
Bachelor in Computer Science and Engineering
2016/2017

Bachelor Thesis
Designing User Experiences: a Game

Engine for the Blind

Álvaro Cáceres Muñoz

Tutor/s: Teresa Onorati
Thesis defense date: July 3rd, 2017

Thiswork is subject to theCreativeCommonsAttribution-NonCommercial-NoDerivatives
4.0 International Public License.

Abstract

Video games experience an ever-increasing interest by society since their incep-
tion on the 70’s. This form of computer entertainment may let the player have a
great time with family and friends, or it may as well provide immersion into a story
full of details and emotional content.

Prior to the end user playing a video game, a huge effort is performed in lots
of disciplines: screenwriting, scenery design, graphical design, programming, opti-
mization or marketing are but a few examples. This work is done by game studios,
where teams of professionals from different backgrounds join forces in the inception
of the video game.

From the perspective of Human-Computer Interaction, which studies how people
interact with computers to complete tasks [9], a game developer can be regarded as
a user whose task is to create the logic of a video game using a computer. One
of the main foundations of HCI1. is that an in-depth understanding of the user’s
needs and preferences is vital for creating a usable piece of technology. This point
is important as a single piece of technology (in this case, the set of tools used by
a game developer) may – and should have been designed to – be used on the same
team by users with different knowledge, abilities and capabilities. Embracing this
diversity of users functional capabilities is the core foundation of accessibility, which
is tightly related to and studied from the discipline of HCI.

The driving force behind this research is a question that came after considering
game developers: Could someone develop a video game being fully or partially blind?
Would it be possible for these users to be part of a game development team? What
should be taken into account to cover their particular needs and preferences so that
they could perform this task being comfortable and productive?

The goal of this work is to propose a possible solution that can assure inclusion
of fully or partially blind users in the context of computer game development. To
do this, a Used Centered Design methodology has been followed. This approach is
ideal in this case as it starts including people you’re designing for and ends with new
solutions that are tailor made to suit their needs [106]. First, previously designed
solutions for this problem and related works have been analyzed. Secondly, an
exploratory study has been performed to know how should the target user be able
to interact with a computer when developing games, and design insights are drawn
from both the state of the art analysis and the study results. Next, a solution has
been proposed based on the design insights, and a prototype has been implemented.
The solution has been evaluated with accessibility guidelines. It has been finally
concluded that the proposed solution is accessible for visually impaired users.

Keywords Human-Computer Interaction, User Centered Design, Accessibility,
C++, Game development, Unity3D, Godot Engine, Unreal Engine

1Acronym. Stands for Human-Computer Interaction

1

Acknowledgements
If someone asks about the author of this thesis, it may seem reasonable to answer with

Álvaro Cáceres. However, this thesis would have never seen success (and much less to
do so before the established deadline) if it had not been for the help of lots of people
who helped, taught and motivated me through the whole process of writing the thesis. I
thought it was appropriate to mention them here, so that the reader is aware of the fact
that any piece of human knowledge is available to us nowadays thanks to friendship and
teamwork.

First of all, I want to thank my bachelor thesis supervisor, Teresa Onorati. She has been
extremely comprehensive, patient, supportive and willing to help. I know that it is easier
to tell bachelor students to choose a research topic already defined by professors, however
she has defended my ambitious ideas since the beginning. I am doubly thankful for all the
wise pieces of advice she has given me during these months, not only about the thesis, but
about the life of a researcher and lots of topics about life in general. Finally, I also have
to thank her for praising my abilities and potential beyond my personal circumstances.
During the whole bachelors degree, I have been splitting my time between two different
studies, and I know from other professors how puzzling it is to listen to a student who
has so many crazy projects in mind and so little time to keep up with everything.

Lots of people have also given me advice and solved serious problems that have arisen
over the creation of this thesis. I firstly have to thank professors from Universidad Carlos
III de Madrid. Telmo Zarraonandia perfectly explained the state of development of GREP,
which has been essential to consider different alternatives for the design of the solution.
José Antonio Iglesias gave me an extensive tutoring lesson about my university’s bachelor
thesis criteria, and it was extremely helpful. Ángel García also deserves my gratitude,
as he told me about an accessibility project, GoAll, that was being developed at my
university by the time I was writing the thesis. Secondly, I thank all people who had
never heard of me and still helped me. Here I would include Francisco Monzón from
ONCE, who despite of being so busy devoted his time to search for participants for the
exploratory study. He also wanted to know about other projects and ideas I have, and
he was extremely supportive for those. Aleksander Morgado made me not fear the DBus
protocol anymore, and he was enthusiastic about my project as both the two of us defend
Free Software principles. Alejandro Piñeiro also offered me extensive help regarding the
ATK library; I can say I was even more scared of ATK than DBus, so his help has been
greatly appreciated. Thirdly, I would like to thank people from Pinto Association for
People with Disabilities, who made me save time redirecting me to the ONCE offices that
were relevant for my thesis.

Both family and friends have also had a big impact in this thesis. My family have
always supported me, and made me think that my project was close to receiving an
award for saving humanity. My friends were equally enthusiastic, especially those who, as
I do, love the Linux and Free Software world; they were excited of thinking that thanks
to me, Godot Engine was not only going to be the first successful Open Source game
engine, but also the first one that was fully accessible. I also wanted to mention Jorge
Hidalgo, both for his support and for all his help about laws and user consents; he is
amazingly skilled and good-hearted, and I know for sure that a great future awaits him,

2

both professionally and personally. I have to especially thank Carmen López for all the
affection and encouragement she has given me, not only for this thesis but for all my
goals and projects in my life. When I first devised this project (around two years before
starting the bachelor thesis), I thought that the design of the solution was going to be a
game engine built from scratch by me; I wanted to name the program Carmen, and for a
good reason (”Carmen V2.35 stable”. . . it definitely sounds exotic).

Last but not least, I want to appreciate all the people that have participated in the
exploratory study. As I have already said, I was absolutely unaware about all the things
I was going to learn prior to starting writing my bachelor thesis, and most of the things
I have learned come from their personal experiences, which have been priceless for me.
Their encouraging messages have touched me several times. It feels great to know that
this project is much more than a bachelor thesis for me, but it feels even better to know
that people out there think that my project is going to help so many people. I sincerely
hope this project goes much beyond a bachelor thesis, and that it actually gives way to
accessible game development.

3

Contents
1 Introduction 8

1.1 Motivation . 8
1.2 Socioeconomic environment . 9
1.3 Research method . 9
1.4 Proposed solution . 12

1.4.1 Input and output design . 12
1.4.2 Solution implementation . 12

1.5 Outline . 13

2 State of the art 14
2.1 Definitions . 14

2.1.1 Visual impairment . 14
2.1.2 Functional diversity . 15
2.1.3 Accessibility . 16
2.1.4 Assistive technology . 16

2.2 Assistive technologies for visually impaired users 17
2.3 User interfaces for visually impaired users 17

2.3.1 3D views . 17
2.3.2 3D audio games . 18
2.3.3 Cognitive mental models of 3D views 19

2.4 Accessible software development tools for visually impaired users 19
2.5 Game development tools for visually impaired users 20

3 Design insights 22
3.1 Exploratory study . 22
3.2 Participants . 23

3.2.1 Participant profile . 23
3.2.2 Searching for participants . 24
3.2.3 Demographics . 24

3.3 Interviews . 26
3.4 Design insights . 33

4 Design of the solution 36
4.1 Chosen technology . 36

4.1.1 Available technologies comparison 36
4.1.2 Godot Engine user interface analysis 39

4.2 Design specification . 44
4.2.1 Input mode . 44
4.2.2 Output mode . 51
4.2.3 Configuration . 53

4.3 Implementation details . 55
4.3.1 New user interface elements . 55
4.3.2 Screen reader . 55
4.3.3 3D Audio . 56

4.4 3D view prototype . 57
4.4.1 Purpose . 57
4.4.2 Prototype implementation . 58

4

5 Evaluation 60
5.1 Evaluation method . 60

5.1.1 WCAG guidelines . 60
5.1.2 Future user evaluation with the 3D view prototype 61

5.2 Evaluation with WCAG 2.0 checklist . 62
5.3 Results . 62

6 Project management 64
6.1 Regulatory framework . 64

6.1.1 Accessibility standards . 64
6.1.2 Software licenses . 64
6.1.3 User privacy . 67

6.2 Planning . 68
6.3 Budget . 72

7 Conclusions 76
7.1 Technical conclusions . 76
7.2 Future work . 76
7.3 Personal conclusions . 77

Glossary 80

References 81

A WCAG 2.0 checklist 88
A.1 Perceivable . 88

A.1.1 Guideline 1.1. Text Alternatives . 88
A.1.2 Guideline 1.2. Time-based media 89
A.1.3 Guideline 1.3: Adaptable . 90
A.1.4 Guideline 1.4: Distinguishable . 91

A.2 Operable . 92
A.2.1 Guideline 2.1: Keyboard Accessible 93
A.2.2 Guideline 2.2: Enough Time . 94
A.2.3 Guideline 2.3: Seizures . 94
A.2.4 Guideline 2.4: Navigable . 95

A.3 Understandable . 96
A.3.1 Guideline 3.1: Readable . 96
A.3.2 Guideline 3.2: Predictable . 97
A.3.3 Guideline 3.3: Input Assistance . 98

A.4 Robust . 98
A.4.1 Guideline 4.1: Compatible . 99

5

List of Figures
1 User Centered Design methodology . 11
2 UCD Methodology. Phase 1: State of the art 14
3 UCD Methodology. Phase 2: Design insights 22
4 Exploratory Study. Participant age distribution 25
5 Exploratory Study. Visual impairment distribution 25
6 Exploratory Study. Software development experience distribution 26
7 Exploratory Study. Game development experience distribution 26
8 UCD Methodology. Phase 3: Design of the solution 36
9 Godot Engine: project manager screen . 40
10 Godot Engine: shortcuts tab . 41
11 Godot Engine: main screen . 42
12 Godot Engine: 3D view . 43
13 Mockup for the accessibility section . 54
14 3D view prototype running . 58
15 UCD Methodology. Phase 4: Evaluation 60
16 Gantt chart . 72

6

List of tables
1 Game development kits comparison . 38
2 Accessibility problems in Godot Engine . 44
3 Design specification: keyboard shortcuts for menus 45
4 Design specification: keyboard shortcuts for the 3D view (1) 47
5 Design specification: keyboard shortcuts for the 3D view (2) 48
6 Design specification: keyboard shortcuts for the 3D view (3) 49
7 Design specification: keyboard shortcuts for the 3D view (4) 50
8 Design specification: keyboard shortcuts for the 3D view (5) 51
9 Planning (1) . 69
10 Planning (2) . 70
11 Weekly dedicated hours . 71
12 Complete project costs (1) . 74
13 Complete project costs (2) . 75
14 Evaluation with the WCAG 2.0 checklist: guideline 1.1 88
15 Evaluation with the WCAG 2.0 checklist: guideline 1.2 (1) 89
16 Evaluation with the WCAG 2.0 checklist: guideline 1.2 (2) 90
17 Evaluation with the WCAG 2.0 checklist: guideline 1.3 90
18 Evaluation with the WCAG 2.0 checklist: guideline 1.4 (1) 91
19 Evaluation with the WCAG 2.0 checklist: guideline 1.4 (2) 92
20 Evaluation with the WCAG 2.0 checklist: guideline 2.1 93
21 Evaluation with the WCAG 2.0 checklist: guideline 2.2 94
22 Evaluation with the WCAG 2.0 checklist: guideline 2.3 94
23 Evaluation with the WCAG 2.0 checklist: guideline 2.4 (1) 95
24 Evaluation with the WCAG 2.0 checklist: guideline 2.4 (2) 96
25 Evaluation with the WCAG 2.0 checklist: guideline 3.1 96
26 Evaluation with the WCAG 2.0 checklist: guideline 3.2 97
27 Evaluation with the WCAG 2.0 checklist: guideline 3.3 98
28 Evaluation with the WCAG 2.0 checklist: guideline 4.1 99

7

1 Introduction

1.1 Motivation

Video games make a big impact on different levels of society. At first we have consumers,
with more than 28% of world population playing video games on a regular basis [50].
Secondly we have game companies, which generate $99.6 billion in revenues globally and
imply the deployment of 2322 developer offices only in the USA [72]. Lastly, technological
advances developed for computer gaming also turn into new market opportunities, a
remarkable example being the inclusion of GPU’s for scientific computation.

Of the different sections of society that are involved in video games, consumers have
access to them irrespective of their level of visual accuracy. Although not all video games
are accessible for visually impaired users, some games are being adapted or created from
scratch taking into account different levels of visual accuracy [52]. Audio games are also
a good solution for these users, as they only output sound instead of sound and image; in
this way, users only need their ears to receive full information of the game, and sight no
longer becomes a barrier to play computer games.

There is however another important section of society that cannot easily access the
world of videogames when suffering from visual impairment: developers. It is true that it
is technically possible for visually impaired users to develop the logic of a game without
a graphical user interface; in this case all the behavior of the program is specified using
code and files. There are visually impaired users who try creating video games from
scratch using this approach [52]. However, the majority of professional video games are
created using a game engine, which is a piece of software that automates several steps
in the creation of video games. Game engines are based on graphical user interfaces,
and they are not designed with accessibility in mind. For this reason, professional game
development still poses a barrier to visually impaired users.

The range of jobs opportunities that the game industry offers to developers thus sets
out the motivation for the research methodology followed across this document. From the
viewpoint of the UCD2 methodology, this motivation is formalized with three concepts: a
target user, a set of necessities, and a problem that the user currently experiences. These
concepts will be later addressed in more detail; for now, it suffices to know the following:

• The potential target user is a visually impaired user who could productively develop
games in a professional game studio.

• The necessities are whatever means, tools, modes of interaction. . . that the target
user may require to effectively achieve his/her goal. These necessities are still
unknown: they will be discovered through the different phases of the applied UCD
research methodology.

• The problem is that the target user cannot achieve his/her goals, given that his/her
necessities have not been covered. In terms of accessibility, the user’s problem is
that the technology s/he is trying to use is not accessible; making this technology
accessible would therefore solve the problem.

2Acronym. Stands for User Centered Design.

8

1.2 Socioeconomic environment

Accessible video game development for visually impaired users is an important mission
to accomplish, as it would affect a huge number of users. More specifically, around 4% of
world population had some degree of visual impairment in 2014, according to data from
the World Health Organization [58]. While this percentage seems small, it translates to
285 million people. There are users whose visual accuracy may be temporarily reduced3,
so the number of target users is actually much bigger.

One of the ways in which game development benefits society is related to its popularity.
More consumption requires more workforce, and for products like videogames (which are
relatively expensive) workforce is well remunerated. Game designers in the United States
had an average salary of $73,864 in 2014 [28]; this is slightly higher than the average salary
of $54,525 in the United States by that year [54]. Game programmers and engineers earned
around $93,251 each year by 2014 [28]: this is roughly twice the average salary of a citizen
from the United States.

These job opportunities would imply substantial changes on visually impaired users’
current quality of life. Demographic data taken from the United States in 2014 shows
that an alarming majority of visually impaired adults struggle to find a job: only 40%
were employed [36]. Global statistics are even more severe, with 90% of visually impaired
users living with low incomes [58]. Probably, not all users with visual difficulties will have
a professional or academic background in software development; and still, making this
career available for them would drastically increase welfare for this sector of population.

However, these benefits and opportunities will only be possible if inclusion is guaranteed.
This assertion is obviously linked to moral principles, but there are important practical
reasons to take into consideration. A visually impaired user could –more or less
comfortably– develop a game with just a text editor, if it is accessible. This workflow
would likely not be accepted in a professional context, where more complex and automated
tools are used by the whole development team. This example sets out the difference
between accessibility and inclusion. If visually impaired users want to work in a
professional team (ergo benefiting from better salaries), they must be able of using the
same tools as game development studios use.

1.3 Research method

As it has been mentioned before, this research project has been based on a UCD
research methodology. One of the main concepts of User Centered Design is that it makes
technological designers (engineers, computer scientists. . .) think about the target user
in first place. Technology has been traditionally designed with commercial or technical
goals in mind. Users had to adapt their mental models to effectively use it, which often
results in frustration and low self-steem towards technology [25]. UCD advocates think
that design should support its intended users’ existing beliefs, attitudes, and behaviors as
they relate to the tasks that the system is being designed to support [38]. This makes the
designed product easier to use, which generates a feeling of calm, productiveness and even
enjoyment in the target user.

3This idea is explained in more detail in section 2.1.

9

Quoting the Userfocus webpage [96], the UCD methodology is rooted in the
International Usability Standard ISO 13407, which specifies the following main points
about tasks and people involved in a design project of this kind:

• The design is based upon an explicit understanding of users, tasks and environments.

• Users are involved throughout design and development.

• The design is driven and refined by user-centred evaluation.

• The process is iterative.

• The design addresses the whole user experience.

• The design team includes multidisciplinary skills and perspectives.

User Centered Design is flexible [97] and allows to be used with slight variations. In
this research project, the methodology has followed the typical four phases of UCD:

1. Understanding of the state of the art: this phase aims at answering to questions
like: what do we already know about our target users? Have there been previous
solutions to the problem we are trying to solve? And in case we have discovered
this problem for the first time, is there any related knowledge that may be useful as
a reference?

2. Design insights: how should we design the proposed solution? What are target
users’ needs, feelings and beliefs towards the problem to address? The outcome of
this phase is similar to the requirements from software engineering methodologies.
However, design insights are more flexible and, most importantly, they can change
in time as the UCD methodology allows several iterations before reaching a final
design decision. In order to get the design insights, I have used two sources of
information:

• Conclusions drawn from the state of the art
• Exploratory study: this has been chosen as an additional way of gathering data

from target users. A set of unstructured interviews has been followed. Despite
of variability in users’ answers, there are similarities in their views and beliefs
towards the studied problem. This gives very useful information that is an
essential part of the design insights. State of the art conclusions reinforce the
results of this study, as they tend to have a theoretical or empirical foundation.

3. Design of the solution: in this phase, the solution is proposed. The UCD projects
require an extensive amount of effort and time to understand users and the way in
which the product they need should be designed. For this reason, design normally
refers to a specification of the user interface of the desired product; implementation
of the product may or may not be part of this design. Given that most research in
UCD is done about graphical user interfaces4, the design of the solution is normally
a sketch of that interface. However, the solution for the problem studied in this
project cannot be fully described with sketches. This last point will be further
described in section 4.

4A graphical user interface is a set of visual elements that enable humans to communicate with a
computer. Examples of these elements are windows, buttons, menus. . .

10

4. Evaluation: finally, the proposed solution must be tested to make sure that it
covers target users’ needs. There are several ways of doing this. One of them is to
evaluate users’ satisfaction by asking them to perform tasks on a prototype of the
proposed interface. For instance, user evaluation can involve previously interviewed
users (from the exploratory study), or experts in the field of design. Another
option is to evaluate the design against a well-designed set of design guidelines
and heuristics. In short, these design artifacts have been discussed, validated and
agreed by international design committees and researchers; hence their usefulness
when evaluating a design. For this research project, accessibility guidelines have
been chosen due to their level of detail.

The four phases of User Centered Design can be easily understood by looking at figure
1. They are displayed in a circle, because this research methodology is iterative5. As in
a circle, each phase takes in inputs the outputs of the previous phase. The avatar of a
person is placed in the center of the diagram, symbolizing that the user is involved in
each phase of the methodology, either directly or indirectly.

Figure 1: User Centered Design methodology

The way this research project has been done is not only appealing because of the care
taken towards users’ needs and emotions. Hevner’s viewpoint of scientific research as
a reusable piece of knowledge [12] highlights the power of using this approach towards
research. In this sense, the resemblance between software and research is remarkable.
Software was originally duplicated across different companies and computers; if companies

5Due to the time constraints of a bachelor thesis, only one iteration has been performed in this project.

11

had not began to reuse software (with libraries, API’s, frameworks, etc.), technology would
not have advanced as much as it has done in the previous decades. In the same way, a
thoughtful design can be later applied to several problems. To be more specific, let’s use
this project as an example. The proposed solution will consider a specific program, but
the design specifications drawn from this project could be used to make other programs
(i.e. other game development kits) accessible for visually impaired users.

1.4 Proposed solution

1.4.1 Input and output design

One of the biggest concerns about this work was to find the optimal modes of interaction.
This means finding the best combinations of input and output modes.

Both the experience from users and the studied literature conclude what should be used
for input. Visually impaired users take most advantage from keyboard interaction to input
data to the game development software. Other means of interaction such as gestures or
mouse input have been discarded; literature and users coincide with regard to this point.
Moving hands from the keyboard to the mouse without a visual reference is disorienting
to some extent. Also, using gestures would require custom hardware, webcams or devices
such as the Xbox Kinect6; this automatically labels visually impaired users in the context
of a work team. All this coincides with how sighted developers interact with the computer.
They rarely take their hands out of the keyboard, or they do it as little as possible; this
means that keyboard allows for more precise, faster interaction.

For receiving information –output– from common interface components (menus,
windows, dialogue boxes), screen readers seem to be the most efficient output mode, and
the one that can be used for users with any level of visual impairment. Some users with
slight vision loss also make use of magnifiers, font size configuration and inverted colors
for improving menu navigation. The 3D view of the video game is the most problematic
part of the output system. It has been concluded that users prefer a mixture of auditory
clues and verbal description of the 3D view (i.e. using the screen reader).

1.4.2 Solution implementation

The main outcome of this research has been the re-design specification of the user
interface for a well-known game development kit. This specification is reusable and
flexible, so it could be used for making any game development kit accessible for visually
impaired users. In order to make the design specification accessible and to take into
account the important auditory factor of this user interface, the design specification has
been expressed in the form of graphical mockups and verbal descriptions.

