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Abstract

In recent years, the relevance of delay over throughput has been particularly
emphasized. Nowadays our networks are getting more and more sensible to latency
due to the proliferation of applications and services like VoIP, IPTV or online
gaming where a low delay is essential for a proper performance and a good user
experience.

Most of this unnecessary delay is created by the misbehaviour of many buffers
that populate Internet. Instead of performing the task for what they were
created for, absorbing eventual packet bursts to prevent loss, they deceive the
sender’s congestion control mechanisms into believing that the current path to the
destination has more bandwidth than it really has. When the loss event occurs, if it
does, it’s too late and the damage on the path, in terms of additional transmission
time, has been done.

On this bachelor thesis we will try to throw light over an specific solution
that aims to reduce the extra delay produced by these bloated buffers: Active
Queue Management. We have tested a bunch of AQM algorithms with different
TCP modifications in order to understand the interactions between these two
mechanisms. We performed simulations testing various characteristic scenarios
like Transoceanic links or Access link scenarios, among other.
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Resumen

En los últimos años se ha ido poniendo énfasis particularmente en la
importancia del retraso sobre la capacidad. Hoy en d́ıa, nuestras redes se están
volviendo más y más sensibles a la latencia debido a la proliferación de aplicaciones
y servicios como el VoIP, la IPTV o el juego online donde un retardo bajo es esencial
para un desempeño adecuado y una buena experiencia de usuario.

La mayor parte de este retraso innecesario se debe al mal funcionamiento de
algunos búferes que pueblan internet. En vez de desempeñar la tarea para la que
fueron creados, absorber eventuales ráfagas de paquetes con el fin de prevenir su
pérdida, hacen creer al mecanismo de control de congestión que la ruta hacia el
destino actual tiene más ancho de banda que el que posee realmente. Cuando la
perdida de paquetes ocurre, si es que lo hace, es demasiado tarde y el daño en el
enlace, en forma de tiempo de transmisión adicional, ya se ha producido.

En este trabajo de fin de grado intentaremos arrojar luz sobre una solución
espećıfica cuyo objetivo es el de reducir el retardo extra producido por esos
hinchados búferes, la Gestión Avanzada de Colas o Active Queue Management
(AQM). Hemos testeado un grupo de estos algoritmos AQM junto con diferentes
modificaciones del control de congestión de TCP con el fin de entender las
interacciones generadas entre esos dos mecanismos, realizando simulaciones en
varios escenarios caracteŕısiticos tales como enlaces transoceánicos o enlaces de
acceso a red, entre otros.
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Chapter 1

Introduction

Since the beginning of Internet, engineers and scientists have been worried
about network congestion. Some of these concerns caused the creation and
implementation of several congestion control techniques that have survived until
our days in the shape of TCP Congestion avoidance algorithms.

Most of these algorithms make use of dropped packets on a connection to
sense congestion and act consequently. With the addition of buffers all across
the network, the correct behaviour of this type of congestion notification has
been severely damaged. Such added buffers prevent packet losses, do not letting
the transmitter to know about bottlenecks on the connection and thus, adding
unnecessary delay to the network path by systematically filling the buffers. This
problem has been getting worse as time goes by.

1.1. Motivation

Nowadays network has changed, delay is slowly replacing throughput as the
key factor on a modern network and many providers have already changed their
infrastructures to support more advanced queue management mechanisms like
Random Early Detection (RED), Proportional Integral controller Enhanced (PIE)
or Controlled Delay (CoDel) (which will be reviewed on section 2.2) in an attempt
to reduce the delay that the loss based congestion control algorithms induce on
the network.

These queue management algorithms drop packets to warn the sender about
congestion, replacing the legacy TCP congestion notification and triggering the
congestion avoidance mechanisms on the sender size. But not all the TCP flavours
use the same techniques to detect congestion. How these new methods interfere
with built-in congestion-avoidance algorithms included on TCP?

1.2. Goals

The purpose of this thesis is to simulate different scenarios and discuss the
interactions between the major congestion avoidance algorithms in use nowadays
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and the queue management strategies proposed in the last years to mitigate
bufferbloat [28], which is where the buffers of a router are always full, adding
unnecessary extra delay to the network and failing at its goal of absorbing eventual
packet bursts.

In order to do so, we added several AQM algorithms to the TCP test suite
created by the Internet Congestion Control Research Group (ICCRG) [6] and
analyzed the interactions produced between these algorithms and the main TCP
flavors used nowadays on the network. We hope to throw some light over the real
interactions that occur on the network core and figure out if the benefits provided
with these mechanisms are consistent and viable.

1.3. Social and Economic Framework

As we stated previously, delay accumulated on our communication networks
plays an unnoticeable but important role in our society nowadays. The effects
of such delays goes from video-calls and another interactive applications [18] with
poor user experience to computer games [7] [78] [14] [16] suffering the effects of the
so-called “lag”, without forgetting the millions and millions of economical losses if
we stare at the new cutting edge High Frequency Trading systems, in which every
nanosecond costs money [40]. We cannot deny that the failure of the so called thin
clients was partly caused by the heavy delays the users had to withstand when
using one of these machines [72].

An illustrative example about how critical these delays could become on a
future not so distant are the teleoperation of surgical robots [47], in which every
millisecond is important and could mean the difference between life and death.
According to [63], the future applications for this type of technology could be key
on some scenarios, for instance, reducing the exposure of real human surgeons on
the battlefield.

The health of those industries is key on our modern economies. According to
SuperData research firm [61], games generated a revenue of 91 billion dollars on
2016, being most of this money generated by games with a heavy use of online
technologies, and these numbers do not seem to slow down for the next year.
The same happens on the phone industry when reports indicate that companies
are moving to a total conversion from conventional PSTN networks to VoIP
technologies [17]. We could also mention the VoIP features that instant messaging
companies are adding to their apps, and the impact that these features could
have globally, let’s remember that Whatsapp (one of the most important instant
messaging companies) counts with 900 millions active users and its still growing.

An example of how latency is crucial on delivering multimedia transfer are the
importance that Youtube or Netflix gives to that aspect on the design of their
infrastructure as it is stated on [24] and [2].

The network is changing faster and faster from a model in which the heavy
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weight was done locally and the Internet was just a channel to a model in which
the real work is done on the flight and we want to see the changes reflected with the
same speed as before but worldwide instead of locally. The increasing importance
of delay on our communication networks will rise over time due to the necessities
imposed by the new cloud-based services that are appearing now. Delay is crucial
on most of these new technologies that are flourishing.

1.4. Legislative and Regulatory Framework

The legislation on this topic is nonexistent. The main reason is that the
details we are discussing om this thesis belongs to highly technical aspects of
the telecommunications that are not subject of legislation. Nevertheless, latency
should have been included on the IET/1090/2014 [50] law which regulates the
quality of service parameters that the operators need to cover. This could have
forced the Spanish’s telecommunication operators to reduce the delay experienced
on their infrastructure.

Although the adherence to its standards is voluntary, the Internet Engineering
Task Force (IETF) is the most important organization that works towards a
regulatory framework on TCP/IP networks. Since its creation it has encouraged
the work on several engineering aspects related to this thesis. It deployed a
dedicated team called Internet Congestion Control Research Group (ICCRG) to
address the challenge of optimizing TCP Congestion Control. Since its creation
this team had an influence on the design of new TCP congestion control algorithms
like CTCP or Cubic.

Besides that, other group created by the IETF called Reduce Internet
Transport Latency (RITE) works towards the standardization of methods to
measure, and control the delay on TCP/IP based networks.

1.5. Thesis Structure

This document is divided into eight sections in which we cover the full aspects
for the development of the following thesis.

On this first chapter, we have written an introduction in which we explain
briefly what took us to make this thesis. It also covers the social and economical
aspects of our work and it also explains a little bit the legal and economical
framework of this topic.

On the second chapter we will talk about the state of the art, dedicating the first
section to explain the most important TCP congestion avoidance mechanisms that
are in use nowadays. We will talk about the main aspects and differences of each
one of them. The next section of this chapter is similar to the aforementioned,
but in this case we will speak about some of the most extended Active Queue
Management schemes that are in use and that we will evaluate, the mechanisms
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that are inside its control logic, its flaws and strengths. Later on, we will take a
look at the works previously published about this topic, highlighting its similarities
and differences with this thesis and showing its conclusions.

The third chapter is devoted to explain our simulation setup, the tools we used
and the topology we utilize to test it. This chapter serves as an introduction for the
next four chapters in which we will show the results of the different scenarios we
simulated: Access Link, Transoceanic, Datacenter and Satellite scenario. On each
one of these four chapters, we will explain the characteristic features that makes
it interesting to analyze, the parameters chosen to make our topology similar to
these scenarios and we will comment the various results we obtained during those
experiences.

The eighth section is a concise text explaining our conclusions and the reasons
behind such that conclusions. We will also propose some improvements of out work
as well as new research approaches. The end of this document will be filled with
the budget of this projects as well as with the bibliography and a list of utilized
acronyms.
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Chapter 2

State of the art

2.1. TCP Congestion Avoidance Algorithms

This section is intended to act as a brief review about the most important TCP
congestion control variations that are in use nowadays. For that reason we have
chosen some of the most representative TCP modifications like CUBIC, which is
the standard TCP extension used on Linux machines, Compound TCP which is
implemented by default on Windows Operative Systems, LEDBAT which is one
of the best representations of a TCP Congestion Control algorithm based on Low
Priority Congestion Control and New Reno which is the basic scheme from where
all these other TCP modifications came from.

These concepts will be useful in order to analyze the interaction between TCP
congestion avoidance algorithms and the different queue management algorithms
deployed on this experiment.

2.1.1. TCP Tahoe

TCP Tahoe is one of the first congestion control algorithms and the base in
which the newest proposed versions like Reno or New Reno were based on. It
was proposed by Van Jacobson and Mike Karels on 1988 [38] and implemented on
BSD operative system, which codename was “Tahoe”, in the same year. Tahoe
was based on the principle of ‘conservation of packets’. According to this principle,
there should be an equilibrium point in which a link could work stable and keep
that state by only adding a packet to the link just if another packet has left the
link.

So, in order to obtain the best performance on a link, we would need two
algorithms to address these two different phases. The first one would look for the
equilibrium point and the second one would be in charge of keeping the connection
near to that point. We would call these two phases Slow-Start and Congestion
Avoidance, respectively. As we will see, such concepts will be utilized on the
congestion control mechanisms that followed this first attempt.

These two algorithms try to control the amount of data sent to the link so as to
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achieve the maximum available throughput. In order to do that, two parameters
are used: The first one is the congestion window size, cwnd, which controls the
number of bytes that can be sent in a row and the second one is sstresh which
indicates the number of packets that can be sent until the connection enters into
congestion-avoidance mode.

