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End-to-End Temporal Action Detection using Bag
of Discriminant Snippets (BoDS)

Fiza Murtaza, Muhammad Haroon Yousaf, Member, IEEE, Sergio A. Velastin, Senior Member, IEEE, and Yu Qian

Abstract—Detecting human actions in long untrimmed videos
is a challenging problem. Existing temporal action detection
methods have difficulties in finding the precise starting and
ending time of the actions in untrimmed videos. In this letter, we
propose a temporal action detection framework based on a Bag
of Discriminant Snippets (BoDS) that can detect multiple actions
in an end-to-end manner. BoDS is based on the observation
that multiple actions and the background classes have similar
snippets, which cause incorrect classification of action regions
and imprecise boundaries. We solve this issue by finding the key-
snippets from the training data of each class and compute their
discriminative power which is used in BoDS encoding. During
testing of an untrimmed video, we find the BoDS representation
for multiple candidate proposals and find their class label based
on a majority voting scheme. We test BoDS on the Thumos14 and
ActivityNet datasets and obtain state-of-the-art results. For the
sports subset of ActivityNet dataset, we obtain a mean Average
Precision (mAP) value of 29% at 0.7 temporal intersection over
union (tIoU) threshold. For the Thumos14 dataset, we obtain a
significant gain in terms of mAP i.e., improving from 20.8% to
31.6% at tIoU=0.7.

Index Terms—Temporal Action Detection, 3D-Convolutional
network (C3D), untrimmed videos, Thumos14, ActivityNet, tem-
poral action proposals.

I. INTRODUCTION

W ITH the ubiquity of camera devices, a large volume of
untrimmed video data is being recorded which contains

multiple human action plus background actions. Given an
untrimmed video, the task of the Temporal Action Detection
(TAD) is to answer, “when does an action of interest start
and end?”. All other background scenes and activities present
in the untrimmed video, other than actions of interest, are
referred as the background class. TAD has emerged as an
important topic in the research community due to its numerous
applications in video analysis, surveillance and many others
[1–4]. In contrast to conventional human action recognition
[5–9] which only recognizes the action category in manually
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trimmed videos, TAD is also expected to output the starting
and ending time of the actions of interest present in untrimmed
videos.

Over the last few years, convolutional neural networks
(CNNs) have led to improved accuracy of action recognition
[5–8]. However, TAD methods [2, 10–14] still need improve-
ment. In [10], Pyramid of Score Distribution Feature (PSDF)
based TAD approach is proposed. PSDF is computationally
complex as it captures the motion information at multiple res-
olutions. A Structured Segment Network (SSN) is proposed in
[15] which utilizes a structured temporal pyramid for modeling
human activities in untrimmed videos. Temporal Actionness
Grouping (TAG) is proposed in [16] to generate multiple
action proposals. TAG is dependent upon two thresholds to
filter the action from the background and incomplete regions
which makes it less practical in real time scenarios. Con-
volutional De-Convolutional Networks (CDC) [17] perform
dense prediction at each frame to find temporal boundaries.
However, CDC is dependent on other proposal generation
methods, e.g. Segment-CNN (SCNN)[4], to produce an initial
set of proposals. Temporal Unit Regression Network (TURN)
[18] and Cascaded Boundary Regression (CBR) [19] perform
the temporal boundary regression for boundary refinement but
they struggle to produce good results at high tIoU thresholds.

These existing TAD methods have some shortcomings.
First, they tend not to exploit the discriminative power of
the snippets, therefore, they fail to discriminate one action
from other actions and from the background class. This
subsequently produces invalid detections as there are many
small clips of δ frames, known as snippets, which are similar
in different action classes as well as in the background class.
We claim that overcoming this problem requires incorporating
the discriminative power of the snippets during the encoding
process. Second, most existing methods [4, 15–19] require
a two-stage paradigm, i.e. proposal and classification. This
requires multiple passes through testing data for these two
stages, therefore, it is difficult to use these methods in an end-
to-end manner for TAD.