Several game development kits have been analyzed for a future implementation. Godot
Engine [79] has been selected due to its commitment to free and open source software.
This means it has more chances than other game development kits to actually incorporate
accessibility features in the future. For this reason, its user interface has been analyzed to

6This is a peripheral device that detects gestures in 3D space. See [78] for more details.

12

have a real-life example of the proposed redesign. Some implementation details regarding
cross-platform accessibility have been discussed.

A small prototype has been designed to test a small part of the proposed user interface
in the future [94]. It has been developed using Unity3D as it allows for fast prototyping
of cross-platform applications. This prototype is just a small version of what the solution
is, which it makes future experiment conditions more controlled.

1.5 Outline

This document has been divided into the following sections:

• Section 1 explains the context in which this project was devised. Firstly, the reasons
for proposing this project are shown. Secondly, a strong emphasis has been put on
the contribution of this project to society. After this, the methodology followed
along the project has been introduced to the reader. Then the proposed solution for
the studied problem is described in general terms. Finally an outline (this section)
serves as a quick reference of the contents of this document.

• Section 2 presents an overview of previous research and technologies that are related
to this project. It also includes a description of key terms that are mentioned across
the document, such as accessibility, visual impairment, functional diversity and
assistive technologies.

• Section 3 delves into target users needs. The exploratory study required to gather
this information is explained in detail, including how participants were chosen
and how was it performed. Findings derived from this study, are combined with
conclusions from the state of the art. This is used to formulate the problem of this
project and a possible solution for that problem.

• Section 4 proposes a design specification that tries to solve target users’ problem.
Ideas for translating the design specification into a software implementation are
also provided in this part of the document. Additionally, a small prototype for an
isolated part of the user interface of the program has been developed.

• Section 5 describes how the proposed solution has been assessed in terms of
accessibility. Known accessibility guidelines are presented and applied to the
proposed solution.

• Section 6 addresses issues regarding planning, legal implications, development and
cost of this project. The description of such topics is compliant with Universidad
Carlos III de Madrid’s bachelor thesis assessment criteria.

• Section 7 concludes the research efforts done during this project. This include
conclusions learned from the different phases of the User Centered Design
methodology, future improvements, and experiences gathered from a personal point
of view.

• The appendix stores secondary but useful data related to the project. This includes
a glossary explaining important terms, a full description of the applied evaluation
checklist. . . .

13

2 State of the art
Figure 2 makes a reference to the content that is going to be discussed in this section.

It is based on the original diagram, although some elements have changed. Colors and
text are highlighted for phase 1. A book and a gearwheel come out of the phase 1 section.
This symbolizes that both academic and technical solutions have been taken into account
for this section.

Figure 2: UCD Methodology. Phase 1: State of the art

2.1 Definitions

2.1.1 Visual impairment

It is crucial to understand the concept of visual impairment in order to follow the
research work done in this project. Target users mentioned in section 1.1 are, in this
case, users with some degree of visual impairment. Basically, a visually impairment user’s
eyesight cannot be corrected to a ”normal level” [24]. In this sense, visual impairment is
the functional limitation of the eye, eyes or the vision system [24]. The word functional
from functional limitation comes from visually impaired users not being able to make
full use of the functions provided by their vision system. The word limitation does not
mean that they cannot use vision in any way, but rather than they cannot use it to
its full potential, thus being limited. Because of this, there are not only people with or
without visual impairment; there are different degrees of visual impairment, and designing
a solution for visually impaired users requires understanding all these different degrees of
functional limitation.

14

An intermediate concept that should be explained before delving into the types of visual
impairment is the term visual acuity, because visual impairment is related to how good
our visual acuity is. Through this document, numeric notation like 20/80 is used. This
number indicates visual acuity, or how sharply the user can see. For instance, if a user
has a visual acuity of 20/80, this means s/he can clearly see an object 20 feet away, while
a normal person can see it being 80 feet away [71].

There are several classifications for visual impairment. Some people classify users
according to the biological condition that causes their loss of visual acuity (amblyopia,
retinitis pigmentosa, strabismus. . .); some others classify them according to how can they
use vision to perform tasks. This second categorization has been used because it better
describes target user’s needs –in terms of Human-Computer Interaction– than a medical
condition. Citing [20], there are four degrees of visual impairment according to how it
affects task solving:

1. Partially sighted: user’s task-solving performance is adversely affected, even when
corrected to the extent possible [20]

2. Low vision: user’s visual acuity is between 20/70 and 20/160 and it cannot be
corrected

3. Legally blind: user’s visual acuity is between 20/200 and 20/400 (legally blind with
severe low vision) or between 20/400 and 20/1000 (profound visual impairment,
which is very close to total blindness [20])

4. Totally blind: user cannot perceive light

2.1.2 Functional diversity

As described by the World Health Organization, disability ”is an umbrella term,
covering impairments, activity limitations, and participation restrictions” [58]. It is also
worth noting that ”almost everyone will be temporarily or permanently impaired at some
point in life” [18]. This leads to the concept of functional diversity. This term is almost
self-explanatory; it describes a variety –diversity– of users with different capabilities,
different ways to solve the same problem.

Introducing the concept of functional diversity highlights two ideas that are important
for this project. Firstly, making a software product accessible for visually impaired users
should not be considered an extra functionality, but a necessary one. At the end visually
impaired users belong to the intricate set of (functionally diverse) users, and they have
specific needs and preferences, just like everyone else does. Secondly, considering visually
impaired users when designing a product also has advantages for other users; they may
not have a permanent functional limitation, but at some point in time their visual system
may be somehow limited, and the technology that enables interaction for visually impaired
users will then be useful for these users. Preparing technology for this functional diversity
is therefore vital for everyone; it can either improve our productivity, making our life more
comfortable, or it can solve an otherwise serious problem (due to not having access to
technology in a critical situation, for instance).

15

2.1.3 Accessibility

What was stated in the last section as preparing technology for functional diversity is
equivalent to –and it is normally known as– making technology accessible. Accessibility,
as its name indicates, tries to give users with disabilities access to technology [34]. If a
product is not accessible, some users will not be able to use it, or they will only be able
to use it to a certain degree, but not fully.

Accessibility has been heavily studied by companies and universities during the last
decades. A proof of how important has accessibility become in the field of computer
science is the adoption of accessibility guidelines by companies such as Microsoft [108],
Google [105] and Apple [62]. In the end, accessible products attract more clients who
could not use them before. Accessibility is beneficial both for clients and for companies.

This research work follows a User Centered Design methodology because of its
connections with accessibility, which is part of Human-Computer Interaction. For
instance, Design for All [103], which tries to make technology available to anyone
(that is, without using dedicated accessible technology) originated in Human-Computer
Interaction research. This shows that the UCD research methodology is appropriate for
this project.

2.1.4 Assistive technology

At this point the reader should know who is the user we are looking for (visually
impaired users), how does this extend to other users (functional diversity), and what
disciplines are in charge of solving his/her current problem (Human-Computer Interaction,
accessibility). A natural question that may arise now is, which technology can solve this
problem? How does accessible technology look like?

This technology is known as assistive technology, because it supports –assists– users.
Assistive technology is not necessarily a separate piece from the original product.
Sometimes, assistive technology is designed to be used with almost any product, and
sometimes it is specifically incorporated to a single product. This depends on several
factors. If a separate assistive technology is clearly visible (like a braille display), it
automatically labels the user to the rest of the world, which generates anxiety for him/her.
However, there are separate assistive technology products that are only perceptible to the
user; for instance, a screen reader. These technologies will be further discussed in following
sections of this document.

An example of how assistive technologies can improve lives of a variety of users is speech
recognition [56], which was originally designed to assist people with motor functional
diversity and is nowadays used by almost any smartphone user, given that it allows for
hands-free operating the smartphone; this is useful when performing another critical task
with hands (e.g driving) or when being somewhat far from the device (e.g. when sitting
on a couch with the phone being 2 meters away from you) and feeling unwilling or unable
to move to reach the device at that moment.

16

Like speech recognition, a game engine that can be used without looking at a screen
can be really useful for a wide variety of users. To clarify this, let’s consider a common
scenario in game development: the user (in this case, the developer) is editing a VR game
in Unity3D, a videogame development kit widely used in the game industry [93]. Testing
a VR game implies using a VR headset, for instance the Oculus Rift [83]. This workflow
is not comfortable for the user because VR headsets are not recommended to be used
for extended periods of time (even less for software development), so it is necessary to
constantly take the headset on and off, which can generate eyestrain due to the change
of light between the headset and the monitor. If it was possible to develop videogames
without having to look at a screen, VR game developers could constantly wear the VR
headset when working, turning it on to test the game and turning it off otherwise and
perceiving the UI of the game editor with assistive technology.

2.2 Assistive technologies for visually impaired users

Nowadays there are thousands of assistive technology products that make visually
impaired user’s life much easier. Most commonly used technologies are the following:

• Screen magnifiers: either software or hardware-based, screen magnifiers increase the
size of a text area on the screen. They cannot be used by totally blind users, as
opposed to low vision users who can perceive light and shapes to a certain degree.
Most widely used operating systems contain free screen magnifiers by default: Zoom
pane pane on macOS, Enhanced Zoom Desktop, gnome-mag and KMag on Linux-
based distributions, and Magnifier for Windows since Windows98.

• Screen readers: a screen reader is a software that receives information from the
computer (UI’s, operating system events, text. . .) and generates either synthesized
voice or change in a braille display as an output. This piece of technology is
extensively used by UVFD who experience a total lack of vision, but it can be
used having partial lack of vision as well. There are several screen readers available;
mostly used ones include JAWS and NVDA for Windows, VoiceOver for MacOS,
and ORCA for Linux.

• Refreshable braille screens: these devices contain small rounded tips that are raised
or lowered according to the focused information on the computer, creating an array
of dots that display the text in braille [86]. They normally display one line of
80 characters, and they are expensive due to the materials they are built with.
Users normally access the computer with the keyboard and receive most part of
information from the synthesized voice of the screen reader; this, together with the
small amount of data that can be shown on refreshable braille screens and their
price, make them secondary tools that are either used when checking for specific
symbols or directly omitted.

2.3 User interfaces for visually impaired users

2.3.1 3D views

Most part of the user interface of a program can be identical for sighted and visually
impaired users. Assistive technologies shown in previous sections allow visually impaired
users to interact with commonly used graphical user interfaces. When a program is

17

designed to establish communication with a screen reader, for instance, the program will
look the same to any user; the only difference will reside in whether the program sends
data about the user interface to the screen reader or not. In this sense, most part of the
menu navigation from a graphical user interface is said to be easily accessible. In fact,
several user interfaces are almost fully accessible by default, such as the GNOME desktop
environment [29].

Despite of accessible menu navigation, there are still elements of the user interface that
visually impaired users cannot easily access. Let’s consider a game development kit. These
toolkits combine classical elements from the graphical user interface (such as buttons, text
fields or menus) with one or more 3D views. A 3D view is a three-dimensional graph with
references like a grid and 3D axes. This 3D view allows to detect, at a glance, most
relevant elements of a videogame scene. 3D views are normally placed in the center of the
program’s window; it is done this way because game designers tend to constantly look at
it. This important part of a user interface is absolutely transparent for visually impaired
users, since 3D views are user interface elements that are normally not known for screen
readers.

2.3.2 3D audio games

3D audio games are interesting examples of 3D user interfaces that (normally) work for
visually impaired users. The adverb normally was added to the former sentence because
an audio game may not be fully accessible. In fact, the game developer of Ear Monsters,
a 3D audio game, discusses in [26] the differences between making an audio game and
making an accessible audio game. This blog post is also interesting because it highlights
the importance of properly designing information for the audio game. After testing with
users, the creator of Ear Monsters decided to drastically simplify conditions in the game;
for instance, he changed the (originally numerous) amount of enemy spawning points to
be small and fixed.

Researchers at the University of Bucharest [35] developed a 3D audio game for visually
impaired users. They used realistic 3D audio techniques that generate the correct
sensation of spatial location. It is worth noting that they also made a great effort designing
icons (or rather, auditory icons). Auditory icons require being clearly distinguishable
between them, but putting a high number of them can saturate user’s short-term memory.

A third audio game worth noting is Shades of Doom [14]. It was specifically developed
for visually impaired users and it is among the first person shooter audio games ever
made. One of the causes of its success is the combination of realistic 3D audio, carefully
chosen auditory icons, continuous synthesized sounds, and verbal speech.

Finally, [7] explains the creation of a 3D audio game similar to the formerly described.
The key difference is the use of haptic interaction, that lets the user feel the touch of
objects with a special piece of hardware. While this functionality allows more immersive
gameplay, such hardware would be inappropriate in the context of developing games in a
team. As described before when learning about assistive technologies, using this hardware
would automatically label visually impaired users for the rest of the working team.

18

2.3.3 Cognitive mental models of 3D views

Searching over the Internet makes me think that no research has been done specifically
for 3D views for design programs (e.g. graphic design programs, game development kits).
However there is research work done about generic 3D interfaces, where the goal is to find
objects, rather than editing and moving them. For instance, [6] shows the creation of a
3D audio user interface that allows to move around a room with some objects. Stereo
headphones were used to generate the sensation of listening to audio sources that are
located at a particular three-dimensional position, and to simulate room acoustics. One
of the conclusions of this research paper is that 3D audio gives much more information
than other assistive technologies, such as a screen reader; however, it is crucial to choose
realistic 3D audio software.

Research has also been done to test how accurately blind children can model spatial
structures in their minds [4]. Children first learned the shapes of objects by using a
3D audio program. Then they were asked to physically model these object (with sand,
Lego’s, etc). Results concluded that visually impaired users can generate pretty exact
mental models of spatial information.

Another interesting paper [2] specifically addresses interaction with 3D views for visually
impaired users. Firstly, they reinforced the statement that visually impaired users’ hearing
is more developed than in the case of sighted users. Secondly, they discovered that
visually impaired users prefer auditory icons built with different notes and the same
timbre (for instance, assigning note A47 of the piano to one icon, and the note G#68

of the piano to other icon and so on). It was also found that visually impaired users
prefer simple timbres as opposed to the timbre of musical instruments. Finally, the study
showed that visually impaired users find continuous sounds annoying. They made the
additional additional remark that representing objects with the same timbre and different
notes implies that users have to associate notes (frequencies) to objects; unless the user
has absolute pitch9, distinguishing and remembering notes becomes unfeasible when the
number of icons increase.

2.4 Accessible software development tools for visually impaired
users

After having learned about technology and user interfaces for visually impaired users,
it is possible to narrow perspective to software development programs. Currently, there
are several text editors and IDE’s that offer full or near-to-full accessibility for visually
impaired users. Some examples are listed as follows:

1. Emacspeak: this editor is actually the Emacs text editor with an additional
accessibility layer. Emacs is a cross platform, powerful and highly maintained text
editor. The Emacspeak project takes advantage of both the features of Emacs and
a painstaking research done on accessibility [104]. Despite of having lots of features,
Emacs has a steep learning curve.

7This is a notation for the fourth note La of the piano
8This is a notation for the fourth note Sol sharp of the piano, which is one key above the fourth Sol.
9Absolute pitch is a rare condition by which a person can memorize the exact frequency of notes and

daily sounds.

19

2. Microsoft Visual Studio: this IDE is widely used on the industry. Its main platform
is Windows, but support for MacOS and Linux is on the way of being fully available.
Visual Studio benefits from the NVDA addon that enables accessibility via screen
readers and braille displays [63].

3. NotePad++: while having little functionality in comparison with Visual Studio or
Emacs, this text editor for Windows is ideal for quickly editing text or code, and it
contains a NVDA addon that makes it accessible [87].

4. Eclipse: this IDE is popular among Java developers and it can be used on either
Windows, MacOS or Linux. It allows accessing information from screen readers,
changing colors, magnifying text, and navigate menus using voice recognition
software [45].

2.5 Game development tools for visually impaired users

Generic software development tools have been described as they are used by visually
impaired users to develop games. In any case, these users could ideally have access
to game engines (also called game development kits) that require writing less code and
prevent simple mistakes. For this reason, tools specially designed to create videogames
are described in this section.

Unfortunately, there are few tools of this kind. Experience gained by talking to target
users across these months suggest that most of them create video games from pure code.
Some others create their own game engines. This has clear drawbacks:

• Software is duplicated by many developers who want to achieve the same goal (as
opposed to code reuse)

• Software is maintained by one person, and in a best-case scenario, by a small group
of people

• Software cannot complexity cannot scale

• Errors are difficult to find and solve

• Most of this software finally gets abandoned

It must be noted, however, that some tools have been released, as shown below:

• Quorum [92]: this is a programming language that has been designed for
blind children. It is interesting because its design has been based on a
Human-Computer Interaction study, becoming the world’s first evidence-oriented
programming language, as stated on its webpage. One of the features of Quorum
is that it contains libraries for game development. While it is possible for visually
impaired users to create video games with Quorum, this software poses several
issues. The most important of them is that no commercial games are being
developed with this language; instead, game development kits with graphical user
interfaces are used. This will not allow visually impaired users to develop games
as part of professional game studios. Also, creating a whole new language with
a reduced number of developers means that a smaller effort will have been put

20

on each component, including game and graphics optimization; if the goal was to
make development accessible, the best option is to focus on making user interaction
accessible, and plug that accessibility layer to an already implemented game engine.

• BGT (Blastbay Game Toolkit) [102]: this is a game development kit. It was
originally created by Blastbay Studios, a game development company, to create their
own audio games. After some time they started selling the game engine. Finally
they abandoned BGT and released its source code for free. BGT is an interpreter10

that reads source code and translates it into low level instructions for the computer.
As long as the code is being edited with an accessible text editor (such as the ones
described in 2.4), the task of creating a video game is feasible for visually impaired
users. However, BGT is currently maintained by one person, it is not used in the
game industry, and using it is just slightly more usable than programming a video
game from scratch.

• Unity Accessibility Plugin [80]: this is not a full game development kit, but an
extension that makes the Unity3D game development kit accessible. It is being
maintained by Michelle K. Martin, a former software developer for CRYTEK (the
company that owns Cry Engine11). She made a great decision trying to make Unity
accessible, as most game developers (either professionals or amateurs) extensively
use Unity, so that visually impaired users are closer to find a gap in the industry.
Also, the code for this plugin is published for free with the MIT license, that gives
developers freedom to contribute without restrictions. In fact this project is so well
thought out that the mission of this thesis would be futile if it wasn’t for some details.
Firstly, this plugin is only maintained by two contributors as seen in [80]; even if
M.K. Martin is a skilled developer, software is difficult to scale when workforce is
so scarce. Secondly, it is clear that this plugin that works separately from (and
depending on any development changes in) the Unity game engine. Although the
plugin can be downloaded from the official Unity Store, installing it require a strange
use of the program options, which reveals the fact that Unity developers are not
considering M.K. Martin’s ideas, irrespective of all her effort. Because of this, it may
be possible, at any moment, that there is no way to connect Unity with this plugin;
also, the installation process is too difficult for users, specially for inexperienced ones.
Thirdly, this project is far away from being compatible with all major operating
systems, partly due to the fact that only two developers are maintaining this project
in their spare time. This project is definitely the closest visually impaired users
currently are from being able to develop games in a professional context, but the
way Unity has been built and licensed makes it a bad solution by now, and it is
definitely not fully usable.

10An interpreter reads code written in a particular programming language and transforms it into basic
instructions that the computer can understand. [76]

11Both Unity3D and Cry Engine are game two of the three most famous game development kits
currently available. They will be further described in the following sections of this document.

21

3 Design insights
Figure 3 makes a reference to the content that is going to be discussed in this section.

It symbolizes that conclusions from the state of the art and findings from the exploratory
study have been considered in this section.

Figure 3: UCD Methodology. Phase 2: Design insights

3.1 Exploratory study

There are several techniques for gathering information about users: questionnaires,
focus groups or interviews are examples of commonly used techniques. The exploratory
study, as its name indicates, tries to explore a concept with user information [32]. Several
users are asked open questions in an interview. Then the researcher has to look for
similarities between answers of all users. These similarities are formalized and yield
information that can be used to better understand the problem and a possible solution
for that problem. This formalized knowledge is usually known as findings ; the term
highlights the fact that this technique allows to discover complex information about user
experiences.

Exploratory studies require more time and skills from the researcher, compared to
other user information gathering techniques. Conversations are extensive and may span
several days or weeks if users live in distant parts of the globe. This means that the

22

number of interviewed users will always be more reduced, specially when the interview
is unstructured or semi-structured. Nevertheless, the information gathered from the
study is rich and full of details that would otherwise have not been captured. As it
has been mentioned before, this project is highly complex in terms of Human-Computer
Interaction, because requires considering more interfaces than the classic Graphical User
Interface (GUI). Every single detail from users is valuable in this case, even memories
and experiences that may go beyond the scope of the interview. For this reason, an
exploratory study has been used to gather knowledge from the users.

Users were first given a short description about this research project. They were told
that alternative input modes are being considered: auditory icons, and hand / body
gestures recorded with a webcam or special sensors. They were asked short questions
regarding age, profession, etc. Finally, they were asked two open questions where they
were encouraged to explain for as long as they wanted.

Short questions were the following:

1. what is your age

2. what visual problem do you have

3. how many years have you been developing software (in case you do)

4. how many years have you been developing video games (in case you do)

5. do you study or work?

6. do you develop software as part of your job or as a hobby (in case you do)?

7. do you develop video games as part of your job or as a hobby (in case you do)?

Open questions are the following:

1. How do you normally interact with your computer?

2. Would you feel comfortable with the interaction modesI have mentioned, together
with keyboard interaction?

3.2 Participants

3.2.1 Participant profile

Finding the adequate users is a key point of the exploratory study. This research tries
to analyze a specific type of user, so it is necessary to find users which match a particular
profile. More specifically, exploratory study participants required to have:

• some degree of visual impairment

• experience developing games or

• experience developing software or using computers

Experience here accepts many degrees. Both users with basic knowledge and advanced
capabilities are accepted. Also, it was irrelevant to accept students, hobbyists or
professionals, as long as they fulfilled the required criteria.