On Slow-start phase, while cwnd is less than sstresh, for every ACK received,
the sender increases the window size by one packet. That is the so called Slow
Start algorithm which is not so slow, in fact, it leads to an exponential window
increase that aims to achieve the maximum possible bandwidth in the minimum
possible time. When a loss happens, this cwnd is resetted to one packet.

When sstresh value has been reached, connection goes into congestion-
avoidance mode and it starts to increase the window linearly, by adding 1

cwin
to

the actual window value. If some packet is lost, the sender resets the window to
its initial value and resets the threshold to half the value of the congestion window
when the loss happened. For instance, if we started the congestion-avoidance phase
sending ten packets, and the loss occurred when the congestion window was thirty
six, the threshold value would be eighteen and the congestion window will start
again at ten packets.

TCP Tahoe also made use of another two different strategies to detect losses:
Retransmission Timeout (RTO) estimation and Fast Retransmit. RTO estimation
is intended to minimize the reaction time to a packet loss by adjusting the timeout
to the network conditions and Fast Retransmit algorithm gives the sender the
capability to repeat the transmission of a loss packet without waiting for its RTO
timer to expire.

In order to estimate RTO, TCP Tahoe make use of three variables srtt
(smoothed round-trip time), rttvar (round-trip time variation) and the proper
RTO. It is initially set to 3 seconds, but when the first RTT measurement is
obtained, the values are updated as follows:

srtt = rtt
rttvar = rtt

2

rto = srtt+ 4 · rttvar
(2.1)

Each time a new RTT measurement is adquired, the three values are
recalculated as follows:

srtt = (1− α) · srtt+ α · rtt
rttvar = (1− β) · srtt+ β · (srtt− rtt)

rto = srtt+ 4 · rttvar
(2.2)

As you can see on 2.2, the smoothed RTT is a low-pass filter as [58] suggested
with filter gains being α and β. Jacobson proposed [38] for such values 0.9 and 2
accordingly.

Although Retransmission timeout is able to detect every loss, its reaction time
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is bounded by the RTT and the RTO which sometimes could not be fast enough.
In order to address this problem, a fast retransmission mechanism called Fast
Retransmit was implemented on TCP Tahoe.

So, if some packet is lost, the receiver keeps sending the acknowledgment packet
that corresponds to the last packet received before the packet loss until the missing
packet is received. As a result of this, the sender will receive more than one ACK
with the same sequence number. If it receives three duplicated ACK’s, it infers
that this particular packet has been lost and sends it again without waiting for
the retransmission timer to expire. TCP Tahoe behaves on this event like on a
common loss event, by resetting the Congestion Window and starting again the
Slow-Start and Congestion Avoidance phases.

2.1.2. TCP Reno

TCP Reno is similar to TCP Tahoe but with the addition of another congestion
control mechanism called Fast Recovery [70]. This mechanism comes from
differentiating between minor losses caused by little congestion peaks or eventual
transmission problems (at the physical layer, for instance) and major losses caused
by real link congestion. By making such differentiation, it could be possible to
address these minor losses not so aggressively, thus conserving the capacity before
the loss event on some cases.

So, understanding the reception of duplicated acknowledgements as a minor
loss event that does not implies necessarily congestion (cause other packets have
been able to get to the receiver), Jacobson proposed an alternative way of handling
such losses called Fast Recovery.

By using this modification, when an event with suchlike characteristics have
place, the sender recalculates its threshold value just like in Congestion-Avoidance
mode but, instead of setting the congestion window back to the original window
size, it sets the window to sstresh + 3, skipping the Slow Start phase and going
directly to Congestion Avoidance phase.

2.1.3. TCP NewReno

TCP NewReno [32] is an evolution of the original TCP Reno explained on
section 2.1.2 which aims to keep window transmission full when it is in recovery
mode by improving the Fast Recovery algorithm it was implemented on TCP Reno.

It addresses a specific drawback suffered by TCP Reno [21] that occurs when
several concatenated loss events take place. On this situation, when TCP Reno
receives an acknowledgement of some of the lost packets, it goes out of Fast
Recovery phase thus not automatically retransmitting the remaining lost packets
as it should be done on Fast Retransmit, waiting for their timers to expire instead.

Rather than doing that, New Reno tracks the acknowledgements received and
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does not go out Fast Retransmit phase till all the lost packets have been acked.

As we stated before, the main variable that TCP New Reno and most of
the modern TCP congestion management algorithms uses to take control of the
congestion on a link is the window size [48], that is, the number of packets we
can send in a row. By modifying this parameter, we are able to modify the traffic
sent to a link and thus, reduce or increase the congestion on such the link. The
optimal window size (if there is just one TCP flow on the link) would be equal to
the Bandwidth Delay Product (BDP). As we do not know a priori the bandwidth
of the link, the goal in the case of TCP New Reno and all the other loss-based
congestion control algorithms is to take the congestion window to the highest value
that would allow the link to work without suffering losses.

TCP New Reno, just like their predecessors, is composed of four algorithms:
Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery. It could
also be divided into two main phases: Slow Start, where the algorithm with the
same name takes place and Congestion Avoidance, when the congestion window
is adjusted according to the Congestion Avoidance directives. On this phase, the
Fast Retransmit and Fast Recovery algorithms could also work if some loss is
produced.

Slow Start and Congestion Avoidance algorithms on New Reno follow the same
principles as the older Tahoe and Reno implementations, just changing a few
details like the default window size which is usually initialized to three times the
Maximum Segment Size, or sstresh which is 64 Kb by default.

Slow-start phase is particularly important on some applications like web
browsing, when sometimes the transmission of data is so short that TCP is not
even able to leave Slow-start phase behind. Fortunately, this problem has been
minimized with some improvements on the application layer, regarding the way
HTTP make the connection and download the assets, but those details are out of
the scope of this thesis.

Another way to maximize the number of information transmitted on this phase
could be to increase the initial congestion window from the standard 3MSS to a
higher value like 10MSS [15]. It has been proven [20] that it could have a moderate
benefit for short lived connections although it is obvious that a larger initial window
increases the burstiness of the traffic and this could affect significantly to the
average queuing delay under some circumstances.

Some other reports [27] indicate that the impact of the beforementioned
modification on the latency is huge enough to advice not to make such that
modification. Nevertheless, this report is targeted to a very specific service (web
browsing) which has its own idiosyncrasies and its conclusions are based on an
old protocol version (HTTP/1.1). Besides that, this draft talks about queues
presumably without any active queue management policy. We will try to figure
out if these type of managers could mitigate the latency problem and, at the same
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time, improve overall throughput when using this increased initial window.

1 win = 3

2 sstresh = 64Kb

3 if(ack){

4 if(win < sstresh) win = win + 1

5 if(win > sstresh) win = win + (1/ win)

6 }

7 if(packet_loss) {

8 sstresh = win /2;

9 win = 1

10 if(three_ack){

11 sstresh = win/2

12 win= sstresh + 3

13 }

Slow

Start

Timeout

Slow

Start

Congestion

Avoidance

Time

sstresh

cw
n
d

Figure 2.1: New Reno cwnd evolution

2.1.4. TCP Cubic

Cubic [31] is the current default TCP algorithm implemented on Linux
machines since kernel 2.6.1. It is an improved version of BIC-TCP that tries
to simplify the window control and enhance it’s friendliness with standard TCP.

It is supposed to work better than TCP New Reno on Long Fat Networks
(LFN), networks with high bandwidth and high delay because it minimizes the
time needed to reach the full capacity on links with very large Bandwidth Delay
Product (BDP). It does this by replacing the linear window growth function with
a cubic function in order to increase link utilization.

Cubic has two phases. In the first one, it rapidly increases towards the window
size it had just before the last congestion event happened. We will call this
threshold, wmax. As it reaches this value, the growth of the congestion window
is slowed down, behaving like a concave function. The initial fast window size
rising provides a shorter recovering time after a loss event compared to New Reno
while the flattening that occurs as congestion window approaches to wmax helps to
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minimize the losses in case the congestion window has truly reached the network
limit.

When wmax is surpassed, it goes into the second phase when the window
increase function become convex, trying to probe the network for the highest
possible congestion window in an aggressive manner. The objective of this phase
is to rapidly find the maximum possible transmission window the link is able to
withstand.

When a loss happens, wmax value is updated by using the formula 2.3, being
β a constant multiplication decrease factor which default value on TCP Cubic is
0.2.

wmax(t) = (1− β) · wmax(t− 1) (2.3)

On 2.4 we can observe the cubic polynomial formula that controls the
congestion window value update when an acknowledgement is received and draws
the representative cubic shape that gives name to this TCP algorithm.

w(t) = C(t−K)3 + wmax (2.4)

As we can see, this function is just a customized version of the cubic function
x3 where C is a scaling factor which default value is 0.4, t is the elapsed time since
the last window reduction, wmax is the recalculated window size just before the
last loss event and K is a factor that is updated at the time of the last congestion
event by using the formula 2.5.

K =
3

√
wmax · β

C
(2.5)

In order to increase fairness, TCP Cubic includes a modification inherited from
TCP BIC called Fast Convergence [62]. This modification is designed to recalculate
the congestion window when the available capacity on the channel decreases. In
order to do that, the last congestion window before a loss event is remembered.
We will call this value wlast. When a new loss occurs, this value is compared to
the actual wmax. If wmax < wlast it means that the capacity of the link has been
reduced. Instead of recalculating wmax as we did before, the formula 2.6 is utilized
to obtain a wmax value slightly smaller than usual.

wmax(t) =
2− β

2
· wlast (2.6)

On figure 2.2 we can observe an example of how the different mechanisms
mentioned above influence the congestion window.

2.1.5. Compound TCP

Compound TCP (CTCP) [71] is an algorithm developed by Microsoft that was
introduced on 2008 as part of Windows Vista. It basically adds a delay-based
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Figure 2.2: CUBIC window progression

component to TCP New Reno with the purpose of improving link utilization on
high-speed and long distance networks as they stated on their published paper.
Like Cubic, it tries to fully utilize the capacity of the link by converging to the
maximum possible window size faster than TCP New Reno but, at the same time,
it tries to be fair with the other competing TCP flows in the link.

As a result of this, Compound TCP is an hybrid between a pure delay-based
congestion control (based on HS-TCP) and a classic loss-based congestion control.
The included delay-based component helps to increase aggressively the window
when the network is under-utilized and reduce the sending rate when it senses
that the link is fully utilized, that is, in the presence of queuing delay.