In this work, we propose an effective TAD method to
address such shortcomings. Specifically, we adopt an end-
to-end paradigm which can directly detect multiple actions
in untrimmed videos while rejecting the non-action sections
i.e. the background sections, in a single pass. We propose a
bag of discriminant snippets (BoDS) encoding method which
incorporates the discriminating power of the key-snippets in
terms of weights. This encoding scheme is integrated with a
3D-Convolutional network (C3D) [6] representation, however,
it can be used with any CNN as well as with handcrafted
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Fig. 1: Block Diagram of the proposed BoDS-TAD framework.

features.
The proposed BoDS temporal detection (BoDS-TAD)

framework has the following contributions: 1) It proposes an
effective encoding model, i.e. BoDS, that has the capability
of discriminating different actions from the background ac-
tions. 2) It does not require a separate stage for proposal
generation to eliminate background sections. It can unroll over
long untrimmed testing videos in an end to end manner to
encode and classify the proposals of multiple durations into
either targeted actions or background class. 3) Our proposed
method achieves state-of-the-art TAD performance on standard
datasets.

II. PROPOSED BODS-TAD

In this section, we provide the details of the proposed BoDS-
TAD method, of which Fig. 1 shows an overview. We represent
a video as V = {fn}Nn=1 where fn is the n-th frame and N is
the total number of frames. Each video V is associated with
a set of ground truth annotations G = {(gm, g

′

m, lm)}
G

m=1,
where G is the total number of action instances in V and gm,
g

′

m and lm represent, respectively, starting time, ending time
and the action category of the occurrence m. lm ∈ {1, · · · , C},
where C represents the number of targeted action classes. All
remaining regions are treated as background with class label
C + 1. In this work, the goal is to simultaneously detect the
temporal boundaries of the action instances and their class
labels in the untrimmed videos.

A. Visual Encoder

For feature extraction, we choose C3D [6] as it has been ef-
fectively used by other TAD methods [4, 11, 12] to capture the
visual as well as the motion information over non-overlapping
snippets of δ frames. We divide each video into T = N / δ
snippets. Each snippet, at time step t, is represented using
C3D based feature representation as {st}Tt=1. As a standard
practice, δ is set to 16 frames for C3D features [4, 6, 11, 12].
We use the publicly available C3D model that is pretrained
on Sports1M dataset [6], the output of the fc6 is used as
snippet-level features.

B. Learning to Extract Key-snippets

To extract the key-snippets, we compile all snippets-level
features from videos belonging to the class i into a snippet
matrix as Xi ∈ RD×ni where ni represents the total number
of snippets in the training set of class i and D represents the
dimension of the snippet-level feature vector. We extract K
key-snippets from each class by performing the class-specific
clustering over the snippet matrix Xi of each class using K-
means clustering with Euclidean distance. We finally obtain a
total of K × (C + 1) key-snippets {Sj}K×(C+1)

j=1 .
In the next step, we compute the relative importance of

each key-snippet by obtaining their weights wj in accordance
to their ability to differentiate between the different action and
background classes. From all of the C+1 classes, each snippet
sl is assigned to the nearest key-snippet Sj , such that ||sl−Sj ||
is minimum. For each key-snippet Sj , we record the correct
and false assignments of snippets in terms of within-class
qj and out-of-class q′j assignments respectively. Within-class
assignment qj represents the number of times Sj is matched
with the snippets of its own class whereas the out-of-class
assignment q′j represent the number of times it matched with
the snippets of other classes. These assignments will be used
to find the discriminative importance of each key-snippet Sj
described by weights wj , as given below:

wj =
qj

qj + q′j
∀ j ∈ [1 : K × (C + 1)]. (1)

From Eq. 1 it follows that if Sj is not assigned to any of
the snippet of its own class then wj = 0 or if it is only
assigned to the snippets of its own class then wj = 1 else
0 < wj < 1. Visualization of some key-snippets is given in
the supplementary material.