23

3.2.2 Searching for participants

Searching for users was a long process. The number of users that match the profile
described in section 3.2.1 is low, so it takes time to find these users.

One of the first places I went to search for users was Pinto Association for People with
Disabilities12 [43], as it belongs to my home town. This institute is an early assistance
center, so users are too young to develop software or videogames (3 to 10 years). Also,
most users suffered from cognitive disability; there was only one children with visual
impairment, but s/he was particularly young.

After talking to volunteers and the center secretary, I was adviced to contact two of
the Madrid offices of the National Organization of Spanish Blind People (ONCE13). This
organization is probably the biggest Spanish institution that defends the rights of the
visually impaired. It took several hours to get to the right office, as each office addresses
different topics. I initially visited the General Office and from there I was redirected to
the ONCE Madrid office. In particular, I talked to the Social Affairs department, who
told me to meet Francisco Monzón, in charge of the Culture section. I explained my
project to him and he gave me advice about accessibility in general; he also praised my
idea and thought that it could greatly help visually impaired users. Finally, he promised
to search for users he knew from ONCE computer technology courses. Some weeks later,
I managed to contact with two people found by Mr Monzón.

One of the users featured in this exploratory study was found from a web article. After
finding his contact information, we stayed in touch for some days. S/he adviced me to
search in the Program-L mail list [74], as well as in the Audio Games Forums [68]. The
first resource is a mail list for visually impaired developers and computer enthusiasts.
The second resource is a set of forums about audio games; there are several topics such as
gaming, development, announcements, etc. Most users were found at one of these forums.

Finally, I also found users after reading online articles and papers, as well as from advice
received at the aforementioned places.

3.2.3 Demographics

A total of 7 users were interviewed. They have ages between 17 and 52 years, with
most of them being younger than 30 years. Average age is also around 30 years; no users
younger than 10 or older than 60 were found. This age distribution makes sense, since
visually impaired users have been using computers for the last generations. Figure 4 shows
a distribution of age across these users:

12Translated from the official Spanish name, Asociación de Minusválidos Pinto, Centro de Atención
Temprana

13Acronym. Comes from the Spanish term Organización Nacional de Ciegos Españoles.

24

Figure 4: Exploratory Study. Participant age distribution

Most of these users are totally blind, as shown in figure 5. Next ones in number
were users with low vision. Only one was legally blind. No partially sighted users were
found. Sighted users were not considered because they rarely know how to use assistive
technologies, one of the key points in this research.

Figure 5: Exploratory Study. Visual impairment distribution

Most users had developed software, either professionally or as a hobby, for an average
of 4 years and a half. However, only two users developed games, and only had 1 year of
experience. It is also worth noting that these two participants who developed games only
did as a hobby. One of them told me outside of the interview that s/he had designed an
audio game and wanted to make it a commercial success, although s/he doubted that was
possible. This data shows that there are few visually impaired people able to develop a
game, and that in any case they could be easily hired in a game studio. This information

25

is summarized in figures 6 and 7

Figure 6: Exploratory Study. Software development experience distribution

Figure 7: Exploratory Study. Game development experience distribution

3.3 Interviews

A summary of the interviews is provided below in the form of cards. This way of
representing the outcome of the interviews is slightly different from a simple dialogue.
It has been based on the concept of personas14, which is used in the UCD methodology
to collect information about user profiles. A persona is different from a person or the
archetype of a person [27]. Personas are highlights of aspects of a person that are relevant
for the problem being discussed, and depend on the context of the task being done. In
this case, we present real personas as the described users are real and they try to describe
the context in which a visually impaired developer does his/her daily life tasks.

14The name is correctly written; it comes from the Latin word for person.

26

The data shown in the following cards is real (except for the names and pictures15,
which have been invented to preserve participants’ privacy). However, it is correct to say
that they are inspired by personas.

Specifically, the interviews have a semi-structured format. They follow this format
because somehow the two questions were asked during the conversation, but in the end
each interview has touched upon several topics and personal experiences. Contact with
users has been mostly by email, some of them by Twitter private messages, and some of
them by telephone. As a reminder, any resemblance in name, surname and picture to
actual persons, living or dead, is purely coincidental.

Pepa Smith
24, computer science graduate and web & apps developer

Totally blind since born
Professionally developed software for

5 years

No previous experience in game

development

How do you normally interact with your computer?

I basically use Windows together with the NVDA screen reader. I browse the
web with Firefox. For development I use Eclipse, Visual Studio, and Notepad++.

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

Earcons do not exclude keyboard interactions, the others do. However, programming using gestures and head
movements doesn’t sound very productive. I guess you can make some kind of soundscape representing
your canvas and allow for dynamic creation of controls by using constant sound beacons when a control
has been placed in a certain position. This works if you have some way of scrolling the interface, since
you can’t represent too many audio sources without it getting too confusing to follow. Keep in mind that
a blind person has no sense of what something looks like at times, not even when they try to imagine it.

15The second user’s profile picture is a picture of myself. The rest of pictures have been legally
downloaded from Pixabay [73], a webpage to download free, non-copyrighted pictures

27

Hans Pitt
17, high school student

Legally blind (1/24)
Developed software as a hobby for 6

years

Developed videogames as a hobby for

1 year

How do you normally interact with your computer?

1.1: General use: I use screen reading technology to use and controlmy computer. I, for themust part, use keyboard
only. 1.2: software development. To find ide’s (Integrated development environments) that are fully accessible
with screen reading technology is often hard without some kind of special hacky method. So for the biggest part i
use eclipse (because it’s fully accessible) and notepad++ with a command line. site note: When your’re blind and
developing software and / or video games you will need to use the command line / terminal at some point in time.

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

I don’t really know how the 2nd option would work. I guess it could work but
I’m not sure. As for the first option, I think it could be usefull if done right.

28

Erik Jiménez
42, computer technician

Low vision
Developed software as a hobby for 10

years

No previous experience in game

development (s/he plays games)

How do you normally interact with your computer?

I normally use keyboard and mouse because I only have residual vision, instead of total blindness. If my
vision was slightly worse I would only use keyboard; as a side note, JAWS only works via keyboard, partly
because it is more efficient than mouse, partly because at least all visually impaired users can work with
a screen readers. I also use Windows Magnifier as it is the lightest tool in terms of CPU and RAM usage.
Finally I use a custom magnifier made by ONCE, but it has more bugs and it takes more computer resources
than Windows Magnifier. There are moments where there is too much or too little ambient light and I cannot
clearly see the screen. In these situations I use keyboard exclusively. I also do this when the computer I am

working with does not have any magnification software installed. A last comment about screen readers. . .when
you use the screen reader you have much more functionality compared to the screen magnifier. It is not
unusual for me to interact with keyboard and screen reader; it is the most powerful combination for me.

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

I think earcons could be useful, although users should be able to switch them on and off whenever they want, either
one by one or globally. It should also be possible to change earcon volume, again for each one or for all of them.
Being able to discriminate earcons by configuring them is really important; if not they could become annoying. I
personally don’t like the idea of gestures; I would prefer manipulating 3D objects with keyboard shortcuts, although
I would include it as other users may find it useful. By the way, if you used gestures with webcams I would find

troubles testing your solution because I don’t have a webcam. Maybe you could assume that other users with visual
impairment will neither have webcam, so it would be ideal if you could control the program by just using keyboard.

29

Natalie Duemilanove
52, photographer and computer technician

Low vision
No previous experience in software

development

No previous experience in game

development

How do you normally interact with your computer?

Although I am not a software developer, I do computer maintenance work. As a photographer, I use image
editing software, which I think is similar to the software you are talking about. I use the screen reader
and similar tools, but I can also directly look at the screen (only that it is not super-precise this way).

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

In my particular case, and as a user with low vision, earcons would only be useful for specific user experiences,
like when moving to places where there is are no visual signals. Gestures are different; probably you and
I would immediately associate them with people with reduced mobility, but I am sure that we won’t be

looking at screens in the future as we do nowadays. We will probably communicate in different ways with
interfaces. Speech recognition is an option; what about gestures? To my mind they would be perfect for
specific actions. In fact we can see this kind of commands nowadays, for instance on Android. Samsung
Galaxy S6 and newer models offers gesture commands, even if people don’t use them a lot by now. . .

30

Hassan Pacheco
26, linguistics student and freelance developer

Low vision on 1 eye till age 10; totally

blind since then

Professionally developed software for

9 years

Developed games as a hobby for 1

year

How do you normally interact with your computer?

I’m using screen readers to interact with computers (NVDA and Jaws on Windows, and Orca on Linux).
I’ve learned scripting for NVDA and Jaws in order to make non-accessible programs accessible for my
needs. I do not find useful those solutions which require voice commands or any kind of sensors.

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

I don’t think that webcam or other kinds of sensors will be useful in fixing accessibility issues. Accessibility should
mean doing a job as conventionally as possible, or in compliance with the industry standards. Unfortunately, while
the blind have difficulty in explaining screen readers to their boss sometimes, such a specialized workstation will
not help the blind find a job, I guess. Instead I advice sticking to keyboard commands that would simulate mouse
motions, and 3D audio to indicate objects’ position or movements as well as color tones and saturations on real time.
One such example can be seend at https://github.com/nvaccess/audioScreen. I experienced one such situation
when I applied to a Java developer position. They wanted me to code with InteliJ, but it was not so accessible
those years, and I was using Eclipse instead. Even such a slight IDE preference was an issue to be addressed.
If you are a freelancer or self-employed it does not pose a problem unless you collaborate with a team remotely.
However, you need to be able to work with industry standards if you want to work in an office environment.

31

Susana Ellis
34, game & software tester and sound designer

Totally blind since birth
No previous experience in software

development

No previous experience in game

development

How do you normally interact with your computer?

I interact with my computer with a keyboard, sometimes I use a mouse but mostly it’s a combination
of keyboard and a screen reader called NVDA. I play games in my computer, with keyboard only. I
have not hit the tactile or console scene just yet, but touch may happen eventually, who knows.

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

I would be happy with any mode. Audio cues are useful. I have also played some games which use 3D
audio and the overall feeling is quite good. I don’t use expensive 3D hardware or extra game pads or things
like that, because space on my bench is limited and I cannot afford those pieces of equipment either.

32

Homer Ramírez
21, Information Technology college student

Totally blind from birth (detached

retina)

Developed software as a hobby for 1

year and a half

No previous game in game

development

How do you normally interact with your computer?

I generally use the GNOME desktop environment with the Orca screenreader, in addition to using Speakup
with the command line. In terms of software development, I use Emacs as a text editor and the Rust and/or

Python toolkits. On a rare occasion, I also use Eclipse for Java programming (primarily for class assignments).

Would you feel comfortable with the interaction modes
I have mentioned, together with keyboard interaction?

I would be very comfortable using the above methods for interacting with the
game. My laptop is capable of taking in touch gestures, and I have a kinect sensor

or webcam. I enjoy three dimensional audio earcons, so those work as well.

3.4 Design insights

Together, the state of the art and the exploratory study have produced a remarkable
amount of information. This information, known as design insights, determine who our
target user is, what are the user’s needs, and what is the problem to address.

One of the findings gathered from the exploratory study is that participants have used
the same visual impairment classification than the one used in section 2.1.1. This indicates
that this classification can be considered as a real instrument for users, as it describes the
way in which they can or cannot fulfill a specific task.

In terms of input interaction, most participants agreeed in their preference for keyboard.
No extra hardware should be used, according to majority’s preferences. According to
Hassan, using special hardware could automatically label the user as different or inferior
because they are using special hardware. Pepa says that switching between special
equipment and the keyboard would not be very productive, given her experience as a
software developer who spends many hours typing code. Only Susana and Natalie view
gestures as useful, but they do not make any reference to how flashy would it be to use
them. Also, [7] proposes using haptic technology to enhance input and output interaction,
but this research is focused on immersive games, where it is not unusual to see increasingly
flashy gadgets.

33

All participants have similar opinions regarding output mode. Most of them use
auditory icons with other applications and audio games they play, so they are happy
with them. However, Erik pointed out that they should be easily configurable. This
includes changing the sound sample associated to a particular icon, changing its volume,
or turning one or all of them off, in case the user is annoyed by the sound. This coincides
with [35], where one of the conclusions of the study was that auditory icons should be easy
to distinguish one from another; if users can change auditory icons as they want, they
will easily distinguish them. Finally, and based on [14], it seems that output information
could be either sound samples, continuous sounds (like a sine wave) or verbal descriptions
that are sent to the screen reader.

Pepa also made an interesting comment regarding 3D views, and it should be taken
into consideration given its relevance to the research. She said that users can get confused
when lots of acoustic information is presented at once. Also, she pointed out that visually
impaired users sometimes may not have an idea of what an object looks like, so it is
better to reduce the number of simultaneous objects that are being shown in the 3D
view. Although [4] states that visually impaired users have very precise mental models of
objects in space, it is also true that the rest of research papers and games considered in
the State of the Art highlight that 3D spatial information should be as much simplified
as possible.

Erik talked about how she can switch between different input and output modes. This is
particularly true for users with smaller degrees of visual impairment. However, all users
agree on the fact that keyboard plus screen reader is the most productive interaction
combo, and it can be used by people with any degree of visual impairment; this is crucial
for making the final product inclusive.

Having analyzed products like Visual Studio highlight a current trend in the creation
of accessible software development tools. As pointed out in [30], it is preferable to not
reinvent the wheel and to add accessibility as an additional module to existing and
maintained solutions, ensuring all users can work using the same up-to-date tools. This is
the approach used in almost all big software projects. In fact, among the products shown
in section 2.5, the most promising solution is the Unity accessibility plugin, and part of its
success comes from the developer obeying the principle of software reuse. Certainly, the
solution proposed in this document will also comply with this software reuse principle.
For this reason, the proposed design solution will be focused on an accessibility layer,
which will be attached to an already existing game development kit.

Thanks to the valuable information gained with the design insights, it is now possible
to define the following design elements:

• Target user: s/he is a visually impaired user. This includes partially sighted users,
users with low vision, legally blind users, and totally blind users. The user knows
how to perform daily tasks in a computer at least, but it is common that s/he also
has some experience with software development. In terms of age, the target user is
generally young: either a grown teenager (15 to 25 years approximately) or an adult
(25 to 55 years approximately).

34

• User needs: the user cannot use a graphical user interface without additional
software, that is, s/he cannot depend on visual output only. The user may see
the screen contents blurred, have difficulties with particular colors, or may just not
see anything at all. In order to consider the worst-case scenario, we can say that
the user normally cannot make use of a screen and graphical peripherals (mouse,
touch screen, joystick, etc). The user therefore prefers to navigate the computer
with the keyboard, and prefers to receive feedback from the computer with a screen
reader. S/he may also use auditory icons, provided s/he could change their volume
or deactivate them at any moment. The user’s hearing gets saturated if there are
many simultaneous sounds being played, so s/he prefers to have a partial view of
the program and the scroll it. The user may also need a screen magnifier or a color
inversion tools that already come with the operating system. In order to correctly
perceive game objects from the 3D view, s/he needs stereo headphones.

• Problem: the target user wants to develop a computer game in a game development
studio. Additionally, s/he may want to develop a game as a side project. However,
available game development software used at companies do not let the user perform
this task without fulfilling his/her needs and preferences.

35

4 Design of the solution
Figure 8 makes a reference to the content that is going to be discussed in this section.

It symbolizes that the outcome of this section is both a design specification and a set of
implementation details.

Figure 8: UCD Methodology. Phase 3: Design of the solution

Design insights have been crucial to have an overview of what features should the
program have. Taking these high-level details into consideration, it is now easy to come
up with a design specification that captures these insights. This section first describes the
software taken as a reference for the design of the solution. Then the design specification
is explained in detail. After this, implementation suggestions for the design are provided,
considering the software taken as a reference. Finally, a prototype is designed for future
user evaluation of the design.

4.1 Chosen technology

4.1.1 Available technologies comparison

Several programs have been considered to have flexibility when choosing the technology
for this design. All of them can be considered game development kits, that is, programs
that contain all necessary tools to create a game (design tools, programming tools,
animation tools, etc.). Game development kits are also known for automating several game
development tasks, which make game development easier, less error-prone and faster.

36

There are thousands of game development kits. Only a few have been selected, either
because of their popularity in the game industry, or because of special features that make
them interesting for this research project. They are described below:

• Unity 3D [94]: Unity is by far the most intuitive game development kit in the market,
and one of the three most used, together with Unreal Engine and Cry Engine (see
below). It has been widely adopted by companies and hobbyists because of its ease
of use and the number of platforms games can be exported to.

• Unreal Engine [101]: this game development kit created by Epic Games Inc. is
arguably the one with most powerful graphical capabilities. Most high budget
videogames are developed with Unreal Engine. It is less usable than Unity, but
it has more functionality and it has been further optimized, so it is best suited for
expert game developers.

• Godot Engine [79]: this game development kit was originally created by two game
developers to release their own games; the source code was released some years
after they founded their game studio, and now it is the most complete free and open
source game development kit available. They have recently received 20,000$ by the
Mozilla Awards [47], that encourage the use of free and open source software.

• Cry Engine [70]: graphic capabilities of this software, created by Crytek GmbH, are
really close to those of Unreal Engine. It has been extensively used in games that
have later turned into commercial success, like Crysis 3 [23].

• Amazon Lumberyard [66]: after Amazon signed contract with Crytek GmbH, they
created a version of Cry Engine with extended support for Amazon products. It is
still in development and several years will pass until this software is used by game
studios, but it looks promising.

• GREP [33], [41]: this game creation environment targets educators without previous
technical experience who want to build educational games featuring virtual reality.
It is based on a Unity game, so that educators can create the game in virtual reality
while they play it.

Table 1 shows most important features for each one of the game development kits
considered above:

37

Criteria Unity Unreal
Engine

Godot
Engine

Cry
Engine

Amazon
Lumber-
yard

GREP

FOSS X X

Source code
available ? X X X X

Windows
support X X X X X X

OSX support X X X X

Linux support X

Other OS
support X

Number of
export platforms 31 9 9+ 9 5 3

Editor
implemented in C, C++ C++ C, C++,

Python
C++,

Lua, C#
C++,

Lua, C#
Unity,
XML

Games
implemented in C#, Boo C++ C++,

GDScript
C++,

Lua, C#
C++,

Lua, C#

XML,
graphic,
Unity
project

Documentation 9/10 8/10 7/10 4/10 0/10 2/10

Maturity (years) 18 11 2 14 0 6

Asset store X X X X

Number of
developers 700 938 337 600 ? 1

Table 1: Game development kits comparison

Each game development kit has been assessed by several criteria. There are some
things that should be clarified about the table. FOSS is an acronym for Free and
Open Source Software; this criteria means whether if a particular software is free and
open source software or not. Support means if a particular software can be used in a
particular operating system. Export platform refers to the operating systems and devices
where developed games can be played once they are published. Documentation is a
subjective criterion that gives a grade out of 10 to the documentation of a particular
software; it has been based on the documentation size, tutorials and lessons and ease
of use of the programming reference. GDScript is a programming language based on
Python and specifically used for Godot Engine. The Number of developers criterion is a
rough estimation; it is based on the number of contributors at the online code repositories
where each software is being stored. OS is an acronym for Operating System. 9+ in

38

Godot Engine’s number of export platforms means that this number is actually higher
than 9, as custom platform builds can be programmed.

Godot Engine has been chosen to consider the design of the solution for the following
reasons:

• It is the only game development kit that is free and open source and has its source
code available online. This makes future incorporation of accessibility features
highly probable, compared to privative software16.

• It is the game development kit that can be used in the widest range of operating
systems, with the special addition of Linux (which is not available for any other
game development kit).

• It has been implemented in known and up-to-date programming languages (this is
shared by other game development kits, with the exception of GREP).

• Its documentation is good and the number of developers is high, taking into account
that it is a very young game development kit. In just 1/9 of the time Unity
has been active, Godot Engine has half the number of contributors Unity has got
nowadays; these figures indicate that Godot Engine community is growing fast, and
this translates into more reliability, more features and less errors.

4.1.2 Godot Engine user interface analysis

Before generating the design specification, it is important to consider how is the chosen
technology (i.e., Godot Engine) designed. This will mostly cover details about the user
interface of Godot Engine, as these information is crucial for the design specification;
implementation details will be considered later in section 4.3.

Godot Engine is organized between two screens:

• Project manager screen: this is the starting screen where saved projects can be
loaded. There are two tabs: one with the projects list, and another one with projects
and templates uploaded by other users.

• Main screen: this is the screen where most activity takes place. Main screen is
similar to the Project manager screen. It is divided between 5 panes: a FileSystem
pane, an Output / Debugger / Animation pane, a 2D / 3D view, a Scene pane, a
Node pane and an Inspector pane. There is an upper menu bar, but it is divided in
5 separated parts: a Scene / Import / Tools / Export menu, a 2D view / 3D view /
Script / AssetLib menu, a menu with playing and testing actions, a system load bar
and a small menu with Settings and 2 indicators, one of them representing changes
in the file system, and another one representing changes in the 2D/3D view.

Despite of not having been designed with accessibility in mind, most elements of Godot
Engine’s graphical user interface can be easily made accessible for visually impaired users.
Most part of the program’s windows are navigable by keyboard, which already removes
an important barrier for these users. There are some exceptions, however.

16Refers to software that is neither free software nor open source software.

39

The Project manager screen only allows to move between the list of saved objects. The
side bar with available actions for that screen, or another tab with game templates, are not
accessible from the keyboard. However, most part of this screen becomes tab-navigable
after clicking on the Scan action button located at the side bar. Almost no tooltips have
been included. A screenshot of this screen is shown in figure 9.

Figure 9: Godot Engine: project manager screen

Settings menu is interesting because it contains a Keyboard shortcuts tab, where users
can configure all keyboard shortcuts that can be used in the editor. This feature
is extremely important for visually impaired users, who replace mouse gestures with
keyboard shortcuts. It is highly probable that all these shortcuts are read to this menu
from a configuration file. In this sense, adding new shortcuts for efficient keyboard
navigation looks like an easy task. A screenshot of this menu is shown in figure 10.

