure 5.43, where it can be seen that no loss of accuracy is present when
using DDM, and the convergence of the iterative solver is achieved in
631 iterations.

Next case to be analyzed is a slotted waveguide array (SWA) array
of 7 elements, [149]. This structure is a good match for being discretized
with triangular prisms due to the geometry of the problem as shown in
Figure 5.44 due to the fact that the slots are designed to be elliptical in-
stead of rectangular. The working frequency of this array is 3.4045GHz
and the physical length of the structure is 4.5λ. Nine user-driven subdo-
mains are generated, creating nine 0.5λ sections with a matching mesh
on the interface between subdomains. The systematic family of basis
functions for triangular prisms is used. It has to be noted that a box for
mesh truncation is added for computing far-�eld results (e.g., directiv-
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(a) Absolute value of E (b) Detail of the mesh

Figure 5.44: Near-�eld in the whole problem for elliptical SWA array

(a) With DDM (b) Without DDM

Figure 5.45: Near-�eld in the waveguide for elliptical SWA array with

and without DDM

ity). This box is shown in Figure 5.44 to show the mesh and to detect
any anomalies in the division between subdomains.

Near-�eld results with and without DDM are included in Figure 5.45,
showing no di�erences. Finally, three-dimensional and two-dimensional
directivity results are included in Figure 5.46 and Figure 5.47, showing
again same results. In this case, the accuracy of the DDM is enough not
to perceive any di�erence in the results.

Last one-dimensional problem to be tested is a rectangular cavity �l-
ter based on dielectric resonators, [150]. In this problem, four dielectric
resonators of εr = 30 are embedded in rectangular cavities to generate
resonances for �ltering a given range of frequencies in the X-band. De-
tails of the model and exact geometry can be found in [150]. Six domains
are generated through the division of the slots which communicates the
four cavities and the two waveports. The division has to be introduced
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(a) With DDM (b) Without DDM

Figure 5.46: 3-D directivity (in dB) for the elliptical SWA array with

and without DDM

-10

0

10

20

Plane YZ
0

45

90

135

180

225

270

315

No DDM

DDM

(a) With DDM

-10

0

10

20

Plane XZ
0

45

90

135

180

225

270

315

No DDM

DDM

(b) Without DDM

Figure 5.47: 2-D directivity (in dB) in two di�erent planes for the

elliptical SWA array with and without DDM

in the middle of the slots for having the same modes on both sides;
other than that, convergence problems may appear. The whole problem
when not using DDM and each subdomain are meshed with unstruc-
tured tetrahedra. Non-matching meshes are used on the interfaces but
elements employed are of comparable size in an attempt to minimize the
accuracy errors due to non-conformalities. In Figure 5.48 a frequency
sweep covering the working frequency range is simulated and compared
to the results obtained without using DDM using comparable meshes in
terms of the element size. A good agreement is reported, specially taking
into account the sensitivity of the results with respect to the mesh due to
the high permittivity of the dielectric resonators. Next, a �ner mesh is
generated to simulate the same problem, and detail of the working range
of frequencies is included in the same �gure. In this case, the mesh with
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Figure 5.48: Frequency sweep between 11 and 13 GHz of a four

dielectric resonator �lter with di�erent meshes

(a) Detail of the mesh without

DDM

(b) Absolute value of the electric

�eld obtained without DDM

Figure 5.49: Results in the �rst resonance for a four dielectric �lter

without DDM

DDM is more detailed in the rectangular cavities (with the same de-
tails as the case without DDM) whereas the section between waveports
and �rst and last slot is meshed more coarsely. A number of 236690 un-
knowns is obtained for DDM case, whereas to obtain results with similar
detail with uniform mesh 412428 unknowns are needed as shown in the
meshes included in Figs. 5.49 and 5.50. A good agreement is reported
as well, with deeper resonances for the DDM case. Finally, near-�eld
is obtained for both meshes for the frequency of the �rst resonance for
each mesh (11530MHz for DDM and 11536MHz when not using DDM),
showing detail of the mesh employed in Figs. 5.49 and 5.50. Note that
similar results are obtained for both meshes.
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(a) Detail of the mesh with DDM
(b) Absolute value of the electric

�eld obtained with DDM

Figure 5.50: Results in the �rst resonance for a four dielectric �lter

with DDM
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5.4.2 Two-dimensional problem

A two-dimensional array of circular horns is simulated in the following
to observe accuracy for this distribution of subdomains. Each element of
the array is con�gured as one subdomain and an array of nine elements is
simulated �rst. The working frequency of the problem is set to 10 GHz,
and a uniform excitation is used to generate the solution. Near-�eld
results are shown in Figure 5.51, where a very good agreement between
the results is obtained. No division into subdomains are appreciated
in the �gure. The solution is obtained in 62 iterations while the total
number of unknowns without DDM is 1360188 unknowns, and a similar
number is obtained with DDM, 1398421 unknowns. Finally, the size of
the surface problem is 60144 unknowns.

A bigger problem is simulated in the following, increasing the number
of elements in the array to sixteen. The same setup is used, obtaining
the results shown in Figure 5.52, where no division into subdomains is
observed. Moreover, 3-D directivity results are included in Figure 5.53
and cuts in planes XY and XZ are shown in the same �gure, where a total
agreement between results is obtained. Speci�c details of the simulation
are included in the following: the total number of unknowns is 2261472
and 2368032 without and with DDM respectively. The number of itera-
tions obtained is 73 to achieve the solution shown in Figure 5.52. Note
that no special problems arise when using a two-dimensional distribution
of the results.
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(a) Detail of the mesh without

DDM

(b) Absolute value of the electric

�eld obtained without DDM and

with truncation boundary box

(c) Detail of the mesh with DDM

(d) Absolute value of the electric

�eld obtained with DDM and with

truncation boundary box

(e) Absolute value of the electric

�eld obtained without DDM

(f) Absolute value of the electric

�eld obtained with DDM

Figure 5.51: Near-�eld results for a 3x3 array of circular horns

148



5.4. REAL STRUCTURES

(a) Detail of the mesh without

DDM

(b) Absolute value of the electric

�eld obtained without DDM and

with truncation boundary box

(c) Detail of the mesh with DDM

(d) Absolute value of the electric

�eld obtained with DDM and with

truncation boundary box

(e) Absolute value of the electric

�eld obtained without DDM

(f) Absolute value of the electric

�eld obtained with DDM

Figure 5.52: Near-�eld results for a 4x4 array of circular horns

149



CHAPTER 5. VERIFICATION OF DDM

(a) 3-D directivity results without

DDM

(b) 3-D directivity results with

DDM
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Figure 5.53: Far-�eld directivity results for a 4x4 array of circular

horns
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5.4.3 Three-dimensional problem

Finally, computation of a RCS over a F117 plane is obtained. The
working frequency is set to 50 MHz and di�erent number of domains are
introduced with ParMETIS. Note that in this case, the surfaces are not
fully straight and some problems can arise on the non-planar interfaces:
from the point of view of the implementation, a conformal strategy of
detection of the points in the di�erent elements has been introduced,
selecting the elements which evaluate the shared points with the vertices
of the face and not detecting if a point is geometrically on the face (as it is
the case with non-conformal interfaces). Near-�eld results are shown in
Figure 5.54, where �ve subdomains are used for DDM results. Di�erent
cuts of the 3D RCS results are shown in Figure 5.55, where a good
agreement is obtained in the results. Speci�c details of the simulations
are included in Table 5.10 where the number of unknowns is the mean
number by each subdomain when DDM is used. Note that the overhead
is increased with the number of subdomains and that the growth of
the number of surface unknowns is unpredictable since the number of
interfaces between subdomains is unknown a priori, whereas for user-
driven domain decomposition this number can be predicted.

