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Abstract. This paper deals with the construction of �smooth good deals�(SGD),

i.e., sequences of self-�nancing strategies whose global risk diverges to −∞ and such
that every security in every strategy of the sequence is a �smooth�derivative with a
bounded delta.

If the selected risk measure is the value at risk then these sequences exist under
quite weak conditions, since one can involve risks with both bounded and unbounded
expectation, as well as non-friction-free pricing rules. Moreover, every strategy in the
sequence is composed of an European option plus a position in a riskless asset. The
strike of the option is easily computed in practice, and the ideas may also apply in
some actuarial problems such as the selection of an optimal reinsurance contract.

If the chosen risk measure is a coherent one then the general setting is more
limited. Indeed, though frictions are still accepted, expectations and variances must
remain �nite. The existence of SGDs will be characterized, and computational issues
will be properly addressed as well. It will be shown that SGDs often exist, and for the
conditional value at risk they are composed of the riskless asset plus easily replicable
European puts. Numerical experiments will be presented in all of the studied cases.

1 Introduction

Since Artzner et al. (1999) introduced the coherent risk measures in their semi-
nal paper, there has been a growing interest in performance/risk measurement.
Among many other signi�cant contributions, there are generalized deviations
(Rockafellar et al., 2006), dynamic time-consistent risk measures (Kupper and
Schachermayer, 2009), set-valued risk measures (Jouini, et al., 2004), exhaus-
tive distortion risk measure (Balbás, et al., 2009), conditional risk measures
(Filipovíc, et al., 2012), natural risk measures (Assa, 2016), gain-loss ratios
(Bernardo and Ledoit ,2000), omega ratios (Mausser et al., 2006), etc.
When dealing with V@R or a coherent risk measure such as CV@R, it is

not unusual to �nd strategies whose risk in a long (short) position is lower
than the risk of a (short) riskless asset with the same price. Thus, if a trader
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borrows (lends) the strategy price and buys (sells) it, he/she will create a self-
�nancing portfolio with negative risk. Moreover, if one deals with CV@R, the
expected pay-o¤ of this portfolio is strictly positive. Hence, if the whole strategy
can be implemented once and once again, with no limit, one will be facing a
sequence of self-�nancing investment strategies whose expected pay-o¤ diverges
to +∞ and whose risk diverges to −∞.1 A similar drawback has been found
by Biagini and Pinar (2013) for the gain-loss ratio. They show that the Black
and Scholes (BS) model and other continuous time pricing models theoretically
allow traders to replicate sequences of strategies whose gain-loss ratio diverges
to +∞. The authors argue that these strategies in the sequence contain many
digital options, which are too di¢ cult to replicate in practice due to the delta
instability. Consequently, they conclude that the best gain-loss ratio may be a
poor performance measure in a continuous time framework, since the possibility
of an unbounded gain-loss ratio is more theoretical than real.
Balbás et al. (2016) have created sequences of self-�nancing strategies whose

(exp ected_pay − off, V@R,CV@R) theoretically diverges to (+∞,−∞,−∞)
and have studied the empirical performance of these strategies in several interna-
tional future markets. The main conclusion is that the strategies always outper-
form the underlying future contract,2 though the divergence to (+∞,−∞,−∞)
does not hold. A major caveat in the analysis of Balbás et al. (2016) is that
their strategies always contain digital options that they cannot replicate, and
consequently the empirical test has to focus on �approximations�of the �ideal
optimal strategy�obtained in the theoretical part of the paper.
This paper deals with both V@R and a coherent risk measure ρ, and answers

the Question_1 below:
Question_1. Can one construct �smooth enough�strategies whose risk (risk

when short) is lower than the risk of a (short) riskless asset with the same price?
In particular, Section 2 focuses on V@R, while Sections 3 and 4 focus on a

coherent measure of risk. The meaning of �smooth enough�will be clear, since
we will only deal with a portfolio of derivatives whose delta at maturity cannot
be larger than one.
As said above, we �rst focus on V@R. Though V@R presents some theoret-

ical shortcomings, it is still a very popular risk measure often used by practi-
tioners, regulators, supervisors and researchers.3 Moreover, V@R is the unique
usual risk measure remaining �nite when dealing with heavy tailed risks with un-
bounded expectation. Our analysis may involve both bounded and unbounded
expectations, as well as transaction costs in the pricing rule. Theorem 2 is
the most important result of the second section, and it shows that the answer
to Question_1 is very often �yes�, despite the fact that we are facing a quite
general framework. Furthermore, the desired strategy is really simple, since
it is composed of the sale of an European option (the V@R �golden option�,

1The existence of this sequence holds in many (arbitrage-free) pricing models whose self-
�nancing strategies become martingales under a risk-neutral measure, i.e., pricing models
which are compatible with the existence of equilibrium (Jarrow and Larsson, 2012).

2 similar results have been found in Konstantinides and Zachos (2018).
3See, for instance, Zhao and Xiao (2016) for a recent theoretical analysis involving V@R.
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2 V@R and golden options

−∞ ≤ a < b ≤ +∞ ((a, b) ,B, IP) B
σ− (a, b) IP

IP ST T
L0

IR− (a, b) 1 ≤ p < ∞
p = ∞ Lp L0 y ∈ L0

IE (|y|p) < ∞ Ess Sup (|y|) < ∞ IE (.)
Ess Sup Y ⊂ L0

L0 Π : Y → IR

Π (y) y ∈ Y Π i.e.

Π (y + y�) ≤ Π (y) +Π (y�)

y y� ∈ Y i.e.

Π (κy) = κΠ (y)

κ > 0 y ∈ Y i.e.