40

Figure 10: Godot Engine: shortcuts tab

Main screen elements permit tab navigation up to some degree, but some parts cannot
be accessed by the keyboard. For instance, parts 1, 2, 3 and 4 of the upper menu (from
left to right and starting from 1, as indicated in figure 11) cannot be accessed by keyboard.
Moving between tabs does not work, even if there are shortcuts for that (Ctrl-Tab and
Shift-Ctrl-Tab, as in most programs). There are almost no tooltips. When pressing
Shift-Tab to go to the previously visited menu element, menu focus is put on a different
menu element, which is not a logical navigation. Pressing arrow keys has the same result
than using Tab and Shift-Tab, which again is not logical. For some panes like the
Inspector pane, keyboard navigation is not logical and it does not allow to access drop-
down menus associated to each element. Each pane has a drop-down menu to change its
position or to attach it to other panes; this feature is interesting but it cannot be accessed
with the keyboard. Finally, there is no way to know if status indicators (those located at
the top-right part of the upper menu) are changing or not, as they depend on vision. A
screenshot of this screen is shown in figure 11.

41

Figure 11: Godot Engine: main screen

The 3D view shows three axis for reference and a grid that represents an horizontal plane
intersecting with coordinate (0,0,0). Tab switching works in this part of the user interface;
it lets switching between different open scenes. Basically, the user can rotate view, change
zoom and move in any direction by using different combinations of mouse movement and
mouse clicks. The 3D view also changing properties from game objects: principally,
they allow to translate, rotate and scale the object; these are properties that can also
be changed from the Inspector pane with keyboard, although they require selecting the
desired game object (either from the 3D view or from the Scene pane) and getting to the
Inspector pane by using Tab and arrow keys. It is also possible to select one or several
objects; this makes the Inspector pane consider properties of a group of objects, instead of
considering them separately. As of the panoramic view a sighted user gets when looking at
the 3D view, visually impaired users could receive similar information by selecting objects
from the Scene pane and checking their properties at the Inspector pane one by one, but
this is clearly a very inefficient way of interacting with the program. A screenshot of a 3D
view with three objects (a sound source, a cube, and an imported 3D object) is shown in
figure 12.

42

Figure 12: Godot Engine: 3D view

The aforementioned issues regarding accessibility in Godot Engine’s user interface are
summarized in table 2:

43

Problem Place in the user interface

No full keyboard naviation Project manager screen, main
screen

Almost no tooltips are included Project manager screen, main
screen

No logical ordering of Tab
navigation Main screen

Arrow keys and Tab have the same
behavior

Project manager screen, main
screen

Information cannot be perceived
without vision Status indicators, 3D view

Multiselection is not efficient
without a mouse 3D view

Table 2: Accessibility problems in Godot Engine

4.2 Design specification

Knowing in detail how does the user interface of Godot Engine work for the most part,
and remembering the design insights discovered in section 3.4, the process of writing a
design specification is simple, logical, and almost instantaneous.

Design specifications are normally drawn in what interaction designers call sketches or
mockups. These drawings show the main elements of the design in a visual way, and
they are drawn with tools such as Axure [53] or Adobe Illustrator [69]. However, this
design workflow is not practical for this solution, because the graphical user interface is
already built, and what has to be re-designed is the interaction, which is a behavior. Also,
most part of this behavior is related to audio, something that is difficult to implement
with Axure or Illustrator; these two programs are thought not to design auditory user
interfaces but graphical user interfaces, which is what most designers work with. In
addition, providing such a design would not be accessible for visually impaired users
unless a verbal description was given. This design specification thus requires to be written
instead of drawn. However, some drawings will be provided as supportive material.

The design specification is divided into three sections: Input mode, Output mode and
Configuration. The Input mode section describes all hardware and software required to
enable accessible input for the target user. TheOutput mode section describes all hardware
and software required to enable accessible output for the target user. The Configuration
section explains how to modify the Settings view of Godot Engine to include accessibility
features that users can easily change at will.

4.2.1 Input mode

Menu input
Menus can be navigated by keyboard only or with keyboard and mouse: this enables

44

visually impaired users with severe vision loss to efficiently navigate menus, and it also
allows sighted users and visually impaired users with some degree of visual perception
to make use of mouse gestures provided by Godot Engine. Keyboard shortcuts can be
changed in the Shortcuts tab. Table 3 shows relevant keyboard shortcuts that are added
or redefined. They are sorted in ascending order of specificity according to the hierarchy
defined in Godot Engine graphical user interface (panes, tabs, pane contents. . .):

Shortcut Behavior

F10
Changes menu focus to the first element of the upper menu (Scene).
This shortcut is normally used to access upper menu in programs.

Alt-n

Changes menu focus to the first element of pane number n. This
enables users to easily switch between panes without having to use Tab
for several seconds, and to change data from one pane remembering
data from another pane for a short amount of time. For instance, the
user may be listening to the 3D view, select an object, then changing
to the Inspector pane and precisely change this object’s position by
entering numeric values at the Translation field.

Ctr-Tab
Changes menu focus to the first element of the tab adjacent to focused
tab in the focused pane.

Tab
Changes menu focus to the first element of the next group inside of
the focused pane.

↑
Changes menu focus to the element above the focused element inside
of the focused group in the focused pane; this includes elements from
upper menu.

↓
Changes menu focus to the element below the focused element inside
of the focused group in the focused pane; this includes elements from
upper menu.

→
Changes menu focus to the element at the right of the focused element
inside of the focused group in the focused pane; this includes elements
from upper menu.

←
Changes menu focus to the element at the left of the focused element
inside of the focused group in the focused pane; this includes elements
from upper menu.

Table 3: Design specification: keyboard shortcuts for menus

3D view input
3D view can be navigated by keyboard only or with keyboard and mouse. Keyboard

shortcuts can be changed in the Shortcuts tab.

In this design specification, two new modes have been added to the Select, Move,
Rotate and Scale modes: ExploreMove and ExploreRotate. These modes are the keyboard
equivalent of mouse gestures for visually impaired users. It is important to bear in mind
that modes are mutually exclusive, and only one of them can be active at a time.

45

The shortcut design has tried to generate a unified mental model for the target user.
Actions are specified with Ctrl, followed by a letter that is the initial of the action: F for
Find, O for Origin, M for Multiselection. . . New modes are specified with plain letters,
and they are close to the natural left hand position in the keyboard (the A and S letters),
just like the letters for already existing modes were assigned. Finally, arrows have been
chosen following the most intuitive spatial model. ↑, ↓, → and ← keys symbolize +Z,
-Z, +X and -X axes, so the arrow keys are placed representing the floor, i.e. the (X,Z)
plain. In order to specify height with the Y axis, ↑/↓ are pressed with the Shift key;
they were chosen for vertical movement because ↑ and ↓ are mentally related both with
moving vertically or to the front/back.

Tables 4, 5, 6, 7 and 8 show relevant keyboard shortcuts that are added or redefined:

46

Shortcut Behavior

Shift-↑

• If the Select mode is selected and the ExploreMove and
ExploreRotate modes are toggled off, it finds the object that
is closest in the Y axis to and above the user’s position in the 3D
view and selects it.

• If the Move mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is moved up by a small amount of units.

• If the Rotate mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is selected,
the object is rotated in the Y axis with a positive angle by a small
amount of units.

• If the ExploreMove mode is selected, the user moves up in the 3D
space.

• If the ExploreRotate mode is selected, the user rotates positively
in the Y axis in the 3D space.

Shift-↓

• If the Select mode is selected and the ExploreMove and
ExploreRotate modes are toggled off, it finds the object that
is closest in the Y axis to and below the user’s position in the 3D
view and selects it.

• If the Move mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is moved down by a small amount of units.

• If the Rotate mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is selected,
the object is rotated in the Y axis with a negative angle by a small
amount of units.

• If the ExploreMove mode is selected, the user moves down in the
3D space.

• If the ExploreRotate mode is selected, the user rotates negatively
in the Y axis in the 3D space.

Table 4: Design specification: keyboard shortcuts for the 3D view (1)

47

Shortcut Behavior

↑

• If the Select mode is selected and the ExploreMove and
ExploreRotate modes are toggled off, it finds the object that
is closest in the Z axis and in front of the user’s position in the
3D view and selects it.

• If the Move mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is moved forward by a small amount of
units.

• If the Rotate mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is selected,
the object is rotated in the Z axis with a positive angle by a small
amount of units.

• If the Scale mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is scaled with a factor greater than 1 by a small
amount of units.

• If the ExploreMove mode is selected, the user moves forward in
the 3D space.

• If the ExploreRotate mode is selected, the user rotates positively
in the Z axis in the 3D space.

Table 5: Design specification: keyboard shortcuts for the 3D view (2)

48

Shortcut Behavior

↓

• If the Select mode is selected and the ExploreMove and
ExploreRotate modes are toggled off, it finds the object that
is closest in the Z axis and behind the user’s position in the 3D
view and selects it.

• If the Move mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is moved backward by a small amount of
units.

• If the Rotate mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is selected,
the object is rotated in the Z axis with a negative angle by a small
amount of units.

• If the Scale mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is scaled with a factor smaller than 1 by a small
amount of units.

• If the ExploreMove mode is selected, the user moves backward in
the 3D space.

• If the ExploreRotate mode is selected, the user rotates negatively
in the Z axis in the 3D space.

Table 6: Design specification: keyboard shortcuts for the 3D view (3)

49

Shortcut Behavior

→

• If the Select mode is selected and the ExploreMove and
ExploreRotate modes are toggled off, it finds the object that
is closest in the X axis and to the right of the user’s position in
the 3D view and selects it.

• If the Move mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is moved to the right by a small amount of
units.

• If the Rotate mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is selected,
the object is rotated in the X axis with a positive angle by a small
amount of units.

• If the ExploreMove mode is selected, the user moves to the right
in the 3D space.

• If the ExploreRotate mode is selected, the user rotates positively
in the X axis in the 3D space.

←

• If the Select mode is selected and the ExploreMove and
ExploreRotate modes are toggled off, it finds the object that
is closest in the X axis and to the left of the user’s position in the
3D view and selects it.

• If the Move mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is se-
lected, the object is moved to the left by a small amount of
units.

• If the Rotate mode is selected, the ExploreMove and
ExploreRotate modes are toggled off and an object is selected,
the object is rotated in the X axis with a negative angle by a small
amount of units.

• If the ExploreMove mode is selected, the user moves to the left in
the 3D space.

• If the ExploreRotate mode is selected, the user rotates negatively
in the X axis in the 3D space.

Table 7: Design specification: keyboard shortcuts for the 3D view (4)

50

Shortcut Behavior

A
Toogles the ExploreMove mode, that allows to move around the 3D

space.

D
Toogles the ExploreRotate mode, that allows to rotate in the 3D

space.

Enter
If the 3D view search object menu is active, the focus changes to the
next object whose name matches the search field (in case there is only

1 match, found object stays focused).

Ctlr-+ Zoom is increased.

Ctrl- - Zoom is decreased.

Ctrl-F

A search floating menu (like the Editor Settings menu) appears with
the title ”Search object in the 3D view”. This search menu contains a
text box where the user can write the name of the object s/he is

looking for in the 3D view. If there is any object in the 3D view whose
name partially matches the search field, focus changes to that object.

Ctrl-D
The X-Y-Z distance from the user’s position in the 3D view to the

focused object is sent to the screen reader.

Ctrl-M
The focused object is selected. Several objects can be selected in this

way (multi-selection)

Ctrl-S Restores selection / multi-selection (no object is selected)

Ctrl-R Restores user’s rotation to (0,0,0).

Ctrl-O Restores user’s position to the origin, (0,0,0).

Ctrl-A
Plays all auditory icons. Synthesized sounds will be reloaded; sound

samples will be played again.

Ctrl-P
Plays the auditory icon/s of the selected/multi-selected object/s.
Synthesized sounds will be reloaded; sound samples will be played

again.

Table 8: Design specification: keyboard shortcuts for the 3D view (5)

4.2.2 Output mode

Screen reader
All elements of the graphical user interface should be defined with a tooltip that briefly

describes their function, and a node type that will be read by the screen reader. When the
focus of the menu or the 3D view changes, the screen reader will output the name, type,
tooltip and value (if it has value) of the new focused element. Graphical user interface
elements ordering must be logical: it must go from upper-left corner to the lower-right

51

corner17.

Status indicators
Status indicators communicate data to the user as follows:

• CPU status indicator: if CPU load doesn’t rise more than 15% for 0.5 seconds, no
action is performed. Else, a continuous sound synthesizer is played. The synthesizer
uses a square wave function; this wave function can be changed at the Accessibility
menu. The frequency of the synthesizer starts with a C5 note for the lowest level
of CPU load (i.e, when the CPU load starts increasing steeply), and it can get up
to a C6 note for the highest level of CPU load. If the CPU load is more than 50%
for more than 1 second, the following message is sent to the screen reader: ”CPU
load higher than 50%”. Both of the two alarm behaviors can be turned off at the
Accessibility menu. Synthesizer level can be changed at the Accessibility menu.

• Resource change indicator: if any resource changes, the following message is sent to
the screen reader: ”Resource changed%”. This alarm behavior can be turned off at
the Accessibility menu.

• Editor window repainting indicator: if the window is repainted (i.e, any element
of the user interface has changed), a sound synthesizer is played for 0.1 seconds.
The synthesizer uses a square wave function; this wave function can be changed at
the Accessibility menu. A square wave has been used (as it was stated with the
CPU status indicator) to associate this timbre with status indicators from the top-
right part of the upper menu. The synthesizer sounds with half the volume of the
CPU status indicator alarm. The synthesizer frequency is a C4 note, which resides
at a different octave than C5-C6, the octave range for the CPU status indicator
alarm. This is translated to a short, low-pitched note, which makes the alarm less
unpleasant, taking into account that the window is repainted often. The volume for
this alarm can be changed at the Accessibility menu. This alarm can be turned off
at the Accessibility menu.

3D views - verbal descriptions
Verbal descriptions are those that give the distance between the user’s 3D position and

the focused object. As previously described, this data is sent to the screen reader. Here
it is a sample verbal description: ”Object enemy13 is at 5 units X axis, 6 units Y axis and
1 unit Z axis away from you”.

3D view - auditory icons
Objects in the 3D view should be represented by auditory icons, which provide the

user with a spatial representation of objects. These auditory icons may be either sound
samples (with a finite duration), synthesized sounds with a finite duration, or continuous
synthesized sounds. Given that Godot Engine knows which is the type of each game object
beforehand, it would be possible to assign default sounds to each type of game object.
Whether if a particular game object is associated to a sound sample or a synthesized sound,

17Users with an occidental background have been considered, as they read from top-left to bottom-
right. However, this ordering should be changed depending on the nationality and culture of the user.
Simplifications like these one have been taken not to go outside the scope of a bachelor thesis.

52

and the configuration of any of the two, should be configurable from the Accessibility
menu.

4.2.3 Configuration

Accessibility menu
The Accessibility menu contains all settings related to accessibility for Godot Engine,

except for the keyboard shortcuts, which are configured in the Shortcuts tab. It would be
located at Menu → Settings → Editor settings → General, as one of the many sections
of this tab (examples of other sections in the General tab are the Text editor section, the
Scenetree Editor section. . .). This section will be divided into several subsections; their
contents are described in the following paragraphs.

Auditory icons settings
This subsection contains an entry for each element in the user interface that incorporates

auditory icons, including the status indicators from the upper-right part of the upper menu
bar. They would be organized in a tabular form; columns would be as follows:

1. Auditory icon name

2. Auditory icon type

3. Auditory icon volume

4. Whether if the icon is muted or not

5. Button; gives access to a file manager in case the auditory icon is a sound sample
(otherwise, the button will be shown as non-clickable)

6. Button; opens a small toolkit to configure the synthesizer options in case the
auditory icon is a synthesizer (otherwise, the button will be shown as non-clickable).
This toolkit would contain the following options:

• Waveform type

• Minimum frequency in Hertz

• Maximum frequency in Hertz

• Whether if the user wants the synthesizer to be continuous or not

• Duration in milliseconds, in case the synthesizer is finite and not continuous
(otherwise, this field will be non-editable and a value of infinity will appear)

• Decay function, in case the synthesizer is not continuous (otherwise, this field
will be non-editable)

.

Screen reader settings
Operating systems already provide a settings menu for the screen reader. For this

reason, the Accessibility menu should not contain screen reader settings, in order to avoid
conflicts with the operating system settings.

53

Font, size and color settings
This section of the Accessibility menu should contain the following elements:

• Graphical user interface size: numeric input field. It changes the scale of the
graphical user interface elements, relative to its original size.

• Graphical user interface color: already available through the Global section.

• Invert colors: check box. When ticked, this option inverts colors of all the elements
of the graphical user interface.

• Font family: drop-down menu. It contains different font families (e.g. Comic Sans,
Times New Roman. . .)

• Font size: already available through the Global section

• Font color: color picker drop-down menu. It changes the color of the text.

In order to complete the design specification, and to clarify the verbal description that
has been given through these sections, a mockup of the Accessibility section is provided
in figure 13. Vertical groups of three dots symbolize a group of elements of the same type
that have been omitted (i.e., sections from the Sections side bar and auditory icon entries
from the Properties). A Synthesizer settings popup has been also considered; dashed
arrows coming from a settings icon mean that this popup appears on the screen when
configuring a particular auditory icon. Earcon is a abbreviation for auditory icon that is
commonly used in accessible programs.

Figure 13: Mockup for the accessibility section

54

4.3 Implementation details

4.3.1 New user interface elements

The Accessibility section added to Godot Engine’s user interface is based on the
user interface elements that were already implemented in Godot Engine (drop-down
menus, color pickers, numeric input fields. . .). Adding this section to the program is
straightforward because it does not required implementing new types of user interface
elements. Also, this part of the solution could be reused with other game development
kits.

4.3.2 Screen reader

Godot Engine (and ideally, any program) should maintain the same functionality for the
most popular operating systems; namely, Windows, MacOS and Linux. Cross-platform
compatibility can be difficult to achieve when different operating systems don’t have the
same base software at their disposal. This is the case of screen readers. Each operating
system has a different screen reader and, although they all follow known accessibility
standards, they receive, process and output information in different ways. Additionally,
these screen readers must somehow establish communication with programs, so that they
can read the user interface contents. This communication is done by a set of code known
as accessibility API18, and each operating system has its own accessibility API. A quick
overview of screen readers and accessibility API’s for the most popular operating system is
given below, as well as development details on how to make them establish communication.

• Windows: there is a wide variety of screen readers that can be used under
this operating system. The two most commonly used screen readers are JAWS,
from Freedom Scientific [77] and NVDA19, originally developed by Michael Curran
and James Teh [82]. These screen readers communicate with Windows using
Windows accessibility API’s. Currently, Windows supports two accessibility
API’s: IAccessible2 [42] and MSAA20 [81]. The former is more complete but its
implementation details are somewhat less clear; the later contains less functionality,
but Microsoft offers an extensive documentation for using the API in C and C++.
This last point is interesting because Godot Engine’s graphical user interface is
written in C++, so that communicating Godot Engine with MSAA would be
relatively easy.

• MacOS: this operating system uses VoiceOver [98] as its screen reader. This screen
reader communicates with the operating system using Apple’s own accessibility API.
This API, known as AppKit [67], is actually in charge of many other services related
to graphical user interface creation. One of these services is the NSAccessibility
protocol [64], which is the piece of AppKit that specifically deals with accessibility.
As part of AppKit, NSAccessibility is developed in Objective-C, which has been
increasing compatibility with C++ over the last years [22]. Therefore, it would be
possible to connect Godot Engine to VoiceOver using NSAccessibility.

• Linux: the most commonly used screen reader is the Orca screen reader [31]. Highest
degree of accessibility requires applications’ user interfaces to be implemented

18Acronym. Stands for Application Programming Interface.
19Acronym. Stands for NonVisual Desktop Access.
20Acronym. Stands for MicroSoft Active Accessibility.

55

with the GIMP Tool Kit [91], known as GTK for its acronym. Linux allows to
choose different window managers, as opposed to Windows or MacOS; the most
popular window manager is the Gnome desktop environment [75], for which more
accessibility effort has been done. The Godot Engine’s graphical user interface has
been developed from scratch, and not with GTK; most game development kits have
custom implementations of the graphical user interface, in order to optimize system
resources (RAM memory and CPU). Despite of this, it is possible to communicate
Godot Engine’s user interface with the Orca screen reader thanks to the accessibility
API used by the Gnome desktop environment, called ATK21 [29]. ATK is an
specification rather than a pure implementation, but this specification has already
been programmed in several programming languages such as C or Python. Given
that Godot Engine’s graphical user interface is programmed in C++ (which is
compatible with C), it is possible to load the ATK C implementation into Godot
Engine, which would successfully communicate the game development kit with the
Orca screen reader.

4.3.3 3D Audio

The proposed design specification requires auditory icons to be heard while the user
is editing the video game. Therefore, software that outputs real time 3D audio is
required, not only when testing games that use sound, but also when editing these games.
Fortunately, Godot Engine already contains several C/C++ libraries that handle 3D audio
and playing sound files. They are mentioned below, together with a link to their location
in Godot Engine’s GitHub source code repository:

• libogg [60]: handles files with the .ogg file format. Source code can be found in [48].

• libvorbis [59]: it is highly related to the libogg library. Source code can be found in
[49].

• opus [51]: it handles audio streaming over the internet. Source code can be found
in [84].

• rtaudio [44]: it handles real time audio. Source code can be found in [55].