Compound TCP algorithm is similar to TCP New Reno but, instead of having
one congestion window variable, it maintains two independent windows: the loss-
based window cwnd and the delay based window dwnd. If the algorithm is in
congestion-avoidance phase, the actual window is the minimum between the sum
of these two windows and the advertised window of the receiver as it is shown on
equation 2.7.

wnd = min(cwnd+ dwnd, awnd) (2.7)

It is important to highlight that dwnd will not be taken into account at the
initial Slow Start phase of any TCP transmission cause the designers thought the
exponential slope on this phase is fast enough to provide a proper transmission
beginning. On congestion avoidance phase, as cwnd works exactly like in TCP
New Reno, the window size will be increased on every acknowledgement received
by following the New Reno formula, but using the window calculation formula 2.7
as it is written on formula 2.8.

wnd = wndlast +
1

wndlast
(2.8)

Now let us explain how this dwnd value is chosen. The delay component uses a
variable RTTbase as transmission delay estimator. With this measure we can figure
out the throughput we expect to receive as on equation 2.9, and if we compare this
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estimator with the actual throughput (equation 2.10) it is possible to estimate the
number of packets that are stuck in the bottleneck as in the formula 2.11.

threxpct = win/RTTbase (2.9)

thrnow = win/RTT (2.10)

diff = (threxpct − thrnow) ·RTTbase (2.11)

If this value is bigger than a predefined target value (γ), then it is assumed
that the link is congested and the value of dwnd shoud decrease. If the value
of the difference is smaller than the threshold value otherwise, it is determined
that the link is underutilized and the delay-based congestion window should be
increased. Threshold value γ is heuristically assigned being 30 packetes the default
value suggested by the creators of CTCP.

Until now, we just saw how the delay-based component of the CTCP protocol
detects congestion. The general outline then for the congestion window control
function is the one depicted on equation 2.12.

wnd(t+ 1) =

{
wnd(t) + α · wnd(t)k no loss
wnd(t) · (1− β) loss

(2.12)

By removing the loss-based component, the function could be particularized
for the delay-based window as follows on equation 2.13.

dwnd(t+ 1) =


dwnd(t) + α · xwnd(t)k − 1 diff < γ

dwnd(t)− ζ · diff diff ≥ γ
dwnd(t) · (1− β)− cwnd

2
packet losses

(2.13)

The previous formula 2.13 is created by taking into account that the delay-
based component acts as a complement of the New Reno algorithm loss-based
algorithm. For instance, in the increase phase, when target γ is bigger than diff ,
increment of dwnd will be conditioned by the loss-based component which will
increase by one packet. When there is a loss, it also does the same regarding
the reduction provided by cwnd . In such that situation, ζ is a very important
coefficient which controls the speed on the reduction of dwnd when there is
congestion. An example of how the congestion window evolves on Compound
TCP can be seen on figure 2.3.

2.1.6. LEDBAT

Low Extra Delay Background Transport (LEDBAT) [68] is a pure delay-based
congestion control algorithm designed to use just the spared bandwidth on an
end-to-end link while trying to keep queuing delay as low as possible.

In order to achieve this, it measures the one-way delay and reduces its rate when
delay increases. This behaviour make LEDBAT less aggressive than standard New
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Reno TCP, reacting faster to congestion events and not inducing extra queuing
delay in the network.

LEDBAT senses congestion on a way very similar to CTCP does, but instead
of using Round Trip Time, it employs one-way delay. This parameter has the
advantage of being more isolated with respect to other traffic flows sharing the
same link, but it requires collaboration between the sender and receiver which has
added timestamps to the packets sent.

Then, by calculating the difference between the base delay and the current
delay experienced, we are able to find out an estimator of the delay present on
the queue as in equation 2.14. The base delay is defined as the minimum delay
present on the link and is calculated like it is shown on equation 2.15.

delqueue = delnow − delbase (2.14)

delbase = min(delbase, delnow) (2.15)

The final value utilized on the congestion window control function is the target
offset depicted on figure 2.16 which represents the normalized difference between
the measured queuing delay delqueue and the specified target delay qtarget, which is
25 ms by default.

off target =
dtarget − dqueue

dtarget
(2.16)

With this value and another configurable parameter that is the gain, defined as
the rate at which the congestion window cwnd responds to the changes in queuing
delay, the congestion window control functions is configured as it is explained on
equation 2.17.

cwnd(t) = cwnd(t− 1) +
gain · offtarget
cwnd(t− 1)

· bytesacked ·MSS (2.17)

As it is stated on [65] this function established a direct relation between the
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target delay and the window size, aggressively increasing the window when the
current delay is well below the target delay and slowing down such tendency when
it draws closer to the desired value.

If a packet loss is detected, the congestion window is reduced by half its value,
just like in TCP New Reno, so in the worst scenario LEDBAT would act as a
“standard” TCP congestion control.

It is very interesting to test this algorithm together with different AQM
mechanisms because Low Priority Congestion Control (LPCC) strategies such that
the methods deployed on LEDBAT have been one of the alternatives to AQM
proposed by the research community in order to reduce queuing delay. Besides
that, LEDBAT has been widely deployed, showing a proper performance [64] in
relation with its intended goals. Apple uses this protocol to distribute software
updates and uTorrent [65] added it to its uTP protocol.

2.1.7. BBR

Bottleneck Bandwidth and RTT (BBR) saw the light on 2016 when an article
written by Neal Cardwell, Van Jacobson et al. was published on ACM journal [9].
On this paper, the group of researchers presented a new TCP algorithm which
seemed to be able to adapt itself to the bottleneck link on the connection and get
closer to the link’s operating point than any other algorithm before.

This algorithm make use of a technique called TCP Pacing [4] which consists
on distribute the data we need to send over a period of time (usually a RTT)
to reduce burstiness. This detail is essential in order to make BBR work as it
is intended to work because the main parameter it uses to modify transport flow
behaviour is the pacing rate.

BBR obtains an approximation of the link’s optimal operating point by
estimating two parameters: Round Trip Time, RTProp, and Bottleneck
bandwidth, BtlBw. Then it tries to match the pacing rate to the bottleneck
bandwidth in order to not to generate unnecessary queuing delay [10]. So to
accomplish that, pacing rate is defined as the bottleneck bandwidth, BtlBw by
a variable pacing gain that would be modified depending on the current phase of
the algorithm and the status of the link.

In order to estimate BtlBw, BBR maintains a windowed max of 10 RTT of
length, which is updated on every acknowledgement received with the delivery
rate (detailed information about this estimation can be found at [13]). To find
out RTProp it does something similar, by utilizying a min filter of ten seconds of
length which is updated on every ack received with the RTT.

BBR goes through several phases over the connection in order to achieve that.
When the transmission is started, BBR goes into Startup phase. During this phase,
BBR tries to find out the bottleneck bandwidth by doubling the sending rate on
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each round. This is done by setting the pacing gain to 2/ln(2). When the algorithm
detects it has reached the limit (by looking to differences between the sending rate
and the delivery rate), it falls into drain phase in which it tries to drain the extra
queue created on the bottleneck buffer during the earlier phase, by setting the
pacing rate to ln(2)/2. When data in flight is equal to the estimated BBR, this
phase ends and the algorithm begins oscillating between probe bandwidth phase
(ProbeBW ) and probe RTT phase (ProbeRTT ).

When it is on ProbeBW phase, it probes for more bandwidth by slightly
modifying the pacing gain on a cycle of six gain values, each one of them during
a Round Trip Time. Gains that compose the cycle are 1.25, 0.75, 1, 1, 1, 1. This
values are chosen in order to avoid adding extra queue to the bottleneck link,
if the connection is already working at its maximum available bandwidth. The
initial phase inside the gain cycle is randomized with the aim of avoiding flow
synchronization and encourage fairness between flows sharing the link. This phase
lasts 10 seconds and when it is over, it spends 200ms on the ProbeRTT phase,
trying to obtain the closest possible value to the real RTT on the network path. To
do so, congestion window is reduced to a minimum packet of four MSS. Reducing
the inflight data to that amount helps draining eventual queues along the link and
obtain a RTT estimation closer to the real value.

Besides the positive results shown on the paper made by its creators, some
other early evaluations [33] cast doubts upon the real impact of this new congestion
control algorithm and its capacity to fight bufferbloat problem. Such report warns
about concerning problems like an increased overload on the bottleneck link or an
important unfairness to loss based congestion control flows which leads to heavy
losses and big buffering.

2.2. Queue management inside routers

In this section we are going to explain the Active Queue Management (AQM)
algorithms that we are going to evaluate on this article. Such that algorithms
are designed to replace simple FIFO Tail Drop algorithm as queue manager inside
routers.

Tail Drop simply drops the new packets that arrives to a full queue until the
queue is empty enough to accept new packets, as its name suggests, it drops the tail
of the queue. The multiple drawbacks that Tail Drop has might have escalated with
the evolution of our networks towards interconnected links with high BDP [12],
resulting in an unacceptable loss of bandwidth, a delay rise and a huge queue size
oscillations also called jitter.

On the other hand, AQM provides a proactive queue size control which is aimed
to remove persistent queues, reduce queue size (thus reducing queuing delay),
provide fairness between competing TCP flows and protect TCP self-clocking [1].

AQM has two main goals. The first one is to sanitize buffers by removing
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persistent queues (also known as bad queues) while allowing the buffer to store
occasional bursts of packets without damaging the throughput of the link. Bad
queues are those queues that maintain a stable level of packages always enqueued,
inducing a persistent and unnecessary queuing delay which is very difficult to
remove by the ends of a connection because it is virtually invisible to them.

The second one is to allow proper operation of TCP congestion control,
preventing buffers to interfere with congestion detection by absorbing crucial
packet losses which have the purpose of warning the sender about congestion on
the link.

In order to deeply understand these algorithms we have to take a look to their
inner mechanisms. Each one of these managers has three main components. The
first one, called Congestion Indicator is any kind of metric that models congestion
on the router queue. For instance, values like queue size, average RTT, packet
sojourn time or specific buffer events could work as congestion indicators.

The second component is the control function, the one that manages the
way the packets are signaled. It is triggered and controlled by the congestion
indicator. The third component is the feedback mechanism, that is, the type of
signal delivered by the control function in order to generate a reaction on the server
side. Such that feedback mechanism could consist on packet dropping or packet
marking by using Explicit Congestion Notification (ECN).