Π (y) > Π (y�)

IP (y − y� ≥ 0) = 1 IP (y − y� > 0) > 0 ST
(a, b) � x → I (x) = x ∈ (a, b) Y

i.e. IP (B) = IP (ST ∈ B) B ∈ B
L (a, b) L ((a, b) ,B, IP)



Suppose also that the riskless asset belongs to Y (k ∈ Y for every k ∈ IR), and
denote by r ≤ R the lending rate and the borrowing rate, respectively, i.e.,

Π (k) = ke−rT and Π (−k) = −ke−RT . (4)

for every k ∈ IR, k ≥ 0. If r = R then r will be said to be the riskless rate.
Proposition 1 below is not new, though we will give the proof in order to facilitate
the reader�s understanding.

Proposition 1 a) Π (0) = 0, and (2) also holds if κ = 0.
b) If r = R then Π (−k) = −Π (k) holds for every k ∈ IR.
c) If r = R then Π (y + k) = Π (y) + Π (k) holds for every y ∈ Y and every

k ∈ IR.
d) If r = R then Π

(
y − erTΠ (y)

)
= Π

(
−y + erTΠ (y)

)
= 0 holds for every

y ∈ Y .
e) If IP (y ≥ 0) = 1 then Π

(
−y − erTΠ (−y)

)
≤ 0.

Proof. a) Obviously, Π (0) = Π (2× 0) = 2Π (0). Thus, Π (0) 6= 0 would lead
to the contradiction 1 = 2.

b) It trivially follows from (4).
c) For y ∈ Y and k ∈ IR one has that

Π (y) = Π

(
y + k + y − k

2

)
≤ 1

2
(Π (y) + Π (k)) +

1

2
(Π (y)−Π (k)) = Π (y) .

Hence, every inequality in the chain must become an equality.
d) (4) and c) lead to Π

(
y − erTΠ (y)

)
= Π (y) − Π

(
erTΠ (y)

)
= Π (y) −

Π (y) = 0. Besides, taking y = −y′, b) and c) lead to Π
(
−y + erTΠ (y)

)
=

Π
(
y′ − erTΠ (y′)

)
= 0.

e) If IP (y ≥ 0) = 1 then Π
(
−y − erTΠ (−y)

)
≤ Π (−y) + Π

(
−erTΠ (−y)

)
=

Π (−y)−Π (−y) = 0. �
Next, let us present a main result.

Theorem 2 Suppose that β ∈ (0, 1) is a con�dence level, and take kβ ,Kβ ∈
(a, b).

a) If IP (a, kβ) = 1 − β, r = R and the put option (kβ − ST )
+ belongs to Y

then y = − (kβ − ST )
+

+ erTΠ
(

(kβ − ST )
+
)
satis�es Π (y) = 0 and

V@Rβ (y) ≤ −erTΠ
(

(kβ − ST )
+
)
< 0. (5)

b) If IP (a, kβ) = 1 − β and the put option (kβ − ST )
+ belongs to Y then

y = − (kβ − ST )
+ − erTΠ

(
− (kβ − ST )

+
)
satis�es Π (y) ≤ 0 and V@Rβ (y) ≤

erTΠ
(
− (kβ − ST )

+
)
< 0.
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c) If IP (Kβ , b) = 1− β, r = R and the call option (ST −Kβ)
+ belongs to Y

then y = − (ST −Kβ)
+

+ erTΠ
(

(ST −Kβ)
+
)
satis�es Π (y) = 0 and

V@Rβ (y) ≤ −erTΠ
(

(ST −Kβ)
+
)
< 0. (6)

d) If IP (Kβ , b) = 1 − β and the call option (ST −Kβ)
+ belongs to Y then

y = − (ST −Kβ)
+−erTΠ

(
− (ST −Kβ)

+
)
satis�es Π (y) ≤ 0 and V@Rβ (y) ≤

erTΠ
(
− (ST −Kβ)

+
)
< 0.

Proof. a) Π (y) = 0 trivially follows from Proposition 1d. Let us prove (5).
Consider the indicator χ(a,kβ) of the interval (a, kβ) and take z = χ(a,kβ)/ (1− β) ∈
L∞, λm = 0 ∈ Y , λM = (kβ − ST )

+ ∈ Y and λ = −erTΠ
(

(kβ − ST )
+
)
∈ IR.

Then, 

y = λm − λM − λ
IE (z) = 1

λmz = λM

(
1

1−β − z
)

= 0

z ≤ 1/ (1− β)
z, λm, λM ≥ 0

(7)

are obvious, and the V@R representation theorem of Balbás et al. (2017) leads

to V@Rβ (y) ≤ λ = −erTΠ
(

(kβ − ST )
+
)
. It only remains to see the inequality

Π
(

(kβ − ST )
+
)
> 0, which trivially follows from (3).

b) Π (y) ≤ 0 trivially follows from Proposition 1e. Besides, take z, λm and

λM as above, and λ = erTΠ
(
− (kβ − ST )

+
)
. (7) holds again and V@Rβ (y) ≤

erTΠ
(
− (ST −Kβ)

+
)
. Moreover, Π

(
− (ST −Kβ)

+
)
< 0 trivially follows from

(3).
c) and d) are analogous to a) and b). �
Henceforth IL will denote the Lebesgue measure in (a, b).