These four libraries contain code that can be used to instantiate 3D audio objects. Each
game object in the 3D view would have an associated 3D audio object, that would be
instantiated at the (X,Y,Z) coordinates of the game object. The listener’s point of view
would coincide with the user’s (X,Y,Z) position in the 3D view. The sound generated
for a specific game object would be determined with the user’s auditory icons settings
from the Accessibility menu. These libraries are already supported by Godot Engine for
gameplay, so calling them for editor runtime would be an easy task. It is worth noting
that this idea could be also implemented in any other game development kit and with
any other 3D audio library, which makes the proposed design flexible and reusable.

21Acronym. Stands for Accessibility Toolkit.

56

4.4 3D view prototype

4.4.1 Purpose

This prototype only tests a small part of the user interface of the chosen game
development kit: the 3D view. It obtains information about user’s perception of auditory
information, and about the accuracy of his/her mental models as opposed to the real
displayed information.

In this case the prototype only considers the user’s ability to move in a 3D space and
to look for a particular auditory icon. The prototype is presented to the user as an
experiment where s/he has to accomplish a goal. Several objects have been placed in this
3D space: 5 cubes, 2 cylinders, and 1 sphere. The goal is to guess the number of cubes
and cylinders and to reach the sphere, by using auditory icons associated to them. When
the user reaches the sphere, the prototype stops its execution; user’s guess about the
number of cubes and cylinders is directly discussed with the researcher. User satisfaction
is measured by having an interview with him/her about the experience of having used the
prototype.

The prototype allows to use the rotation, movement and mode shortcuts defined in
section 4.2.1. It is also possible to reset position and rotation, play all auditory icons
in a sequential fashion, and to activate an audio message with help. Shortcuts for these
actions have followed those proposed in section 4, to test if users are comfortable with
these keyboard mappings.

Pre-recorded synthetic voice has been used to simulate output from the screen reader.
In this way, the following messages are generated:

• When the user activates the ExploreMove mode: ExploreMove mode activated.

• When the user activates the ExploreRotate mode: ExploreRotate mode activated.

• When the user activates the ExploreRotate mode: ExploreRotate mode activated.

• When the user restores his/her position: position restored.

• When the user restores his/her rotation: rotation restored.

• When the program starts and when the user presses F1 for help: You are placed
in a 3D space. There are objects in this space: cubes, cylinders and one sphere.
Objects have associated auditory icons. These icons make sound, so that you know
where objects are placed in space. Cubes sound like a double bass. Cylinders sound
like a piano. The sphere sounds like a metallic mesh falling to the ground. Your
goal is to find how many cubes are, to find how many cylinders are, and to reach the
sphere. To move in space, you have to enter the ExploreMove mode by pressing A.
To rotate, you have to enter the ExploreRotate mode by pressing D. You can move
or rotate in any direction by pressing arrow keys. Up and down keys are used for
front back direction (Z axis). Right and left keys are used for right left direction
(X axis). Shift up, and shift down, mean up down direction (Y axis). Press F1 to
repeat this help message. Press Control O to reset your position to (0,0,0). Press
Control R to reset your rotation. Press Control P to play the auditory icons. Good
luck!

57

• When the user touches the sphere: Congratulations! You have reached the sphere.
The program will now exit. Thank you for your time.

Figure 14 shows a screenshot of the prototype running. Both the ExploreMove and the
ExploreRotation modes were used. Several game objects are shown in the 3D space.

Figure 14: 3D view prototype running

4.4.2 Prototype implementation

Unity3d has been used to create the prototype for several reasons. Firstly, Unity
workflow is simple and documentation is detailed, which enables developers to create
prototypes, videogames or even applications really fast. Secondly, I have professional
experience with Unity and I felt comfortable implementing the prototype with it. Thirdly,
Unity allows to export executables to a wide variety of operating systems without changing
any configuration. Lastly, Unity allows to use 3D sound in a very intuitive way; this is
ideal to try the part of the design specification regarding 3D views.

Auditory icons have been based on sound samples, as Unity provides a good mechanism
for easily using sound samples (called Audio Source or Audio Clip in Unity). Sound
samples have been recorded with acoustic instruments from my home and a smartphone.
They have been later processed and cut with Audacity, a free audio editor. Several sound
samples were considered initially, including:

58

• a double bass played with a bow

• a double bass played using pizzicato

• an African djembe played in the center of the drum head

• a piece of wood knocked with the hand

• a metallic mesh hit against the ground

• a grand piano played without pedals or effects

• a piece of glass hit with the nail

The bowed double bass was chosen for the cubes. The piano note was assigned to cylinders,
and the metallic mesh was associated to the sphere. These three sound samples were the
ones with most different timbres. Speech has been generated with an online text to speech
tool.

The Unity project for the prototype has been uploaded to Mega, an online storage
webpage. Executables have also been uploaded there, allowing to try the prototype
without launching Unity. The download link can be found at [65]. This download is
encrypted with a password in order to avoid plagiarism. The password can be requested
by email to my university email address. The project could be made open source in the
future, after bachelor thesis has been assessed.

59

5 Evaluation
Figure 15 makes a reference to the content that is going to be discussed in this section.

It symbolizes that design and accessibility guidelines have been used for this section,
and that the Wizard of Oz technique [11] has been considered as a possible additional
evaluation technique to be used in the future.

Figure 15: UCD Methodology. Phase 4: Evaluation

Two possible techniques have been considered for the evaluation of the solution designed
in section 4. The first one has been used to assess the quality of the design specification
given its robustness and acceptance in the world of accessibility. The second one has been
considered for future improvement; in this way, this phase of the research methodology
can be later reused and expanded with more evaluation data.

5.1 Evaluation method

5.1.1 WCAG guidelines

Web Content Accessibility Guidelines [89] are part of the Web Accessibility Initiative
[56], which is the most comprehensive and maintained knowledge base about Web
accessibility. WCAG22 is focused on Web content, and it encompasses a wide range

22Acronym. Stands for Web Content Accessibility Guidelines.

60

of disabilities and technologies. In fact, WCAG have been consciously made technology-
independent, in the same fashion as the User Centered Design methodology; because of
this, they can be used to evaluate a software program, even if it is not Web-based. Section
2.0 of WCAG has been used in this evaluation, as it has been revised and contains more
detailed evaluation criteria that will yield more useful evaluation results. As a side note,
WCAG states that fulfilling these standards has benefits for all users, because features
that make software accessible have been proven to also make it more usable [13]; this
confirms the argument used for this thesis, where it has been argued that making a game
engine accessible for visually impaired users is indeed beneficial for sighted users as well.

As explained later in section 6.1.1 with more details, there are many accessibility
standards and guidelines that could have been used for this research. Also, because this
project has been strongly based on Human-Computer Interaction, there are evaluation
methods coming from this discipline that can be used, such as Nielsen usability heuristics
[1]. However, WCAG is by far the most accepted set of accessibility guidelines, they
are not tied to federal or legal regulations like other standards do23, and the evaluation
process is particularly systematic and clear when using these guidelines. For these reasons,
WCAG 2.0 is going to be used as the main evaluation criteria of the proposed solution.

WCAG evaluates three general criteria, that are later subdivided in smaller criteria
called guidelines. In order for Web pages (and in the case of this project, for software) to
be considered accessible, the following criteria should be fulfilled:

• Perceivable: web content is made available to the senses - sight, hearing, and/or
touch

• Understandable: Content and interface are understandable

• Robust: Content can be used reliably by a wide variety of user agents, including
assistive technologies

5.1.2 Future user evaluation with the 3D view prototype

The idea of considering users’ opinion as one of the evaluation criteria comes naturally
in Human-Computer Interaction research. Actually, users’ opinion has already been used
in section 3 to formulate the three design elements (target user, needs and problem) of
this research project. Prototypes try to get user feedback about the proposed solution
before having finished the design process. Designers need to put users in conditions close
to real-life ones without an implementation. To test prototypes, a possible technique the
Wizard of Oz [11], and it allows to learn about the quality of the design before making
risky financial investments in the implementation.

The prototype discussed in section 4.4 covers a small part of the user interface proposed
in the design specification. It is worth noting that there are many different ways of
designing a prototype, with some of them covering even smaller sections of a user interface,
and some others being close to the final product in terms of functionality and design.
Prototypes are divided among horizontal prototypes, which show several features but none
of them being fully developed, and vertical prototypes, where only one or two features are

23See sectio 6.1.1 for more details.

61

presented with close-to-product quality. This particular prototype can be considered a
vertical prototype because it already implements shortcuts, navigation and the use of 3D
sound for the 3D view as it would be done in a future implementation. Such a proof of
concept is useful to know if the proposed solution for 3D views is adequate; the proposed
3D view redesign is a rather experimental user interface for visually impaired users, and
no guidelines apply in this case.

5.2 Evaluation with WCAG 2.0 checklist

WCAG constitutes an extensive document that considers Web accessibility in detail.
However, the Web Accessibility Initiative released last year a checklist [57] that is being
widely deployed across accessibility experts and interaction designers, because it is concise
and it covers all points of the guidelines. For the sake of clarity, this checklist will be used
to assess the quality of the proposed solution. The evaluation checklist is long, so it has
been included in the Appendix, section A.

Each one of the guidelines that compose WCAG is subdidivided in several sections.
Each section contains several recommendations. As its name indicates, they are not
strict requirements, and a section can be considered fulfilled if several recommendations
are fulfilled. While WAI does not offer details about how should grades be applied, the
evaluation has considered three possible grades in this case:

• Tick for a recommendation that is fulfilled

• Cross for a recommendation that is not fulfilled

• N/A for a recommendation that does not apply, either because it makes a explicit
reference to Web pages that cannot be considered in a game development kit,
or because the studied program does not contain such element described in the
recommendation.

5.3 Results

Considering only recommendations that apply to software24, and most specifically to
Godot Engine with the proposed design of the solution, 61 recommendations out of 63
have been fulfilled25, and all sections from all guidelines can be considered fulfilled. This
means that the levels of accessibility provided by the design of the solution are satisfactory
and allow visually users to have a pleasant user experience.

Some grades require explanation. Guideline 1.2 about time-based media26 is filled with
N/A grades. This means that videos are not played as part of game development, so these
recommendations did not apply in this case. All recommendations regarding contrast
levels have been marked as fulfilled because font color can be configured from Godot
Engine’s Editor settings menu. Elements like webpage or form have been translated
to its application counterparts: graphical user interface, set of input fields Second

24That is, those recommendations that have been written by WAI for webpages but which can also be
considered for a desktop application.

25See the Appendix (section A) for more information.
26See section A.1.2 for more details.

62

recommendation of guideline 1.3.327 is marked with a cross because some instructions
actually rely upon sound in order for visually impaired users to be able of using the game
development kit; however, this recommendation could be considered fulfilled because all
auditory information in the design specification has a visual counterpart. Guideline 3.3.528

is marked with a cross because Godot Engine’s help system has not been developed up
to that extent, and the design specification did neither consider this possibility.

It should be noticed that the design specification only takes into account accessibility
for visually impaired users. Although most part of the WCAG 2.0 recommendations
have been fulfilled, any researcher willing to reuse this document for future work should
keep this in mind. WCAG guidelines may change in the future and add more detailed
recommendations for users with auditory disability, motor disability. . . Also, if future work
is done about Godot Engine, its functionality should be checked at that moment; it is not
unusual for programs to increment their functionality or to loose small parts of it after
some time.

27See section A.1.3 for more details.
28See section A.3.3 for more details.

63

6 Project management

6.1 Regulatory framework

6.1.1 Accessibility standards

Most accessible software is designed taking into acount the Web Accessibility Initiative
(WAI) guidelines [40]. WAI29 tries to make the web accessible and inclusive. For this, a
series of standards have been released through the years, including:

• Web Content Accessibility Guidelines (WCAG): recommendations for developing
accessible web sites.

• Authoring Tool Accessibility Guidelines (ATAG): recommendations for making web
design tools more accesible to creators. Hence the term authoring tool, as it makes
reference to authors.

• User Agent Accessibility Guidelines (UAAG): recommendations for making web
content rendering software (document readers, music players, etc) accessible.

• Accessible Rich Internet Applications (WAI-ARIA): recommendations for making
interactive web applications accessible.

WAI design guidelines have been created with the World Wide Web in mind. This
means they are not tailored to desktop or mobile applications. However, the WAI
guidelines constitute the de facto standard for software accessibility in general, as they
are complete and have been maintained for a long time. For this reason, the methodology
followed in this work uses WAI guidelines.

In 2000, the United States Access Board released a law that requires technology at
United States federal agencies to be accessible. This law is known as the Section 504 of the
Rehabilitation Act, or simply the Section 508 technical standards [5]. The United States
Department of Justice also published the 2010 ADA Standards for Accessible Design [16],
which is analogue to the Section 504. Neither of these laws target research projects as in
the case of this project, so there is no legal responsibility to apply them in this case.

Similar to the Section 508, Spanish government takes into consideration accessibility
for technology that is released or used by national institutions. The UNE30 Law 139803
[19] was released in 2012 and discusses accessibility requirements for Web content. Again
there is no legal obligation to follow this law for this research project, as it targets Spanish
government websites. It is worth mentioning that this law shares similarities with the WAI
standards, as pointed out in the Spanish government website [21]. This highlights the wide
acceptance of WAI guidelines.

6.1.2 Software licenses

Several technologies have been considered and used while undergoing this User-Centered
Design research project. Some of them could have been used to implement the solution,

29Acronym. Stands for Web Accessibility Initiative.
30Acronym. Stands for Una Norma Española, a Spanish term for A Spanish Rule.

64

but the restrictive nature of their software licenses made them inconvenient. Some others
guaranteed more flexibility in the way they could be used, modified and distributed.
Finally, there is also software that has not been used for the solution, but has been
used to write this report, find information, etc. It is therefore important to mention the
software licenses involved in this research and how do they affect future work.

Let’s first consider technologies that were originally considered for the solution of this
project but were finally dimissed because of their software licenses:

• Unreal Engine: this game development kit released its source code for its version
4. The development team of Unreal Engine has also released an online software
repository that allows volunteers around the globe to request new features, correct
bugs and even program new functionality that could be later added to the
game development kit. However, these hypothetical contributions would depend
upon the Unreal Engine End User License Agreement [95]. From sections 1.b)
(Distribution to other licensees), 1.f) (Distribution of Non-C++ Programming
Language Integration), UE-Only Content, Non-Compatible Licenses, 2) (User
License), 3) (Versions and Content), 5) (Royalty), 8) (Support), 9) (Feedback and
Contributions), 10 (Third Party Software), 11) (Ownership) and 12) (Proprietary
notices and attribution) of this end user license agreement, it can be noticed that
making Unreal Engine accessible (that is, making a contribution to Unreal Engine)
for this research project does not necessarily mean that users are free to use this
accessibility layer in the future. Also, this end user license agreement explicitly
prohibits the addition of software that uses free software licenses such as the GNU
General Public License, or the Creative Commons Attribution-ShareAlike License.
This means that, in case that the proposed solution of this UCD research project is
no longer maintained in the future and it was based on Unreal Engine (or if Unreal
Engine abandoned this solution after having accepted it), users and volunteers would
find difficulties trying to enhance this solution, specially if external software with any
of these licenses was needed; the main problem is that these free software licenses
are present in most modern software31.

• Unity 3D: this is another game development kit. Unity Technologies SF, owner
of Unity3D, has recently released the source code of this program. However, not
all of its source code is freely released, and full source code is only available after
purchasing a Pro plan or an Enterprise plan [90] [15]. This poses even more problems
than Unreal Engine; not only it is questionable that Unity Technologies would ever
accept and maintain a contribution such as an accessibility layer, but it does not
allow experienced users and developers to enhance it in the future unless paying a
fee.

• Cry Engine: this game development kit’s source code is published online and can be
accessed for free. However, CRYTEK GmbH, the company that owns Cry Engine,
”requires users to purchase a commercial license to access certain parts of its code,
and the legal restrictions of that license will still apply” [107]. This poses the same
problem as in the case of Unity 3D and Unreal Engine.

31It must be noted, however, that less restrictive software licenses are allowed such as the MIT License,
the BSD License and the Apache License, which are not uncommon in software development.

65

There are also technologies which licenses allowed for easy contribution for –and
distribution of– the solution proposed in this research project:

• Amazon Lumberyard: this game development kit uses the Apache License 2.0 [8].
This software license allows for commercial use, modification, distribution, patent
use and private use. The only two provided restrictions are to include the license
file and to let the creators know (with proper documentation) in case of changing
the available software.

• Godot Engine: this game development kit comes with the MIT License [10]. This
allows commercial use, modification, distribution and private use of this piece of
software. The MIT License is slightly less restrictive than the Apache License
provided with Amazon Lumberyard, as it only requires including the license file
on the source code in case of modifying it.

• GREP: this is a virtual reality game development kit for non-technical users. As
far as it has been known from tutoring lessons with its creator (a researcher from
Universidad Carlos III de Madrid), there is no associated license to its source code
since it is an academic project.

Finally, some programs were used while creating this project. The following list shows
what restrictions applied for personal use and publication of documents:

• ShareLaTeX: an online text editor for the LaTeX document markup language. No
restrictions for academic use.

• GitHub: a website for storing, sharing and tracking changes to software development
projects. No restrictions for downloading proejcts.

• Ubuntu Studio 16.04.2 LTS: an operating system. Free of fees and restrictions.

• Debian Stable: an operating system. Free of fees and restrictions.

• Atom 1.17.2: a text editor for software development. Free of fees and restrictions.

• LibreOffice Calc 5.1.6.2: a spreadsheet editing software. Free of fees and restrictions.

• Microsoft Office PowerPoint: a presentation editing software. Paid (provided
by university); free of additional fees and restrictions for distributing created
documents.

• Orca 3.18.2: a screen reader. Free of fees and restrictions.

• Oracle VirtualBox: a virtual machine environment. Free of fees and restrictions.

• Skype: a text messaging and video / audio chat software. Free of fees and
restrictions for personal use (video conference with Bachelor thesis supervisor).

• Whatsapp: a text messaging and video / audio chat software. Free of fees and
restrictions for personal use.

• Google Chrome: a web browser. Free of fees and restrictions.

66

• Unity3d: a game development kit. Free of fess. No restrictions for the use it has
been given (creating a prototype for academic purposes).

• Draw.io: a webpage for diagram drawing. Free of fees and restrictions.

• Mendeley Desktop 1.17.10: a program for handling bibliographic references in
LaTeX.

• Wordreference.com: online dictionary. Free of fees and restrictions.

• Lunapic.com: online image editor. Free of fees and restrictions.

• Windows 10: an operating system. Provided for free with my laptop.

• GanttProject: a desktop program to create Gantt charts. Free of fees and
restrictions.

• Audacity: an audio editing tool. Free of fees and restrictions.

• From Text To Speech: text to speech webpage. Free of fees and restrictions.

• Voice Recorder: voice recorder app for the Samsung Galaxy Note 3 smartphone.
Free of fees and restrictions.

None of these tools required paying a fee using the standard and university student
price plans available to me by the time this document was written. Also, no restrictions
apply on the way this document and other related files have been created and published,
principally because none of them have been created for commercial or illegal purposes,
and the paid software was given by the university.

6.1.3 User privacy

A group of users have been interviewed for the exploratory study (shown in section 3).
First, two open questions have been asked about the way in which they interact with the
computer on a daily basis and about their thoughts on alternative modes of interaction I
have proposed. Also, data has been gathered regarding their age, profession and degree of
visual accuracy. Their names have not been included on the document; instead, invented
names have been used in order to preserve their anonymity.

This complies with the Spanish organic law on the protection of personal data [3] (known
as LOPD 15/199932) and the Spanish organic law on the civil protection of the rights to
honor, personal and familiar intimacy and one’s own image [17] (known as LO 1/198233).
Users were notified about the data that was going to be gathered prior to the interview.
Additionally, a proof of consent in the form of audios and / or signed documents have
been kept.

32Acronym. Stands for the Spanish term Ley Orgánica de Protección de Datos.
33Acronym. Stands for the Spanish term Ley Orgánica.

67

6.2 Planning

Tables 9 and 10 show how tasks for this research project have been organized in time.
Main tasks correspond to known phases of the research methodology and additional
required work. These are divided into several subtasks for the sake of clarity. Following
the notation used by most Gantt diagram plotting software, the amount of effort devoted
to each task is specified in days. Most effort has been devoted to the design insights and
the design of the solution, since they define the core of User-Centered Design research
(understanding users’ needs and designing to fulfill these needs). Time devoted to the
design insights is higher than the time needed for the design of the solution because of
the nature of this research, where target users are difficult to find.

