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ABSTRACT:

This paper presents the development status of the
simulation tool THaMES (Time-Harmonic Maxwell
Equations Solver) that aims to reproduce the elec-
tromagnetic (EM) wave propagation inside an ECR
plasma thruster to study the ECR resonance ab-
sorption and wave propagation. THaMES allows
the use of a planar domain filled with arbitrary
cold magnetized inhomogeneous plasmas, specify-
ing parameters such as the electron plasma density,
the applied magnetic field or the effective collisional
rate. The simulation relies on MFEM discretization
library.

1. INTRODUCTION

The Electron Cyclotron Resonance thruster (ECRT)
[1,2] can be included in the electrodeless plasma
thrusters class together with Helicon Plasma
Thruster (HPT) [3-5]. This new generation of
thrusters aims to overcome some of the issues
of classic electric propulsion alternatives as ion
thrusters or Hall effect thrusters. Not only the
absence of the electrodes would allow increasing
thruster lifetimes, but also this combined with the
lack of need of neutralizer, would in principle simplify
both thruster and power-processing unit designs.
Furthermore these thrusters are expected to yield
high thrust densities, to allow for ample throteability,
and to simplify scaling to low and high powers.

Understanding the wave-plasma interaction is a cru-
cial task of high complexity, since this interaction
results from the interplay of multiple phenomena as
wave propagation, cutoffs, resonances, reflection,
absorption and mode conversions. Numerically
solving the wave-plasma problem brings up inter-
esting challenges, as the anisotropy introduced by
the magnetic field and by the numerical mesh af-
fects the accuracy of the simulation. Furthermore,
the ECR resonance is a thin layer where the wave-
length becomes considerably smaller than in other
regions of the plasma. Thus, a correct treatment of
resonance regions requires very fine meshes [6].

A simulation tool THaMES of the 2D time-harmonic
wave electric field in a cold, magnetized inhomoege-
neous plasma is presented here. THaMES allows to
solve for the EM wave propagation in a domain with
plasma under different antenna excitations. The
code is written in C++ language and makes use
of the open-source finite element discretization li-
brary MFEM. Triangular mesh elements configuring
non-structured grids are chosen for this simulation
since they are optimal choice to reproduce complex
geometries. Choosing non-structured against struc-
tured meshes allows to apply mesh refinement for
the ECR region.

This paper presents current status of the simulation
tool THaMES. In Section 2 the mathematical model
used for the simulation is thoroughly detailed. The
implementation of THaMEs follows rigorous valida-
tion standards through testing. A test driven devel-
opment has allowed the validation of new functional-
ities of the code, in a sequential manner. In Section
3, THaMES validation cases performed are shown
and results are discussed. Finally, in Section 4,
some conclusions are withdrawn and the next mile-
stones in the code development path are described.

2. MATHEMATICAL MODEL

Maxwell’'s equations for a macroscopic medium are:
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V.D=p, (Eq. 3)
V.B=0, (Eq. 4)

where E is the electric field, D is the electric dis-
placement field, H is the magnetic field, B is the
induced magnetic field, 1o is the magnetic perme-
ability in vacuum, p is the charge density and j, is
the antenna current density. The curl of Faraday’s
law (Eqg. 1) is

0

VX(VXE):—a(VxB). (Eq. 5)

We will assume linear inhomogeneous anisotropic
constitutive relation for the electric displacement
field and that the permeability of the medium is that
of vacuum. Thus,

D = ¢E, (Eq. 6)
B = juoH. (Eq. 7)
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This system of equations can be reduced to
the time-harmonic Maxwell system by applying
Fourier transform in time domain. We will assume
time-harmonic evolution the system variables (i.e.
E.D,H, B, and to be consistent also j, and p) so
that:

E(z,t) = Re[E(x) exp(—iwt)], (Eq. 8)

being E is a complex-valued vector function. This
allows to analyze the propagation of electromag-
netic waves at a single frequency.