Table 5.10: Results of F117 airplane using ParMETIS

#dom. #unkn. #surf. unknowns # iter. Overhead

1 1011464 � � �

2 513346 24304 50 1.5 %

3 348951 47124 62 3.5 %

5 212641 68790 80 5.1 %

10 110208 120298 86 8.9 %

20 56224 149596 109 11.1 %
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(a) Absolute value of the electric

�eld obtained without DDM and

with truncation boundary box
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�eld obtained with DDM and with

truncation boundary box
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(d) Absolute value of the electric

�eld obtained with DDM

Figure 5.54: Near-�eld results for F117 airplane
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(a) 3D view of RCS with DDM
(b) 3D view of RCS without

DDM
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Figure 5.55: Far-�eld RCS results for F117 airplane
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Table 5.11: Performance results for a two-dimensional antenna array

Case of study Time (s) Peak mem.(Mb) Unknowns

3x3 No DDM 416 5380 1360188

3x3 DDM 463 3371 1398118

4x4 No DDM 1579 12253 2261472

4x4 DDM 1191 5832 2368032

5.4.4 Performance

Since advantages in the performance of DDM codes are thoroughly
explained in the literature, (see [108] and references therein), only one
case of study is included in the following to show the performance of
the implementation detailed in this work. Let us consider the two-
dimensional antenna array introduced in Section 5.4.2. First, evolution
of the residual used by the iterative solver to achieve convergence is
shown in Figure 5.56, where a good performance with the increase in
the size of the problem is obtained. Moreover, two key indicators have
to be considered: memory and computational time. The same number
of nodes and MPI processes (5 nodes and 10 processes, with 4 OpenMP
threads) have been used to generate results included in Table 5.11, where
the peak memory stands for the mean peak memory in each used node,
and the number of iterations are obtained with SOTC-TE. It can be ob-
served that the storage of local meshes leads to a non-negligible memory
saving in the case of nine and sixteen elements, while regarding com-
putational time, a better number is obtained with a bigger size of the
problem. This performance agrees with the implementations shown in
the literature, and better numbers can be obtained if, as in this case,
only it is stored one element which is virtually repeated to conform the
two-dimensional array.

5.5 Conclusions

A detailed procedure to verify the DDM implementation in the code
is presented in the �rst three sections of this chapter. First, a variation of
the MMS used in the Chapter 4 to simulate the communication with the
other subdomains is presented, using triangular prisms to show numerical
results. These results show that an error close to machine precision is
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Figure 5.56: Iterative solver convergence for the circular horn antenna

array

obtained when using monomials inside of the space of basis functions,
and the same accumulation of numerical error is detected. Direct solvers
are used to obtain the solution of the surface problem in order not to
mask the results with the accuracy of the solver.

In Section 5.2, the eigenspectra for a number of problems is com-
puted to provide an a priori estimation of the convergence of the iter-
ative solver when solving the preconditioned global surface problem. A
representative set of combinations covering all the �nite element shapes
and families introduced in Chapter 4 and non-matching interfaces is in-
cluded, showing no special di�erences due to the �nite element used.
SOTC provide a more clustered eigenspectra around the center of the
circle than FOTC so convergence of the iterative solver is expected to be
better with SOTC. Furthermore, the convergence of the iterative solver
is assured in all the results presented since all the eigenvalues are within
the circle of convergence.

Then, since only the formulation is tested in Section 5.1, in Sec-
tion 5.3 the machinery associated to the cross matrices which supports
the communication between subdomains is checked through the classic
MMS techniques already used in the Chapter 4. Also, iterative solver is
introduced to check the convergence of all the problems included in the
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section. The monomials inside the space of basis functions together with
smooth complex exponential functions are used as manufactured solu-
tions and similar performance as in Chapter 4 is obtained for conformal
meshes independently of the �nite element used. Non-conformalities
show a source of error which slightly a�ects the approximation of the
electric �eld in the whole problem, so this will be further studied in real
problems in Section 5.4.

A detailed study related to real problems is included in Section 5.4
to validate the DDM introduced. Three di�erent sets of results are in-
cluded depending on the expansion of the number of subdomains, and
a representative set of real problems is chosen involving wave propaga-
tion problems, di�erent dielectric media, radiation, high-frequency �lters
and RCS computations. Results have a quite good agreement when con-
formal interfaces are used, whereas non-conformalities introduce a new
source of error which is analyzed quantitatively for a WR-90 waveguide.
This analysis shows that the aspect ratio between the elements is not a
key factor for this problem, and that the error of |s21| is increased with
the number of discontinuities but in the worst case it has a small impact
in the error. Also, similar results are obtained with a �ner discretization
of the mesh on the interface. These results are quite revealing for the
interaction with hp adaptivity: i), this lack of sensitivity in the aspect
ratio means that an independent re�nement of each subdomain will not
increase the error due to the non-conformal interface; ii) the division
into subdomains have to be introduced taken into account that the error
is linearly increased with the number of discontinuities; iii) a uniform
re�nement on the interface does not decrease the error associated to the
non-conformal interface. Finally, some performance results are included
and results obtained are as good as expected from the literature.
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Adaptivity, introduced in the last decades in FEM codes, is a tech-
nique which improves the approximation in those areas of the domain
to be solved where the discretization error is higher. Two versions of
adaptivity are found in the literature: h-adaptivity, related to the size
of the elements, and p-adaptivity, which involves the order of approx-
imation of basis functions. Adaptivity combined with DDM is a �eld
not thoroughly explored yet in the literature for electromagnetism since
the DDM are commonly used for large scale problems, so a �rst proof of
concept is introduced in this section.

In Chapter 5, the approximation of the electric �eld with non-
conformal meshes has been validated. A detailed study of the e�ect
of non-conformalities has been included for wave propagation problems
in Section 5.4. Moreover, di�erent orders, even in the same domain,
can be used when hierarchical vector basis functions (e.g., from [3]) are
employed. For illustration purposes, MMS can be used to introduce a
smooth exponential function with frequency f = 100MHz in the prob-
lem meshed with tetrahedra shown in Figure 6.1. Three subdomains
are introduced and di�erent re�nements are applied, as introduced in
Table 6.1: uniform h re�nement, uniform p re�nement, and uniform h

re�nement for the subdomain in the middle whereas uniform p re�ne-
ment is applied in the neighbor subdomains. Error de�ned by (4.31) and
the number of unknowns are included in Table 6.2, while the graphical
representation of the error for the �rst and last case is included in Fig-
ure 6.1. Note that the last case includes a non-conformal interface where
the meshes are quite di�erent in size (and order) between each other. As
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Figure 6.1: Results and meshes used in re�nements 1 (above) and 4

(below) as de�ned in Table 6.1

expected, p re�nement is more e�ective in this problem than h re�ne-
ment due to the regular geometry of the problem and the smoothness
of the function to be discretized. Regarding the last case, the error in
h-re�ned Ω2 is not a�ected by the mismatch on the interface between
subdomains; however, this re�nement increases the error in subdomains
Ω1 and Ω3 as shown numerically in Table 6.2. Indeed, in Figure 6.1 it
can be seen that in the vicinity of the interface the error is increased but
not in the interior of subdomains Ω1 and Ω3.

Table 6.1: Parameters of the simulations included in Table 6.2

Parameters of the re�nement applied

h1 h2 h3 p1 p2 p3 Unknowns

1 0.5m 0.5m 0.5m 2 2 2 5848

2 0.25m 0.25m 0.25m 2 2 2 42638

3 0.5m 0.5m 0.5m 4 4 4 33316

4 0.5m 0.25m 0.5m 4 2 4 39866
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Table 6.2: Numerical results for a smooth exponential function

Numerical error from (4.31)

ς1 ς2 ς3 ςfull

1. Coarse 0.2e−1 0.2e−1 0.1e−1 0.2e−1

2. h ref. 0.4e−2 0.4e−2 0.4e−2 0.4e−2

3. p ref. 0.5e−4 0.7e−4 0.4e−4 0.5e−4

4. hp ref. 0.3e−3 0.4e−2 0.1e−3 0.2e−2

These results show that the code is ready to introduce uniform p

and h re�nement in each subdomain. Together with the result shown
in Fig. 5.28 about non-uniform p re�nements in the whole domain, all
the building blocks but the adaptivity algorithm have already been in-
troduced. Thus, an adaptivity algorithm particularized for triangular
prisms from Chapter 4 is implemented. This shape is chosen since a
semi-structured adaptivity is provided, suitable for a number of appli-
cations; moreover, as far as the author knows, this adaptivity has not
been thoroughly developed in the literature, [129]. However, in terms of
formulation, same concerns independently of the element chosen have to
be addressed in the application of adaptivity to DDM. In Section 6.1,
details about the algorithm itself are provided, and veri�cation through
MMS is applied in Section 6.2.

Finally, the �nal objective of this chapter is to further study the e�ect
of non-uniform adaptivity with non-conformal DDM. In Section 6.3, the
e�ect of DDM is studied �rst for a WR-90 waveguide and, then, a sin-
gularity in the same waveguide is introduced as a proof of concept of the
e�ect of the interface in the adaptivity. Some hp meshes are introduced
as well but no special techniques for p re�nement have been introduced.

6.1 Algorithm

An adaptivity algorithm can be summarized in four steps:

Solve the problem.

Estimate the error in the solution.

Mark elements to be re�ned.

Re�ne each element.
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These four steps are repeated until the convergence criteria are achieved
(a maximum number of iteration of a given threshold of the error estima-
tion). In previous chapters, the �rst step has been explained thoroughly,
while for remaining steps many references are available: the focus of this
work is not set on proposing disruptive solutions for each one of these
steps but applying di�erent alternatives detailed in the literature to the
adaptivity algorithm developed here to be merged with DDM formula-
tion. However, since the use of triangular prisms is not standard in FEM,
and DDM formulation has to be taken into account in the adaptivity,
some contributions have to be introduced in this section.