C. BoDS Encoding for Untrimmed Videos

We integrate the discriminative power of key-snippets in the
encoding process to find the initial BoDS representation for
the untrimmed videos. Each snippet-level feature st at time t
is compared with K × (C + 1) key-snippets and its nearest
key-snippet is obtained as:

j = argmin
1≤r≤K×(C+1)

||st − Sr||. (2)

Then each snippet at time step t, votes for the nearest key-
snippet using hard-voting scheme [20] as given by:

vt = [0, · · · , wj , · · · , 0] (3)

where vt is the K × (C + 1) dimensional vector initially
having all zeros except at the j-th index where we vote the
weight wj of its nearest matching key-snippet Sj . As the key-
snippets which are common to more than one class will have
less weights, they will contribute less in the final decision.

D. Candidate Temporal Proposals

Next, we aggregate multiple snippets to find the candidate
temporal proposals of variable durations which are likely to
contain action regions. At each time step t, we produce a
left aligned proposal set Pt, having τ proposals of duration
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Fig. 2: Generation of BoDS representation for τ candidate
proposals at time step t.

1δ, 2δ, · · · , δτ frames respectively as shown in Fig. 2. Each
candidate proposal set is represented as Pt = {ph, oh, o′h}τh=1,
where oh = t and o′h = h + t − 1 are respectively the
starting and ending time of the h-th candidate proposal. The
aggregated feature vector ph, considered as the final BoDS
representation for the h-th proposal, is calculated using sum
pooling as given by:

ph = ph−1 + vt+h−1, ∀ h ∈ [1 : τ ], p0 = 0 (4)

where v is calculated using Eq. 3.

E. Classifying Candidate Proposals

Once the K × (C + 1) dimensional vector pi is calculated
for each proposal i, the next task is to classify it into one of
the C + 1 classes. For each proposal i, we accumulate the
weighted votes for each class c, M c

i , as given by:

M c
i =

c×K∑
r=(c−1)×K+1

pi(r), ∀c ∈ [1 : C + 1]. (5)

Eq. 5 indicates that when c = 1, it accumulates the votes for
first K key-snippets as 1 : K elements of pi belong to the
first class. In this way, we find the total weighted votes for
all C+1 classes. Finally, a majority voting scheme is used to
classify the given proposal i into one of the C +1 classes as:

li = argmax
1≤c≤C+1

M c
i (6)

where li is the label of the class having maximum votes.
We then assign the probability to each the proposal i based

on its maximum class probability as calculated by:

ρi =
max1≤c≤C+1M

c
i∑C+1

c=1 M
c
i

. (7)

This indicates that those proposals having most of the snippets
assigned to a single class will have higher probability values.
Later in Section III-C, we see the effect of selecting proposals
based on their corresponding probabilities ρi.

III. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Measure

Two untrimmed video datasets are used for the evaluation
of the proposed method: Thumos14 [21] and ActivityNet [22].
Thumos14 contains untrimmed videos from 20 sports actions
compiled from YouTube. As a standard practice [21], we
use 200 untrimmed validation videos for training and 213

0.0 0.2 0.4 0.6 0.8 1.0
tIoU

0.0

0.2

0.4

0.6

0.8

1.0

m
AP

K=4
K=16
K=32
K=64
K=128

(a)

0.0 0.2 0.4 0.6 0.8 1.0
tIoU

0.0

0.2

0.4

0.6

0.8

1.0

m
AP

= 1
0.9
0.8
0.7
0.6
0.5

(b)

Fig. 3: Evaluation of the effect of the BoDS parameters i.e.
K (a) and ρ (b) on a testing set of THUMOS-14 dataset.

untrimmed test videos for testing purpose. For ActivityNet, we
use training and validation splits, respectively, for training and
testing purpose. To compare with previous work [3, 18, 22], we
perform the experiments on the ‘sports’ subset of ActivityNet
v1.3 containg 21 sports actions. In the supplementary material,
we also report results on other subsets of ActivityNet v1.3
containing ‘household’ ‘personal care’ ‘eating and drinking’
‘socializing and leisure’ and ‘sports and exercises’. For per-
formance evaluation, we use mean average precision (mAP)
calculated at different temporal intersection over union (tIoU)
thresholds using the publicly available evaluation toolkit [21].