As a result, the time-harmonic Maxwell system can
be written as:

V x (v x E) = k2k - B +iwpoje,  (EQ. 9)

where k3 = w?/c*. In Eq.9 the dielectric tensor
x comprises the information regarding the dielec-
tric properties that affect the propagation of electro-
magnetic waves in it. A first approach to describe
it is to use the cold, magnetized plasma dielectric
tensor described in the literature [7-9], defined with
respect to the direction of the magnetic field. This
is obtained using the zero-temperature plasma fluid
equations and including energy dissipation by an ef-
fective collisionality v.. This can be understood as a
sort of damping and subscript e stands for effective,
as this mechanism is not only due to collisions. The
inclusion of the effective collisionality in the model
allows to solve propagation in resonance cones and
ECR resonances as was described in [6]. For a
plasma with sy species and magnetic field in the
x direction, the dielectric tensor takes the form :

P(zx,w) 0 0
B 0 S(x,w) —iD(x,w)
k= 0 iD(x,w) S(z,w) (Eq. 10)

where S, D, P are defined as :
S(x,w) = % (R(x,w) + L(z,w)) (Eq. 11)
D(z,w) = % (R(x,w) — L(x,w)) (Eq. 12)
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(Eq. 14)
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Note that w,s and w,; are the plasma frequency and
gyrofrequency respectively of species s mass mg
and density n, so that:
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W,

where ¢, is the signed charge of species s.

A preliminary analysis of this tensor with v, = 0
and for a two-component plasma in an homoge-
neous media is described by the Clemmow-Mullaly-
Allis (CMA) Diagram [7]. It represents the different
modes in cold plasma and bounding surfaces in
plasma parameter space, as resonances, cutoffs,
etc, with the = axis being the ratio (wpe + wpe)/w?
and the y axis |w.|/w. Note that in this paper we
will refer to regions in this diagram as specified in [7].

The dielectric tensor can be expressed locally in a
magnetic nozzle by performing a simple rotation by
the angle of the magnetic field lines 6:

kg(x,w) = R (0)k(x,w)R(0) (Eq. 17)

Eq.9 comprises the information of the Maxwell sys-
tem for the propagation of electromagnetic waves.
However, although the divergence conditions are a
direct consequence of it given that charge is con-
served, the divergence free condition of equation
Eq.9 should not be ignored in the choice of the
numerical scheme applied to solve this equation.
Thus, Eq.3 and Eqg.4 have to be solved, or at least
satisfied when solving Eq.9.

Applying the inner product of weighting functions @
to Eq.9, integrating by parts in the domain, one finds
the weak form of equation (Eq. 9) [10]:
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(Eq. 18)

where  is the element volume, 092 is the element
boundary surfaces and 7 is the unit normal vec-
tor to the element boundaries. In addition, &* is
the complex conjugate of smooth vector function ®
(the so-called weighting or test functions). Test or
weighting functions ® are chosen to be equal to the
shape or trial functions E, following Galerkin’s Finite
Element Method.

Assuming planar propagation in z coordinate, Eq.18
can be solved in a planar domain (2D), with the
presence of a component of the field out of the
plane. Thus the electric field takes the form:

E =Re [(Emlm +E,1, + Ezlz) exp (ik,z — iwt)

} (Eq. 19)
where E(, are complex-valued functions of » and
y coordinates. Assuming planar propagation in z
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Table 1: 4x4 Block system of equations splitting real and imaginary parts of in-plane and out-of-plane compo-
nents of the electric field. Note that superscripts r andi correspond to the real and imaginary parts respectively.

leads to replacing V. — V + ik, in which V =
(0/0z,0/dy). Using some vector identities:

VXE =VxE,+ik,1,xE,,+VE,x1, (Eq. 20)

where E,, = E,1, + E,1, and E, are respectively
the in-plane and out-of-plane electric fields.

The second integral in Eq.18 represents the effect
of the boundaries. For a Perfect Electric Conductor
(PEC) the tangential field is zero so that 72 x E = 0.
In order to apply these conditions the space of test
functions chosen is restricted to those that are zero
at the boundary, for all ® used.