2.2.1. Random Early Detection

Random Early Detection (RED) and its derivatives were the earlier attempts to
improve queue management [26]. The original Random Early Detection algorithm
took an Exponential Weighted Medium Average (EWMA) of the queue size q as
congestion indicator, that we will denominate here qavg. This value is updated
on every packet arrival. The election of a EWMA to calculate the congestion
indicator helps to obtain a smoother value thus removing small non critical queue
length changes [75], like bursts, but it also makes RED slower when there is sudden
packet arrival rate risings.

q̄(t) = (1− wq)q̄(t) + wqq(t+ 1) (2.18)

Under a predefined threshold qmin, the algorithm is deactivated but when queue
size surpasses that threshold, control function starts dropping packets with a linear
probability p(qavg) until queue size decreases or until it goes above qmax when the
dropping probability becomes 1. This behavior is exemplified on equation 2.19.
Notice that pmax is the dropping probability when qavg = qmax, so pmax has to be
always lower than 1.

p(qavg) =


0 qavg < qmin

pmax · qavg−qmin

qmax−qmin
qmin ≤ qavg ≤ qmax

1 qavg > qmax

(2.19)

16



Although this algorithm was the first AQM existent and it meant an great
advance compared to Tail Drop, it had several problems. First of all it was the
difficult (even impossible) to tune heuristically the three configurable parameters
(pmax, qmin, qmax) for the algorithm to be useful on multiple scenarios or under
different network conditions.

The chosen congestion indicator has also been put into question. The length of
the EWMA could make RED too sensitive against burst of packets [66] or increase
its reaction time against real congestion events [22]. And, as has been amply
demonstrated, queue length is definitely not a good congestion indicator [23]. The
use of such that metric generates a strong deterioration on both throughput and
delay when working at high traffic loads [35].

2.2.2. Random Exponential Marking

Random Exponential Marking (REM) [8] is a modification of RED which uses
a different marking probability function as well as a different parameter to measure
congestion on the link. Instead of using queue size, which has been pointed out as
a bad predictor for congestion, REM uses as congestion indicator a variable called
price p(t).such that price is updated periodically based on rate r(t) and queue b(t)
mismatch as we can see on equation 2.20. The price is incremented if the weighted
sum of this two calculations is positive, sensing congestion, it is zero if the price
is stable and it is negative if the congestion decreases.

p(t+ 1) = p(t) + γ · (α · (q(t)− qref ) + (r(t)− rref )) (2.20)

As it is difficult to know beforehand the reference rate for a link, sometimes
the rate mismatch is replaced by the queue growth mismatch (q(t)− q(t− 1)).

Control function then drops the packets arriving with a probability m(t) as it
is shown on equation 2.21, being φ a constant greater than zero that modifies the
response of REM algorithm when it is on dropping mode, making it more or less
aggressive.

m(t) = 1− φ−p(t) φ > 1 (2.21)

2.2.3. Adaptive Random Early Detection

After RED was released, a bunch of proposals [77] that tried to beat RED
were developed. REM was one of these, but the list is endless: Gentle RED,
Stabilized RED, Dynamic RED, Double Slope RED, Loss ratio based RED,
Modified RED,BLUE, Yellow, GREEN, BLACK, DREAM, Fair RED, Balanced
RED, Short-lived flow friendly RED, CHOKe...

But, as we previously stated when we explained RED, these first algorithms
had lot of problems. One of the most important and recurrent problems was that
all their parameters were hard to tune in order to have transverse performance
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improvement across different scenarios and situations and some of them would
require different values depending the actual status of the network (traffic load,
actual throughput, number of flows, etc). That is the main reason why nor RED
neither its modified versions was never broadly implemented across Internet or
just deactivated by default in most of the devices. In order to fix these problems,
a parameter-less version was developed called Adaptive Random Early Detection
(ARED) [25].

Adaptive Random Early Detection dynamically changes pmax to maintain the
average queue size qavg as close as possible to a target value qtarget that is at the
half way point between minth and maxth. ARED periodically compares qavg with
qtarget and updates pmax in small steps by using an AIMD strategy as it is explained
on equation 2.22. pmax is not allowed to exceed 0.5 or fall below 0.01, to limit its
influence on the link.

pmax ←
{
pmax + α qavg > qtarget
pmax · β qavg < qtarget

(2.22)

It has been proved [43] that ARED behaves way better than RED on most
situations, converging more quickly than RED and providing a predictable average
queuing delay. It aso shows an improved stability independent of the number of
flows on the link [44].

2.2.4. CoDel

Controlled Delay (CoDel) is a scheduling algorithm that uses packet-sojourn
time through the queue as congestion indicator [52]. If queue is large enough and
the minimum packet-sojourn time experienced over an specific interval of time
surpasses a predefined threshold, then the control function is turned on and starts
dropping packets every interval t. Such that interval is modified by using function
2.23.

t =
tx−1√
ndropped

(2.23)

Both the threshold and the dropping interval have been chosen by taking into
account the usual characteristics on Internet, trying to obtain a global setting that
could improve bufferbloat problem on most of the possible scenarios. Nevertheless,
some specific situations, like datacenter traffic or satellite links, could require some
special tuning.

By default, t is set to 100 ms. As you can see, according to the control function
such that interval decreases linearly when there is congestion until the sojourn
time is below the threshold. We have changed this value in our experiments, thus
making the algorithm less or more aggressive. It’s suggested on [52] that the
threshold, also known as “setpoint”, should be a 5% of the interval t, that is, 5
ms. We also made experiments by changing such that threshold even though it is
not intended to be modified.

18



The purpose of every AQM manager is to warn TCP about buffer congestion
and control the delay by sending such that warnings to the ends of the connection.
For that reason, in order to obtain an optimal operation Codel’s interval should
be large enough to give to TCP congestion control enough time to face losses
produced by CoDel. The best value then, has to be larger than the link’s round-
trip time but without falling too far from that value because we do not want to
store unnecessary packets on our buffer either. It has been proven that the default
interval of 100 ms fits quite well across a wide range of scenarios with RTT’s that
goes from 10 milliseconds to 1 second [54].

On this brief explanation of CoDel we talked about the interval in which the
algorithm checks for the minimum packet sojourn time and the interval used on the
control loop phase to space the packet dropping without making any differences
between them but in fact, these two values, although most of the times are the
same, could have different values. Modifying the dropping interval could lead to
a more aggressive way of performing but maintaining the reaction time of the
algorithm.

2.2.5. Fair Queuing CoDel

Fair Queuing CoDel (fq-CoDel) [34] is a CoDel algorithm that tries to isolate
each different flow on a network by classifying the incoming packets into different
queues. fq-CoDel generates a hash with the IP protocol number, destination
IP, destination port, source IP and source port in order to perform such that
classification.

These isolated queues are managed by a different instance of CoDel and all
of them are managed together with an slightly modified Deficient Round Robin
(DRR) scheduler [69] that manages the amount of bytes that can be sent by each
one of the isolated queues. This allows fq-CoDel behave like the original CoDel
algorithm when it has only one flow. These flow differentiation solution offers
obvious advantages and it is supposed to outperform CoDel at the expense of
more processing power and complexity.

The DRR version that this algorithm uses makes distinction between queues
that generate standing queue long enough to last various rounds and new flows
which doesn’t, and it processes the new queues before the old ones. If a queue is
empty, it is deleted. This detail makes flows with acceptable transmission rates to
be processed before flows that creates bufferbloat because they are treated like new
ones. This first classification helps to remove congestion from critical flows like
acknowledgements, DNS or HTTP requests. After this first classification, there is
another regular round-robin scheme, as in the original DRR.

Another remarkable thing is that the quantum given to the differentiated flows
on each round is measured on bytes and not on packets, to not to penalize flows
regarding their packet size. The creators suggest that such value it is related with
the link’s bandwidth so values smaller than the standard MTU should suit better
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on scenarios with limited bandwidth.

2.2.6. CoDel-DT

In spite of that CoDel has a solid theory base, it presents some problems when
it has to be implemented onto real hardware. For instance, you have to process
each packet that comes into your router in order to add it a time-stamp which
means that every packed have to be enqueued and this detail could affect to the
router’s efficiency.

In order to address these details and obtain an easier hardware implementation,
specially suitable for DOCSIS cable modems, an adapted version of CoDel called
CoDel-DT was developed [74]. This modification uses delay prediction at enqueue
time and tail drop instead of real time-stamping and head dropping. If this
prediction is precise enough, CoDel-DT should show a performance as good as
the real CoDel algorithm.

The latency estimator function developed by CableLabs is the same as the one
utilized in the PIE algorithm.

2.2.7. PIE

Proportional Integral controller Enhanced (PIE) [57] is CoDel’s main competi-
tor. It has several characteristics that makes it more suitable for routers, just like
CoDel-DT and it is parameterless.

It uses an estimation of the current queuing delay as congestion indicator
instead of the real queuing delay, which relieves the router of the necessity of
enqueue and mark with a timestamp all the packets. Such that estimator consists
on ratio between the queue length, N , and the departure rate, µ like in equation
2.24.

q̄ =
N

µ
(2.24)

PIE uses the drop probability depicted on equation 2.25, that takes into account
the target delay (qref ) and the trend since the last update, by assigning them
weights. By default α is set to 0.125 and β to 1.25. The predefined target delay
qref is 20 ms:

p̄(t) = p(t− 1) + α · (q̄ − qref ) + β · (q̄ − qt−1) (2.25)

To ensure that PIE is work conserving, we may bypass the random drop if the
delay sample q̄ is smaller than

qref
2

, the probability p(t) is not bigger than 0.2 or
the queue has less than a couple of packets.

This probability is recalculated every 30 ms, so if a burst is short enough to
be transmitted on this interval, PIE will not be affected for it and thus, it wont
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penalize finite queue increments. There is also another burst tolerance function
that allows bigger bursts if they’re under a defined threshold of 150 ms by default.

2.3. Related work

This research have been conducted by using two different engineering solutions
designed for different (but tightly related) problems that ends converging, so the
very nature of this work had made us work from both sides of the problem. For
this reason we would like to remark two important publications, each of them
covering one side of the equation.

The first publication we would like to highlight is the excellent survey [1] made
by R. Addams about AQM mechanisms which, besides including analysis and
definitions for such that algorithms, explains the basic concepts behind them and
adds a bunch of useful classification modes by type of congestion indicator, control
function, etc. However, this survey does not include some of the last developed
algorithms like CoDel or RED. Anyway this document is a very good starting
point to gea an overview about the reasons behind AQM dynamics, the reasons
why it was firstly created and the diverse approaches that have been used to try
to make the queues more advanced.

The second most remarkable publication is the one written by Alexander
Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock [3] which give us
an overall vision about TCP Congestion Control, its characteristics and problems
and some of its most important variations. It is without any doubt, a good paper
to start understanding such that mechanisms.

There is another important article [76] which puts together AQM and
TCP Congestion Control providing a new mathematical mode for time-driven
AQM/TCP schemes, that could be useful when evaluating the interaction between
these two mechanisms.

There are many interesting articles which study the interaction between TCP
and AQM. We have summarized them under these lines and on the table 2.1.