6.1.1 Estimator

Di�erent choices are available to estimate the error generated by some
mesh in the code. A good estimator is a key factor when implementing
adaptive strategies since each marking strategy relies on this estimation.
Here, a straightforward local estimator has been introduced in the code
inspired by [121]. This estimator is computed individually for each ele-
ment m and can be divided into a volumetric residual R(m)

vol,i and a face

residual R(m)
face,i, where superscript •(m) is used here to constrain some

magnitude to an element (m). Volumetric residual R(m)
vol,i is de�ned as

R(m)
vol,i = ∇× µ−1

ri (∇×E
(m)
i,FEM)− k2

0εriE
(m)
i,FEM −Oi, (6.1)

where E
(m)
i,FEM is the solution provided by the code, i.e., E

(m)
i,FEM =

Ni∑
k=1

g
(m)
i,k N

(m)
i,k with g

(m)
i,k being the DOFs obtained by the code, N

(m)
i,k

the basis function associated to that DOF and Ni the number of basis
functions. The notation used is the same as de�ned in (2.20). As usual,
the subscript •i is referred to the subdomain to which the element be-
longs.

The face residual depends on the boundary condition, if any, applied
to the face. With PEC the residual is not de�ned since Dirichlet BC
are imposed to the electric �eld, whereas a residual is de�ned when
the electric �eld is not enforced. First, the face residuals associated to
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Neumann and Cauchy BC, RN and RC, are de�ned respectively as

R(m)
N = n̂

(m)
i × µ−1

ri (∇×E
(m)
i,FEM), on Γi,N, (6.2)

R(m)
C = n̂i × µ−1

ri (∇×E
(m)
i,FEM)+

jk0n̂
(m)
i × n̂

(m)
i × (Ψi −E

(m)
i,FEM), on Γi,C. (6.3)

Then, the face residual between two neighbor elements m and n in
a given subdomain i, Ri,neigh, is de�ned as the error in the tangential
continuity of the magnetic �eld between elements through

Ri,neighn̂(m)
i = n̂

(m)
i ×µ−1

ri (∇×E
(m)
i,FEM)+n̂

(n)
i ×µ

−1
ri (∇×E

(n)
i,FEM). (6.4)

This is motivated by the fact that the electric �eld is tangentially contin-
uous by FEM assembly of the curl-conforming functions, but magnetic
�eld is derived from the electric �eld.

Faces which belong to an interface between subdomains i and j are
the last case to be considered. That residual Rij,DDM is de�ned as

R(m)
ij,DDM = πτ (E

(m)
i,FEM) + π×τ (µ−1

ri ∇×E
(m)
i,FEM)−

πτ (E
(m)
j,FEM)− π×τ (µ−1

rj ∇×E
(m)
j,FEM). (6.5)

Finally, the residual for each element m is introduced through

R(m) = h(m)c2(R(m)
vol,i,R

(m)
vol,i) +

nfaces∑
k

Kkh
(m)
k cτ (R(m)

k ,R(m)
k ), (6.6)

where Kk is
1

2
if face k is triangular and 1 if face k is rectangular, nfaces

is the number of faces in the element, and h is the diameter of the entity
(volume or face). In case that R(m)

face,i is not de�ned (i.e., PEC faces), it
is set to null. Note that the operator c2 has been de�ned in (2.37), while
cτ is de�ned as

cτ (W,W) =

¨
Γ

(W ·W) dΓ. (6.7)

6.1.2 Marking strategies

Once the residual is established for each element, di�erent strate-
gies to mark an element to be re�ned are de�ned in terms of this local
residual. Five di�erent strategies are used in the results included in this
chapter:
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Next-step estimator: inspired by [4], it consists of estimating the
error which an element would have if it is re�ned.

Quantile: as shown in [5], a percentage of the elements, ordered by
the residual from highest to lowest computed in the section 6.1.1,
are re�ned.

Maximum: inspired by [126], elements with a residual higher than
the maximum residual in the mesh multiplied by some parameter
θ between 0 and 1 are marked to be re�ned.

Fixed-energy fraction: elements are ordered by its residual from
highest to lowest and the number of elements to be re�ned conforms
some percentage of the energy of the residual in the whole problem
�understood as the sum of the square of the residual in each
element�. This strategy is shown in [130].

SER: inspired by [6], the name stands for (Solve-Estimate-Re�ne).
This algorithm is a mix between maximum and �xed-energy frac-
tion algorithms, and it may be understood as a strategy based
on Heaviside step function: as in �xed-energy fraction algorithm,
marked elements constitute some percentage of the energy of the
whole problem. However, this energy is not reached adding el-
ements individually to be re�ned, but also with a step function
which is lower in each step, in a way that elements to be re�ned
are those with a residual higher than the threshold set by the step
function. If this step is con�gured to select only one element in
each step, it is equivalent to the �xed-energy fraction strategy ex-
plained before.

Unfortunately, due to the semi-structured characteristics of the trian-
gular prism (element under study in this chapter), some of these marking
strategies may not be applied directly if problems of hanging nodes are
not treated; i.e., if a conformation of the mesh is not performed when
elements are marked to be re�ned. A hanging node occurs when there
is no continuity between elements: e.g., when an edge of some element
ends in the middle of the edge of other element. This situation gen-
erates irregular meshes which requires non-standard basis functions to
approximate correctly the electric �eld, [27].

This so-called here process of conformation, explained thoroughly in
the following section, makes the number of prism elements to be re�ned
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undetermined when they are marked, since the re�nement has to be
propagated horizontally and vertically. Regarding DDM, these mark-
ing strategies may be applied to each subdomain individually or to the
whole problem. Independently of this choice, these marking strategies
can make the size of the elements on the interface very unbalanced,
yielding an undesirable performance as shown in Section 6.2. For this
reason, a conformation based on a rule of thumb (ROT) criterion be-
tween subdomains has been implemented as detailed in Section 6.2.3.
This conformation provides an increased number of elements to be re-
�ned which has to be taken into account when applying some of these
marking strategies.

With all these considerations, pseudocodes for each strategy follow.
The set of elements of the original domain is noted as P, while PR
stands for the set of elements marked to be re�ned, with PR ⊂ P. In
Pseudocode 6.1, a slight variation of the algorithm proposed in [4] is
introduced in case that the estimation is not enough to produce any
new element to re�ne. This estimation is based on the assumption that
the residual has an asymptotic behavior of the form R = chλ, h being
the characteristic size of the element. Unfortunately, in some cases that
estimation did not provide any new element to be re�ned and, because
of that, a variation has been introduced. It has to be noted that the
�rst iteration of this algorithm produces the marking of all the elements
since the threshold is set to null.

In Pseudocode 6.2, details about the implementation of the quantile
algorithm to mark elements is presented. Since the number of the re�ned
elements is not known beforehand because of the process of conformation
of the mesh, the process has to iterate considering less and less elements
until the number of elements to be re�ned are lower than the given
percentage (speci�ed through parameter θ) of elements to be re�ned.

In the case of the maximum algorithm, no special treatment is ap-
plied due to the conformation of the mesh. In Pseudocode 6.3 more de-
tails about this marking algorithm are provided. Regarding �xed-energy
fraction algorithm, a slight modi�cation to include conformation of the
mesh has been introduced in the algorithm, as shown in Pseudocode 6.4.
The same adjustment is applied to SER algorithm, as included in Pseu-
docode 6.5
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Pseudocode 6.1 Slight variation of [4] in the k iteration of the adap-
tivity algorithm to produce a set of elements to be re�ned

Require: R(m)
k−1 . Estimator of the last step

Require: conform_re�nement(PR) . Process of conformation to avoid
hanging nodes

Input: R(m)
k . Evaluation of (6.6)

Input: P . Set of original elements (of size N)
Output: PR . Set of elements marked to be re�ned (of size NR)

1: procedure mark_nextstep(R(m)
k ,P,PR)

2: θ ← 1

3: i ← 0 . Number of iterations of mark_nextstep
4: if k = 1 then

5: R(e)
2 ← 0 ∀e ∈ P

6: else

7: for all e ∈ P do . Go through each element

8: R(e)
k+1 ←

(
R(e)
k

)2

R(e)
k−1

9: end for

10: end if

11: while NR = 0 do

12: θ ← θ

10i
. Adjustment of ςcut

13: ςcut ← θ·max{R(1)
k+1, . . . ,R

(N)
k+1} . Threshold to be marked

14: for all e ∈ P do

15: if R(e)
k ≥ ςcut then

16: e ∈ PR . Add to the set of marked elements
17: end if

18: end for

19: i ← i+ 1 . Increase the iteration number
20: end while

21: PR ← conform_re�nement(PR) . Conform marked elements
22: end procedure
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Pseudocode 6.2 Slight variation of [5], where a given percentage of
elements are marked to be re�ned
Require: conform_re�nement(PR) . Process of conformation to avoid

hanging nodes
Require: order_residual(Rk) . Order elements from highest to lowest

local residual R(m)
k

Input: R(m)
k . Evaluation of (6.6)