Remark 3 If IP is equivalent to IL then IP is obviously atomless, and therefore
both equations

IP (a, k) = 1− β (8)

and
IP (K, b) = 1− β (9)

will have a solution kβ and Kβ for every 0 < β < 1 (Lyapunov�s theorem about
the range of a σ−additive measure). �

Remark 4 Suppose that r = R. y = − (kβ − ST )
+

+ erTΠ
(

(kβ − ST )
+
)
is

the wealth generated by the sale of the European put (kβ − ST )
+ jointly with the
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investment of the put price in the riskless asset. The positive homogeneity of Π
(see (2)) and V@Rβ imply that

ny = −n (kβ − ST )
+

+ erTΠ
(
n (kβ − ST )

+
)

satis�es {
Π (ny) = 0, ∀n ∈ IN
lim
n
V@Rβ (ny) = −∞ (10)

i.e., if the sale of the put (kβ − ST )
+ plus the investment in the riskless asset may

be implemented as many times as desired, then agents can construct strategies
whose price always vanishes and whose V@R becomes as negative as desired.
For this reason (kβ − ST )

+ will be said to be the V@R golden put (V@R_GP ).
Similarly, (ST −Kβ)

+ will be said to be the V@R golden call (V@R_GC).

If r < R then take y = − (kβ − ST )
+ − erTΠ

(
− (kβ − ST )

+
)
and (10) still

holds if its �rst equality is replaced by Π (ny) ≤ 0. Similar comments apply for
the V@R_GC. �

Remark 5 It is remarkable the level of generality of Theorem 2, which implies
the existence of both V@R_GPs and V@R_GCs under quite weak assumptions.
One is dealing with wealths y ∈ L0 whose expectation does not have to be �nite,
the pricing rule Π does not have to be linear, Π does not have to be continuous,
if Y ⊂ L1 then risk aversion is not required (Π may be risk neutral or risk
acceptant), etc. �

Remark 6 Theorem 2 may apply in both, �nance and insurance. An obvious
implication in �nance is that the most important arbitrage-free continuous time
pricing models of Financial Mathematics (BS, stochastic volatility, etc.) allow
us to �nd both V@R_GPs and V@R_GCs. Furthermore, Theorem 2 easily
shows that discrete time pricing models often lead to the existence of V@R_GPs
and V@R_GPs as well. On the other hand, if ST represents total claims at T
for an insurer, and Π is a reinsurer premium principle satisfying the required
conditions above,6 then the sale of the stop-loss contract (ST −Kβ)

+ with de-
ductible Kβ may be very attractive for the reinsurer. This is important because
the purchase of stop-loss contracts is often attractive for the direct insurer (Bal-
bás et al., 2015). �

Remark 7 (V@R_GPs and V@R_GCs in the BS model). Theorem 2 and
the remarks above show that Equations (8) and (9) always have solutions kβ
and Kβ under the classical assumptions of the BS model. Thus, let us give
closed expressions for both strikes. Take a = 0 and b = ∞. Suppose that
Φ denotes the cumulative distribution function of a standard normal random
variable. Consider the initial condition S = S0 at t = 0, as well as the BS

6 the usual premium principles satisfy the required conditions (Pichler, 2014, Balbás et al.,
2015, Cheung et al., 2015, etc.).
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stochastic di¤erential equation dS = S (µdt+ σdw), µ ∈ IR being drift, σ > 0
being volatility, and w being a standard Brownian motion. It is known that

IP (0, k) = IP (0 < ST < k) = Φ

 log (k/S0)−
(
µ− σ2

2

)
T

σ
√
T

 . (11)

Therefore, (8) leads to

kβ = S0Exp

((
µ− σ2

2

)
T + σ

√
TΦ−1 (1− β)

)
(12)

and

β = Φ


(
µ− σ2

2

)
T − log (kβ/S0)

σ
√
T

 . (13)

Similarly, (9) leads to

Kβ = S0Exp

((
µ− σ2

2

)
T + σ

√
TΦ−1 (β)

)
(14)

and

β = Φ

 log (Kβ/S0)−
(
µ− σ2

2

)
T

σ
√
T

 . (15)

Besides, (5) and (6) show that the classical BS formula provides us with upper
bounds for the V@R of the self-�nancing strategies of Theorem 2. The table
below summarizes some numerical experiments implemented with the underlying
asset current price S0 = 1000, Expressions (12), (13), (14) and (15), and the
above mentioned V@R upper bound.

Puts Calls
r, µ, σ, T, kβ , β, V@R, Kβ , β, V@R

0 8% 10% 05 920 95.63% −3.969 1080 71.16% −5.157
0 8% 10% 1/12 980 82% −4.084 1040 87.33% −1.182

2% 6% 12% 1/12 980 76.12% −5.490 1050 90% −1.418
2% 0 12% 1/12 970 80.56% −3.255 1020 72.20% −6.663


Notice that the V@R absolute value is always higher than 0.1% of the underlying
asset price, and it is often higher than 0.3% of the same value, suggesting that
both the V@R_GP and the V@R_GC may be very attractive to investors under
the BS framework. Furthermore, it is remarkable that the portfolio expected pay-
o¤ at T is always positive. For instance, for the V@R_GP this pay-o¤ becomes
1.3, 0.2, 0.05, and 0.01, respectively. Notice also that the sensitivity of the V@R
bound with respect to the parameters r, µ, σ and T may be easily computed by
taking derivatives in (12), (13), (14), (15) and the classical BS formula. �
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3 Coherent risk measures and golden options

With the notations of the proof of Theorem 2, and according to the V@R
representation theorem of Balbás et al. (2017), if the strategy of Theorem 2a
has a �nite expectation then its CV@Rβ may be approximated by

λ+
1

1− β IE (λM ) = −erTΠ
(

(kβ − ST )
+
)

+
1

1− β IE
(

(kβ − ST )
+
)
.

Under the assumptions of the usual pricing models, erTΠ
(

(kβ − ST )
+
)
will

equal the risk-neutral expectation of (kβ − ST )
+ and, consequently, though

IE
(

(kβ − ST )
+
)
is a physical (but not risk-neutral) expectation, for β large

enough the CV@Rβ above will often become positive. The remainder sections
will be devoted to studying whether one can also �nd golden options for the
CV@Rβ and other coherent risk measures.