68

Task Duration
(days) Start date End date

1. State of the art 18 03/09/2016 26/12/2016

1.1. Definitions 3 15/09/2016 01/10/2016

1.2. Assistive technologies 4 03/10/2016 20/11/2016

1.3. Accessible user interfaces 5 03/09/2016 10/10/2016

1.4. Accessible software development tools 2 05/09/2016 20/09/2016

1.5. Accessible game development tools 4 13/10/2016 26/12/2016

2. Design insights 123 01/12/2016 07/04/2017

2.1. Participants search 53 01/12/2016 15/03/2017

2.2. Participants demographic data
gathering 30 24/02/2017 01/04/2017

2.3. Participants interviews 35 24/02/2017 06/04/2017

2.4. Design insights formulation 5 27/12/2016 07/04/2017

3. Design of the solution 62 09/04/2017 07/06/2017

3.1. Game development kits search 3 09/04/2017 16/04/2017

3.2. Game development kits comparison 2 17/04/2017 19/04/2017

3.3. Godot Engine user interface analysis 5 20/04/2017 30/04/2017

3.4. Input mode specification 12 02/05/2017 18/05/2017

3.5. Output mode specification 10 02/05/2017 18/05/2017

3.6. Configuration specification 11 19/05/2017 02/06/2017

3.7. Mockup design 4 03/06/2017 07/06/2017

3.8. Implementation details 6 19/05/2017 25/05/2017

3.9. 3D view prototype design 2 19/05/2017 21/05/2017

3.10. 3D view prototype implementation 5 22/05/2017 02/06/2017

Table 9: Planning (1)

69

Task Duration
(days) Start date End date

4. Evaluation 5 04/06/2017 12/06/2017

4.1. Evaluation methods 2 04/06/2017 07/06/2017

4.2. Evaluation method selection 1 08/06/2017 09/06/2017

4.3. WCAG 2.0 checklist evaluation 1 10/06/2017 11/06/2017

4.4. Evaluation conclusions 1 12/06/2017 13/06/2017

5. Documentation 129 01/09/2016 16/06/2017

5.1. Project structuring 7 01/09/2016 10/09/2016

5.2. Abstract 3 05/11/2016 12/06/2017

5.3. Introduction 7 25/03/2017 12/04/2017

5.5. Interviews LaTeX card design 8 15/04/2017 27/04/2017

5.6. Project management 2 13/03/2017 15/06/2017

5.7. Conclusions 2 12/06/2017 14/06/2017

5.8. Acknowledgements 1 15/10/2016 22/10/2016

5.9. Glossary 20 05/10/2016 21/05/2017

5.10. Reference search 10 05/09/2016 11/06/2017

5.11. Reference formatting 2 12/06/2017 13/06/2017

5.12. WCAG 2.0 checklist 1 10/06/2017 12/06/2017

5.13. Terminology check 5 15/04/2017 20/04/2017

5.14. Image search 6 10/03/2017 17/05/2017

5.15. Mockup and UCD images creation 8 27/05/2017 02/06/2017

5.16. LaTeX formatting 40 05/09/2016 20/05/2017

5.17. Section order coherence revision 3 24/11/2016 13/06/2017

5.18. Errata correction 4 10/09/2016 16/06/2017

Table 10: Planning (2)

An approximation of the number of work hours per week is summarized in table
11. This table also contains the total number of hours for each month, assuming an
average of 4 weeks per month approximately. The project has lasted for the duration of

70

a bachelors degree academic year (September 2016 to June 2017). Notice that less hours
were dedicated to the project during the first half of the year, and that the number of
weekly hours significantly increases during the second half of the year. The reason for
this workload distribution is that the bachelor thesis technically starts in the second half
of the year; however, and given the difficulty of the project and the fact that it was a
topic personally proposed by myself, I agreed with my bachelor thesis supervisor to start
looking for information and contacts during the first half of the year, predicting this phase
of the research project was going to be particularly slow.

Month Hours / week Total hours

September 2016 10 40

October 2016 5 20

November 2016 5 20

December 2016 10 40

January 2017 5 20

February 2017 20 80

March 2017 20 80

April 2017 20 80

May 2017 20 80

June 2017 10 40

Total 125 500

Table 11: Weekly dedicated hours

Finally, a Gantt chart (figure 16) shows and organizes the aforementioned data
organized in a more intuitive way. It gives an overview of the whole project; in addition,
it represents task dependencies and whether if they have been done sequentially or in
parallel. It is worth noting that the documentation task was done in parallel with the
research methodology phases. Dependencies between tasks have also been represented,
and they highlight how each phase of the User-Centered Design methodology depends on
its previous phase, although some degree of overlapping is allowed for some tasks.

71

Figure 16: Gantt chart

6.3 Budget

Budget for this project has taken into account two factors: human resources and
non-human resources. Human resources describe costs derived from the work done by
employees (in this case, a junior computer scientist). Non-human resources refer to
material costs: software licenses, hardware, electricity, Internet connection, etc.

Three different, yet related job positions have been considered to calculate the hourly
wage. The work for this thesis has required working in the fields of user interface design,
software development and academic research; thus, I thought it was more realistic to take
into account an average salary drawn from these three job positions. Average hourly wage

72

for a junior front-end developer in Spain is about 20€ as of 2014 [37]. Similar data can
be extracted from global economic studies, with an approximate salary of 22€ per hour
for a European junior software developer in 2014 [39]. The 2017 estimate of the average
hourly wage for a Spanish researcher in the field of technology is about 20€ as well [88].
Therefore, it seems reasonable to assume a hourly wage of 20€ in my case.

Tables 12 and 13 show all costs associated to this project, including both human
resources and non-human resources. Power consumption has been based on an average
power tariff from a popular Spanish electric utility company [85]; average cost is about
0,11789€/KWh. Main means of transport has been metro, commuter train and bus;
Spanish people from the Community of Madrid whose age is under 26 have access to a
special transport fare that includes unlimited use of these transport means for 20€ per
hour [61]. Original laptop price (around 700€) was higher than the one written down;
this means that its value has decreased over the years. Perishable products include pens,
pencils, rubber, sharpener, and sheets of paper. Spanish generic VAT had a value of 21%
at the time this thesis was being written [46]; all costs of this project are associated with
generic VAT. As explained in section 6.1.2, no software licenses have been paid. Phone
calls, 4G internet connection and home broadband internet connection have been based on
a combined plan offered by British telephony company Vodafone [99]; this internet+phone
plan costs 42.40€ per month.

73

Type Cost

Developer / researcher 10,000€

Power consumption 58.95€

Laptop (Packard Bell Easy Note TM85 JO 460SP) 300€

Transport fares 200€

Phone calls + 4G + broadband internet 424€

Perishable products 30€

Amazon Lumberyard 0€

Godot Engine 0€

GREP 0€

ShareLaTeX 0€

GitHub 0€

Ubuntu Studio 16.04.2 LTS 0€

Debian Stable 0€

Atom 1.17.2 0€

LibreOffice Calc 5.1.6.2 0€

Orca 3.18.2 0€

Oracle VirtualBox 0€

Skype 0€

Whatsapp 0€

Google Chrome 0€

Microsoft Office PowerPont 0€

Table 12: Complete project costs (1)

74

Type Cost

Unity3d 0€

Draw.io 0€

Mendeley Desktop 1.17.10 0€

Wordreference.com 0€

Lunapic.com 0€

Windows 10 0€

GanttProject 0€

Audacity 0€

From Text To Speech 0€

Voice Recorder 0€

Total 11,012.95€

Total with VAT 13,325.67€

Table 13: Complete project costs (2)

Overall cost of the project is low, thanks to the use of free software34. Also, nor hardware
neither other materials have been required, which further reduces costs.

34Referring to free software as software that can be used for free, without having to pay any fee. This
is different from software that fulfills the Four Essential Freedoms of Software, published by the Free
software Foundation [100].

75

7 Conclusions

7.1 Technical conclusions

After having gone through the four phases of the User Centered Design methodology,
it can be concluded that there is a possible solution for the target user’s problem. In
other words, it is possible for visually impaired users to develop games efficiently and
using professional tools that are used in the video game industry. The conclusion of
this research project has positive consequences for visually impaired users: they now can
participate in professional game development and they can also create their own games
without fully depending on programming. Till now, it was assumed by most people that
video game development was beyond reach of these users; I have found this behavior
both in sighted users and visually impaired users. However, paying special attention to
users’ needs has successfully turned into a detailed specification of input/output modes
(how does the user interact with the computer) and logic behavior of the software (what
does the computer to satisfy users requests), all of that fulfilling design guidelines that
guarantee that the final product will be accessible.

This study shows that most part of the problem was common to that of other programs
that are not accessible by default. Godot Engine and Microsoft Word, for instance, are
almost identical as they consist of common graphical user interface elements. Making any
of them 80% accessible only requires following accessible design principles and evaluating
the design of the solution against accessibility guidelines.

What makes this research work innovative is the way in which the 20% remaining part
of the program has been made accessible. This part of the user interface is the 3D view,
which does not fit into most accessibility standards as it is normally not present in most
software and web pages. The conducted exploratory study reveals how users prefer to
navigate through this three-dimensional space. It has been shown that visually impaired
users prefer to use keyboard navigation for input and a mixture of screen reader and
auditory icons for output. Another important conclusion drawn from this research project
is that the considered target user may have different degrees of visual impairment, and
this requires that the designed user interface is flexible and allows for different interaction
modes, specially in terms of output mode.

7.2 Future work

The high degree of reusability of this research project, possible thanks to the User-
Centered Design methodology that has been used, makes room for future improvements
that would make the proposed solution much more useful, usable and efficient.

One of the things that would enhance the quality of the solution would be to use
several iterations. This means to start the design phases again, considering what has
been discovered previously. This is only possible with more time. A bachelor student
has much less time than a PhD student to finish the corresponding thesis (one semester
compared to three years almost exclusively focused on that thesis). Nevertheless, it is
possible for any researcher to take this project as I have left it, and perform one or more
cycles, so that the final product really complies with users’ needs and preferences.

76

Again, more time would have been translated to more users for the exploratory study.
This information gathering technique will always yield less users compared to other
techniques that are more automated; however, increasing the number of participants to
several tenths or hundreds of people would have significant benefits for the quality of the
findings from the exploratory study. In this case, it is not only statistical quantity what
makes findings better, but also the possibility to find more personal, unique details from
users.

Including user tests in the evaluation phase would also provide more informed
conclusions. The reason for designing the interactive prototype is precisely to conduct a
complete user evaluation in the future. Ideally, new iterations of the UCD methodology
would include both an evaluation with accessibility guidelines and a user evaluation in
this phase of the research.

This research has been focused on Human-Computer Interaction. As described before,
normally the product of such a research work is not a machine or a piece of software, but
a design specification. More time is devoted to analyzing users’ needs, preferences and
mental models, and a smaller amount of time is used to actually implement prototypes.
Adding more iterations to the User-Centered Design research methodology could generate
a solution quite close to a final product. Fortunately, the results of this research can be
easily reused and modified to get an implementation.

Finally, there is one aspect that is still to be solved regarding accessibility in video
game creation. The outcome of this research work allows visually impaired users to
develop the logic and behavior of computer games, but this does not include working
as a graphic artist or as an animation designer. Making these tasks accessible would be
very hard, especially for graphic design, and they are outside of the scope and extent of
this document. However, this research will be useful as a reference for addressing these
problems, as they are highly related to the problem studied in this document.

7.3 Personal conclusions

I personally believe that the bachelor thesis is quite different from other subjects taught
at the bachelor degree. Not only students gain extensive knowledge during the bachelor
thesis, but they also mature as people. To me, this project has been difficult and it
has required much more patience and time than other subjects; despite of this, and
remembering conversations with other classmates who are also writing their bachelor
thesis, it just feels better than any other subject we have done before. In this sense, all
the effort I have made is totally worth it. Before closing the narrative of this thesis, I
would like to let the reader know about all the things I have learned and all valuable
experiences I have felt during these months.

One of the most important things I have learned while writing this thesis has been how
to defend a personal project. This thesis spins around a theme that has been proposed
and devised by me more than two years before entering the last course of the bachelors
degree. It is not unusual for students to select a research topic proposed by a professor
from the university. However, I was totally obsessed about this idea because, to my mind,
it can give lots of people the possibility of making their creative projects come to reality,

77

just as I do when I design my games with Unity, or when I worked in game development
last summer. Since some years ago, I am concerned about the fact that most work done
in computer science nowadays goes to commodities, that is, products that do not solve
serious problems, but which instead make life more comfortable or provide entertainment.
I think of this bachelor thesis as the possibility to finish my bachelors degree feeling that
I am prepared to help others as a computer engineer. For this reason, I have tried to
justify each and every decision I have taken during the development of this document, so
that the solution I believe in can be considered as valid.

I have also learned how to write an academic research document. I am heavily inclined
towards research and I hope to work as a researcher in the future, so this knowledge is
extremely valuable for me. Prior to taking this subject, I was not conscious about the
effort researchers put into making a document structured and linked from one section to
the next one. I have learned to shape my mindset when I write for an academic paper,
so that I am objective and positive when I defend my arguments and hypotheses.

Communication skills is another a key aspect that I have developed when writing
this thesis. During these months, and just for bachelor thesis-related subjects, several
hundreds of emails have been sent. I have also had lots of calls and meetings with people
from Spain who could help me with my thesis. In fact this communication workflow
has been exhausting for me, as I had to maintain similar conversations over different
mail lists, phone calls and private messages with lots of people. Also, it was especially
difficult to find participants for the exploratory study, and it was even more difficult to
get answers from them as each one lives in separate parts of the globe; most of them
are busy either with studies or with work, so communication process was slow and with
interruptions. However, I am happy about this experience, since I have learned when can
I automate communication (and how to do it), and when do I have to exchange more
personal messages with people.

Thanks to this communication process, I have been gifted with wonderful conversations
of all kinds. Interaction with participants from the exploratory study has been especially
interesting for me, as interviews often ended in digressions about related topics; these
conversations have not been included as they were more personal and off-topic, but I
can guarantee that they are invaluable. In one of these conversations, I discovered how
visually impaired users think of themselves, and how do they react to the terms people use
in order to be polite. It shocked me to see that these polite words can sometimes feel worse
for them than using the term that describes who they are and what they are. Occidental
society has developed an instinctive tendency to explode in unnecessary empathy towards
disabled people. Contrary to what people normally think, this makes disabled people be
more aware that they are being regarded as different. For one of the participants I was
talking to during that conversation, this game of words is easier for people than actually
finding a balance between accepting their disability and being respectful to them. I have
also felt shocked about how people sometimes mistreat disabled people in a professional
context; several users told me about working experiences where they felt this way. All
this should make us reconsider how do we communicate disabled people. We should not
forget that they are, simply, people, and they deserve to be treated like that; not with
excessive empathy, and not with disdain. These insights have shaped the way in which
this project has been developed; after rediscovering the meaning of inclusion, my efforts

78

have been directed towards reaching this goal, which is nothing more and nothing less
than allowing people to live as what they are: people.

79

Glossary
API Acronym for Application Programming Interface. 55, 56

ATK Acronym for Accessibility Toolkit . 56

GTK Acronym for GIMP Toolkit . 56

GUI Acronym for Graphical User Interface. 23

HCI Acronym for Human Computer Interaction. 1

IDE Acronym for Integrated Development Environment . 19, 20

MSAA Acronym for MicroSoft Active Accessibility . 55

NVDA Acronym for Non-Visual Desktop Access . 55

ONCE Acronym for Organización Nacional de Ciegos Españoles ; Spanish term for
National Organization of Spanish blind people. 24

UCD Acronym for User Centered Design. 8–10, 16, 26, 65, 77

UI Acronym for User Interface. 17

UNE Acronym for Una Norma Española; Spanish term for A Spanish Rule. 64

VR Acronym for Virtual Reality . 17

WAI Acronym for Web Accessibility Initiative. 62, 64

WCAG Acronym for Web Content Accessibility Guideliens . 60–63

80

References
[1] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. Nielsen Norman

Group, 1995. url: https://www.nngroup.com/articles/ten- usability-
heuristics/.

[2] Stephen W. Mereu and Rick Kazman. “Audio Enhanced 3D Interfaces for Visually
Impaired Users”. In: ACM SIGCAPH Computers and the Physically Handicapped
(1997), pp. 10–15. doi: 10.1145/250025.250029. url: http://www.sigchi.org/
chi96/proceedings/papers/Mereu/rnk-txt.htm.

[3] Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de Carácter
Personal. 1999. url: https://www.boe.es/buscar/pdf/1999/BOE-A-1999-
23750-consolidado.pdf (visited on 06/05/2017).

[4] J Sánchez and M Lumbreras. “Usability and Cognitive Impact of the Interaction
with 3D Virtual Interactive Acoustic Environments by Blind Children”. In:
Proceedings of the 3rd international conference on disability, virtual reality and
associated technologies (ICDVRAT 2000). Santiago de Chile: The University
of Reading, 2000, pp. 99–105. doi: 10 . 1 . 1 . 99 . 4424. url: http : / /
centaur.reading.ac.uk/19120/1/ICDVRAT2000%7B%5C_%7DFull%7B%5C_
%7DProceedings%7B%5C_%7D3rd%7B%5C_%7DConf.pdf%7B%5C#%7Dpage=99.

[5] United States Access Board. Section 508 Standards. 2000. url: https://www.
access-board.gov/guidelines-and-standards/communications-and-it/
about - the - section - 508 - standards / section - 508 - standards (visited on
05/09/2017).

[6] Christopher Frauenberger and Markus Noistering. “3D audio interfaces for the
blind”. In: Proceedings of the 9th International Conference on Auditory Display
(ICAD03). Austria, 2003, pp. 280–283. url: https://pdfs.semanticscholar.
org/0203/0c97aa1e989568a49b3af224f3c1e55de2b6.pdf.

[7] John Wood, Mark Magennis, Elena Francisca, et al. “The Design and Evaluation of
a Computer Game for the Blind in the GRAB Haptic Audio Virtual Environment”.
In: (2003). url: http://www.eurohaptics.vision.ee.ethz.ch/2003/35.pdf.

[8] Amazon Lumberyard LICENSE. 2004. url: https://github.com/PlayFab/
LumberyardSDK/blob/master/LICENSE.

[9] Alan Dix, Janet Finlay, Gregory D Abowd, et al. Human-Computer Interaction.
3rd. Harlow: Pearson Education Limited, 2004. isbn: 978-0-13-046109-4.

[10] Juan Linietsky and Ariel Manzur.Godot Engine - LICENSE.txt. 2004. url: https:
//github.com/godotengine/godot/blob/master/LICENSE.txt (visited on
06/07/2017).

[11] Wizard of Oz method. 2006. url: http : / / www . usabilitynet . org / tools /
wizard.htm (visited on 06/19/2017).

[12] Alan R Hevner. “A Three Cycle View of Design Science Research”. In: Scandinavian
Journal of Information Systems © Scandinavian Journal of Information Systems
19.192 (2007), pp. 87–92. url: http://aisel.aisnet.org/sjis.

[13] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, et al. Web Content
Accessibility Guidelines (WCAG) 2.0. 2008. url: https://www.w3.org/TR/
WCAG20/ (visited on 06/19/2017).

81

https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://doi.org/10.1145/250025.250029
http://www.sigchi.org/chi96/proceedings/papers/Mereu/rnk-txt.htm
http://www.sigchi.org/chi96/proceedings/papers/Mereu/rnk-txt.htm
https://www.boe.es/buscar/pdf/1999/BOE-A-1999-23750-consolidado.pdf
https://www.boe.es/buscar/pdf/1999/BOE-A-1999-23750-consolidado.pdf
https://doi.org/10.1.1.99.4424
http://centaur.reading.ac.uk/19120/1/ICDVRAT2000%7B%5C_%7DFull%7B%5C_%7DProceedings%7B%5C_%7D3rd%7B%5C_%7DConf.pdf%7B%5C#%7Dpage=99
http://centaur.reading.ac.uk/19120/1/ICDVRAT2000%7B%5C_%7DFull%7B%5C_%7DProceedings%7B%5C_%7D3rd%7B%5C_%7DConf.pdf%7B%5C#%7Dpage=99
http://centaur.reading.ac.uk/19120/1/ICDVRAT2000%7B%5C_%7DFull%7B%5C_%7DProceedings%7B%5C_%7D3rd%7B%5C_%7DConf.pdf%7B%5C#%7Dpage=99
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://pdfs.semanticscholar.org/0203/0c97aa1e989568a49b3af224f3c1e55de2b6.pdf
https://pdfs.semanticscholar.org/0203/0c97aa1e989568a49b3af224f3c1e55de2b6.pdf
http://www.eurohaptics.vision.ee.ethz.ch/2003/35.pdf
https://github.com/PlayFab/LumberyardSDK/blob/master/LICENSE
https://github.com/PlayFab/LumberyardSDK/blob/master/LICENSE
https://github.com/godotengine/godot/blob/master/LICENSE.txt
https://github.com/godotengine/godot/blob/master/LICENSE.txt
http://www.usabilitynet.org/tools/wizard.htm
http://www.usabilitynet.org/tools/wizard.htm
http://aisel.aisnet.org/sjis
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/

[14] Shades of Doom Version 2.0. 2008. url: http://www.gmagames.com/sod.shtml
(visited on 06/15/2017).

[15] Rune Skovbo Johansen. Why You Probably Don’t Need a Source Code License.
2009. url: https://blogs.unity3d.com/2009/03/20/why-you-probably-
dont-need-a-source-code-license/ (visited on 06/07/2017).

[16] 2010 ADA Standards for Accessible Design. 2010. url: https://www.ada.gov/
regs2010/2010ADAStandards/2010ADAstandards.htm (visited on 06/07/2017).

[17] Ley Orgánica 1/1982, de 5 de mayo, de protección civil del derecho alhonor, a
la intimidad personal y familiar y a la propia imagen. 2010. url: http://www.
boe.es/buscar/pdf/1982/BOE-A-1982-11196-consolidado.pdf (visited on
06/05/2017).

[18] World Health Organization. World Report on Disability. Tech. rep. Malta: WHO
Press, 2011. url: http : / / www . who . int / disabilities / world % 7B % 5C _
%7Dreport/2011/report.pdf.

[19] AENOR - Requisitos de accesibilidad para contenidos en la Web. 2012. url: http:
//www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=
N0049614#.WUSRn36GO00.

[20] Cheryl Gabbert and Sarah Malburg. Common Types and Characteristics of Visual
Impairments. 2012. url: http://www.brighthubeducation.com/special-ed-
visual - impairments / 35103 - common - types - of - visual - impairment - in -
students/ (visited on 06/14/2017).

[21] PAe - Normas Accesibilidad. 2012. url: https://administracionelectronica.
gob.es/pae_Home/pae_Estrategias/pae_Accesibilidad/pae_normativa/
pae _ eInclusion _ Normas _ Accesibilidad . html # .WUSQTX6GO00 (visited on
06/07/2017).

[22] Phillip Jordan. Mixing Objective-C, C++ and Objective-C++: an Updated
Summary. 2012. url: http://philjordan.eu/article/mixing-objective-
c-c++-and-objective-c++ (visited on 06/19/2017).

[23] Crysis 3. 2013. url: http://www2.ea.com/crysis-3 (visited on 06/17/2017).

[24] Ananya Mandal. What is visual impairment? 2013. url: http://www.news-
medical . net / health / What - is - visual - impairment . aspx (visited on
06/15/2017).