B. Implementation Details

For setting the value of τ in Eq. 4, we utilize the maximum
length of the actions from the training data. For Thumos14 and
ActivityNet, the maximum action duration is about 1024 and
1600 frames respectively. Therefore we set τ = 64 (1024/16)
and τ = 100 (1600/16) snippets for both datasets respectively.
This resulted in proposals of all possible durations which may
overlap in time. As a common practice [2, 4, 12], we perform
non-maximal suppression (NMS) on the proposals selected
using Eq. 7 (as discussed in Section III-C), with 0.7 overlap
threshold, to remove the highly overlapping proposals.

C. Evaluating BoDS parameters

We evaluate the impact of the number of key-snippets,
i.e. K, on the BoDS performance, assessed with K ∈
{4, 16, 32, 64, 128}. The results in Fig. 3(a) show that mAP
obtained for different values of K have small differences.
Using only few key-snippets, e.g. K = 4, our method correctly
classifies the candidate proposals for tIoU thresholds between
0.05 to 1. Similarly, using a large number of key-snippets,
K = 128, may lead to the wrong assignment of snippets as
the distance between cluster centroids will be smaller. Based
on this observation, we choose K = 4 key-snippets for the
rest of the experiments for both datasets.

We also evaluate the performance of the proposed method
by retrieving different proposals based upon their probability
ρ as shown in Fig. 3(b). Using ρ = 1 removes the proposals
of long duration which overlap with the temporal span of
more than one action or the background instances. Therefore
it resulted in higher mAP value than all other probability
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TABLE I: Comparison of TAD performance in terms of
mAP(%) @ different tIoU thresholds.

tIoU threshold 0.3 0.4 0.5 0.6 0.7
Thumos14

FG [3] (2016) 36.0 - 17.1 - -
PSDF [10] (2016) 33.6 26.2 18.8 - -
SCNN [4] (2016) 36.3 28.7 19.0 10.3 5.3
CDC [17] (2017) 40.1 29.4 23.3 13.1 7.9
SSAD [23] (2017) 43.0 35.0 24.6 - -
TURN [18] (2017) 44.1 34.9 25.6 - -
TPN [24] (2017) 44.1 37.1 28.2 20.6 12.7
TAG [16] (2017) 48.7 39.8 28.2 - -
R-C3D [25] (2017) 44.9 35.6 28.9 - -
SS-TAD [13] (2017) 45.7 - 29.2 - 9.6
SSN [15] (2017) 51.9 41.0 29.8 - -
CBR [19] (2017) 50.1 41.3 31.0 19.1 9.9
ETP [26] (2018) 48.2 42.4 34.2 23.4 13.9
TAL-Net [27] (2018) 53.2 48.5 42.8 33.8 20.8
BoDS [Ours] 54.9 47.2 41.5 37.5 31.6

ActivityNet (Sports subset)
[22] (2015) - - 33.2 - -
FG [3] (2016) - - 36.7 - -
TURN [18] (2017) - - 37.1 - -
BoDS [Ours] 51.1 45.0 38.1 34.2 29.0

thresholds defined in Fig. 3(b). For all probability thresholds,
we see the same behaviour at tIoU threshold between 0.7 and
1. This indicates that all of the highly overlapping proposals,
obtained by our method, have probability value equal to 1.
Moreover, if we do not have an idea of maximum action
duration present in some dataset, we can set τ equal to any
large value. This leads to many long duration proposals which
will be automatically removed by setting ρ = 1.