Input: θ . Percentage of elements to be re�ned
Input: P . Set of original elements (of size N)
Output: PR . Set of elements marked to be re�ned (of size NR)

1: procedure mark_quantile(R(m)
k ,θ,P,PR)

2: θR ← θ

3: Pord ← order_residual(Rk) . Get an ordered set of elements
4: while NR ≥ θN do

5: for all e ≤ θR ·NR do

6: e ∈ PR . Add to the set of marked elements
7: end for

8: PR ← conform_re�nement(PR) . Conform marked
elements

9: θR ← θ − 0.05 . Try with a smaller set
10: end while

11: end procedure
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Pseudocode 6.3 Marking strategy based on evaluating the residual of
each element and compare it to a threshold
Require: conform_re�nement(PR) . Process of conformation to avoid

hanging nodes
Input: R(m)

k . Evaluation of (6.6)
Input: θ . Percentage to set threshold
Input: P . Set of original elements (of size N)
Output: PR . Set of elements marked to be re�ned (of size NR)

1: procedure mark_maximum(R(m)
k ,θ,P,PR)

2: ςcut ← θ·max{R(1)
k , . . . ,R(N)

k } . Threshold to be marked
3: for all e ∈ P do

4: if R(e)
k ≥ ςcut then

5: e ∈ PR . Add to the set of marked elements
6: end if

7: end for

8: PR ← conform_re�nement(PR) . Conform marked elements
9: end procedure

6.1.3 Re�nement

Re�nement is the fourth step in any adaptivity algorithm, and some
considerations due to the semi-structured characteristic of the triangular
prism have to be taken into account. The re�nement strategy adopted
here is based on two-dimensional re�nements for triangles and, after
that, an extrusion is performed in the segment direction, being split if
required. Thus, re�nement is particularized to two directions: horizontal
direction, where the triangles which conform top and bottom faces of
the prisms are contained, and vertical direction, which is the extrusion
direction of the prism. Re�nements in this document are denoted as a
number of two digits: the �rst digit is referred to the horizontal direction,
while second digit is relative to the vertical direction. For the horizontal
direction, di�erent alternatives can be found: here, the well-known red-

green algorithm is used, [125].
In short, when a triangle is marked to be re�ned, is set to red, which

means that four new triangles are created joining the middle points of
each edge. In the neighbor triangles, if they are not marked to be re-
�ned, they are set to green, which means that the middle point of the
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Pseudocode 6.4 Marking strategy based on obtaining a set of ele-
ments to be re�ned which constitutes a given percentage of the total
energy of the residuals
Require: conform_re�nement(PR) . Process of conformation to avoid

hanging nodes
Require: order_residual(Rk) . Order elements from highest to lowest
R(m)
k

Input: R(m)
k . Evaluation of (6.6)

Input: θ . Percentage to set amount of energy of PR
Input: P . Set of original elements (of size N)
Output: PR . Set of elements marked to be re�ned (of size NR)

1: procedure mark_fixedenergy(R(m)
k ,θ,P,PR)

2: ςcut ← θ ·
N∑
m=1

R(m)
k . Threshold to be marked in energy

3: Pord ← order_residual(Rk) . Get an ordered set of elements
4: Nref ← 1 . Initialize number of elements to mark.

5: while

Nf∑
m=1,m∈PR

R(m)
k ≤ ςcut do . Nf is the size of PR

6: for all e ≤ Nref do

7: e ∈ PR . Add to the set of marked elements
8: end for

9: PR ← conform_re�nement(PR) . Conform marked
elements

10: Nref ← Nref + 1 . Increase the number of elements to re�ne.
11: end while

12: end procedure
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Pseudocode 6.5 Slight variation of [6] where a variable threshold
is de�ned to obtain a set of marked elements which conform a given
percentage of the total energy of the residuals
Require: conform_re�nement(PR) . Process of conformation to avoid

hanging nodes
Require: order_residual(Rk) . Order elements from highest to lowest
R(m)
k

Input: R(m)
k . Evaluation of (6.6)

Input: θ . Percentage to set amount of energy of PR
Input: P . Set of original elements (of size N)
Output: PR . Set of elements marked to be re�ned (of size NR)

1: procedure mark_ser(R(m)
k ,θ,P,PR)

2: ςcut,energy ← θ ·
N∑
m=1

R(m)
k . Threshold to be marked in energy

3: Pord ← order_residual(Rk) . Get an ordered set of elements
4: Nref ← 1 . Initialize number of elements to mark.
5: θR ← 1 . Initialize threshold to mark elements

6: while

Nf∑
m=1,m∈PR

R(m)
k ≤ ςcut,energy do . Nf is the size of PR

7: θR ← θR − 0.02 . Decrease threshold in each iteration
8: for all e ≤ Nref do

9: e ∈ PR . Add to the set of marked elements
10: end for

11: PR ← conform_re�nement(PR) . Conform marked
elements

12: end while

13: end procedure
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edge neighbor with the red triangle is joined to the opposite vertex. Ob-
viously, if some triangle has two neighbors which are red, this triangle is
transformed into a red triangle, although some variations (the algorithm
known as red-green-blue, [126]) may also be used. In terms of notation,
when a prism is marked as red, it is noted with the number 2, while if it
is marked as green, it is noted with the number 1. Finally, in the vertical
direction there is only one possibility: to re�ne by the middle point in
the edge, noted here with the number 1. If no re�nement is applied in
that direction, it is noted as 0.

With this notation, �ve di�erent re�nements appear, which are shown
individually in Figure 6.2. Moreover, the semi-structured feature of the
prism forces the application of a conformation that regularizes �i.e.,
without hanging nodes� the resulting mesh. This process consists of
propagating the re�nement horizontally and vertically, which means,
e.g., that if the triangular faces of some prism are re�ned, the triangular
faces of the neighbors on the top and the bottom have to be re�ned.
When an element is marked to be fully re�ned, it will be noted as 21
(red re�nement in the top and bottom triangular faces and re�nement
in the segment). Let's consider that only this element is marked to
be re�ned. Then, horizontal neighbors (elements with top and bottom
faces contained in the same plane as the element marked as 21 ) will
be marked as 11, since triangles are marked as green and re�nement in
the extrusion direction forces all the elements in the same layer to be
re�ned in the segment. For this reason, remaining neighbors of these 11
elements will be marked as 1. Finally, bottom and top neighbors of the
21 elements will be marked as 20, since no re�nement in the segment
is necessary but triangles have to be re�ned to keep regularity in the
mesh. The last possible element are the neighbors of the 20 elements,
which will be marked as 10. An example of this situation is shown in
Figure 6.3. All the geometries obtained after the re�nement are geomet-
rically admissible which means, in short, that two di�erent elements in a
triangle tessellation share and edge, a vertex, or nothing, [151]. Indeed,
the problem of hanging nodes is not treated in this dissertation due to
its complexity. Thus, the mesh obtained through this re�nement will be
conformal, or as it might be provided by a standard mesher.

Finally, two considerations have to be made for the re�ned meshes.
The use of green triangles (1x ) may lead to holes or eyes in the mesh if,
given one vertex shared by many elements (e.g., eight elements), some
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21

11 20

1 10
Figure 6.2: Each possible re�nement for triangular prisms. Only one

case out of three for 10 and 11 cases are shown for brevity

Conformation

Figure 6.3: An example of application of conformation process in

re�ned meshes
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elements are marked as 1x being this one vertex the vertex whose angle
is divided. Then, if the error is accumulated in this point, there is no
backward step (if the elements inside the hole are further re�ned, the
number of elements which share the same vertex is the same). One
solution to prevent this situation is to introduce an accumulator to all
the vertices in the mesh and count the number of elements which have
this vertex. With this accumulator, if the situation explained before
occurs, the element is marked as 2x. Moreover, if no criteria for good
quality meshes are imposed, some elements with green re�nement in
the triangular faces might lead to very deformed triangles in the top and
bottom faces which can increase the error of a given mesh (although these
elements would be re�ned in the next adaptivity step) and conditioning
of the resulting mesh is worsened. To avoid that, when an element is
marked as 11 or 10, the two angles associated to the opposite vertex of
the split edge are checked and if they are lower than a given quantity
(23 degrees has been proven in experiments as a reasonable threshold),
they are marked as 21. An example of these two criteria to generate a
mesh with good quality is shown in the Section 6.2.