[25] Don Norman. The Design of Everyday Things: Revised and Expanded Edition. New
York: Basic Books, 2013. isbn: 978-0-465-05065-9.

[26] Brian Schmidt. Making Ear Monsters: Developing a 3D Audio Game. 2013. url:
http://www.gamasutra.com/blogs/BrianSchmidt/20130617/194489/Making%
7B%5C_%7DEar%7B%5C_%7DMonsters%7B%5C_%7DDeveloping%7B%5C_%7Da%7B%
5C_%7D3D%7B%5C_%7DAudio%7B%5C_%7DGame.php (visited on 06/15/2017).

[27] Mads Soegaard and Rikke Friis Dam. The Encyclopedia of Human-Computer
Interaction, 2nd Ed. The Interaction Design Foundation, 2013. url: https://
www.interaction- design.org/literature/book/the- encyclopedia- of-
human-computer-interaction-2nd-ed.

[28] Gamasutra Salary Survey 2014. 2014. url: http : / / www . gamasutra . com /
salarysurvey2014.pdf (visited on 06/11/2017).

82

http://www.gmagames.com/sod.shtml
https://blogs.unity3d.com/2009/03/20/why-you-probably-dont-need-a-source-code-license/
https://blogs.unity3d.com/2009/03/20/why-you-probably-dont-need-a-source-code-license/
https://www.ada.gov/regs2010/2010ADAStandards/2010ADAstandards.htm
https://www.ada.gov/regs2010/2010ADAStandards/2010ADAstandards.htm
http://www.boe.es/buscar/pdf/1982/BOE-A-1982-11196-consolidado.pdf
http://www.boe.es/buscar/pdf/1982/BOE-A-1982-11196-consolidado.pdf
http://www.who.int/disabilities/world%7B%5C_%7Dreport/2011/report.pdf
http://www.who.int/disabilities/world%7B%5C_%7Dreport/2011/report.pdf
http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0049614#.WUSRn36GO00
http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0049614#.WUSRn36GO00
http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0049614#.WUSRn36GO00
http://www.brighthubeducation.com/special-ed-visual-impairments/35103-common-types-of-visual-impairment-in-students/
http://www.brighthubeducation.com/special-ed-visual-impairments/35103-common-types-of-visual-impairment-in-students/
http://www.brighthubeducation.com/special-ed-visual-impairments/35103-common-types-of-visual-impairment-in-students/
https://administracionelectronica.gob.es/pae_Home/pae_Estrategias/pae_Accesibilidad/pae_normativa/pae_eInclusion_Normas_Accesibilidad.html#.WUSQTX6GO00
https://administracionelectronica.gob.es/pae_Home/pae_Estrategias/pae_Accesibilidad/pae_normativa/pae_eInclusion_Normas_Accesibilidad.html#.WUSQTX6GO00
https://administracionelectronica.gob.es/pae_Home/pae_Estrategias/pae_Accesibilidad/pae_normativa/pae_eInclusion_Normas_Accesibilidad.html#.WUSQTX6GO00
http://philjordan.eu/article/mixing-objective-c-c++-and-objective-c++
http://philjordan.eu/article/mixing-objective-c-c++-and-objective-c++
http://www2.ea.com/crysis-3
http://www.news-medical.net/health/What-is-visual-impairment.aspx
http://www.news-medical.net/health/What-is-visual-impairment.aspx
http://www.gamasutra.com/blogs/BrianSchmidt/20130617/194489/Making%7B%5C_%7DEar%7B%5C_%7DMonsters%7B%5C_%7DDeveloping%7B%5C_%7Da%7B%5C_%7D3D%7B%5C_%7DAudio%7B%5C_%7DGame.php
http://www.gamasutra.com/blogs/BrianSchmidt/20130617/194489/Making%7B%5C_%7DEar%7B%5C_%7DMonsters%7B%5C_%7DDeveloping%7B%5C_%7Da%7B%5C_%7D3D%7B%5C_%7DAudio%7B%5C_%7DGame.php
http://www.gamasutra.com/blogs/BrianSchmidt/20130617/194489/Making%7B%5C_%7DEar%7B%5C_%7DMonsters%7B%5C_%7DDeveloping%7B%5C_%7Da%7B%5C_%7D3D%7B%5C_%7DAudio%7B%5C_%7DGame.php
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed
http://www.gamasutra.com/salarysurvey2014.pdf
http://www.gamasutra.com/salarysurvey2014.pdf

[29] How Accessibility Works in GNOME. 2014. url: https://developer.gnome.org/
accessibility-devel-guide/stable/gad-how-it-works.html.en (visited on
06/15/2017).

[30] Samuel Thibault. Where does accessibility plug into the graphical desktop stack?
2014. url: https : / / www . youtube . com / watch ? v = DxVrIVQKHEg (visited on
05/11/2017).

[31] Welcome to Orca. 2014. url: https://help.gnome.org/users/orca/stable/
introduction.html.en (visited on 06/19/2017).

[32] Robert K. Yin. Case Study Research: Design and Methods. Thousand Oaks,
California: SAGE Publications, Inc., 2014. isbn: 978-1452242569.

[33] Telmo Zarraonandia, Paloma Diaz, Ignacio Aedo, et al. “Designing educational
games through a conceptual model based on rules and scenarios”. In: Multimedia
Tools and Applications 74.13 (2014), pp. 4535–4559. issn: 15737721. doi: 10.
1007/s11042-013-1821-1.

[34] Accessibility Basics. 2015. url: https://www.usability.gov/what-and-why/
accessibility.html (visited on 06/15/2017).

[35] Oana Balan, Florica Moldoveanu, Alin Moldoveanu, et al. “Developing a
navigational 3D audio game with hierarchical levels of difficulty for the visually
impaired players”. In: Romanian Conference on Human Computer Interaction.
September. Bucharest, 2015.

[36] Edward C. Bell and Natalia M. Mino. “Employment Outcomes for Blind and
Visually Impaired Adults”. In: Journal of Blindness Innovation and Research 5.2
(2015). doi: 10.5241/5-85. url: https://nfb.org/images/nfb/publications/
jbir/jbir15/jbir050202abs.html.

[37] Developers Salary Guide: October 2015 (Barcelona). 2015. url: https://www.
jobfluent.com/blog/developers-salary-guide-october-2015-barcelona
(visited on 06/11/2017).

[38] Introduction to User-Centered Design. 2015. url: http://www.usabilityfirst.
com/about-usability/introduction-to-user-centered-design/ (visited on
06/12/2017).

[39] Software Engineer Salary Guide 2014. 2015. url: http://fundersandfounders.
com/software-engineer-salary-2014/ (visited on 06/11/2017).

[40] WAI Guidelines and Techniques. 2015. url: https://www.w3.org/WAI/guid-
tech (visited on 06/07/2017).

[41] Panayiotis Zaphiris and Andri Ioannou. “Learning and Collaboration Technologies:
Second International Conference, LCT 2015 Held as Part of HCI International
2015 Los Angeles, CA, USA, August 2???7, 2015 Proceedings”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 9192 (2015), pp. 537–548. issn: 16113349.
doi: 10.1007/978-3-319-20609-7. arXiv: arXiv:1011.1669v3.

[42] Accessibility: IAccessible2. 2016. url: https://wiki.linuxfoundation.org/
accessibility/iaccessible2/start (visited on 06/19/2017).

83

https://developer.gnome.org/accessibility-devel-guide/stable/gad-how-it-works.html.en
https://developer.gnome.org/accessibility-devel-guide/stable/gad-how-it-works.html.en
https://www.youtube.com/watch?v=DxVrIVQKHEg
https://help.gnome.org/users/orca/stable/introduction.html.en
https://help.gnome.org/users/orca/stable/introduction.html.en
https://doi.org/10.1007/s11042-013-1821-1
https://doi.org/10.1007/s11042-013-1821-1
https://www.usability.gov/what-and-why/accessibility.html
https://www.usability.gov/what-and-why/accessibility.html
https://doi.org/10.5241/5-85
https://nfb.org/images/nfb/publications/jbir/jbir15/jbir050202abs.html
https://nfb.org/images/nfb/publications/jbir/jbir15/jbir050202abs.html
https://www.jobfluent.com/blog/developers-salary-guide-october-2015-barcelona
https://www.jobfluent.com/blog/developers-salary-guide-october-2015-barcelona
http://www.usabilityfirst.com/about-usability/introduction-to-user-centered-design/
http://www.usabilityfirst.com/about-usability/introduction-to-user-centered-design/
http://fundersandfounders.com/software-engineer-salary-2014/
http://fundersandfounders.com/software-engineer-salary-2014/
https://www.w3.org/WAI/guid-tech
https://www.w3.org/WAI/guid-tech
https://doi.org/10.1007/978-3-319-20609-7
http://arxiv.org/abs/arXiv:1011.1669v3
https://wiki.linuxfoundation.org/accessibility/iaccessible2/start
https://wiki.linuxfoundation.org/accessibility/iaccessible2/start

[43] Asociación de Minusválidos Pinto, Centro de Atención Temprana. 2016. url:
http : / / sid . usal . es / centrosyservicios / discapacidad / 1632 / 2 - 1 - 2 -
2/asociacion- de- minusvalidos- pinto- centro- de- atencion- temprana-
zona-pinto.aspx (visited on 06/14/2017).

[44] Gary P. Scavone. The RtAudio Home Page. 2016. url: https://www.music.
mcgill.ca/~gary/rtaudio/ (visited on 06/19/2017).

[45] Help - Eclipse Platform. 2016. url: https://help.eclipse.org/neon/index.
jsp.

[46] IVA - Impuesto de Valor Añadido 2016. 2016. url: http://www.datosmacro.
com/impuestos/iva (visited on 06/11/2017).

[47] Juan Linietsky. Mozilla awards Godot Engine as part of the MOSS “Mission
Partners” program. 2016. url: https://godotengine.org/article/mozilla-
awards- godot- engine- part- moss- mission- partners- program (visited on
06/17/2017).

[48] libogg. 2016. url: https://github.com/godotengine/godot/tree/master/
thirdparty/libogg.

[49] libvorbis. 2016. url: https://github.com/godotengine/godot/tree/master/
thirdparty/libvorbis.

[50] Newzoo. 2016 Global Games Market Report - An Overview Of Trends & Insights.
2016. url: https://cdn2.hubspot.net/hubfs/700740/Reports/Newzoo_Free_
2016_Global_Games_Market_Report.pdf.

[51] Opus Codec. 2016. url: http://opus-codec.org/ (visited on 06/19/2017).

[52] Parham Doustdar. An Autobiography of a Blind Programmer. 2016. url: https:
//www.parhamdoustdar.com/2016/03/27/autobiography-blind-programmer/
(visited on 05/28/2017).

[53] Prototypes, Specifications, and Diagrams in One Tool | Axure Software. 2016. url:
https://www.axure.com/ (visited on 06/18/2017).

[54] Real Median Household Income in the United States. 2016. url: https://fred.
stlouisfed.org/series/MEHOINUSA672N (visited on 06/11/2017).

[55] rtaudio. 2016. url: https://github.com/godotengine/godot/tree/master/
thirdparty/rtaudio.

[56] Shai Abou-Zahra. Voice Recognition - Web Accessibility Perspectives Videos. 2016.
url: https : / / www . w3 . org / WAI / perspectives / voice . html (visited on
06/15/2017).

[57] WCAG 2.0 Checklist. 2016. url: http : / / webaim . org / standards / wcag /
WCAG2Checklist.pdf.

[58] World Health Organization. Disabilities. 2016. url: http : / / www . who . int /
topics/disabilities/en/ (visited on 05/04/2017).

[59] Xiph.org. 2016. url: https://xiph.org/vorbis/ (visited on 06/19/2017).

[60] Xiph.org: Ogg. 2016. url: https://www.xiph.org/ogg/ (visited on 06/19/2017).

[61] Abono 30 días - Tarifas. 2017. url: http://www.crtm.es/billetes-y-tarifas/
billetes-y-abonos/abono-transportes/abono-treinta-dias.aspx (visited
on 06/11/2017).

84

http://sid.usal.es/centrosyservicios/discapacidad/1632/2-1-2-2/asociacion-de-minusvalidos-pinto-centro-de-atencion-temprana-zona-pinto.aspx
http://sid.usal.es/centrosyservicios/discapacidad/1632/2-1-2-2/asociacion-de-minusvalidos-pinto-centro-de-atencion-temprana-zona-pinto.aspx
http://sid.usal.es/centrosyservicios/discapacidad/1632/2-1-2-2/asociacion-de-minusvalidos-pinto-centro-de-atencion-temprana-zona-pinto.aspx
https://www.music.mcgill.ca/~gary/rtaudio/
https://www.music.mcgill.ca/~gary/rtaudio/
https://help.eclipse.org/neon/index.jsp
https://help.eclipse.org/neon/index.jsp
http://www.datosmacro.com/impuestos/iva
http://www.datosmacro.com/impuestos/iva
https://godotengine.org/article/mozilla-awards-godot-engine-part-moss-mission-partners-program
https://godotengine.org/article/mozilla-awards-godot-engine-part-moss-mission-partners-program
https://github.com/godotengine/godot/tree/master/thirdparty/libogg
https://github.com/godotengine/godot/tree/master/thirdparty/libogg
https://github.com/godotengine/godot/tree/master/thirdparty/libvorbis
https://github.com/godotengine/godot/tree/master/thirdparty/libvorbis
https://cdn2.hubspot.net/hubfs/700740/Reports/Newzoo_Free_2016_Global_Games_Market_Report.pdf
https://cdn2.hubspot.net/hubfs/700740/Reports/Newzoo_Free_2016_Global_Games_Market_Report.pdf
http://opus-codec.org/
https://www.parhamdoustdar.com/2016/03/27/autobiography-blind-programmer/
https://www.parhamdoustdar.com/2016/03/27/autobiography-blind-programmer/
https://www.axure.com/
https://fred.stlouisfed.org/series/MEHOINUSA672N
https://fred.stlouisfed.org/series/MEHOINUSA672N
https://github.com/godotengine/godot/tree/master/thirdparty/rtaudio
https://github.com/godotengine/godot/tree/master/thirdparty/rtaudio
https://www.w3.org/WAI/perspectives/voice.html
http://webaim.org/standards/wcag/WCAG2Checklist.pdf
http://webaim.org/standards/wcag/WCAG2Checklist.pdf
http://www.who.int/topics/disabilities/en/
http://www.who.int/topics/disabilities/en/
https://xiph.org/vorbis/
https://www.xiph.org/ogg/
http://www.crtm.es/billetes-y-tarifas/billetes-y-abonos/abono-transportes/abono-treinta-dias.aspx
http://www.crtm.es/billetes-y-tarifas/billetes-y-abonos/abono-transportes/abono-treinta-dias.aspx

[62] Accessibility for Developers. 2017. url: https : / / developer . apple . com /
accessibility/ (visited on 06/15/2017).

[63] Accessibility in Visual Studio Code. 2017. url: https://code.visualstudio.
com/docs/editor/accessibility (visited on 05/16/2017).

[64] Accessibility Programming Guide for OS X: The OS X Accessibility Model. 2017.
url: https : / / developer . apple . com / library / content / documentation /
Accessibility / Conceptual / AccessibilityMacOSX / OSXAXmodel . html # / /
apple_ref/doc/uid/TP40001078-CH208-TPXREF101 (visited on 06/18/2017).

[65] Álvaro Cáceres. MEGA. 2017. url: https://mega.nz/#!cXo0nDgK.

[66] Amazon Lumberyard - Free AAA Game Engine. 2017. url: https://aws.amazon.
com/lumberyard/ (visited on 06/17/2017).

[67] AppKit | Apple Developer Documentation. 2017. url: https : / / developer .
apple.com/documentation/appkit (visited on 06/19/2017).

[68] AudioGames, your resource for audiogames, games for the blind, games for the
visually impaired! 2017. url: http://audiogames.net/ (visited on 06/14/2017).

[69] Buy Adobe Illustrator CC. 2017. url: http : / / www . adobe . com / products /
illustrator.html (visited on 06/18/2017).

[70] CRYENGINE | The complete solution for next generation game development by
Crytek. 2017. url: https://www.cryengine.com/ (visited on 06/17/2017).

[71] Maureen A. Duffy. Low Vision and Legal Blindness Terms and Descriptions. 2017.
url: http : / / www . visionaware . org / info / your - eye - condition / eye -
health/low- vision/low- vision- terms- and- descriptions/1235 (visited
on 06/14/2017).

[72] Entertainment Software Association. Essential Facts About The Computer and
Video Game Industry. 2017. url: http : / / www . theesa . com / wp - content /
uploads/2017/04/EF2017_FinalDigital.pdf.

[73] Free Images - Pixabay. 2017. url: https : / / pixabay . com/ (visited on
06/14/2017).

[74] FreeLists / V.I. Programmers Discussion List. 2017. url: https : / / www .
freelists.org/list/program-l (visited on 06/14/2017).

[75] GNOME – An easy and elegant way to use your computer, GNOME 3 is designed
to put you in control and get things done. 2017. url: https://www.gnome.org/
(visited on 06/19/2017).

[76] Interpreter (computing) for Kids. 2017. url: http : / / kids . kiddle . co /
Interpreter_(computing) (visited on 06/16/2017).

[77] JAWS Screen Reader - Best in Class. 2017. url: http://www.freedomscientific.
com/Products/Blindness/JAWS (visited on 06/19/2017).

[78] Kinect for Xbox One. 2017. url: http://www.xbox.com/en-US/xbox-one/
accessories/kinect (visited on 06/13/2017).

[79] Juan Linietsky and Ariel Manzur. Godot Engine - Free and open source 2D and 3D
game engine. 2017. url: https://godotengine.org/ (visited on 06/17/2017).

[80] Michelle K. Martin. Screenreader Accessible Unity Template. 2017. url: https:
//github.com/frastlin/ScreenreaderAccessibleUnityTemplate.

85

https://developer.apple.com/accessibility/
https://developer.apple.com/accessibility/
https://code.visualstudio.com/docs/editor/accessibility
https://code.visualstudio.com/docs/editor/accessibility
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXmodel.html#//apple_ref/doc/uid/TP40001078-CH208-TPXREF101
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXmodel.html#//apple_ref/doc/uid/TP40001078-CH208-TPXREF101
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXmodel.html#//apple_ref/doc/uid/TP40001078-CH208-TPXREF101
https://mega.nz/#!cXo0nDgK
https://aws.amazon.com/lumberyard/
https://aws.amazon.com/lumberyard/
https://developer.apple.com/documentation/appkit
https://developer.apple.com/documentation/appkit
http://audiogames.net/
http://www.adobe.com/products/illustrator.html
http://www.adobe.com/products/illustrator.html
https://www.cryengine.com/
http://www.visionaware.org/info/your-eye-condition/eye-health/low-vision/low-vision-terms-and-descriptions/1235
http://www.visionaware.org/info/your-eye-condition/eye-health/low-vision/low-vision-terms-and-descriptions/1235
http://www.theesa.com/wp-content/uploads/2017/04/EF2017_FinalDigital.pdf
http://www.theesa.com/wp-content/uploads/2017/04/EF2017_FinalDigital.pdf
https://pixabay.com/
https://www.freelists.org/list/program-l
https://www.freelists.org/list/program-l
https://www.gnome.org/
http://kids.kiddle.co/Interpreter_(computing)
http://kids.kiddle.co/Interpreter_(computing)
http://www.freedomscientific.com/Products/Blindness/JAWS
http://www.freedomscientific.com/Products/Blindness/JAWS
http://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.xbox.com/en-US/xbox-one/accessories/kinect
https://godotengine.org/
https://github.com/frastlin/ScreenreaderAccessibleUnityTemplate
https://github.com/frastlin/ScreenreaderAccessibleUnityTemplate

[81] Microsoft Active Accessibility (Windows). 2017. url: https://msdn.microsoft.
com/en-us/library/windows/desktop/dd373592(v=vs.85).aspx (visited on
06/19/2017).

[82] NV Access. 2017. url: https://www.nvaccess.org/ (visited on 06/19/2017).

[83] Oculus Rift. 2017. url: https://www.oculus.com/rift/ (visited on 05/31/2017).

[84] opus. 2017. url: https://github.com/godotengine/godot/tree/master/
thirdparty/opus.

[85] Real-time price of electricity. 2017. url: https://www.endesaclientes.com/
price-electricity-vpsc.html (visited on 06/11/2017).

[86] Refreshable Braille Displays. 2017. url: http://www.afb.org/prodBrowseCatResults.
aspx?CatID=43 (visited on 05/11/2017).

[87] Derek Riemer. Notepad++ Add-on for NVDANo Title. 2017. url: https : / /
github.com/derekriemer/nvda-notepadPlusPlus (visited on 05/16/2017).

[88] Salario: el sector de Investigador en España. 2017. url: http : / / espana .
jobtonic.es/salary/26526/74915.html (visited on 06/11/2017).

[89] Shawn Lawton. WCAG Overview. 2017. url: https://www.w3.org/WAI/intro/
wcag (visited on 06/19/2017).

[90] Store. 2017. url: https://store.unity.com/ (visited on 06/07/2017).

[91] The GTK+ Project. 2017. url: https://www.gtk.org/ (visited on 06/19/2017).

[92] The Quorum Programming Language. 2017. url: https://quorumlanguage.com/
(visited on 06/16/2017).

[93] Unity - Fast Facts. 2017. url: https://unity3d.com/public-relations (visited
on 05/31/2017).

[94] Unity - Game Engine. 2017. url: https://unity3d.com/ (visited on 06/17/2017).

[95] Unreal® Engine End User License Agreement. 2017. url: https : / / www .
unrealengine.com/eula (visited on 06/07/2017).

[96] User centred design. 2017. url: http://www.userfocus.co.uk/consultancy/
ucd.html (visited on 06/12/2017).