As detailed before, the electric field of the wave so-
lution has both a real and an imaginary part. The
simulation splits both parts using a block matrix sys-
tem to solve independently in real and imaginary
part of the wave for both in-plane and out-of-plane
components (i.e. 4x4 Block matrix) as shown in Ta-
ble 1. The coupling between real and imaginary
parts for in plane and out of plane components
respectively appears due to the imaginary part of
the dielectric tensor in the wave equation, which
produces a complex refractive index that couples
power from real and imaginary parts. The coupling
between in-plane and out-of-plane components is a
result of both the components of the dielectric ten-
sor coupling in-plane with out-of-plane and of k..

Eq.18 can be solved using different element types.
Each scenario to be studied may require an intel-
ligent assessment of the finite element choice, not

'WWx (fA)=fVXxA+VfxAandV (fg) = fVg+gVf

only for simplicity in imposing boundary conditions
for each problem, but also due to the mathematical
properties of the basis of functions that will affect, for
instance, convergence. Nédélec elements [11,12]
are chosen for both real and imaginary parts of the
in-plane components. This is due to the fact that
Nédelec elements represent H (curl, Q) conforming
basis of functions. For order 1, Nédélec basis of
functions are defined in the edges instead of the
nodes, and consist of vector fields that have a con-
tinuous tangential component and a discontinuous
normal component. Their curl-conforming property
allows for enhanced convergence of the method
when solving Maxwell equations [10]. The reason
relies in the fact that basis of functions of nodal ele-
ments in H*($2) belong to a wider space in R? than
that of the Nédélec basis of functions. Thus, the
method can in some cases converge to spurious
solutions which are not satisfying Eq.3.

As the simulation tool aims to reproduce the out of
plane component (being in planar or axisymmetric
case), this new component cannot be included us-
ing Nédélec just increasing the space in Nédélec,
as it would require increase the dimensions of the
solution to R? which is undesired. Instead, we will
use Nédélec H (curl, ) elements for the in-plane E
vector components, and for the component out of
plane, nodal H'(£2) elements are chosen.

Nédélec elements of order one, generate one de-
gree of freedom per edge in the mesh and per vector
field. For triangular cells, there are three degrees of



freedom for the real and imaginary parts of the elec-
tric field in the plane. In the case of the nodal H'(2)
elements used for the out-of-plane component, the
number of degrees of freedom goes as number of
scalar functions used at the node times the number
of nodes in the mesh. Note that the order of the
element does not scale linearly with the number of
degrees of freedom per element. For instance for
Nédélec elements of order 1 the number degrees of
freedom is 3, for order 2 is 8 (6 on the faces and 2
inside the triangle) and for order 3 is 15 (9 on the
faces and 6 inside the cell).

After having chosen the elements and the test func-
tions, given a mesh, the bilinear and linear integra-
tions are defined and can be computed by MFEM.
These return the coefficients of the linear system
matrix in which the number of degrees of free-
dom depends on the finite elements type used, the
boundary conditions imposed and the mesh.

The resulting problem is a linear system A -z = b,
where A is a sparse matrix composed of block ma-
trices. The solution of linear systems can be ei-
ther performed by iterative algorithms or by direct
solvers. As mentioned before, the linear system to
be solver is described by a block sparse matrix. This
matrix is not symmetric positive definite (s.p.d). This
results from the splitting of real and imaginary parts
of the vector fields.

MFEM provides different alternatives to solver linear
systems in serial. However, most iterative solvers
available as the Jacobi, the Gauss-Seidel (GS),
Preconditioned-Conjugated-Gradient (PCG) or the
Minimum Residuals (MINRES) are methods sym-
metric. In the case of direct solvers MFEM has
multiple options for serial solvers. In order to use
powerful serial solvers in MFEM, MFEM was pre-
compiled to use the set of direct solvers contained
SUITESPARSE libraries. Specifically the Unsym-
metic MultiFrontal method Package (UMFPACK)
was used.

In order to summarize, the resulting model of the
complete 2D time-harmonic solution of Maxwell
equations depends on the following:

» w: angular frequency.

* k,: wave number in z direction.

* By(x): Magnetic intensity topologies.

* O(x): Magnetic field angle.

* n.(x): Plasma density topology.