The paper written by Quin Xu et al. [76] offers a new perspective onto the
theoretical TCP/AQM analysis field. They claim to outperform the Misra, Gong
and Towsley (MGT) fluid model, proposed on [51] and used extensively on analytic
AQM analysis, by fixing some inaccuracies provoked by such model like the
assumption of independence between congestion window and packet losses or the
non distinction between the different TCP congestion control phases. They also
reverse the feedback approach using on the MGT model by considering TCP as
the feedback provider of AQM. They make use of two extreme scenarios, with the
congestion window under the threshold and with it above the congestion window.
The results shown, seems to prove that such model fits better to the simulations
made on ns-2 [55]. So the analysis made on this paper is just theoretical and its
unique purpose is to verify the correct behaviour of the model and neither to test
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nor to evaluate different TCP/AQM combinations.

On [60], some TCP versions like Reno, New Reno, Vegas and Tahoe were
mixtured with RED, REM, ARED and AutoRED, with the purpose of evaluating
the latter. Such simulations were performed on ns-2 [55], using a similar Dumbbell
scenario like we did. The results showed a bigger delay on New Reno over the other
TCP congestion control protocols on all the different AQM simulations.

The DOCSIS document [74] is basically oriented to a practical implementation
of both CoDel and PIE. For this reason, the simulation scenarios are VoIP/Gaming
traffic, Web traffic and raw TCP transmissions. They conclude its evaluation
stating that, although Fair Queuing approaches like fq-CoDel explained on section
2.2.5 seem to have better performance than single-queue versions, the performance
gap is not big enough to justify the added complexity that represents Fair
Queuing AQM algorithms. Therefore, they support PIE cause it shows a decent
performance and it is simple enough to minimize implementation costs.

The team from the Institute of Communication Networks and Computer
Engineering (IKR) of University of Stuttgart, Germany [67] gave also some
recommendations about the use of ARED, CoDel and PIE. They simulated a
single feedback system created by IKR Simlib [37] and tested the aforementioned
AQM algorithms together with TCP Cubic, obtaining a best performance with
Proportional Integral controller Enhanced than with the other AQM algorithms.

On the paper [41], a simulation of CoDel, fq-CoDel, PIE and ARED was
performed using a real dumbbell topology and the Linux implementation of TCP
SACK. Instead of trying to simulate a real TCP traffic, they sent raw TCP data
between the endpoints, driving the bottleneck into light, moderate and heavy
congestion scenarios. The results shown better performance on PIE over CoDel
under heavy congestion, which derived on several recommendations about CoDel’s
default values. They also concluded than, though ARED seems to be outdated, its
metrics shows not so difference with the other new AQM algorithms, so it should
be still taken into account.

The following study, [45], is an extensive evaluation of TCP/AQM systems,
with special remark on neuron-based AQM schemes, as it own title states. Together
with four more conventional AQM algorithms like ARED, PI, IAPI or REM, four
neuron-base active queue management mechanisms like Neuron PID, AN-AQM,
FAPIDNN and NRL are evaluated. For that purpose, they simulated on ns-2 with
TCP Reno both a simple Dumbbell scenario with a single bottleneck link and
a complex topology with several groups of computers, routers and bottlenecks.
They mostly took into account queue length and the time it takes to converge to
a steady state as the main parameters to evaluate the different AQM mechanisms.
As conclusions they declare the superiority of the neuron-based schemes, exhibiting
smaller queue length, less jitter, faster queue convergence and better adaptability
than the more traditional Active Queue Management logarithms.
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Kathleem Nichols and Van Jacobson also signed a very interesting article [53]
which offers a very good and accesible explanation about router queues and
bufferbloat. They tested CoDel and RED using both Cubic and New Reno over
a simulation created in ns-2 [55]. They also simulated a Wireless scenario. On
all of the experiments, CoDel outperformed RED in both RTT and throughput.
This paper is highly recommended, not only for the experimental results but for
the excellent explanation of the bufferbloat problem.

On the last paper [11] we included on table 2.1, the authors offer a description
about the TCP-friendliness concept as well as a brief survey about router-based
schemes to address that problem. Although this work does not include any AQM
algorithm related to our work, the analysis of TCP friendliness and how it is
affected by AQM is very interesting. The experimental setup utilized was a ns-2
scenario following a Dumbbell topology with two routers connected between them
with a link that acts as the bottleneck of the simulation. Attached to each one
of the routers are one UDP source and four TCP sources, transmitting 1 kilobyte
packet size data. They took special interest to the number of flows and the relations
between them. The conclusions mainly addressed the problem of how to detect
unresponsive flows and how to protect the other flows against them.

Another useful resource that offers an in-depth overview of the mathematics
needed to theorize about Congestion Control algorithms is the fantastic book
Analytical Methods for Network Congestion Control [46] which shed light on
Congestion Control modelization, Equilibrium point characterization and stability
analysis.

As you can extract from all the documents reviewed, there has not been a wide
study examining the behaviour of the most important AQM schemes under the
most commonly used TCP algorithms. Most of the articles refers to two or three
AQM algorithms and test it with one TCP algorithm, and there is not a common
set of basic characteristics among these different papers so it is very hard, or
even impossible, to compare them. This is something that this thesis tries to
fix, examining the relationship between Active Queue Management and TCP by
using a suite defined by the Internet Congestion Control Research Group with well
defined scenarios in order to facilitate the replication of our results.
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Table 2.1: Related work

Title Year AQM TCP Analisis
[76] 2015 PI Reno ns-2 and

RaQ math.
REM model

[60] 2015 RED Reno ns-2
ARED New Reno
REM Vegas

Tahoe
[74] 2014 CoDel New Reno ns-2

CoDel-DT
SFQ-CoDel
PIE
SFQ-PIE
Tail-Drop

[67] 2014 ARED CUBIC IKR
CoDel Symlib
PIE

[41] 2014 CoDel Laboratory
PIE TCP Setup
ARED SACK
SFQ-CoDel

[45] 2014 ARED Reno ns-2
PI
IAPI
REM
Neuron PID
AN-AQM
FAPIDNN
NRL

[53] 2012 CoDel CUBIC ns-2
RED Reno

[11] 2004 CHOKe Reno ns-2
RED TRFC
SFB
BLACK
CARE
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Chapter 3

Experimental Setup

In this chapter we are going to explain the experimental setup we used in order
to test TCP congestion control algorithms we already explained together with
AQM we talked about on previous sections. For that purpose, we modified the
Internet Congestion Control Research Group (ICCRG) TCP evaluation suite [36]
to address our needs, by adding such that AQM algorithms.

This suite was created in order to offer the researchers a ns-2 simulation
environment ready to quickly evaluate and compare TCP modifications by using a
group of common well defined scenarios with specific characteristics, such as data
centers, transoceanic links, wireless networks, satellite communications or dial-up
links. It is designed to quickly collect metrics like end-to-end delay measurements,
goodput, average packet loss, etc.

We decided to use the basic Dumbbell topology provided by that suite. This
topology consist of 6 nodes, 3 of them sharing a router that is connected with
another router that provides connectivity to the remaining three nodes as it is
illustrated on figure 3.1. We changed the RTT and link capacity of each of the
links composing this topology in order to simulate the distinctive properties of
each of the scenarios we tested, that is, Satellite links, Transoceanic links and
Data Center networks.

R1 R2

Figure 3.1: Topology of the experiment

The main routers are the ones that we are going to be monitoring, and thus,
the link between them would be the one in which we will induce congestion. Each
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one of these nodes gathers information about the arrived, departed and dropped
packets as well as the average queue size and the traffic load which is the ratio
between sent bytes and link bandwidth. Besides these metrics we also observed
the time spent by the packets to go thought the queue.

The traffic traces we use are the ones already implemented on the ICCRG suite.
Such that traces are based on traffic captured at the University of North Carolina
and have a pretty low reverse path traffic, approximately a 10% of the total load,
so we will analyze specially the results seen on the direction that supports the
biggest load. Approximately 10% of our traffic use 536 byte packets and 90%
consist of 1500 byte packets.

We have used the TCP variations included in such that suite because we think
they represent a major part of the TCP schemes that are now in use in the world.
These variations are New Reno, Cubic, CTCP and LedBat. We made additional
tests with New Reno, Cubic and CTCP with an initial window of 10 MSS instead
of 3 MSS. Approximately, an 86% of our connections are under 4380 bytes, which
is the current standard initial window size (iw3). For that reason we think that
the impact of changing the initial window to a bigger one will be limited on this
specific simulation setup.

We made simulations with these TCP algorithms together with the Active
Queue Managers under various loads and configurations. In the case of Tail Drop
and REM we changed the size of their buffers to 25%, 50%, 100% and 200% of its
default value of 840Kb. With ARED, CoDel, fq-CoDel and Codel-Dt we modified
their intervals from 25 ms to 200 ms going through 50 and 100 ms. We executed
these simulations at 85% and 110% of the bottleneck load. The parameters we
used for each of the AQM algorithms are depicted on table 3.1.

Buffer manager Static parameters Variable
Tail-Drop qsize = 85, 170,

425, 850, 1700Kb
REM γ = 0.001 pbo = 85, 170,

φ = 1.001 425, 850,
α = 1 1700 Kb

ARED α = 0.01 tinterval = 25, 50,
β = 0.9 100, 200 ms
pmax = 0.5

CoDel et al. qtarget = 20 ms tinterval = 25, 50,
100, 200 ms

PIE qref = 20 ms tupd = 7, 15,
α = 0.125 30, 60, 90,
β = 1.25 180 ms
tupd = 30 ms

Table 3.1: AQM Simulation parameters
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The simulation process has several phases. In the first one, the start times
of the connection vectors on the original traces are shuffled using a Fisher-Yates
shuffle in order to get a stationary load during the whole simulation. When this
phase has ended the simulation starts a prefilling phase whose objective is to
quickly arrive to a state in which the load on the link is stable. After that phase
begins the warm-up phase in which throughput and average queue size are used
to confirm that the simulation has reached an ”Steady State”. When this phase
ends, the data collection begins. The data obtained during the simulation are
processed later by using Jupyter Notebook [59] which allow us to quickly visualize
the gathered traces and dynamically play with it.

The data given by the ICCRG suite consist on two types of files: summaries
and traces. Inside summary files we can find the value of a series of parameters
per router like the overall throughput, the total number of packets received, the
total number of packets dropped, the average queuing delay as well as the average
queue size during the simulation and, finally, the average packet loss. The data
stored on the trace files are traces of some important values over time, per router.
Such values are: arrived and departed megabytes, percentage of packet dropping,
link load (the ratio between the data sent to the bottleneck link and its configured
capacity), and the average queue size. The granularity of such traces is 0.3 seconds.
We also extracted as an extra vector, the queuing delay experimented on each
router, over time.
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Chapter 4

Access Link

In this scenario, the dumbbell topology we decided to use was configured with
the bandwidth and Round Trip Time that appear on figure 4.1. So, according
to the findings illustrated by Kleinrock [42], the operating point for this isolated
network will be at 100 Mbps of bandwidth and between 4 and 102 milliseconds of
RTT.