Regarding DDM, when this re�nement is applied individually to dif-
ferent subdomains, it is well-known, [85], that a rule of thumb has to be
kept between elements, i.e, when the size of elements on a given interface
is very di�erent, a non-negligible error is located on the interface. Al-
though in Section 5.4.1 it is observed that this aspect ratio seems not to
be critical in the error provided by the non-conformal interface, it has to
be noted that adaptive meshes with triangular prisms may lead to very
unbalanced non-matching meshes on the interface of, e.g., sixteen ele-
ments from one subdomain communicating with only one element from
the other.

To avoid that, a threshold on the aspect ratio of the elements belong-
ing to the interface between subdomains may be imposed if the so-called
ROT criterion is applied. Essentially, this criterion compares the size of
the neighbor elements in both sides of the interface. If the di�erence is
bigger than a given threshold, the same re�nement to all the neighbor
elements are applied. Note that, if this criterion is not applied, the error
due to the non-conformality will be similar in both subdomains. This
may lead the adaptivity algorithm to re�ne all the elements belonging to
the interface, which yields a �ner mesh with the same non-conformality
between the subdomains. This e�ect has been simulated in Table 5.9
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(a) Mesh (b) Error

Figure 6.4: Presence of anomaly (eye) in the adaptive mesh

where it can be observed that the error is not decreased by this re�ne-
ment.

Note that if the ROT criterion is applied for original matching inter-
faces, the e�ect is that conformality is retained on the interface for all
the iterations of the re�nement algorithm. An example of application of
this criterion is shown in Sec 6.2.3.

6.2 Veri�cation through MMS

Following the procedure shown in previous chapters, MMS is going
to be used to test the adaptivity algorithm presented in Section 6.1. A
cube of length 1m and working frequency of 50MHz is used as the prob-
lem to be solved. In this section, the following goals are pursued: i) to
validate the adaptivity algorithm; ii) to test the �ve di�erent marking
strategies introduced in this dissertation; iii) to study the e�ect of DDM
with conformal and non-conformal meshes on the interface between sub-
domains.

6.2.1 Considerations with green triangles

The e�ect of the two criteria introduced in the process of conforma-
tion for 1x elements is exposed. First, an example of use for the �rst
criterion, related to the possible appearance of holes in the mesh if no cri-
teria is applied, is shown in Figure 6.4 and 6.5. Here, it can be seen that
some error is accumulated near the center of the top and bottom faces
because too many elements converge to the same point. In Figure 6.5
the treatment explained in the previous section is applied, disappearing
such error increase in an abnormal area.

Now, an example of use for the second criterion (related to the min-
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(a) Mesh (b) Error

Figure 6.5: Treatment of eyes in the adaptive mesh

(a) Mesh (b) Error

Figure 6.6: Presence of distorted elements in the adaptive mesh

imum angle allowed for an element) is shown in Figure 6.6. where no
limitations to the quality of the mesh generated are applied. Here, all
the elements marked as 1x are forced to have a maximum angle of 0.4 rad
in the vertex from which the division is made. With this, the number of
elements is increased but no strange error areas are present, as shown in
Figure 6.7. However, this adjustment for not having specially distorted
elements produces an error due to two holes that has not been treated.
If the criterion explained before is applied here, in Figure 6.8 the error
distribution and the mesh are shown. The error shown in that �gure is
due to the discretization applied in the areas of higher error, re�ned in
next iterations. If no criteria (holes and distortion of elements) is ap-
plied, strange meshes with strange distribution of errors are produced,
as shown in Figure 6.6 and 6.4.
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(a) Mesh (b) Error

Figure 6.7: Adaptivity with a criterion for not allowing elements with

an angle lower than 0.4 rad

(a) Mesh (b) Error

Figure 6.8: Adaptivity with criteria for not allowing neither holes nor

elements with an angle lower than 0.4 rad
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Table 6.3: θ parameter for veri�cation with MMS

EMMS y9

Quantile 0.3

Maximum 0.05

Fixed-Energy 0.9999

SER 0.9

6.2.2 E�ect of marking strategies

To analyze the performance of a semi-structured element as the tri-
angular prism, the polynomial

E1,MMS =


y9

y9

y9

 , (6.8)

is going to be used since it is clearly outside of the space of basis functions
and it produces stronger �elds in a speci�c area of the subdomain to be
solved. The same electromagnetic domain de�ned in the previous section
is used.

In the following, the �ve marking strategies are tested, and the ROT
criterion is applied for illustration purposes. First, the error obtained
for each marking strategy is shown in Figure 6.9. The error computed
here is the maximum error in the mesh, introduced with

ςmax =
max{‖EFEM −EMMS‖2}
‖c2 (EMMS,E∗MMS) ‖2

, (6.9)

since the estimator is computed through absolute values of the �eld.
Thus, the maximum error de�ned in (6.9) (where EMMS in the denomi-
nator is the same which maximizes the numerator) is used in Figure 6.9.
Marking strategies have been used with the parameters shown in Ta-
ble 6.3. For the uniform re�nement, unstructured meshes have been
used for the top and bottom faces.

The adaptive re�nement improves the results obtained with uniform
re�nement but not as much as it should be. It is not the focus of this
dissertation to build adaptive meshes to achieve exponential rates of con-
vergence but also as illustration of independent adaptivity in di�erent
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10 3 10 4 10 5 10 6

Number of unknowns

10 -2

10 -1

Uniform

Next-step

Quantile

Fixed-energy

Maximum

SER

Figure 6.9: Results with di�erent marking strategies using (6.9)

subdomains. However, this lack of improvement might be expected due
to the semi-structured nature of the prism and generality of the adaptiv-
ity algorithm introduced here, not suitable for this problem. To better
illustrate this, meshes and error for di�erent marking strategies are in-
cluded in Figs. 6.10, 6.11, 6.12, 6.13, and 6.14, where three rounds of
re�nement have been introduced. For this particular case, the longitudi-
nal direction of the prism should be oriented along the Y axis while the
elements should be marked only with the so-called 1 re�nement in Sec-
tion 6.1.3. Moreover, some di�erences between marking strategies may
be found, although the performance achieved depends strongly on the
θ parameter and no de�nitive di�erences in performance are obtained
(note that the magnitude of the error �eld shown in the �gures is on the
same order). Strategies based on energy of the residual (�xed-energy
and SER) show a more clustered re�nement in the areas of stronger er-
ror, while the maximum strategy shows a more uniform re�nement. The
strategy based on the number of elements with higher residual can lead
to some irregular meshes (since an element with much lower residual than
another takes the same re�nement as the element of highest residual).
Finally, next-step marking strategy seems to provide a more structured
mesh because of the �rst step (in which all the mesh is re�ned) necessary
to estimate subsequent adaptivity steps.
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(a) Mesh (b) Error

Figure 6.10: Approximation of the monomial using the next-step

marking strategy

(a) Mesh (b) Error

Figure 6.11: Approximation of the monomial using the quantile

marking strategy

(a) Mesh (b) Error

Figure 6.12: Approximation of the monomial using the maximum

marking strategy
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(a) Mesh (b) Error

Figure 6.13: Approximation of the monomial using the �xed-energy

marking strategy

(a) Mesh (b) Error

Figure 6.14: Approximation of the monomial using the SER marking

strategy
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(a) Mesh (b) Error

Figure 6.15: Approximation of y5z5 with the �xed-energy marking

strategy and DDM

6.2.3 Adaptivity with DDM

In this section, two goals are pursued: i) to check the accuracy of
DDM with meshes generated with the adaptivity algorithm, and ii) to
test the e�ect of the interface between subdomains on the distribution of
the error. The domain to be solved is the same as in Section 5.1, while
the polynomial used is EMMS = (y5z5, y5z5, y5z5). The division into two
subdomains is introduced in a user-driven and conformal way. The mesh
generated and distribution error with the �xed-energy strategy is shown
in Figure 6.15.

If another iteration of the adaptivity algorithm is performed, the
elements to be re�ned belong to the interface between subdomains. Since
this error is present in both subdomains, this iteration will keep the
aspect ratio and the non-conformality between subdomains and the error
will not be reduced. Three solutions to this problem may be applied: i)
to detect the di�erence in the aspect ratio and re�ne the bigger elements
on the interface; ii) to penalize the residual obtained for the elements
which belong to an interface between subdomains; and iii) to apply the
ROT criterion which, in this case, retains the conformality in the whole
problem. For illustration purposes, the ROT criterion is introduced here
generating the results included in Figure 6.16, where it can be seen
that no special distribution of error is shown due to the presence of
a discontinuity between subdomains.