» v.(x): Effective collisionality topologies.
* jo(x): Antenna current density profiles.

+ Geometry and boundary conditions.

3. VALIDATION AND TESTING

At every stage in the code implementation, test runs
were performed to check the old functionalities of
the code and new tests for each milestone were
designed, and run. The test design has followed
the method of manufactured solutions generation
of solutions, in which an analytical solution is fed
into the equations to obtain the analytical equiv-
alent forcing function. The numerical solution of
the simulation due to this forcing function is com-
pared to the exact analytical solution. The choice
of the analytical solution has to be compliant with
the boundary conditions. For instance, in case of
imposing PEC boundary conditions, the field at the
boundary should be normal. Thus the amplitude of
each component of the solutions are set as follows:
aty=0mandy=H, £, = E, =0V/m; atz = Om
andz =L, E, = E, = 0V/m. The test domain is a
2D rectangle of height (along y) H = 2m and length
(along z) L = 5m.

Figure 1 shows the amplitude and phase of the ana-
lytical solution which the test aims to reproduce. All
tests are performed with the following manufactured
solution:

sin(k1y) + isin(kay)
E = sin(k1z) + i sin(kox)
sin(ksz) sin(ksy) + ¢ sin(kq2x) sin(kqy)
(Eq. 21)
For each scenario, the test forcing functions are
computed from Eqg.21 and Eq.9. For the sake of
simplicity wave numbers kq, ko, k3, k4 are set fixed
for all test cases as shown in Figure 1. The dif-
ference between both induces a non-zero phase
topology as shown in the figure.

Passing several test cases is considered as mile-
stones for the code development process, each of
them having different sets of simulation parameters.
Case 1 shows the simplest simulation performed.
Case 1 is a case run for an unmagnetized under-
dense plasma (i.e. w2 /w? < 1) that belong to CMA
Region | [7]. Cases 2-6 are for magnetized over-
dense plasmas (i.e. w2,/w? > 1 & wee/w > 1) cor-
responding to CMA Region VIII. The latter region is
characteristic for ECR plasmas. Case 2 reproduces
an overdense magnetized homogeneous plasma
slab. The inclusion of a magnetic field intensity
generates anisotropy in the media and couples the
different different components of the electric field
as shown in Eq.10. Case 3 includes a out-of-plane
wave number. Case 4 increases by a factor of 3
the magnetic field intensity with respect to Case 3.
Case 5 increases the effective collisionality by one
order of magnitude with respect to Case 4. Case 6
takes Case 5 and includes inhomogeneous plasma
density with quadratic profile in y axis, with maxi-
mum aty = Om, and zeroaty = H .
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Figure 1: Manufactured solution for validation of
THaMES; k1 = 2w, ko = 4m, ks = 2w, ky = 4m.
On the left the magnitudes of each component of
the analytical electric field. On the right the phase
of the complex fields E,,, E, and E..

Simulation parameters as plasma density and mag-
netic field intensity have been chosen to resemble
those of ECRA [13]. The different case scenarios
are

1. Unmagnetized underdense plasma slab (B =
0.0T , n =ng = 5x 10%m=3], k, = Om~1,
Ve/w = 0.01).

2. Magnetized overdense plasma slab (B =
By = 01T, n = ng = 2 X 10"[m73], k, =
0Om~1, v /w = 0.01).

3. Increasing k., (B = By = 0.1T, n = ng =
2 x 1017 [m~3], k, = 100m~1, v, /w = 0.01).

4. Increasing By (B = By = 0.3T, n = ng =
2 x 10" [m=3], k, = 10m~ %, v, /w = 0.01).

5. Increasing v./w (B = By = 03T, n = nyg =
2 x 10" [m73], k, = 10m~L, v, /w = 0.1).

6. Including inhomogeneous plasma density
(B = By = 01T, n(y) = 2 x 10'7(1 —
(y/H)?)[m™ 3, k, = 10m™L, v, /w = 0.1).

The results of the convergence analysis, and com-
putational time of each simulation are shown in Ta-
ble 2. L?-norm error values for in-plane and out-of-
plane components of the electric field are shown.