R1 R2

0ms100 Mbps
12ms

100 Mbps

25ms

100 Mbps

2 ms

100 Mbps

2ms

100 Mbps

37ms

100 Mbps

75ms100 Mbps

Figure 4.1: Topology of the Dumbbell Scenario

4.1. New Reno

We found that New Reno is an algorithm that works well together with Active
Queue Management on this scenario, keeping an average queuing delay that goes
from 2.5 to 20 milliseconds as it is shown on figure 4.2 and a packet loss always
under the 1% as reflected on figure 4.3. However, link utilization is the worst on
our set of experiments, excluding Ledbat.

Both the limited reached load and the low packet loss percentage is due to
the low performance of New Reno compared to newer algorithms like CTCP or
Cubic more than to an excellent feedback loop created between AQM and TCP
New Reno. New Reno performs correctly on networks with low losses and small
Bandwidth Delay Product. On this network, BDP is 25000 bytes so according
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Figure 4.2: NewReno: Delay vs. Interval

to [39] we could consider it a Long Fat Network LFN, that is a network which
BDP is bigger than 105 bits.
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Figure 4.3: NewReno: Loss vs. Interval

If we take a look at the dropped packets on Figure 4.3 and the queuing delay on
Figure 4.2 we can also observe how the use of flow separation is helpful in combating
bufferbloat: With very similar percentage of packets dropped, Fair Queuing CoDel
outperforms generic CoDel by 5 milliseconds in most of the intervals tested. The
last interval, in which both algorithms share the same queuing delay and packet
drops could be caused by inactivity of both algorithms due to the big update
interval, which avoid activating Codel’s dropping mode.

4.2. Compound TCP

CTCP presents an increment on the load of a 2% with respect to New Reno
(figure 4.7) in exchange for a generalized growth on the delay as it appears on

30



0 25 50 75 100 125 150 175 200
Interval

92

94

96

98

100

Lo
ad

ARED
fq-CoDel

CoDel-Dt
CoDel

PIE

Figure 4.4: NewReno: Load vs. Interval

figure 4.5. Nevertheless, AQM methods like fq-CoDel, CoDel or PIE manage to
keep the queuing delay over their 20 milliseconds target.
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Figure 4.5: CTCP: Delay vs. Interval

As it was explained on Compound TCP draft [71], delay-based component
added to this algorithm makes it more capable to deal with packet losses when
link delay is low, which enables it to reduce the time required to reach full link
utilization after a loss event and to improve the performance over New Reno
specially when delay on the link is lower enough to let the delay-based congestion
window grow. As this additional window is configured to not to be negative,
CTCP is lower bounded by its loss-based congestion window and it wouldn’t show
an outcome lower than New Reno.

The control function that some of the simulated queue managers use, which
is to periodically dropping packets grant to the special feature of CTCP an
important relevance. In consequence, queue managers like fq-CoDel or CoDel
should demonstrate a fair behaviour.
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Figure 4.6: CTCP: Loss vs. Interval
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Figure 4.7: CTCP: Load vs. Interval

We observe a reduction on the number of packets dropped under CoDel and
fq-CoDel algorithms on Figure 4.6 as a result of the increment on the update
interval value. Although at first sight this could be interpreted as a good sign, this
situation cause an increment on the queuing delay experimented on the link. This
means that bigger intervals between packet drops makes CoDel unable to manage
spikes shorter than such interval, thus leading to the creation of a standing queue,
falling into the so called bufferbloat problem that has as a result the delay rise we
observe on Figure 4.5. That situation supports the adoption of the 100 milliseconds
interval as the standard value for CoDel. This is logical cause the RTT on this
scenario falls into the range in which CoDel has better performance when it uses
100ms as interval, according to [54].

It is interesting also to remark the steady behaviour of PIE in terms of delay
across all its tested interval values. It is also remarkable, the decrease on the
percentage of dropped packets when its update interval falls under the 30ms default
value. It seems to suggest that a value closer to 15 milliseconds should reduce
packet loss while keeping a short enough buffer size.
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4.3. Cubic
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Figure 4.8: CUBIC: Delay vs. Interval
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Figure 4.9: CUBIC: Loss vs. Interval
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Figure 4.10: CUBIC: Load vs. Interval
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Cubic is an algorithm designed for Long Fat Networks too, but unlike CTCP, it
just relies on packet loss for detecting congestion so it is supposed to have a different
interaction with AQM. Nonetheless, it is designed to provide fast recovery of the
congestion window after a loss event so it should reflect a performance similar to
CTCP.

Under this TCP algorithm we notice a very light load rise with respect to both
CTCP and New Reno (Figure 4.10). This phenomena also produces an increment
on the percentage of dropped packets and on the queuing delay. The relation
between update intervals, percentage of dropped packets and queuing delay we
talked about on the previous section can also be observed on this simulation in
which some of the algorithms like PIE, CoDel, CoDel-DT or even ARED follow
such that trend on 4.9

We must mention the bad behaviour of CoDel-DT, here and also under the
previous TCP algorithms. Few literature about this modified version of CoDel
was found, but it seems clear that the congestion indicator used it is not correctly
estimating the amount of delay that is present on the link, considering that the
congestion indicator is the only thing that changes between this algorithm and
the original CoDel. Adaptive Random Early Detection, although it is one of
the simulated algorithms which collects more queuing delay (Figure 4.8), it also
presents a steady conduct over all the intervals tested. This lead us to think than,
as this algorithm uses as congestion indicator the queue size, such value is not low
enough to allow fair comparison with the other algorithms which use target delay.

The oscillating behaviour across intervals that PIE shows may be due to a
counterproductive synchronization between Cubic and PIE. It is possible that the
AQM algorithm would be acting against the fast cubic window growth function
implemented on this TCP flavour, although this should only occur when buffers
on the bottleneck are full and Cubic produces a sudden reduction on the departure
rate.

The way most of the algorithm converges on the 200 milliseconds interval lead
us to think that under that configuration none of the Active Queue Management
algorithm is really acting against congestion or they are just weakly acting against
it.

4.4. LedBat

Ledbat obtains nearly 0% packet drops as it is shown on figure 4.12 and a
queuing delay lower than 5 milliseconds on every AQM scheme we have tested
(Figure 4.11). Notice that 5 milliseconds is the self-imposed delay threshold that
LEDBAT uses by default. The inner design of this particular protocol also has a
negative impact on bandwidth utilization, being the lowest of all the simulations we
have performed. Let’s do not forget that we are simulating just one TCP algorithm
at a time. On a simulation with multiple TCP algorithms running several parallel
connections LEDBAT could suffer starvation produced by other competing TCP
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Figure 4.11: LEDBAT: Delay vs. Interval
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Figure 4.12: LEDBAT: Delay vs. Interval
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Figure 4.13: LEDBAT: Load vs. Interval

flows, and act much worse in terms of load.

With such level of packet dropping, we think this experiment it is not useful in
terms of AQM analysis. Ledbat should take all the credit here for the eradication
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of the bufferbloat.
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Chapter 5

Datacenter Scenario

In this scenario we tried to simulate a characteristic links inside a datacenter.
These networks count with high capacity links from 1 Gbps onwards and very small
delays of the order of microseconds. Although we have utilized the distinctive
RTT and bandwidth parameters of a datacenter, we keep the topology untouched
so to get focused on the analysis of the bottleneck link and to keep coherency
over our whole work. Some studies like [5] and [29] suggest the use of more
complex scenarios that could offer a more complete and comprehensive view of
this particular network configuration.

R1 R2

10us

1 Gbps

10us

1 Gbps

100us1 Gbps
0 ms

1 Gbps

10us1 Gbps

100us

1 Gbps

100us

1 Gbps

Figure 5.1: Topology of the Datacenter Scenario Scenario

There has been some discussion the last years regarding datacenters, almost
focused on how to address some specific problems these scenarios used to have like
TCP Incast, which is the throughput collapse that occurs when multiple sender
tries to transmit data simultaneously to a single receiver. Although it seems that
TCP Incast is a transport layer problem, we think it is truly originated on upper
layers of the TCP/IP stack due to the specific traffic generated on such those
scenarios. This simulation uses the same traffic traces like the other ones, where
the traffic is unsynchronized and does not correspond to the traffic generated by
distributed nodes. That is the reason why our datacenter scenario shouldn’t suffer
this specific type of problem and shows very acceptable delays.

It is interesting to remark, though, that the interactions generated between
TCP and AQM are still significant, as we’ll see now, and interesting from our point
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of view. One some other scenarios, the AQM and TCP algorithms are tested on
moderate to heavy latency conditions. We think it is appealing to observe what
happens when conditions are just the opposite.

5.1. NewReno

As we can see on Figure 5.2, delay is way under its target of 20ms for PIE, CoDel
et al. and the percentage of packet drops is closer to 0% for almost every queue
manager tested. The extremely low latency on this scenario makes the control
servo operating on New Reno faster than any of the AQM managers tested, which
have no time to act against any queue, thus having minimal impact under these
circumstances.
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Figure 5.2: NewReno: Delay vs. Interval

A special mention to fq-CoDel has to be made since it is the only algorithm
that is able to consistently reduce its queuing delay. We think than the queue
management, specially at the enqeue time [34] makes this algorithm act better
than any other on this scenario, optimally choosing the dropping interval for each
flow and adjusting New Reno tightly, without generating any noticeable rise on
the packet loss rate.

5.2. Compound TCP

As it is shown on Figure 5.5, CTCP, specially designed for Long Fat Networks,
generate more delay on the studied link, offering an improved load on the
bottleneck link in return.

Although the load on Figure 5.7 remains steady across ever tested intervals and
algorithm, the same cannot be said for the delay, which increases linearly with the
intervals tested on CoDel so as the dropped packets on Figure 5.6

Far from meaning a bad operation of the related AQM mechanisms, this effect
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Figure 5.3: New Reno: Queue vs. Interval
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Figure 5.4: New Reno: Delay vs. Interval

0 25 50 75 100 125 150 175 200
Interval

0

1

2

3

4

5

6

Qu
eu

in
g 

De
la

y 
(m

s)

ARED
fq-CoDel

CoDel-Dt
CoDel

PIE

Figure 5.5: CTCP: Delay vs. Interval

is caused by the lost of management created by the rise on the dropping interval.
As the aforementioned graphs show, a loosening on the control intervals does not
have a positive reflection neither on the load nor on the percentage of packets
dropped on the bottleneck link, as we said on previous sections. The small Round
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Figure 5.6: CTCP: Loss vs. Interval

Trip Time, though, helps to minimize the impact of such changes on the update
interval.
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Figure 5.7: CTCP: Load vs. Interval

The characteristics of this network fully enable the delay based component
added to CTCP, thus improving the link utilization, although such feature works
better on networks with higher RTT, where other algorithms have difficulties
growing its congestion window. The large number of packet dropped by PIE,
remarkable bigger than any of the other algorithms, get us to think that such
algorithm is very sensitive to the nominal latency of a network, regarding its
update interval.