Fix 1 ≤ p < ∞ and a risk measure ρ : Lp −→ IR satisfying a representation
theorem in the line of Artzner et al. (1999) and Rockafellar et al. (2006). More
precisely, consider the conjugate 1 < q ≤ ∞ of p (i.e., 1/p+ 1/q = 1, with the
convention 1/∞ = 0) and the sub-gradient of ρ

∆ρ := {z ∈ Lq;−IE (yz) ≤ ρ (y) ,∀y ∈ Lp} ⊂ Lq (16)

composed of those linear and continuous functions lower than ρ. We will assume
that ∆ρ is convex and weak∗−compact (Kopp, 2008), and ρ is its envelope, in
the sense that

ρ (y) = Max {−IE (yz) ; z ∈ ∆ρ} (17)

holds for every y ∈ Lp. Furthermore, we will also assume that

{1} ⊂ ∆ρ ⊂ {z ∈ Lq; IE (z) = 1} (18)

and
∆ρ ⊂ {z ∈ Lq; IP (z ≥ 0) = 1} . (19)

Assumptions above are equivalent to the properties of norm-continuity, sub-
additivity, homogeneity, mean dominance, translation invariance and monotonic-
ity. To sum up, we have:

Assumption 1 ρ : Lp −→ IR satis�es the equivalent conditions a) and b)
below:

a) ρ is norm-continuous, sub-additive ( ρ (y1 + y2) ≤ ρ (y1)+ρ (y2) if y1, y2 ∈
Lp), homogeneous ( ρ (κy) = κρ (y) if y ∈ Lp and κ > 0), mean dominat-
ing ( ρ (y) ≥ −IE (y) if y ∈ Lp), translation invariant ( ρ (y + κ) = ρ (y) − κ
if y ∈ Lp and κ ∈ IR) and decreasing ( ρ (y1) ≤ ρ (y2) if y1, y2 ∈ Lp and
IP (y1 − y2 ≥ 0) = 1).

b) The set (16) is convex and weak∗−compact, (17) holds for every y ∈ Lp,
and (18) and (19) hold. �
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There are many examples of risk measures satisfying Assumption 1. A very
famous one is the CV@Rβ , applying for every p ∈ [1,∞), and characterized by
the sub-gradient

∆CV@Rβ = {z ∈ L∞; IE (z) = 1, 0 ≤ z ≤ 1/ (1− β)} . (20)

With respect to the convex cone Y ⊂ L0 and the pricing rule Π of Section
2 above, we will assume that Y = Lp, Π is continuous,7 and r = R. As a
consequence of the Hahn-Banach Theorem (Schae¤er, 1970), the set

∆Π :=
{
z ∈ Lq; IE (yz) ≤ erTΠ (y) ,∀y ∈ Lp

}
⊂ Lq

is weak∗−compact and

erTΠ (y) = Max {IE (yz) ; z ∈ ∆Π} (21)

holds for every y ∈ Lp. Moreover, (4) implies that

∆Π ⊂ {z ∈ Lq; IE (z) = 1} (22)

and (3) implies that

∆Π ⊂ {z ∈ Lq; IP (z ≥ 0) = 1} .

Remark 8 Expressions (17) and (21) imply that ρ : Lp −→ IR and Π : Lp −→
IR are lower semi-continuous functions if p > 1 and Lp is endowed with the
weak∗−topology. �

If Π is linear then ∆Π = {zΠ} becomes a singleton, and it is known that zΠ

is called stochastic discount factor (SDF ) of Π (Du¢ e, 1988). (21) leads to

Π (y) = e−rT IE (yzΠ) (23)

for every y ∈ Lp, and (22) leads to

IE (zΠ) = 1. (24)

Remark 9 (4), Proposition 1c and Assumption 1 obviously imply that

ρ (y + κ) + erTΠ (y + κ) = ρ (y) + erTΠ (y) (25)

for every y ∈ Lp and every κ ∈ IR. Consider y ∈ Lp such that

ρ (y) + erTΠ (y) < 0. (26)

If κ = −erTΠ (y) then y+κ will be a self-�nancing strategy ((4) and Proposition
1) such that ρ (y + κ) < 0. Moreover, ρ being mean dominating (Assumption
1), we have that IE (y + κ) ≥ −ρ (y + κ) > 0. In other words, the investor can

7many results still hold if Y is a closed subspace of Lp, though we prefer to impose Y = Lp

in order to simplify the mathematical exposition.
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V@R GP V@R GC V@R
ρ ⎧⎪⎨

⎪⎩
Π (n (y + κ)) = 0, ∀n ∈ IN
lim
n
ρ (n (y + κ)) = −∞

lim
n
IE (n (y + κ)) = +∞

i.e. y y

3.1 Smooth good deals

ST
2

Assumption 2 p = 2
(a, b) � x −→ I (x) = x ∈ IR L2 (IP)

a0 ∈ [a, b) a0 �= −∞ IP (ST = a0) = 0
x ∈ L∞ (IL) u ∈ (a, b)

J (x) (u) :=

� u

a0

x (v) dv.

Proposition 10 L∞ (IL) � x −→ J (x) ∈ L2 (IP)

Proof.

J (x) (u)
2
=

����� u

a0

x (v) dv

����2 ≤ �� u

a0

�x�∞ dv
�2
≤ �x�2∞ (u− a0)2 .

� b

a

J (x) (u)
2
IP (du) ≤ �x�2∞

� b

a

(u− a0)2 IP (du) =

a = a a = −∞



‖x‖2∞

(∫ b

a

u2IP (du)− 2a0

∫ b

a

uIP (du) + a2
0

∫ b

a

IP (du)

)
.

Obviously
∫ b
a
u2IP (du) <∞ due to Assumption 2,

∫ b
a
|u| IP (du) <∞ because the

identity map is in L1 (IP) too (recall that L2 (IP) ⊂ L1 (IP)), and
∫ b
a
IP (du) = 1.