The computational time expense t.om,; is shown, to-
gether with the analysis of mesh refinement on the
accuracy of the numerical solution.

First of all it can be noticed that the totality of test
runs converge to the analytical solution with mesh
refinement. Case 1 is shown to converge the fastest
and the best of all cases. Case 2 convergence is
considerably worse than that of Case 1 as can be
seen in Table 2 for both in-plane and out-of-plane
solutions. The effect on the computational time is
increasing it by almost 50%. This is due to the fact
that the solver needs to deal with a linear system
whose matrix A has more non-zero coefficients per
row.

Comparing convergence of Case 3 with Case 2
shows that both convergence and computational
time are barely affected. Case 4 convergence com-
pared to Case 2 is slightly worse for the former,
suggesting that the magnetic field has higher im-
pact on convergence than k..

Comparing Case 5 with Case 4, it can be noticed
increasing the collisionality results in improving the
convergence. In Case 6 the convergence is similar
but slightly worse to that of the homogeneous case
(i.e. Case 5).

Concerning t., it can be noticed that the test rou-
tines take similar time to run. Furthermore, the
time expense increases with the number of cells
as it could be expected from the increased size
of the variables that the code has to deal with.
Apart from that the changes between simulations
are the largest between unmagnetized and magne-
tized plasmas.

Memory available in the unit used for the tests re-
vealed that the system ran out of memory when
UMFPACK package of solvers had to deal with
meshes composed by O(10°) elements, giving rise
to around O(10°) degrees of freedom (d.o.f.).

4. CONCLUSIONS & FUTURE WORK

This paper has presented the simulation tool
THaMES being developed at Universidad Carlos
Il de Madrid whose final goal is to model the EM
wave propagation in ECR plasma thrusters in the
context of the H2020 MINOTOR project.

The mathematical model to describe the procedure
to simulate a complete 2D arbitrary cold magne-
tized inhomogeneous plasmas with electric field
in z direction has been shown. The tool has fol-
lowed a Test Driven Development, testing each new
functionality and running tests to check previous
ones. The convergence of the totality of tests has



| Variable | N [ Casel | Case2 | Case3 | Case4d | Case5 | Case6 |
62 2.184 1.255 - 101 2.217 - 10¢ 1.476 - 101 5.830 1.157 - 10°
188 1.087 6.766 8.402 1.130 - 101 3.915 8.526
652 | 2.942-10° 1T 1.796 2.901 1.710 6.606 - 10~ T 1.489
1232 [ 1.670-1071 [ 9.561-10~ 1 1.363 1.261 4.153-1071 [ 8.393-107 1
HETg;m - E;g 3402 | 6.204-1072 | 2.786-10"" | 3.492-107 1 | 4.745-10"T [ 1.611-10"T | 3.266- 10T
7504 | 2.698-1072 [ 1.153-10~" | 1.468-10~T | 1.990-10~T | 6.604-10~2 | 1.283- 107!
16690 | 1.262-10~2 | 5.102-10~% | 5.810- 102 | 8.969-10"2 | 3.007-10"2 | 5.171-107?
29760 | 6.806-103 | 2.842-10=2 | 3.179-1072 | 4.429-10=2 | 1.544-10~2 | 2.467 - 102
66056 | 3.074-1073 [ 1.282-1072 [ 1.395-10"2 [ 1.971-102 | 6.805-10=3 | 1.017 - 1072
62 1.381 8.175 9.067 4.851-10~1 2.435 3.356
188 | 7.132-107T 4.323 4.537 5.070 2.072 2.576
652 | 1.117-10° 1T 1.095 1.552 7.653-10~1 | 4.168 - 10~ | 5.069 - 101
1232 [ 5.334-1072 [ 6.063-10"1 | 7.477-10"1 | 5.446-10~T | 2.486- 10~ | 3.004 - 10!
HE”M — Eo 3402 | 1.639-102 | 1.744-10"" | 1.962-10"1 [ 2.292-10"T [ 1.094-10"T [ 1.262-10° T
7504 | 5.104-1073 | 7.539-10"2 | 8.622-10"2 | 9.773-10"2 | 4.988-10"2 | 5.702-10~?
16690 | 1.759-10~3 | 3.273-10~% | 3.515-10"2 | 4.560- 1072 | 2.422-10"2 | 2.651-10~?
29760 | 7.120-10=%* [ 1.853-10=2 | 1.963-102 | 2.303-10=2 | 1.316-10~% | 1.403 - 102
66056 | 2.177-10"% [ 8.371-1072 [ 8.767-10=3 [ 1.030-10~2 | 5.996 - 10=3 | 6.328 - 10~3
62 0.029 0.049 0.070 0.023 0.033 0.11273
188 0.090 0.135 0.128 0.127 0.100 0.139
652 0.381 0.339 0.324 0.353 0.306 0.304
1232 0.538 0.495 0.625 0.780 0.521 0.517
te [s] 3402 1.340 1.268 1.518 1.621 1.284 1.259
7504 2.492 2.832 2.902 3.463 3.174 2.915
16690 6.225 6.810 6.861 9.532 7.236 6.848
29760 11.122 12.532 13.153 16.924 13.475 12.910
66056 22.774 32.825 31.803 33.566 35.119 32.725