D. Comparisons

In Table I, we provide the comparison of the proposed
method with state-of-the-art approaches. For Thumos14, the
method outperforms state-of-the-art approaches including ac-
tion detection from Frame Glimpses (FG) [3], PSDF [10],
SCNN [4], Single-Stream TAD (SS-TAD) [13], SSN [15],
the actionness based approach TAG [16], CDC [17], Single
Shot Action Detector (SSAD) [23], TURN [18], CBR [19],
Temporal Preservation Networks (TPN) [24], Regional C3D
(R-C3D) [25], Evolving Temporal Proposals (ETP) [26] and
Temporal Action Localization Network (TAL-Net) [27].

Like our method, SS-TAD [13] also produces proposals
(right-aligned) of variable duration, however, this requires
sliding windows for producing dense training data. Instead,
we use the snippet-level data from the training data only for
the extraction of the key-snippet which makes the method
computationally efficient. Similarly, TURN [18] produces pro-
posals of varying durations by applying sliding windows at
multiple temporal scales, which makes them computationally
expensive. The top-performing methods i.e. SSN [15], CBR
[19], ETP [26] and TAL-Net [27] are built upon multiple net-
works for proposal generation, refinement, and final detection
tasks. However, our method is based upon a single end-to-
end framework which does not require extra network(s) for
classifying regions into action or background which makes it
computationally fast. BoDS achieves significant performance

Ground truth Positive Detection Negative Detection

Time (sec)0 67.7 Time (sec)0 14.9

Fig. 4: Qualitative results on two test videos from Thumos14.

gain under high tIoU threshold of 0.7, where it outperforms
TAL-Net [27] by 10.8% mAP.

For ActivityNet dataset, we compare our results with FG [3],
TURN [18] and [22]. Table 1 reports the mAP at different tIoU
thresholds whereas other methods [3, 18, 22] only reported the
mAP results at tIoU threshold of 0.5. Results show that BoDS
resulted in improved detection performance at tIoU threshold
of 0.5 for the sports subset of the ActivityNet dataset. For
ActivityNet, we adopted the parameter ρ and K from the
Thumos14 dataset, this reveals that our proposed method may
be generalized to other action datasets as well. BODS-TAD
operates at 1279 frames per second (FPS) with C3D features
on a single Titan X Pascal GPU. Whereas TURN [18] and
R-C3D [25] run at 880 and 1030 FPS respectively.

E. Qualitative Results

Fig. 4 (left) shows the positive detections retrieved by the
proposed action detection approach for a video containing
multiple Billiards action sequences. The detected region is
considered as true positive if the temporal tIoU with ground
truth region is greater than or equal to 0.5 and a correct
action label is assigned to it. We observe that our method
detects all instances of Billiards action, having tIoU greater
than 0.75 with the ground truth locations. In Fig. 4 (right)
we also provide an example where the BoDS fails to detect
correct action labels for a video containing LongJump action
sequences. BoDS fails to detect the precise starting and ending
time because the video has multiple viewpoints in a single
action instance.

IV. CONCLUSION

In this work, we have proposed a new end-to-end frame-
work, BoDS-TAD, which utilizes the discriminant power of
the snippets for detection of true actions. As compared to other
methods, which are built upon a “proposal and classification”
paradigm, our method does not require a classification stage
for proposal extraction which makes it computationally effi-
cient. BoDS-TAD runs at 1279 FPS making it possible for
large-scale untrimmed videos. Through experiments, we have
shown that this model achieves state-of-the-art performance
on the action detection task. It produces proposals which,
although are part of actual actions they may be incomplete.
In future we will handle this issue by proposing a scheme for
rejecting incomplete proposals. For future work, we plan to use
this framework as a base module for other video understanding
tasks, such as sports video analysis and video summarization.
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