Finally, an example of application to an original non-conformal DDM
is introduced in the following. Now, a cube split in two subdomains as
in Section 5.3 is simulated, where the mesh is non-conformal but com-
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(a) Mesh (b) Error

Figure 6.16: Approximation of y5z5 with the maximum marking

strategy and DDM with the ROT criterion

(a) Mesh (b) Error

Figure 6.17: Approximation of x7 in a non-conformal mesh DDM

using the maximum marking strategy

parable in size between the two subdomains, and polynomial introduced
in MMS is EMMS = (x7, x7, x7). Since the distribution of this function
is symmetrical for both subdomains, very similar re�nements should be
obtained. However, if any of the three solutions commented above is in-
troduced, the re�ned mesh follows a strange pattern trying to reduce the
error on the interface, as shown in Figure 6.17. For illustration purposes,
if the ROT criterion is applied with a threshold for the aspect ratio of
20%, a more consistent mesh is obtained, as it is shown in Figure 6.18.

180



6.2. VERIFICATION THROUGH MMS

(a) Mesh (b) Error

Figure 6.18: Approximation of x7 in a non-conformal mesh DDM

using the maximum marking strategy and the rule of thumb criterion

181



CHAPTER 6. ADAPTIVITY

6.3 Real problems

Once the adaptivity algorithm has been validated in terms of ac-
curacy when DDM is involved, some real problems are tested in the
following to harness the potential of this technique. The main objec-
tive of this section is to study the e�ect of the non-conformal interfaces
generated when each domain is re�ned independently.

6.3.1 WR-90 waveguide

In this section, the e�ect of non-conformality between subdomains in
the estimator introduced in Section 6.1.1 is studied. A WR-90 waveguide
with length l = 1λ is considered as the problem to be re�ned, with a
working frequency of f = 7.5GHz. First, a structured mesh is introduced
as discretization to show clearly the e�ect of re�nement. Mesh, estimator
from (6.6), and marking of the elements to be re�ned in the �rst iteration
are shown in Figure 6.19. Here, marking follows the convention shown
in Figure 6.2, so elements to be re�ned are closer to the electric walls.
The second iteration is introduced in Figure 6.20, where it can be seen
that the error is decreased in the elements re�ned previously, so now the
main contribution to this error is in the middle of the waveguide, where
the elements are marked to be re�ned. If a new iteration is applied, the
same e�ect can be observed.

Now, the same study is introduced for an unstructured mesh. Here,
the e�ect is the same as with the structured mesh but the shape of the
estimator is not as clear as shown in Figs. 6.22, 6.23 and 6.24. In order
to detect possible anomalies in the estimator, an error ςwg de�ned as

ςwg = ∇× µ−1
ri (∇×Eh)− k2

0εriEh, (6.10)

where Eh is the error �eld, Eh = E−Eanal, shown in Figure 6.25. It can

(a) Mesh (b) Estimator (c) Marking

Figure 6.19: First iteration for a structured mesh of a WR-90

waveguide
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(a) Mesh (b) Estimator (c) Marking

Figure 6.20: Second iteration for a structured mesh of a WR-90

waveguide

(a) Mesh (b) Estimator (c) Marking

Figure 6.21: Third iteration for a structured mesh of a WR-90

waveguide

be seen that the agreement in the shape of the error and the estimator
is quite good.

In the following, a conformal division into two subdomains is ap-
plied to the same mesh as above generating two 0.5λ sections. Re-
sults obtained from the solution of this DDM problem are shown in
Figs. 6.26, 6.27 and 6.28. The same re�ned meshes than in the case of
not using DDM are generated, as it was expected.

Finally, the mesh is slightly changed to obtain a non-conformal mesh

(a) Mesh (b) Estimator (c) Marking

Figure 6.22: First iteration for a unstructured mesh of a WR-90

waveguide
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(a) Mesh (b) Estimator (c) Marking

Figure 6.23: Second iteration for a unstructured mesh of a WR-90

waveguide

(a) Mesh (b) Estimator (c) Marking

Figure 6.24: Third iteration for a unstructured mesh of a WR-90

waveguide

(a) Estimator (b) Error

Figure 6.25: A comparison between the estimator and the error in the

third iteration of re�nement

(a) Mesh (b) Estimator (c) Marking

Figure 6.26: First iteration for a unstructured mesh of a WR-90

waveguide with DDM
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(a) Mesh (b) Estimator (c) Marking

Figure 6.27: Second iteration for a unstructured mesh of a WR-90

waveguide with DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.28: Third iteration for a unstructured mesh of a WR-90

waveguide with DDM

solving the same electromagnetic problem. Three iterations of re�nement
are shown in Figs. 6.29, 6.30 and 6.31, obtaining interesting results. Note
that the scale of the estimator is much higher than the scale shown in the
previous experiments. First, it is observed that the error is accumulated
on the interface between subdomains so the re�nement is focused on
the interface. This re�nement leads to a reduction of the value of the
estimator with the number of adaptivity iterations. Indeed, if a uniform
re�nement is applied to the same original problem shown in Fig. 6.29,
similar value of the estimator is obtained after three rounds as shown in
Figure 6.31 as expected. Indeed, if the value of |s21| is taken into account
for each iteration, it evolves from 0.999560 in the �rst round, to 0.999956

in the second iteration and 0.999992 in the third round. Indeed, this last
value is comparable to the error obtained for conformal DDM. However,
this evolution is not obtained with uniform re�nement: 0.999560 in the
�rst iteration, 0.999861 in the second round and 0.999981 in the third
iteration with a much higher number of unknowns. As it is shown in the
Chapter 5, the uniform re�nement in a non-matching interface does not
provide a decrease in the error due to the non-conformality, so adaptive
meshes constitute a promising approach to reduce this error.
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(a) Mesh (b) Estimator (c) Marking

Figure 6.29: First iteration for a unstructured mesh of a WR-90

waveguide with non-conformal DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.30: Second iteration for a unstructured mesh of a WR-90

waveguide with non-conformal DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.31: Third iteration for a unstructured mesh of a WR-90

waveguide with non-conformal DDM

(a) Mesh (b) Estimator

Figure 6.32: Mesh and estimator of the error for third iteration of

uniform re�nement with non-conformal DDM
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Therefore, this test bench is very interesting for the application of h
adaptivity with non-conformal DDM: �rst, it is seen that non-conformal
interfaces introduce an additional error which will make the adaptivity
algorithm re�ne in the non-conformal interface. Although the error is
reduced with adaptive re�nement, this is not the point of introducing
DDM for adaptivity. It is more convenient to take into consideration the
error introduced by the non-conformality interface and, if this error be-
comes too high, to introduce some adaptive re�nements on the interface.
Thus, a good solution is to penalize the error obtained by the estimator
in the vicinity of the non-matching interfaces. Another possible solu-
tion is to use the ROT criterion to keep the aspect ratio below a given
threshold. Although the error due to the non-conformality interface is
not very sensitive to the aspect ratio, successive iterations of the adap-
tivity algorith may lead to aspect ratios of 16, 64... which means that
only one element from one subdomain is the neighbor for 64 elements
from the other subdomain.
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6.3.2 L-shaped waveguide

One of the easiest ways to introduce a singularity in an electromag-
netic problem is to bend a waveguide along its transverse face (E-plane)
where the electric �eld is maximum. The waveguide to be bent is a WR-
90 waveguide (i.e., dimensions of the waveport are 0.02286m×0.01016m)
as shown in Figure 6.33. This problem is divided conformally in �ve
subdomains Ω1, Ω2, Ω3, Ω4, and Ω5 through input data, and work-
ing frequency is f = 7.5GHz, within the operational bandwidth of the
waveguide.

Four di�erent experiments are performed. For illustration purposes,
the ROT criterion is used to maintain conformal interfaces in the �rst
three experiments: i) only h adaptivity; ii) h adaptivity with uniform p

distribution; and iii) h adaptivity with p re�nement with the estimator
from Section 6.1.1. Last experiment performed here is h adaptivity with
a strong penalization for the residual of the elements which belong to
the non-conformal interfaces, and the ROT criterion is not applied. In
practice, elements which belong to the non-conformal interfaces are not
marked to be re�ned (although they are re�ned to obtain an admissible
mesh). The maximum marking strategy with θ = 0.65 is used for all the
experiments.

Results of mesh, estimator and marking for the �rst experiment are
included in Figs. 6.34, 6.35 and 6.36, while the evolution of the �eld for
each iteration of the algorithm is included in Figure 6.37. The singularity
is better represented with each iteration of the adaptivity algorithm,
while no marking is introduced on the interfaces between subdomains.
For the sake of comparison, evolution of the electric �eld with uniform
re�nement is shown in Figure 6.38.

Then, uniform p distribution with p = 3 in subdomains Ω1 and
Ω5 and partially uniform p distribution in subdomains Ω2 and Ω4 is
introduced as shown in Figure 6.39, while same marking strategy is used.
It is shown in Figs. 6.40, 6.41 and 6.42 that no special issues appear when
using di�erent p within the same subdomain, re�ning elements in the
singularity which is the most sensitive part to re�nement and obtaining
a similar approximation of the electric �eld as shown in Figure 6.43.
Related to the estimator, it is also seen that the lowest value decreases
due to the introduction of a higher p.