Table 2: Convergence and computational requirements of the simulation are run for increasing number of el-
ements (N) depending on the complexity of the simulation, increasing from Case (I) to Case (VI). L?-norm
errors between the analytical E*™ and numerical E™*™ solutions are displayed in absolute value with units of
[V/m]. Workstation specifications: 16Gb RAM, Intel Core™j7-6700 CPU @ 3.40GHz x 8.

been verified and computational time shown for the
different scenarios studied. Modelling magnetized
plasmas has proven to be more computationally de-
manding than nonmagnetized as could be expected
due to the increase of the non-zero elements in sys-
tem sparse matrix. Increasing effective collisionality
has shown to improve the convergence of the solver
for these conditions. Memory limitations of the sim-
ulation in te current, low-end machine were found
when dealing with problems with O(10°) elements
and around O(10°) degrees of freedom. However for
the purpose of these test runs, this issue was not
hindering the results of the test, which are meant to
be light in memory requirements.

As a result, we have presented a preliminary ver-
sion of THaMES, a 2D Finite Elements Frequency
Domain simulation tool based on MFEM C++ dis-
cretization library capable of solving Maxwell Equa-
tions in 2D plasmas using nonstructured meshes.

Future work will focus on the development of a fully
axisymmetric simulation of EM wave propagation in-

side ECR thrusters. This modification will require to
upgrade operators in the simulation. In cylindrical
coordinates, assun]ing planar propagation in 6 co-

ordinate so that E(xz) = E(x)exp(im#0)]. Thus the
curl would take a similar form to that of Eq.20:

VXEZ?XETZ—F@L;XE~TZ+1v(7‘E~‘9) x 1g
" " (Eq.22)
where E,., and E, are respectively the vector of in
plane components and the out of plane component
of the electric field. Additionally, boundary condi-
tions for axisymmetry will have to be specified.

Furthermore, the dielectric tensor presented here
simplifies the physics in ECR plasmas considerably.
The wave absorption can be both collisional and ki-
netic. Effects as resonance broadening and Doppler
shift are not modelled here.

Resonance modelling together with a antenna con-
figuration similar to that of the ECRA thruster [13]
will be included. Different forcing functions will be
tried to solve for the wave electric field generated



inside the thruster. Propagation in a magnetic noz-
zle configuration will be addressed. Development
of perfectly matched layer (PML) boundary condi-
tions will be performed, to simulate the operation
of the device in space, and compute radiation re-
sistance to free space of the antenna. Moreover
the effects of the vacuum chamber on the EM wave
propagation and fields inside the thruster will be in-
vestigated. Von Neumann analysis of different FEM
schemes could be performed. Furthermore, the as-
sessment of the rigor of the use of nodal elements
for the out of plane component regarding the diver-
gence free condition will be addressed, specially for
the axisymmetric case.

Iterative solvers as the Generalized Minimal Resid-
ual Solver (GMRES) available in MFEM will be in-
vestigated, together with appropriate precondition-
ers.
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