Therefore there exists a constant κ such that ‖J (x)‖2 ≤ κ ‖x‖∞, which implies
that J (x) ∈ L2 (IP) and J is continuous (Schae¤er, 1970). �

Remark 11 In practice x ∈ L∞ (IL) will be understood as the �rst order Greek
(delta) at T of the derivative security J (x) we are interested in. For instance,
if (a, b) = (0,∞), a0 = 0 and

x =

{
0, u < 1
1, u > 1

then

J (x) (u) =

{
0, u < 1
u− 1, u > 1

so J (x) will be an European call option with strike 1 and maturity at T , and x
will be its delta at maturity
Besides, J (x) is obviously continuous for every x ∈ L∞ (IL) and, conse-

quently, every J (x) will be said to be a �smooth derivative of ST�. �

If (L∞ (IL))
′ represents the dual space of L∞ (IL), then recall that L1 (IL) ⊂

(L∞ (IL))
′. Besides, one can consider the adjoint functional of J , denoted by

J∗ : L2 (IP) −→ (L∞ (IL))
′. With the obvious notations for the classical bilinear

products, J∗ is characterized by

〈J (x) , y〉 = 〈x, J∗ (y)〉 (29)

for every x ∈ L∞ (IL) and every y ∈ L2 (IP) (Schae¤er, 1970).

Proposition 12 J∗ : L2 (IP) −→ L1 (IL) is linear and continuous, and it is
given by

J∗ (y) (v) =

{ ∫ b
v
y (u) IP (du) if v > a0

−
∫ v
a
y (u) IP (du) if v < a0

(30)

for every y ∈ L2 (IP) and every v ∈ (a, b).

Proof. It is a classical result that J∗ : L2 (IP) −→ (L∞ (IL))
′ is linear and

continuous (Schae¤er, 1970). Thus, we only have to show that J∗ is valued in
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L1 (IL) and that (30) holds. For x ∈ L∞ (IL) and y ∈ L2 (IP) we have (see (29))

〈J (x) , y〉 =
∫ b
a
J (x) (u) y (u) IP (du) =∫ b

a

(∫ u
a0
x (v) dv

)
y (u) IP (du) =∫ b

a0

(∫ u
a0
x (v) dv

)
y (u) IP (du)−

∫ a
0

a

(∫ a
0

u
x (v) dv

)
y (u) IP (du) =∫ b

a0

(∫ b
v
y (u) IP (du)

)
x (v) dv −

∫ a0
a

(∫ v
a
y (u) IP (du)

)
x (v) dv =∫ b

a
J∗ (y) (v)x (v) dv.

Thus, (30) becomes obvious, and J∗ (y) ∈ L1 (IL) because taking

x =

{
1, J∗ (y) ≥ 0
−1, J∗ (y) < 0

we have that
∫ b
a
|J∗ (y) (v)| dv =

∫ b
a
J∗ (y) (v)x (v) dv = 〈J (x) , y〉 <∞. �

As already said, our objective is to �nd a smooth derivative y = J (x)
satisfying (26). If such a x does exist then it will be said to be a smooth good
deal (SGD) of

(
L2, ρ,Π

)
.9

Remark 13 One could attempt to compute the optimal SGD by solving the
optimization problem {

Min ρ (J (x)) + erTΠ (J (x))
x ∈ L∞ (31)

However, it is obvious that (31) is bounded if and only if its optimal value equals
0 (recall that J , Π and ρ are positively homogeneous), in which case there is no
SGD. A natural way to solve this caveat is to deal with problem{

Min ρ (J (x)) + erTΠ (J (x))
x ∈ L∞, ‖x‖∞ ≤ C

(32)

for some C > 0. This is exactly the solution we propose, though we will consider
C = 1 because it is easy to see that the solution of (32) is given by the product
of C and the solution of (32) when C = 1. Thus,

Min ρ (J (x)) + erTΠ (J (x))

{
x ∈ L∞
−1 ≤ x ≤ 1

(33)

is the problem we will deal with. �
9Good deals were introduced in Cochrane and Saa-Requejo (2000). Brie�y speaking, they

were strategies with a very high classical Sharpe ratio. In this paper we will interpret that a
GD is a strategy satisfying (26).
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Proposition 14 L∞ (IL) 3 x −→ ρ (J (x)) + erTΠ (J (x)) ∈ IR is lower semi-
continuous if L∞ (IL) is endowed with the weak∗−topology.

Proof. First, let us show that L∞ (IL) 3 x −→ J (x) ∈ L2 (IP) is continuous if
L∞ (IL) and L2 (IP) are endowed with their weak∗−topologies. Indeed, consider
a net (xi)i∈I ⊂ L∞ (IL) converging to zero in the weak∗−topology of L∞ (IL).
For every z ∈ L2 (IP) we have that (see (29))

lim
i∈I 〈J (xi) , z〉 = lim

i∈I 〈xi, J∗ (z)〉 = 0 (34)

where the last equality holds because J∗ (z) ∈ L1 (IL) (Proposition 12) and
(xi)i∈I converges to zero in the weak

∗−topology of L∞ (IL). (34) shows that
(J(xi))i∈I ⊂ L2 (IP) converges to zero in the weak∗−topology of L2 (IP), and
J is continuous for these topologies. Since ρ is lower semi-continuos when the
space L2 (IP) is endowed with the weak∗−topology (Remark 8), we have that
ρ◦J is also lower semi-continuous. Furthermore, a similar argument proves that
Π ◦ J is weak∗−lower semi-continuous too. �

Proposition 15 Problem (33) is bounded and solvable.