Next experiment included is introducing non-uniform p re�nement
within subdomains Ω1, Ω2, Ω4 and Ω5. Maximum order allowed is p =
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0.02286

0.03

0.0
101

6
0.0

3

0.0
826

0.0826

0.03

0.01016

0.02286

0.0
3

Figure 6.33: WR-90 bend waveguide used in Section 6.3.2 as problem

to be solved

(a) Mesh (b) Estimator (c) Marking

Figure 6.34: First iteration for L-shaped problem with h adaptivity

and conformal DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.35: Second iteration for L-shaped problem with h adaptivity

and conformal DDM
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(a) Mesh (b) Estimator (c) Marking

Figure 6.36: Third iteration for L-shaped problem with h adaptivity

and conformal DDM

(a) First iteration (b) Second iteration

(c) Third iteration

Figure 6.37: Evolution of the electric �eld for h re�nement in a

L-shaped domain
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(a) First mesh (b) Second mesh

(c) Third mesh

Figure 6.38: Evolution of the electric �eld for uniform re�nement in a

L-shaped domain

Figure 6.39: Order for uniform p re�nement test
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(a) Mesh (b) Estimator (c) Marking

Figure 6.40: First iteration for L-shaped problem with h adaptivity, p

distribution and conformal DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.41: Second iteration for L-shaped problem with h adaptivity,

p distribution and conformal DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.42: Third iteration for L-shaped problem with h adaptivity, p

distribution and conformal DDM

Figure 6.43: Electric �eld for h re�nement and di�erent p in a

L-shaped domain after adaptivity re�nement
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(a) Mesh (b) Estimator (c) Marking

Figure 6.44: First iteration for L-shaped problem with h adaptivity, p

re�nement and conformal DDM

(a) Mesh (b) Estimator (c) Marking

Figure 6.45: Second iteration for L-shaped problem with h adaptivity,

p re�nement and conformal DDM

3 in Ω1 and Ω5 whereas p = 4 is set in Ω2 and Ω5. The estimator
used to mark elements to be p re�ned is the same estimator introduced
in Section 6.1.1. No special issues regarding h adaptivity are present
when using p re�nement, as shown in Figs. 6.44, 6.45 and 6.46, and p

re�nement is introduced for those areas with bigger error within each
subdomain, as shown in Figure 6.47. This experiment is included to
show that with a non-uniform p re�nement the electric �eld obtained is
correct, as depicted in Figure 6.48, but no special accuracy is expected
to be obtained since non-uniform p re�nement is taken into account in
the adaptivity algorithm.

Finally, an experiment disabling the ROT criterion is introduced
next. Only h re�nement is applied. Evolution of the electric �eld is
included in Figure 6.49. Similar results for the representation of the
electric �eld in the singularity are obtained but a discontinuity appears
between the subdomains which does not strongly a�ect the whole solu-
tion.

A semi-analytic solution for the scattering matrix can be obtained
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(a) Mesh (b) Estimator (c) Marking

Figure 6.46: Third iteration for L-shaped problem with h adaptivity, p

re�nement and conformal DDM

(a) First iteration (b) Second iteration

(c) Third iteration

Figure 6.47: Evolution of the p re�nement for hp re�nement in a

L-shaped domain

194



6.3. REAL PROBLEMS

Figure 6.48: Electric �eld for h adaptivity and p re�nement in a

L-shaped domain after adaptivity re�nement

(a) First mesh (b) Second mesh

(c) Third mesh

Figure 6.49: Evolution of the electric �eld for h adaptivity without the

rule of thumb criterion in a L-shaped domain
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through modal analysis as introduced in [152] 1. A comparison of the
error in the approximation of scattering parameters, computed as

ςs =
1

4

2∑
i=1

2∑
j=1

|sij,anal − sij,FEM|, (6.11)

is included in Figure 6.50. Results with uniform re�nement are included
for comparison purposes. It is observed that results obtained with con-
formal interfaces between subdomains are as good as expected since the
accuracy is not a�ected by the introduction of conformal DDM. Also,
worse performance is obtained for the results with higher p as it would be
expected since no special treatment is applied. Indeed, higher p would
help in this particular problem exclusively for smooth �eld areas far away
from the singularity. Regarding the experiment with the ROT criterion
disabled, it is observed that ςs remains �at with the number of itera-
tions. Note that, even although the singularity is being approximated
with more �delity, the aspect ratio is worse on the interface between
subdomains. Moreover, the non-conformality is close to the singularity
which may lead to additional errors.

In Figure 6.51, the maximum value obtained in the singularity with
the number of unknowns is represented as a measurement related to the
adaptivity. In this set of results, the best performance is obtained when
the ROT criterion is disabled. This might be expected since the value of
ςs low enough for not compromising the solution in the whole problem.

6.4 Conclusions

An adaptivity algorithm for triangular prisms has been introduced
in Section 6.1, where each step is detailed: �rst, an estimator inspired
by [153] is included; then, �ve di�erent marking strategies are presented
and, �nally, conformation techniques to construct admissible meshes are
included when marked elements are re�ned. The algorithm is tested
with MMS, introducing some criteria related to the quality of the mesh.
Moreover, some considerations related to DDM are introduced in Sec-
tion 6.2.3, and the so-called here ROT criterion is introduced to keep
the aspect ratio below a given threshold on a non-conformal interface.
Although the aspect ratio is not a key factor as proven in Section 5.4.1,

1The author wants to thank Dr. Sergio Llorente-Romano for his help in this

analysis.
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Figure 6.50: Error ςs with all the tests
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Figure 6.51: Maximum value of the �eld at the singularity with all the

tests
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the adaptive meshes with triangular prisms may lead to very unbalanced
non-matching meshes on the interfaces.

Real problems are tested in Section 6.3. First, a WR-90 waveguide
is taken as reference to assess the quality of the estimator in wave prop-
agation problems. As it might be expected, the same re�ned mesh is
generated if the adaptivity algorithm is applied to the same mesh inde-
pendently of using DDM to solve the problem. Regarding non-conformal
DDM, the adaptivity algorithm is forced to mark the elements belonging
to the interface due to the error present on the interface. Thus, special
consideration has to be taken in these cases. A good solution seems to
penalize the error obtained by the estimator in the elements close to the
interface. Moreover, although it is not the point of introducing adaptiv-
ity for DDM, adaptive re�nements on the non-conformal interface seem
to reduce the error unlike uniform re�nements.

Secondly, an L-shaped domain is used to introduce a singularity in a
WR-90 waveguide, and a division into �ve subdomains is applied. Four
di�erent experiments are performed, three keeping conformality on the
interfaces between subdomains for illustration purposes: h adaptivity; h
adaptivity with a given p distribution; h adaptivity with p re�nement;
and �nally, one experiment with h adaptivity without applying the ROT
criterion. The main conclusions drawn from the �rst three experiments
are that the error in the scattering parameters is reduced with h adap-
tivity with the number of unknowns if it is compared with an uniform
re�nement, and that the increase in p to some elements does not reduce
the error in this particular case. This is expected since no special tech-
niques for p re�nement have been introduced yet and, in this case, higher
p elements would help only in smooth �eld areas close to the waveports.
With respect to the last experiment, the error of S-parameters is quite
�at with the number of iterations. This may be due to the high aspect
ratio present on the non-conformal interface, which grows geometrically
with the number of iterations. However, if the representation of the sin-
gularity is measured with the maximum value of the �eld in the problem,
it has to be noted that the last experiment o�ers the best performance.
Further studies will be done in the future regarding this problem and
some solutions are proposed in Section 7.2.
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CHAPTER 7
CONCLUSIONS AND FUTURE LINES

7.1 Conclusions

The conclusions that are obtained in this dissertation can be struc-
tured into three blocks: i) related to the basis functions; ii) relative to
the introduction of non-conformal and non-overlapping DDM for a num-
ber of �nite element shapes; iii) related to the introduction of hp meshes
re�ned with h adaptivity into DDM.

Apart from these big three blocks, the formulation used along this
dissertation is presented in Chapter 2 with special focus on the non-
overlapping and non-conformal DDM implemented; and a parallel im-
plementation of DDM is proposed in Chapter 3. Regarding this imple-
mentation, a three-level parallelization is introduced: i) at the algorithm
level, with DDM, at the process level, using MPI, and at the thread level
with OpenMP. Thorough explanations about the introduction of DDM
in an OOP paradigm are provided, being helpful to fully understand the
details of this technique.