[97] User-Centered Design Basics. 2017. url: https://www.usability.gov/what-
and-why/user-centered-design.html (visited on 06/12/2017).

[98] Vision Accessibility. 2017. url: https://www.apple.com/accessibility/mac/
vision/ (visited on 06/19/2017).

[99] Vodafone One 50Mb S con 20% de descuento. 2017. url: https://www.vodafone.
es / tienda / particulares / es / one - todo - en - uno / fibra - ono - movil /
?mostrarGE=true (visited on 06/20/2017).

[100] What is free software? 2017. url: https://www.gnu.org/philosophy/free-
sw.en.html (visited on 06/11/2017).

[101] What is Unreal Engine 4. 2017. url: https://www.unrealengine.com/what-
is-unreal-engine-4 (visited on 06/17/2017).

[102] BGT (Blastbay Game Toolkit). url: http://www.blastbay.com/bgt.php (visited
on 06/16/2017).

86

https://msdn.microsoft.com/en-us/library/windows/desktop/dd373592(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd373592(v=vs.85).aspx
https://www.nvaccess.org/
https://www.oculus.com/rift/
https://github.com/godotengine/godot/tree/master/thirdparty/opus
https://github.com/godotengine/godot/tree/master/thirdparty/opus
https://www.endesaclientes.com/price-electricity-vpsc.html
https://www.endesaclientes.com/price-electricity-vpsc.html
http://www.afb.org/prodBrowseCatResults.aspx?CatID=43
http://www.afb.org/prodBrowseCatResults.aspx?CatID=43
https://github.com/derekriemer/nvda-notepadPlusPlus
https://github.com/derekriemer/nvda-notepadPlusPlus
http://espana.jobtonic.es/salary/26526/74915.html
http://espana.jobtonic.es/salary/26526/74915.html
https://www.w3.org/WAI/intro/wcag
https://www.w3.org/WAI/intro/wcag
https://store.unity.com/
https://www.gtk.org/
https://quorumlanguage.com/
https://unity3d.com/public-relations
https://unity3d.com/
https://www.unrealengine.com/eula
https://www.unrealengine.com/eula
http://www.userfocus.co.uk/consultancy/ucd.html
http://www.userfocus.co.uk/consultancy/ucd.html
https://www.usability.gov/what-and-why/user-centered-design.html
https://www.usability.gov/what-and-why/user-centered-design.html
https://www.apple.com/accessibility/mac/vision/
https://www.apple.com/accessibility/mac/vision/
https://www.vodafone.es/tienda/particulares/es/one-todo-en-uno/fibra-ono-movil/?mostrarGE=true
https://www.vodafone.es/tienda/particulares/es/one-todo-en-uno/fibra-ono-movil/?mostrarGE=true
https://www.vodafone.es/tienda/particulares/es/one-todo-en-uno/fibra-ono-movil/?mostrarGE=true
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://www.unrealengine.com/what-is-unreal-engine-4
https://www.unrealengine.com/what-is-unreal-engine-4
http://www.blastbay.com/bgt.php

[103] Design for All is design tailored to human diversity. url: http://designforall.
org/design.php (visited on 06/15/2017).

[104] Emacspeak Inc. Emacspeak –The Complete Audio Desktop. url: http : / /
emacspeak.sourceforge.net/ (visited on 05/11/2017).

[105] Google. Accessibility - Usability - Material design guidelines. url: https : / /
material . io / guidelines / usability / accessibility . html (visited on
05/09/2017).

[106] IDEO. Human Centered Design. url: http : / / www . designkit . org / human -
centered-design (visited on 05/24/2017).

[107] Limited License Agreement for the Use of The CryEngine. url: https://www.
cryengine.com/ce-terms (visited on 06/07/2017).

[108] Microsoft. Accessibility Design Guidelines for Software. url: https : / / msdn .
microsoft . com / en - us / library / aa291308(v = vs . 71) .aspx (visited on
05/09/2017).

87

http://designforall.org/design.php
http://designforall.org/design.php
http://emacspeak.sourceforge.net/
http://emacspeak.sourceforge.net/
https://material.io/guidelines/usability/accessibility.html
https://material.io/guidelines/usability/accessibility.html
http://www.designkit.org/human-centered-design
http://www.designkit.org/human-centered-design
https://www.cryengine.com/ce-terms
https://www.cryengine.com/ce-terms
https://msdn.microsoft.com/en-us/library/aa291308(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa291308(v=vs.71).aspx

A WCAG 2.0 checklist

A.1 Perceivable

Web content is made available to the senses - sight, hearing, and/or touch

A.1.1 Guideline 1.1. Text Alternatives

Success criteria Recommendations Check

1.1.1 Non-text
Content (Level
A)

All images, form image buttons, and image map hot
spots have appropriate, equivalent alternative text. 3

Images that do not convey content, are decorative, or
with content that is already conveyed in text are given

null alt text (alt=””) or implemented as CSS
backgrounds. All linked images have descriptive

alternative text.

N/A

Equivalent alternatives to complex images are provided
in context or on a separate (linked and/or referenced via

longdesc) page.
N/A

Form buttons have a descriptive value. 3

Form inputs have associated text labels. 3

Embedded multimedia is identified via accessible text. N/A

Frames are appropriately titled. 3

Table 14: Evaluation with the WCAG 2.0 checklist: guideline 1.1

88

A.1.2 Guideline 1.2. Time-based media

Success criteria Recommendations Check

1.2.1 Prerecorded
Audio-only and
Video-only (Level
A)

A descriptive text transcript (including all relevant visual
and auditory clues and indicators) is provided for

non-live, web-based audio (audio podcasts, MP3 files,
etc.).

N/A

A text or audio description is provided for non-live,
web-based video-only (e.g., video that has no audio

track).
N/A

1.2.2 Captions
(Prerecorded)
(Level A)

Synchronized captions are provided for non-live,
web-based video (YouTube videos, etc.) N/A

1.2.3 Audio
Description or

Media
Alternative

(Prerecorded)
(Level A)

A descriptive text transcript OR audio description audio
track is provided for non-live, web-based video N/A

1.2.4 Captions
(Live) (Level

AA)

Synchronized captions are provided for all live
multimedia that contains audio (audio-only broadcasts,
web casts, video conferences, Flash animations, etc.)

N/A

1.2.5 Audio
Description

(Prerecorded)
(Level AA)

Audio descriptions are provided for all video content.
NOTE: Only required if the video conveys content

visually that is not available in the default audio track.
N/A

1.2.6 Sign
Language

(Prerecorded)
(Level AAA)

A sign language video is provided for all media content
that contains audio. N/A

1.2.7 Extended
Audio

Description
(Prerecorded)
(Level AAA)

When an audio description track cannot be added to
video due to audio timing (e.g., no pauses in the audio),
an alternative version of the video with pauses that allow

audio descriptions is provided.

N/A

1.2.8 Media
Alternative

(Prerecorded)
(Level AAA)

A descriptive text transcript is provided for all
pre-recorded media that has a video track. N/A

Table 15: Evaluation with the WCAG 2.0 checklist: guideline 1.2 (1)

89

Success criteria Recommendations Check

1.2.9 Audio-only
(Live) (Level

AAA)

A descriptive text transcript (e.g., the script of the live
audio) is provided for all live content that has audio. N/A

Table 16: Evaluation with the WCAG 2.0 checklist: guideline 1.2 (2)

A.1.3 Guideline 1.3: Adaptable

Success criteria Recommendations Check

1.3.1 Info and
Relationships
(Level A)

Semantic markup is used to designate headings (<h1>),
lists (, , and <dl>), emphasized or special text

(, <code>, <abbr>, <blockquote>, for
example), etc. Semantic markup is used appropriately.

N/A

Tables are used for tabular data. Headings, where
necessary, are used to associate data cells with headers.
Data table captions and summaries are used where

appropriate.

3

Text labels are associated with form input elements.
Related form elements are grouped with fieldset/legend. 3

1.3.2 Meaningful
Sequence (Level

A)

The reading and navigation order (determined by code
order) is logical and intuitive. 3

1.3.3 Sensory
Characteristics
(Level A)

Instructions do not rely upon shape, size, or visual
location (e.g., "Click the square icon to continue" or

"Instructions are in the right-hand column").
3

Instructions do not rely upon sound (e.g., "A beeping
sound indicates you may continue."). 7

Table 17: Evaluation with the WCAG 2.0 checklist: guideline 1.3

90

A.1.4 Guideline 1.4: Distinguishable

Success criteria Recommendations Check

1.4.1 Use of
Color (Level A)

Color is not used as the sole method of conveying content
or distinguishing visual elements. 3

Color alone is not used to distinguish links from
surrounding text unless the luminance contrast between
the link and the surrounding text is at least 3:1 and an
additional differentiation (e.g., it becomes underlined) is
provided when the link is hovered over or receives focus.

3

1.4.2 Audio
Control (Level A)

A mechanism is provided to stop, pause, mute, or adjust
volume for audio that automatically plays on a page for

more than 3 seconds.
3

1.4.3 Contrast
(Minimum)
(Level AA)

Text and images of text have a contrast ratio of at least
4.5:1. 3

Large text - at least 18 point (typically 24px) or 14 point
(typically 18.66px) bold has a contrast ratio of at least

3:1.
3

1.4.4 Resize text
(Level AA)

The page is readable and functional when the text size is
doubled. 3

1.4.5 Images of
Text (Level AA)

If the same visual presentation can be made using text
alone, an image is not used to present that text. 3

1.4.6 Contrast
(Enhanced)
(Level AAA)

Text and images of text have a contrast ratio of at least
7:1. 3

Large text - at least 18 point (typically 24px) or 14 point
(typically 18.66px) bold has a contrast ratio of at least

4.5:1.
3

1.4.7 Low or No
Background
Audio (Level

AAA)

Audio of speech has no or very low background noise so
the speech is easily distinguished. 3

Table 18: Evaluation with the WCAG 2.0 checklist: guideline 1.4 (1)

91

Success criteria Recommendations Check

1.4.8 Visual
Presentation
(Level AAA)

Blocks of text over one sentence in length:

Are no more than 80 characters wide. 3

Are NOT fully justified (aligned to both the left and the
right margins). 3

Have adequate line spacing (at least 1/2 the height of the
text) and paragraph spacing (1.5 times line spacing). 3

Have a specified foreground and background color. These
can be applied to specific elements or to the page as a

whole using CSS (and thus inherited by all other
elements).

3

Do NOT require horizontal scrolling when the text size is
doubled. 3

1.4.9 Images of
Text (No
Exception)
(Level AAA)

Text is used within an image only for decoration (image
does not convey content) OR when the information

cannot be presented with text alone.
3

Table 19: Evaluation with the WCAG 2.0 checklist: guideline 1.4 (2)

A.2 Operable

Interface forms, controls, and navigation are operable

92

A.2.1 Guideline 2.1: Keyboard Accessible

Success criteria Recommendations Check

2.1.1 Keyboard
(Level A)

All page functionality is available using the keyboard,
unless the functionality cannot be accomplished in any
known way using a keyboard (e.g., free hand drawing).

3

Page-specified shortcut keys and accesskeys (accesskey
should typically be avoided) do not conflict with existing

browser and screen reader shortcuts.
3

2.1.2 No
Keyboard Trap

(Level A)

Keyboard focus is never locked or trapped at one
particular page element. The user can navigate to and

from all navigable page elements.
3

2.1.3 Keyboard
(No Exception)
(Level AAA)

All page functionality is available using the keyboard. 3

Table 20: Evaluation with the WCAG 2.0 checklist: guideline 2.1

93

A.2.2 Guideline 2.2: Enough Time

Success criteria Recommendations Check

2.2.1 Timing
Adjustable (Level

A)

If a page or application has a time limit, the user is given
options to turn off, adjust, or extend that time limit.
This is not a requirement for real-time events (e.g., an

auction), where the time limit is absolutely required, or if
the time limit is longer than 20 hours.

N/A

2.2.2 Pause,
Stop, Hide (Level
A)

Automatically moving, blinking, or scrolling content that
lasts longer than 5 seconds can be paused, stopped, or

hidden by the user. Moving, blinking, or scrolling can be
used to draw attention to or highlight content as long as

it lasts less than 5 seconds.

N/A

Automatically updating content (e.g., automatically
redirecting or refreshing a page, a news ticker, AJAX
updated field, a notification alert, etc.) can be paused,
stopped, or hidden by the user or the user can manually

control the timing of the updates.

3

2.2.3 No Timing
(Level AAA)

The content and functionality has no time limits or
constraints. 3

2.2.4
Interruptions
(Level AAA)

Interruptions (alerts, page updates, etc.) can be
postponed or suppressed by the user. 3

2.2.5
Reauthenticating
(Level AAA)

If an authentication session expires, the user can
re-authenticate and continue the activity without losing

any data from the current page.
N/A

Table 21: Evaluation with the WCAG 2.0 checklist: guideline 2.2

A.2.3 Guideline 2.3: Seizures

Success criteria Recommendations Check

2.3.1 Three
Flashes or Below
Threshold (Level

A)

No page content flashes more than 3 times per second
unless that flashing content is sufficiently small and the
flashes are of low contrast and do not contain too much

red.

3

2.3.2 Three
Flashes (Level

AAA)
No page content flashes more than 3 times per second. 3

Table 22: Evaluation with the WCAG 2.0 checklist: guideline 2.3

94

A.2.4 Guideline 2.4: Navigable

Success criteria Recommendations Check

2.4.1 Bypass
Blocks (Level A)

A link is provided to skip navigation and other page
elements that are repeated across web pages. 3

If a page has a proper heading structure, this may be
considered a sufficient technique instead of a "Skip to

main content" link. Note that navigating by headings is
not yet supported in all browsers.

3

If a page uses frames and the frames are appropriately
titled, this is a sufficient technique for bypassing

individual frames.
3

2.4.2 Page Titled
(Level A)

The web page has a descriptive and informative page
title. 3

2.4.3 Focus Order
(Level A)

The navigation order of links, form elements, etc. is
logical and intuitive. 3

2.4.4 Link
Purpose (In
Context) (Level
A)

The purpose of each link (or form image button or image
map hotspot) can be determined from the link text alone,
or from the link text and it’s context (e.g., surrounding

paragraph, list item, table cell, or table headers).

3

Links (or form image buttons) with the same text that
go to different locations are readily distinguishable. 3

2.4.5 Multiple
Ways (Level AA)

Multiple ways are available to find other web pages on
the site - at least two of: a list of related pages, table of
contents, site map, site search, or list of all available web

pages.

N/A

2.4.6 Headings
and Labels (Level

AA)

Page headings and labels for form and interactive controls
are informative. Avoid duplicating heading (e.g., "More
Details") or label text (e.g., "First Name") unless the

structure provides adequate differentiation between them.

3

2.4.7 Focus
Visible (Level

AA)

It is visually apparent which page element has the
current keyboard focus (i.e., as you tab through the page,

you can see where you are).
3

2.4.8 Location
(Level AAA)

If a web page is part of a sequence of pages or within a
complex site structure, an indication of the current page
location is provided, for example, through breadcrumbs
or specifying the current step in a sequence (e.g., ”Step 2

of 5 - Shipping Address”).

3

Table 23: Evaluation with the WCAG 2.0 checklist: guideline 2.4 (1)

95

Success criteria Recommendations Check

2.4.9 Link
Purpose (Link
Only) (Level
AAA)

The purpose of each link (or form image button or image
map hotspot) can be determined from the link text alone. 3

There are no links (or form image buttons) with the
same text that go to different locations. 3

2.4.10 Section
Headings (Level

AAA)

Beyond providing an overall document structure,
individual sections of content are designated using

headings, where appropriate.
3

Table 24: Evaluation with the WCAG 2.0 checklist: guideline 2.4 (2)

A.3 Understandable

Content and interface are understandable

A.3.1 Guideline 3.1: Readable

Success criteria Recommendations Check

3.1.1 Language of
Page (Level A)

The language of the page is identified using the HTML
lang attribute (<html lang="en">, for example). N/A

3.1.2 Language of
Parts (Level AA)

When appropriate, the language of sections of content
that are a different language are identified, for example,
by using the lang attribute (<blockquote lang="es")>

N/A

3.1.3 Unusual
Words (Level

AAA)

Words that may be ambiguous, unknown, or used in a
very specific way are defined through adjacent text, a
definition list, a glossary, or other suitable method.

3

3.1.4
Abbreviations
(Level AAA)

Expansions for abbreviations are provided by expanding
or explaining the definition the first time it is used, using

the <abbr> element, or linking to a definition or
glossary. NOTE: WCAG 2.0 gives no exception for

regularly understood abbreviations (e.g., "HTML" on a
web design site must always be expanded).

3

3.1.5 Reading
Level (Level

AAA)

A more understandable alternative is provided for content
that is more advanced than can be reasonably read by a

person with roughly 9 years of primary education.
3

3.1.6
Pronunciation
(Level AAA)

If the pronunciation of a word is vital to understanding
that word, its pronunciation is provided immediately

following the word or via a link or glossary.
3

Table 25: Evaluation with the WCAG 2.0 checklist: guideline 3.1

96

A.3.2 Guideline 3.2: Predictable

Success criteria Recommendations Check

3.2.1 On Focus
(Level A)

When a page element receives focus, it does not result in
a substantial change to the page, the spawning of a

pop-up window, an additional change of keyboard focus,
or any other change that could confuse or disorient the

user.

3

3.2.2 On Input
(Level A)

When a user inputs information or interacts with a
control, it does not result in a substantial change to the
page, the spawning of a pop-up window, an additional

change of keyboard focus, or any other change that could
confuse or disorient the user unless the user is informed

of the change ahead of time.

3

3.2.3 Consistent
Navigation (Level

AA)

Navigation links that are repeated on web pages do not
change order when navigating through the site. N/A

3.2.4 Consistent
Identification
(Level AA)

Elements that have the same functionality across
multiple web pages are consistently identified. For
example, a search box at the top of the site should

always be labeled the same way.

3

3.2.5 Change on
Request (Level

AAA)

Substantial changes to the page, the spawning of pop-up
windows, uncontrolled changes of keyboard focus, or any
other change that could confuse or disorient the user

must be initiated by the user. Alternatively, the user is
provided an option to disable such changes.

3

Table 26: Evaluation with the WCAG 2.0 checklist: guideline 3.2

97

A.3.3 Guideline 3.3: Input Assistance

Success criteria Recommendations Check

3.3.1 Error
Identification
(Level A)

Required form elements or form elements that require a
specific format, value, or length provide this information

within the element’s label.
3

If utilized, form validation cues and errors (client-side or
server-side) alert users to errors in an efficient, intuitive,
and accessible manner. The error is clearly identified,

quick access to the problematic element is provided, and
user is allowed to easily fix the error and resubmit the

form.

3

3.3.2 Labels or
Instructions
(Level A)

Sufficient labels, cues, and instructions for required
interactive elements are provided via instructions,
examples, properly positioned form labels, and/or

fieldsets/legends.

3

3.3.3 Error
Suggestion (Level

AA)

If an input error is detected (via client-side or server-side
validation), provide suggestions for fixing the input in a

timely and accessible manner.
3

3.3.4 Error
Prevention

(Legal, Financial,
Data) (Level AA)

If the user can change or delete legal, financial, or test
data, the changes/deletions are reversible, verified, or

confirmed.
N/A

3.3.5 Help (Level
AAA)

Provide instructions and cues in context to help in form
completion and submission. 7

3.3.6 Error
Prevention (All)
(Level AAA)

If the user can submit information, the submission is
reversible, verified, or confirmed. 3

Table 27: Evaluation with the WCAG 2.0 checklist: guideline 3.3

A.4 Robust

Content can be used reliably by a wide variety of user agents, including assistive
technologies

98

A.4.1 Guideline 4.1: Compatible

Success criteria Recommendations Check

4.1.1 Parsing
(Level A)

Significant HTML/XHTML validation/parsing errors are
avoided. 3

4.1.2 Name, Role,
Value (Level A)

Markup is used in a way that facilitates accessibility.
This includes following the HTML/XHTML

specifications and using forms, form labels, frame titles,
etc. appropriately.

3

Table 28: Evaluation with the WCAG 2.0 checklist: guideline 4.1

Results: 61 2 63

99

	Introduction
	Motivation
	Socioeconomic environment
	Research method
	Proposed solution
	Input and output design
	Solution implementation

	Outline

	State of the art
	Definitions
	Visual impairment
	Functional diversity
	Accessibility
	Assistive technology

	Assistive technologies for visually impaired users
	User interfaces for visually impaired users
	3D views
	3D audio games
	Cognitive mental models of 3D views

	Accessible software development tools for visually impaired users
	Game development tools for visually impaired users

	Design insights
	Exploratory study
	Participants
	Participant profile
	Searching for participants
	Demographics

	Interviews
	Design insights

	Design of the solution
	Chosen technology
	Available technologies comparison
	Godot Engine user interface analysis

	Design specification
	Input mode
	Output mode
	Configuration

	Implementation details
	New user interface elements
	Screen reader
	3D Audio

	3D view prototype
	Purpose
	Prototype implementation

	Evaluation
	Evaluation method
	WCAG guidelines
	Future user evaluation with the 3D view prototype

	Evaluation with WCAG 2.0 checklist
	Results

	Project management
	Regulatory framework
	Accessibility standards
	Software licenses
	User privacy

	Planning
	Budget

	Conclusions
	Technical conclusions
	Future work
	Personal conclusions

	Glossary
	References
	WCAG 2.0 checklist
	Perceivable
	Guideline 1.1. Text Alternatives
	Guideline 1.2. Time-based media
	Guideline 1.3: Adaptable
	Guideline 1.4: Distinguishable

	Operable
	Guideline 2.1: Keyboard Accessible
	Guideline 2.2: Enough Time
	Guideline 2.3: Seizures
	Guideline 2.4: Navigable

	Understandable
	Guideline 3.1: Readable
	Guideline 3.2: Predictable
	Guideline 3.3: Input Assistance

	Robust
	Guideline 4.1: Compatible