Proof. The set {x ∈ L∞ (IL) ; − 1 ≤ x ≤ 1} is weak∗−compact (Alaoglu�s the-
orem, Kopp, 2008), and therefore (33) is solvable because the objective function
is lower semi-continuos (Proposition 14). �

Proposition 16 There exists a SGD if and only if the optimal value of Problem
(33) is strictly negative. Otherwise the optimal value of (33) equals zero.

Proof. Since x = 0 is obviously (33)-feasible then the optimal value of (33) will
never be positive. If it is zero then there will not exist any feasible x such that
ρ (J (x)) + erTΠ (J (x)) < 0, i.e., there will not exist any SGD. Conversely, if
the optimal value is negative then ρ (J (x))+erTΠ (J (x)) < 0 will hold for some
(33)-feasible x. �

3.2 Dual approach

This sub-section will be devoted to analyzing a Lagrangian dual problem for
(33), which will provide us with new characterizations of the absence of SGD
as well as with new methods to compute the solution of (33).

Remark 17 (17) and (21) show that (33) is equivalent to the linear optimiza-
tion problem

Min θ1 + θ2

 −IE (J (x) z1)− θ1 ≤ 0, ∀z1 ∈ ∆ρ

IE (J (x) z2)− θ2 ≤ 0, ∀z2 ∈ ∆Π

−1 ≤ x ≤ 1
(35)

(θ1, θ2, x) ∈ IR× IR×L∞ being the decision variable. The Lagrangian of (35)
may be obtained with the general methodology of Balbás et al. (2015), and
becomes

L (x, z1, z2, w1, w2) = IE (J (x) z2)− IE (J (x) z1) + 〈x− 1, w1〉 − 〈x+ 1, w2〉
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with (x, z1, z2, w1, w2) ∈ L∞ × ∆ρ × ∆Π × (L∞ (IL))
′ × (L∞ (IL))

′, w1 ≥ 0 and
w2 ≥ 0. (29) leads to

L (x, z1, z2, w1, w2) = 〈x, J∗ (z2 − z1) + w1 − w2〉 − 〈1, w1 + w2〉 .

Following Luenberger (1969) and Balbás et al. (2015), (z1, z2, w1, w2) is dual-
feasible if and only if L (x, z1, z2, w1, w2) is bounded from below for x ∈ L∞, in
which case its in�mum equals the dual objective. Obviously, L (x, z1, z2, w1, w2)
is bounded if and only if 〈x, J∗ (z2 − z1) + w1 − w2〉 = 0 for every x ∈ L∞, in
which case the dual problem will maximize −〈1, w1 + w2〉. Consequently, one
can take the dual problem

Min 〈1, w1 + w2〉


J∗ (z2 − z1) + w1 − w2 = 0
w1 ≥ 0, w2 ≥ 0

(z1, z2, w1, w2) ∈ ∆ρ ×∆Π × (L∞ (IL))
′ × (L∞ (IL))

′

(36)
(z1, z2, w1, w2) being the decision variable. Since (35) is solvable (Proposition
15), the constraints of (35) are valued in spaces whose positive cone has non
void interior (Schae¤er, 1974), and (θ1, θ2, x) = (1, 1, 0) makes (35) satisfy
the Slater quali�cation (Luenberger, 1969), there is no duality gap between (33)
and (36) (the optimal value of (33) equals the optimal value of (36) with the
opposite sign), and (36) is solvable (Luenberger, 1969). Moreover, there are
Karush-Kuhn-Tucker like conditions characterizing the solutions of both (33)
and (36). These conditions imply that the solutions x̃ and (z̃1, z̃2, w̃1, w̃2) must
satisfy the complementary slackness rules{

〈x̃− 1, w̃1〉 = 0
〈x̃+ 1, w̃2〉 = 0

Since x̃− 1 = 0 and x̃+ 1 = 0 cannot simultaneously hold, we have that w̃1 = 0
or w̃2 = 0 for every state of nature. Furthermore, J∗ (z̃2 − z̃1) + w̃1 − w̃2 = 0
and Proposition 12 show that J∗ (z2 − z1) ∈ L1 (IL), and the three conditions J∗ (z̃2 − z̃1) = −w̃1 + w̃2

w̃1 ≥ 0, w̃2 ≥ 0, w̃1 = 0 or w̃2 = 0
J∗ (z̃2 − z̃1) ∈ L1 (IL)

imply that J∗ (z̃2 − z̃1) = −w̃1 for some states of nature and J∗ (z̃2 − z̃1) = w̃2

for the rest of states. In other words, (w̃1, w̃2) ∈ L1 (IL)×L1 (IL). To sum up, if
one denotes w+ = w1 and w− = w2, and one bears in mind that〈

1, w+ + w−
〉

=

∫ b

a

(
w+ + w−

)
dIL,

then one has (see Balbás et al., 2015): �
Theorem 18 Problem

Min

∫ b

a

(
w+ + w−

)
dIL

 J∗ (z1)− w+ + w− = J∗ (z2)
w+ ≥ 0, w− ≥ 0
(z1, z2, w

+, w−) ∈ ∆ρ ×∆Π × L1 (IL)× L1 (IL)
(37)
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−1 x̃ (z̃1, z̃2, w̃
+, w̃−)

⎧⎨
⎩
IE (J (x̃) z) ≥ IE (J (x̃) z̃1) , ∀z ∈ Δρ

IE (J (x̃) z) ≤ IE (J (x̃) z̃2) , ∀z ∈ ΔΠ

�x̃− 1, w̃+� = �x̃+ 1, w̃−� = 0

Corollary 19 SGD z̃1 ∈ Δρ z̃2 ∈ ΔΠ

J∗ (z̃1) = J∗ (z̃2) (z̃1, z̃2, w̃
+, w̃−) = (z̃1, z̃2, 0, 0)