In Chapter 4, two families of basis functions are introduced. The �rst
family follows a sound, mathematically speaking, procedure to obtain
basis functions as the dual basis of the DOFs introduced in [21,22]. These
DOFs have to be discretized, leading to two di�erent assembly strategies
which are compared in Section 4.4: the so-called vc strategy is better
when simplices are taken into consideration, while the vq strategy has a
better performance for structured elements. This family is particularized
for triangular prisms and a comparison with other families present in the
literature is included, showing good results in the condition number of
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FEM matrices. With respect to the second family, [26], it is included
for hexahedra, tetrahedra and triangular prisms to ease the p re�nement
used in the third block of conclusions. Then, MMS is used to verify both
families introducing a procedure that is used along this dissertation: �rst,
monomials which are inside the space of functions are tested, obtaining
results close to machine precision; and then, smooth exponential complex
functions are introduced to generate convergence results which follow
straight lines predicted by the theory. This procedure is quite convenient
to introduce new techniques in a FEM code since the monomals o�er a
binary test of veri�cation: if some error is introduced at some point in
the code, the veri�cation with monomials gives a non-null result, [13].
Finally, since dispersion error is a limiting factor for large scale problems,
some preliminary results related to the phase error are included since no
special di�erence is appreciated between the three di�erent shapes.

With respect to the introduction of non-conformal and non-
overlapping DDM, a thorough study regarding veri�cation and validation
is detailed in Chapter 5. First, a variation of typical MMS is introduced
to check the formulation; then, the eigenspectra is obtained for a number
of di�erent combinations to test the convergence of the iterative solver;
following this, MMS as used in the Chapter 4 is employed to verify the
whole DDM implementation; and, �nally, some real problems covering
wave propagation, di�erent dielectric media, radiation, high quality fac-
tor �lters and RCS computations are addressed.

In the �rst step, direct solvers are used to solve the surface problem
in order not to mask the numerical results with the accuracy of the itera-
tive solver. Similar performance as in Chapter 4 is obtained. Regarding
the eigenspectra study, the introduction of di�erent elements has not
been studied in the literature and, as expected, no additional error is
introduced when conformal interfaces are studied. From these results,
SOTC are expected to show a better performance in the convergence of
the iterative solver than FOTC since the eigenvalues are more clustered
around the center of the unit circle. In both cases, all the eigenvalues
are within the unit circle so the iterative solver is expected to converge
in all the cases. Once this convergence is assured, MMS is used to verify
a representative set of possible combinations introduced in Chapter 4.
Again, no di�erence between the di�erent �nite element shapes is appre-
ciated, as expected. In the case of non-conformal interfaces, the error is
increased with respect to conformal interfaces due to the discontinuity
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in the discretization between subdomains but the representation of the
solution is not compromised.

Finally, a number of real problems are introduced in the last block,
corresponding to Section 5.4. Apart from the validation of DDM with
di�erent electromagnetic problems and the expected performance al-
ready shown in the literature, a detailed study of the error provided
by the non-conformal interface is introduced. This study plays a key
role to assess the introduction of adaptivity in DDM since subdomains
are re�ned independently non-conformal meshes on the interfaces are
quite likely to appear. If di�erent aspect ratios are tested, the error in
the |s21| is quite �at. This means that the approximation of the �eld is
not sensitive to the aspect ratio on the interface, which is convenient for
adaptive meshes. Also, if the number of discontinuities which wave prop-
agation has to cross is taken into account, a linear increase is detected
but the dynamic range is small. Finally, if �ner meshes are applied uni-
formly on the interface, the error in the |s21| is also quite similar. In
view of these results, it can be stated that: i) independent re�nement of
each subdomain should not compromise the solution in the whole prob-
lem due to the lack of sensitivity in the aspect ratio; and ii) care has to
be taken when introducing the division into subdomains for the slight
increase in the error detected; and iii) if a uniform re�nement is applied
to the non-conformal interface, the error is not decreased.

In the last block, associated to the Chapter 6, an h adaptivity is
introduced with DDM problems. First, an adaptivity algorithm for tri-
angular prisms developed in the �rst block is included. Regarding the
adaptivity algorithm itself, an estimator based on [153] is adapted to
DDM; di�erent marking strategies are included obtaining similar perfor-
mance through MMS; and conformation techniques to obtain admissible
meshes have to be included.

First results with DDM are obtained through MMS, and the so-called
ROT criterion is used to keep the conformality on the interface. Then, a
WR-90 waveguide is taken as problem to be solved obtaining the follow-
ing conclusions: i) the error given by the estimator is clearly reduced in
the areas where new elements are introduced; ii) the estimator is tested
in real problems comparing the error obtained with the error provided
by the analytical solution; iii) when the division between subdomains is
conformal, same re�nement meshes are obtained; and iv) non-conformal
interfaces introduce an additional source of error which can lead to re-
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�ne in the non-conformal interface. A solution to this last point may
be to penalize the error obtained by the estimator in the elements close
to the non-conformal interfaces. It is worth noting that the error of the
S-parameters is reduced if an adaptive re�nement on the discontinuity
is introduced, which is a promising result that will be further studied in
the future.

In view of these conclusions, a singularity is introduced in a WR-90
waveguide by means of an L-shaped domain which is divided into �ve
subdomains. Di�erent experiments are performed, and it is observed
that the error in the scattering parameters is �at with the number of it-
erations when the penalization in the elements close to the non-conformal
interfaces is applied and only the subdomain with the singularity is re-
�ned. A possible explanation of this performance is the high aspect ratio
present on the non-conformal interface, which grows geometrically with
the number of iterations. If the interfaces are forced to be conformal, the
error obtained for the |s21| parameter shows a better performance than
uniform meshes. Also, two meshes with di�erent p (one with a given
distribution from the beginning and the other with a non-uniform p re-
�nement with the same estimator used for h adaptivity) are included.
No improvement compared to the h adaptive mesh is obtained as it may
be expected since no special techniques for p adaptivity have been in-
troduced: they are included as a proof of concept to check if the right
answer is provided. Finally, if the representation of the singularity is
measured by means of the maximum value of the �eld at the singular-
ity, the best performance is obtained with non-conformal interfaces as it
might be expected.

To sum up, the three building blocks to merge hp adaptivity with
non-conformal and non-overlapping DDM have been successfully intro-
duced:

Basis functions with non-uniform p re�nement have been intro-
duced for a number of di�erent element shapes, which provide more
�exibility to adapt the �nite element shape to the geometry of the
problem.

A non-conformal and non-overlapping DDM has been introduced
and validated, and a thorough study of the non-conformality has
been included in the dissertation.

An adaptivity algorithm particularized for triangular prisms has
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been introduced.

And on top of that, details about the parallel implementation have been
given. A proof of concept of 3D hp adaptivity has been introduced,
while a detailed study of the e�ect of non-conformal interfaces has been
included. As far as authors know, this e�ect has not been studied with
detail in the literature.

7.2 Future lines

The work presented in this dissertation has introduced useful build-
ing blocks that are employed to construct a prototype which merges hp
adaptivity with non-conformal, non-overlapping DDM. The main future
line which arises from this work is the validation of the conclusions ob-
tained in this dissertation in large scale scenarios.

From the �rst block, additional results about the phase error may be
computed. First, a better experiment to assess the performance of un-
structured over structured meshes is to compute the error obtained with
di�erent lengths of the waveguide replicating the same mesh in sections
of one wavelength. As expected by the 2-D analysis included in the lit-
erature, the structured meshes should perform worse than unstructured
meshes due to the accumulation of phase error. However, all the exper-
iments presented in this dissertation are not true dispersion errors but
numerical errors. To compute the true dispersion error, the projection of
the solution to the space of basis functions should be computed to obtain
the so-called best approximation error, which can be used together with
the numerical error to obtain the pollution or dispersion error, [27]. the
solution This dispersion error in three dimensions has not been reported
in the literature and this study will be performed for all the shapes and
orders present in Chapter 4 in the future 1.

Regarding DDM, the introduction of new transmission conditions
shown in the literature will be addressed to improve the convergence of
the iterative solver in the future, [58]. Moreover, for repetitive structures
only the cell element might be stored in order to save memory in the
execution, [87].

Finally, with respect to hp adaptivity, unstructured �nite elements
(tetrahedra) will be introduced in the adaptivity algorithm to alleviate
the high aspect ratio in the non-conformal interface obtained with struc-

1The author wants to thank Prof. Jin-Fa Lee for his suggestions on this topic.
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tured elements. Moreover, to address this last problem, introduction of
support of the so-called hanging nodes might be introduced since the
error may be reduced. Special techniques for hp re�nement already in-
troduced in 2D, [134, 135], might be applied to each local subdomain
with DDM. Furthermore, to achieve a scalable hp adaptivity code, a
smarter balance for the MPI processes will be introduced trying to take
into consideration the times needed for each subdomain to be re�ned.
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The work developed in this dissertation has been done mainly in
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