5.3. Cubic

Cubic presents very similar results as its counterpart CTCP. One interesting
fact that needs to be mentioned again is the unexpected behaviour of PIE, which
shows an unusual percentage of packet dropping as it is shown on Figure 5.9, seven
times greater that its value under New Reno. We observed a similar conduct on
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the preceding Congestion Control algorithm and even on the previous Access Link
scenario, but it was considered within the realms of what was reasonable because
CoDel showed a similar trend when using interval closer to the 30 milliseconds
interval that PIE utilizes to update its congestion indicator and its queuing delay
was sticked to its target value of 20 milliseconds.

0 25 50 75 100 125 150 175 200
Interval

0

1

2

3

4

5

6
Qu

eu
in

g 
De

la
y 

(m
s)

ARED
fq-CoDel

CoDel-Dt
CoDel

PIE

Figure 5.8: Cubic: Delay vs. Interval
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Figure 5.9: Cubic: Loss vs. Interval

This oscillation on the packet dropping percentage has a direct effect on the
load, as it is shown on Figure 5.10. As it is recommended on [57], the update
interval should be under 15 milliseconds and the α and β parameters should be
increased accordingly in order to get a smoothed response, which means that PIE
needs special tuning when used on high throughput networks. We should also
mention that, besides the high variation on delay, PIE also gets the lowest delay
on this scenario as it is displayed on Figure 5.8.
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Figure 5.10: Cubic: Load vs. Interval

5.4. LedBat

LedBat is able to maintain queuing delay over its target value of 5ms (Figure
5.13), while reaching load bigger than New Reno and slightly below CTCP or
Cubic as it is represented on Figure 5.11. Such improvement over New Reno is
due to the low latency experimented on this scenario. Ledbat takes advantage of
it, keeping a good queue utilization, without inducing extra buffering. It is milder
here, but we can also notice the strange behaviour of PIE also on this scenario,
specially on Figure 5.12.
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Figure 5.11: Ledbat: Delay vs. Interval
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Figure 5.12: Ledbat: Loss vs. Interval
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Figure 5.13: Ledbat: Load vs. Interval
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Chapter 6

Satellite Scenario

In this section we show the results of a simulation over a different scenario
where the main link have the characteristics of a satellite link, with a restricted
up-link and a much wider down-link and suffering large RTT’s.

In this particular scenario, though most of the traffic flows from left to right
as we stated on chapter 3, the main congestion problem is going to take place
on the uplink connection, where traffic rates greatly surpasses the capacity of the
link. So the congestion is not going to appear on the link which sends the data
but on the link which answers with the acknowledgements. This situation could
be interesting because it staged a typical problem, not only inherent to Satellite
links, but to other types of asymmetrical connections.

R1 R2

0ms
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100 Mbps

25ms100 Mbps
300 ms

40 Mbps ⇒
⇐ 4 Mbps

2ms100 Mbps

37ms

100 Mbps

75ms

100 Mbps

Figure 6.1: Topology of the Satellite Scenario

It is remarkable too the strange behaviour of CoDel-DT. This algorithm not
only gets the worst results in terms of delay, it is also the algorithm that drops
highest number of packets too. Under our simulations it seems clear to us that
CoDel-DT does not reach the objective of maintain the buffers occupancy low
enough to reduce queuing delay. What it is interesting in this case, is that this
high buffer occupancy it is not caused by a low packet dropping rate.
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Figure 6.2: Cummulative distribution of delay on Satellite scenario

6.1. NewReno

On our initial explanation of fq-CoDel on section 2.2 we stated that in the worst
possible scenario such that algorithm would behave as a single CoDel instance. As
we can see on figure 6.3 the delay obtained when using it greatly surpasses the one
obtained when we use the original CoDel algorithm.

As we know, if the queuing latency stays over the update interval, CoDel goes
into dropping mode. Our theory is that, under this scenario, the fair queuing
mechanism utilized on fq-CoDel makes it less sensitive to overall buffer occupancy.
The isolation between flows, each one of them ruled by an separated CoDel
instance, could make fq-CoDel unaware of the overall buffer occupancy. This
could be worse if the traffic going through the bottleneck is composed by short
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Figure 6.3: NewReno: Delay vs. Interval

connections of just a few RTTs long.

The load values observed on figure 6.5 allow us to get an idea of the congestion
on the link, which is receiving from 2 to 5 times its nominal capacity, in other
words, it’s trying to send from 8Mbps under ARED to 20Mbps with CoDel-DT.

Another surprising outcome is the queue latency and the percentage of packet
dropping obtained by ARED that we can see on figures 6.3 and 6.4. Even tough
it is the algorithm with smaller percentage of packets dropped, it manages to keep
its queuing delay under 25 milliseconds. It seems that the congestion indicator is
fully activated on this scenario unlike the previous ones and it manages to keep
the queuing delay under 25 milliseconds along all the interval values tested.
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Figure 6.4: NewReno: Loss vs. Interval

It is also remarkable how PIE on its default interval value of 30 milliseconds
manages to keep a low delay in comparison with the other algorithms, while its
counterparts, CoDel and fq-CoDel are far above such value and inflicting two times
more percentage of packet drops on the link, moreover. Regarding fq-CoDel, it
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seems to react poorly against heavy congested scenarios, causing a very similar
number of packet drops as CoDel, but far away from reaching the same good
performance in terms of queuing delay.
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Figure 6.5: NewReno: Load vs. Interval

6.2. Compound TCP

At the delay graph showed here on figure 6.6 we can see that the original
CoDel algorithm accuses the change on the interval parameter worse than its
counterparts. As the main link on this topology has a RTT of 300 ms, CoDel
shows better efficiency with the update interval closer to that value (200 ms).
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Figure 6.6: CTCP: Delay vs. Interval

It is clear for us that both PIE and ARED respond appropriately to the heavy
congestion generated on the satellite uplink, maintaining a low delay (under this
circumstances) and an assumable percentage of packet loss as it is shown on figure
6.7. This specific trade-off is not reached by CoDel in any of its modifications
under CTCP

48



0 25 50 75 100 125 150 175 200
Interval

0

20

40

60

80

Dr
op

pe
d 
Pa

ck
et
s

ARED
fq-CoDel

CoDel-Dt
CoDel

PIE

Figure 6.7: CTCP: Loss vs. Interval
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Figure 6.8: CTCP: Load vs. Interval

6.3. Cubic

As we can see on Figure 6.9 and 6.10, Cubic shows metrics very similar to
its counterpart, CTCP. Under such overloaded scenario, both TCP mechanisms
shares comparable graphs, except for CoDel, which seems to be able to act against
bufferbloat at earlier intervals than under Compound TCP, drastically reducing
its queuing delay from 200 milliseconds to 40 milliseconds.

6.4. LedBat

The amount of traffic supported by the upload link make us ask ourselves about
the suitability of this scenario to test AQM algorithms. While on the download
links we have seen loads between 25-60% of the overall capacity of the link, on the
uplink connection we have suffered loads up to 10 times superior to the capacity
of the link, that is, we have overflowed a link with a capacity of 4 Mbps with 40
Mbps.

As a result of this situation, even LEDBAT, which is a completely different
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Figure 6.9: Cubic: Delay vs. Interval
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Figure 6.10: Cubic: Loss vs. Interval

algorithm, based on another paradigm to deal with congestion control, displays
metrics extremely similar to CTCP and Cubic.
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Figure 6.11: Ledbat: Delay vs. Interval
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Figure 6.12: Ledbat: Loss vs. Interval
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Figure 6.13: Ledbat: Load vs. Interval
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Chapter 7

Transoceanic Scenario

This scenario represents a transoceanic link, which give us an excellent
opportunity to study the behaviour of algorithms designed to work on high
speed and long distance networks, such as CTCP or Cubic, together with AQM
mechanisms.

Due to their big propagation delay produced by the long distances this type
of links need to cover, they are characterized to offer a poor efficiency in terms
of capacity utilization when common TCP congestion avoidance algorithms are in
use. Under such those algorithms, in most of the cases the transmission ends even
before entering congestion delay phase thus under-utilizing the network capacity.
For that reason more aggressive algorithms like Cubic or CTCP were created in
order to get a faster convergence towards the link capacity on this specific type of
links.
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Figure 7.1: Topology of the Transoceanic Scenario

The topology of this experiment reflects the characteristics of such networks
by imposing a big RTT on the bottleneck network which is intended to simulate a
transatlantic link itself. This values are partially based on the work made by [30]
and the latency data gathered by Verizon service provider company [73].

One obvious conclusion drawn thanks to this experiment is that the differences
between AQM mechanisms increases with the size and delay of the links under
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study. As we can see on figure 7.3 for instance, only PIE is able to maintain delay
under the predefined value of 20 milliseconds.

Another interesting thing we can observe on the traces, specially on the fq-
CoDel ones, is the clear separation between TCP algorithms. For instance, on
figure 7.2 we can clearly notice the separation between the algorithms CTCP and
Cubic that include the increased initial window and the ones who have the standard
initial window. Just after these two groups, we have New Reno with the increased
initial window and the original New Reno algorithm which pays their lower delay
with worst throughput than the aforementioned ones. On the bottom we can find
LedBat keeping its 5ms targeted delay. There is an increment of more than 10 ms
on CTCP and 7 ms on Cubic over the algorithms with the initial window set to
3. The differences on New Reno are less obvious.

Figure 7.2: fq-Codel: Delay vs. Simulation time

7.1. NewReno

Fair Queuing CoDel is again the best in terms of delay, keeping it under 20
milliseconds with low packet losses as it is displayed on Figure 7.3. It is interesting
to observe that, this algorithm is in fact able to obtain such delay metrics with
a very similar packet drop percentage (Figure 7.4) than CoDel, which enforces
the arguments about the suitability of the fair queuing version over the original
algorithm.