Proof. 16 18 SGD

w+ = w− = 0
(z̃1, z̃2) ∈ Δρ ×ΔΠ J∗ (z̃1) = J∗ (z̃2)

Remark 20

,

SGD
9

�J∗ (z1)− J∗ (z2)�1 J∗ (z1) , J∗ (z2) ∈ L1 (IL)
12 


Min �J∗ (z1)− J∗ (z2)�1
(z1, z2) ∈ Δρ ×ΔΠ

(z̃1, z̃2)

w̃+ = (J∗ (z̃1)− J∗ (z2))+ and w̃− = (J∗ (z̃1)− J∗ (z2))−

Π SGD�
z̃1, z̃2, w̃

+, w̃−
�
= (z̃1, zΠ, 0, 0)

J∗ (z̃1) = J∗ (zΠ)

Π (J (x)) = e−rT IE (J (x) zΠ) = e−rT �x, J∗ (zΠ)� =
e−rT �x, J∗ (z̃1)� = e−rT �J (x) , z̃1� = e−rT IE (J (x1) z̃) ,

z̃1 SDF J (L∞)

h =Max {h, 0} h =Max {−h, 0} h ∈ IR



3.3 Examples of golden option

−∞ < a < b ≤ ∞ IP

IL (a, b) IP

(a, b) a0 = a Π
SDF zΠ

IP (zΠ > 0) = 1.

J∗ (zΠ) (v) =
� b

v

zΠ (u) IP (du) =

� b

v

IQ (du) = IQ (ST ≥ v)

v ∈ (a, b) IQ
IP IQ (a, b)

Theorem 21 ρ = CV@Rβ (a, b) � u −→ zΠ (u) ∈
IR SGD

lim
u→a

zΠ (u) > 1/(1− β).

kβ ∈ (a, b)

x̃ = χ(a,kβ) =



1, u < kβ
0, u > kβ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
z̃1 = z̃ =



1/(1− β), u < kβ
zΠ, u > kβ

z̃2 = zΠ
w̃+ (v) = J∗ (z̃1) (v)− IQ (ST ≥ v)
w̃− = 0

Proof. lim
u→a

zΠ (u) ≤ 1/(1− β) zΠ ≤ 1/(1− β)

zΠ ∈ ΔCV aRβ
19 SGD

SGD z ∈ ΔCV aRβ
J∗ (z) = J∗ (zΠ) i.e.� b

u

z (v) IP (dv) =

� b

u

zΠ (v) IP (dv)

u ∈ (a, b) u
IP IL

z = zΠ IP− zΠ ≤
1/(1− β)

i.e. IP z



Suppose now that (43) holds. (24) and (43) imply that IP (zΠ < 1) > 0, and
therefore zΠ (u) < 1 < 1/ (1− β) if u is large enough. Hence, (43) and the
Bolzano�s Theorem imply that

zΠ (k0) = 1/ (1− β) (46)

for some k0 ∈ (a, b). Obviously, if

zk =

{
1/(1− β), u < k
zΠ, u > k

(47)

for every k ∈ (a, b) one has that (see (30) and (42))
IE (zk) =∫ b
a
zk (u) IP (du) = IP(ST<k)

1−β + J∗ (zΠ) (k) = IP(ST<k)
1−β + IQ (ST ≥ k) .

(48)

In particular,

lim
k→b

IE (zk) =
1

1− β lim
k→b

IP (ST < k) + lim
k→b

IQ (ST ≥ k) =
1

1− β > 1.

For k = k0 we have that (46) and (47) imply that zk0 ≤ zΠ and zk0 (u) < zΠ (u)
if u < k0 (zΠ is strictly decreasing). Thus, (24) leads to

IE (zk0) < IE (zΠ) = 1.

(48) shows that k −→ IE (zk) is continuous (IP and IQ are atomless), so the
Bolzano�s Theorem implies the existence of k1 ∈ (a, b), k1 > k0, such that

IE (zk1) = 1. (49)

Take kβ = k1, and x̃ and (z̃, zΠ, w̃
+, w̃−) as given by (44) and (45), respectively.

x̃ is obviously (33)-feasible. (16), (41) and (49) show that z̃ ∈ ∆CV aRβ will
hold if z̃ = zkβ ≤ 1/(1 − β). The inequality is obvious if u < kβ , and for
u > kβ = k1 > k0 one has z̃ (u) = zΠ (u) < zΠ (k0) = 1/ (1− β) (see (46)).
Hence, z̃ ∈ ∆CV aRβ . In order to show that (z̃, zΠ, w̃

+, w̃−) is (37)-feasible one
has to prove that

J∗ (z̃) (v)− w̃+ = J∗ (zΠ) (v) and w̃+ ≥ 0.

The �rst condition trivially follows from (42) and (45). The second one trivially
holds if u ≥ kβ , since zΠ (v) = z̃ (v) for v > kβ implies that J∗ (zΠ) (u) =
J∗ (z̃) (u) and w̃+ (u) = J∗ (z̃) (u)− J∗ (zΠ) (u) = 0. For u < kβ we must prove
that

J∗ (z̃) (u)− J∗ (zΠ) (u) ≥ 0.

For k0 ≤ u < kβ one has

J∗ (z̃) (u)− J∗ (zΠ) (u) =

∫ kβ

u

(
1

1− β − zΠ (v)

)
IP (dv) > 0 (50)
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because 1
1−β − zΠ (v) > 0 (see (46) and recall that zΠ is strictly decreasing).