On CoDel, as it should be expected, the best results are obtained when the
interval is closer to the bottleneck’s link RTT. The same does not happen with
ARED, which improves its efficacy as interval grow. Lets remember than the
update interval of this algorithm is used to refresh the dropping probability, like
PIE. On this case, it seems than the time spent between updates positively affects
the network load (Figure 7.5) and the percentage of packets dropped (Figure 7.4).
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Figure 7.3: NewReno: Delay vs. Interval
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Figure 7.4: NewReno: Loss vs. Interval
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Figure 7.5: NewReno: Load vs. Interval

7.2. Compound TCP

Under this TCP algorithm we can observe a significant rise of packet loss (figure
7.7) and queuing delay (figure 7.6) compared to New Reno. Queuing delay seems
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to increase together with bigger update intervals as in the former section and
reciprocally proportional to the percentage of dropped packets. However, with
this TCP algorithm, such relationships is more obvious. For instance, CoDel goes
from 20 milliseconds of delay when using 25 milliseconds as update interval, to 90
milliseconds when utilizing 200 milliseconds as update interval. Bigger intervals
reduce the ability to detect bufferbloat and act against it. The same happens with
fq-CoDel and PIE although in this last one, the change is almost unnoticeable.
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Figure 7.6: CTCP: Delay vs. Interval

We can also see a rise on the number of packets dropped by CoDel-DT, but with
no effect on the queuing delay. Notwithstanding being just a minor modification
of CoDel, this algorithm have proven itself unable to correctly manage bottleneck
queues under any tested scenario.
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Figure 7.7: CTCP: Loss vs. Interval

7.3. Cubic

The results we’ve seen previously on CTCP are very similar on Cubic too. In
spite of relying just on packet loss as congestion indicator, it displays comparable
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Figure 7.8: CTCP: Load vs. Interval

queuing delay and packet loss rates as it is shown on Figure 7.9. The stability
of PIE contrasts with the sensibility of CoDel and fq-CoDel when their interval
value is modified. Both algorithms suffer a significant rise on the queuing delay
consistent with the rise on the update interval, but the fair queuing variation
seems to be more response to these changes and it only increases its delay from
30 to 50 milliseconds, while CoDel experience a delay increment from 30 to 110
milliseconds.
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Figure 7.9: Cubic: Delay vs. Interval

As it is shown on Figure 7.11 and unlike on the previous simulation, ARED
presents a consistent load across every interval tested.

7.4. LedBat

Ledbat is again a victim on the network characteristics, displaying a queuing
delay up to 40 milliseconds even though it was configured to not to surpass 5
milliseconds of queue delay. Regarding AQM, just CoDel-DT surpass the 20
milliseconds target delay imposed. With the exception of this specific algorithm,
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Figure 7.10: Cubic: Loss vs. Interval
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Figure 7.11: Cubic: Load vs. Interval

the rest of them show very reasonable delay, taking into account the scenario, near
zero losses and a steady load across all the simulated intervals.
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Figure 7.12: Ledbat: Delay vs. Interval
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Figure 7.13: Ledbat: Loss vs. Interval
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Figure 7.14: Ledbat: Load vs. Interval
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Chapter 8

Conclusions

8.1. Conclusions

When Internet was created, the challenge that engineers faced was about how to
get maximum utilization on a link, while keeping fairness between different flows.
In order to solve that problem, congestion control mechanisms were implemented.
Such mechanisms were based on the assumption that when a link has reached its
maximum capacity it starts dropping packets. Over time, the rise on the number
and size of the buffers across the internet made that assumption a lie. Due to their
excessive size and the use of simplistic queue managers, buffers that where there
to absorb sudden bursts of traffic were actually persistently filled up with packets.
That was called the bufferfloat problem [28].

Bufferbloat delays the detection of congestion, disrupting the proper function-
ing of the TCP congestion control servo and adding an extra latency due to the
standing queue created by the oversized window of the sender. So the logical so-
lution is to properly signal the sender that the limit has been reached and it will
create needless buffering if it keeps increasing the window. This is what Active
Queue Management does.

We are not just wasting money, having oversized buffers. The delay induced
by this problem goes from hundreds of milliseconds to couple of seconds, and such
delay can make a difference in a wide variety of applications, from web browsing,
which is becoming more and more interactive, to telepresence devices, multimedia
streaming applications, multiplayer games and many others.

On this work first we explained the different congestion control approaches that
have been used over time, devoting special attention to the algorithms we tested.
We also took a look at the AQM schemes used. Then, we simulated several AQM
algorithms together with some of the most used congestion control mechanisms
implemented on TCP and we analyze them together.

Methods based on queue size are easily predictable: if we increase the size
of the buffer or the target size, link utilization increases but queuing delay also
does. We can observe this behaviour on REM, for instance if we look at 7.9 and
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7.11. But with the new algorithms based on queuing delay, that relationship it is
not so clear. Although they reduce the delay experienced on almost any type of
networks and under any TCP modification, further study is required to obtain best
efficiency in terms of high throughput and low delay. Almost every AQM algorithm
is pretty sensible to a large range of variables like configuration parameters, TCP
algorithms, network topology and characteristics, traffic details, etc.

An example of this sensitivity could be seen on the behaviour of PIE, an
algorithm that shows an steady behaviour across most of the scenarios and
congestion control algorithms tested with the exception of the Datacenter scenario,
when it shows an unexpected reaction to the low RTT present on this simulation
as we can see on figures 5.6 and 5.9.

Except for the aforementioned problems on the Datacenter scenario, PIE offers
good delay-loss tradeoff with minimal to none modification in order to work
correctly, with the exception of scenarios with high capacity and very low latency,
as it was stated on its draft, which recommends to reduce the interval. It has
been proven than it works better with update intervals lesser or equal than 15
milliseconds instead of the initially proposed value of 30 milliseconds. Going even
further than its own draft, we observe such characteristic on a link with high Round
Trip Time and pretty low bandwidth as it is the satellite scenario, in figures 6.3
or 6.6.

CoDel displays good performance in terms on delay and packet dropping, across
most of the scenarios and TCP algorithms, although it seems to be outperformed
by fq-CoDel as shown in figures 6.6 and 6.9. This modification shows less sensitivity
to changes on its update interval as well as the capacity of maintaining queuing
delay low, better than most of the algorithms tested, on almost every situation,
obtaining more load and less queuing delay without dropping so many packets as
others as in figures 6.7 and 6.10. Even changing parameters like its update interval
or its target delay does not affect so much to the results as on the single queue
version.

In our simulations CoDel-DT offers results consistently worse than any other
CoDel variation. This bad performance can be observed since the beginning of the
simulations, like 4.2 or 4.5. Its delay prediction could be not good enough as it was
thought, at least for conventional networks that are not tied to the requirements of
Data over Cable Services (DOCSIS). It is also interesting to observe its relationship
with ARED on CTCP and New Reno.

It has been demonstrated that ARED is outperformed by the new algorithms.
Besides that, it seems to work better with intervals closer to the bottlenecks link
RTT, showing a strong and direct relationship between the interval value and the
percentage of dropped packets as it is depicted on figure 7.10. Larger intervals
also have an impact on link load as it is shown on figure 7.5. Nevertheless,
configuring parameters seems counterintuitive and hard to tune in order to get
the best performance. A proof of this theory could be notice on the results given
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by such algorithm on the Access Link scenario, Figure 4.2, in which it had a
minimal impact maybe because of a loose configuration that did not triggered its
congestion indicator.

Almost every queue management approach is able to provide an acceptable
capacity in terms of throughput, excluding LEDBAT which shows the worst link
load metrics. That is the reason why we think that the presence of AQM schemes
could affect significantly to the efficiency of TCP variations that implement delay-
based congestion control mechanisms. ECN mechanisms should be adopted in
order to assure a correct separation between TCP congestion control and queue
management.

8.2. Future work

It could be interesting to extend these simulations to another scenarios like
wireless topologies or long fat links, and under different conditions like sudden
changes on link capacity or handoff situations. It would be enlightening too
the gathering of some other metrics like number of flows, average duration and
congestion windows size. To analyze in deep the fairness shown between TCP
flows, or the impact on the congestion window growth caused by AQM.

It would be also appealing to simulate the new BBR algorithm designed by
Google, as it seems like a promising new way to deal with congestion as well as
to maximize link utilization. Some first attempts to analyze this algorithm has
been done, some utilizing real hardware [33] or virtualizing it [19]. We also tried
to implement BBR on our modified TCP Evaluation Suite [56] but we encounter
some problems on the implementation of the TCP Pacing mechanism, essential to
the correct simulation of this algorithm.

Out of the simulator, the implementation of the aforementioned scenarios into
real hardware could give us a more accurate view of the interactions between
this topologies as well as to facilitate the direct experimentation with the existing
technologies in use, without having to adapt it to a simulator. A compromise
solution could be the use of simulators like Mininet [49]. As it is based on network
namespaces, it allows the execution of the algorithm implementation in use on the
Linux kernel, giving it great credibility.
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Appendix A

Plan and Budget

A.1. Plan

Our research could be spitted into four highly differentiated steps.

1. Documentation: On this step we studied the bibliography that covered
this topic and research about the technology previously developed in order
to address our goals. Once we decided to use the ICCRG TCP Evaluation
Suite, we read the documentation about the suite in order to understand its
capabilities.

2. Experiment Design: In this step, we installed the ICCRG test Suite on the
server and started to get familiar to the environment. We performed short
test simulations and wrote code to visualize and understand the results. We
also added CoDel and PIE code into the suite in order to make tests with
them.

3. Experiment Simulation: We started to make longer simulations, generate
graphics about them and start making assumptions.

4. Writing: Although we generated some documentation since the beginning
of the project, the last weeks were totally dedicated to write our findings.
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February March April May

Weeks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Documentation

Experiment Design

Install ICCRG Test Suite

Add CoDel and PIE

Experimentation

Writing

A.2. Budget

1. Author:
Sergio Maeso

2. Department:
Telematic Engineering

3. Project Description:
Title: AQM algorithms and their interac-

tion with TCP congestion control
mechanisms

Duration (months): 4
Indirect Costs Rate: 20%

4. Project’s Total Budget (values in Euros):
11.000 Euros

66



5. Budget Breakdown (Direct Costs):

STAFF

Surname,
Name

N.I.F. Category
Dedication

(Hours)

Cost
per

hour

Cost
(Euros)

Signature

Campo,
Celeste

N/A
Senior

Engineer
40 60,00 2.400,00

Garćıa,
Carlos

N/A
Senior

Engineer
40 60,00 2.400,00

Maeso,
Sergio

N/A
Junior

Engineer
300 13,00 3.900,00

Total hours 380 Total 8.700,00

EQUIPMENT

Description
Cost

(Euros)
% Usage in

Project
Dedication
(Months)

Depreciation
Period

(Months)

Chargeable
Cost

(Euros)

Intel Xeon Server 3.000,00 100 4 60 200,00

Linux Worksta-
tion

800,00 100 4 60 53,33

Total 253,33

6. Costs Summary:
Direct Costs (Euros)

Staff 8.700,00
Amortization 253,33
Task Externalization 0,00
Operation Costs 0,00

Indirect Costs (Euros) 1.311,00
Total (Euros) 10.264,33

This project’s total budget add up to the amount of 11000 Euros.

Leganes, Month 7th, 2017

Project’s Engineer,
(Signature)

Fdo. Sergio Maeso Jimenez
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