For u < k0 (50) still applies, so J∗ (z̃) (u) − J∗ (zΠ) (u) is increasing because
1

1−β − zΠ (v) < 0. Therefore,

J∗ (z̃) (u)− J∗ (zΠ) (u) ≥ lim
v→a

(J∗ (z̃) (v)− J∗ (zΠ) (v)) = IE (z̃)− IE (zΠ) = 0

due to (18) and (24). Once we know that x̃ and (z̃, zΠ, w̃
+, w̃−) are feasible

Theorem 18 applies and it only remains to prove that they satisfy (38). The
second and fourth conditions in (38) are trivial, so let us focus on the third one.
If w̃+ (u) > 0 then (45) leads to J∗ (z̃) (u) > J∗ (zΠ) (u), and the expression for
z̃ implies that u < kβ . Therefore, (44) leads to x̃ = 1. Lastly, let us focus on
the �rst condition of (38). Obviously,

J (x̃) =

{
u− a, u < kβ
kβ − a, u > kβ

(51)

and

IE (J (x̃) z) =

∫ b

a

J (x̃) zdIP,

and we must show that this functional is minimized by z̃ under the constraints
of ∆CV aRβα , i.e., { ∫ b

a
zdIP = 1

0 ≤ z ≤ 1/(1− β)

Su¢ cient optimality conditions for this linear problem are (Anderson and Nash,
1987) 

J (x̃)− λ− λ1 + λ2 = 0
λ1z = 0

λ2

(
1

1− β − z
)

= 0

λ ∈ IR, λ1, λ2 ∈ L2 (IP) , λ1, λ2 ≥ 0

and (45) and (51) imply that z̃ trivially satis�es these conditions if

λ2 =

{
kβ − u, u < kβ
0, u > kβ

λ = kβ − a and λ1 = 0. �

Remark 22 (The CV@R golden put, CV@R_GP ). Suppose that (43) holds.
The Theorem�s proof is constructive with respect to kβ, which will solve the
equation

IP (ST < k)

1− β + IQ (ST > k) = 1

or, equivalently,
IP (ST ≤ kβ) = (1− β) IQ (ST ≤ kβ) . (52)
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Once kβ has been estimated, the computation of x̃ and z̃ is a trivial application
of (44) and (45). The marketed claim J (x̃) of (51) is the SGD we are looking
for. This pay-o¤ is easy to replicate by trading the riskless asset and selling the
European put (kβ − ST )

+, which will be called CV@R golden put (CV@R_GP ).
Bearing in mind (25) and Remark 9, The sale of the CV@R_GP an the invest-
ment of its price in the riskless asset is a self-�nancing strategy whose CV@Rβ
is negative and equals the optimal value of (33). Furthermore, if the strategy
may be implemented several times, then (27) holds. �
Remark 23 For the BS model, the Heston model, and most of the classical
continuous-time stochastic volatility models, the assumptions of Theorem 21 and
(43) hold if the model drift is higher than the riskless rate (µ > r), which is the
usual situation. Moreover, a = 0, and the limit in (43) equals ∞. Thus, all
of these models present CV@R_GPs for every level of con�dence. If µ =
r then it is easy to prove that the model is SGD free (IP (zΠ = 1) = 1 and
therefore (43) fails). If µ < r then these models are not SGD free either, and a
result quite parallel to Theorem 21 may be proved. Actually, the SDF becomes
strictly increasing and the optimal SGD becomes a CV@R golden European call
(CV@R_GC) whose strike Kβ solves the equation

IP (ST ≥ kβ) = (1− β) IQ (ST ≥ kβ) .

We will omit the proof due to its analogy with that of Theorem 21. �
Remark 24 (CV@R_GP in the BS model). Consider the BS model and
suppose that µ > r. (11) and (52) lead to

Φ

 log (kβ/S0)−
(
µ− σ2

2

)
T

σ
√
T

 = (1− β) Φ

 log (kβ/S0)−
(
r − σ2

2

)
T

σ
√
T

 .

(53)
The e¤ect on kβ of small changes in the input-side may be easily estimated by
computing implicit di¤erentials on Expression (53).
We have numerically solved Equation (53), and some results are reported

in the table below. The columns �Exp� and �CV@R� give expectation and
CV@R for a self-�nancing portfolio, i.e., the sale of the CV@R_GP plus the
investment in the riskless asset. We have assumed that S0 = 1000.

r, µ, σ, T, β, kβ , Exp, CV@R
0 7% 10% 0.1 62% 880 0.0002 −0.00017
0 7% 10% 0.5 60% 920 1.07 −0.60
0 7% 12% 1 65% 876 2.53 −1.46

1% 8% 10% 0.1 70% 849 1.75 −5.00
1% 8% 10% 1 65% 945 5.04 −2.67
1% 8% 9% 0.1 75% 860 9.13 −2.23
1% 8% 9% 0.1 85% 810 9.59 −1.66
1% 8% 9% 1 80% 898 2.03 −0.70
1% 8% 9% 1 70% 950 5.20 −2.70


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The numerical results are quite similar to those reported in Remark 7 for
V@R, though the level of con�dence must be reduced. Actually, if the level of
con�dence and/or the volatility increase then it seems that the strategy expected
pay-o¤ decreases and the CV@R increases. Besides, these numerical results are
consistent with the reports of the empirical papers by Bondarenko (2014) and
Balbás et al. (2016). On the one hand, Bondarenko (2014) pointed out that the
real quotation of OTM−puts is frequently higher than the price predicted by the
classical pricing models. Needless to say, this is �good� for the CV@R_GP
seller, who will improve both expected wealth and CV@R if he/she sells for
prices bigger than those used in the table above. On the other hand, Balbás
et al. (2016) constructed (non smooth) GDs under the assumptions of the BS
model and under real market quotations, and they pointed out that the practical
performance of a GD is much better if real quotes are used. �

4 Discrete models

Many pricing models in Mathematical Finance are discrete, and they only in-
volve �nitely many trading dates and states of nature. Furthermore, most of the
continuous pricing models may be accurately approximated by a discrete one.
Thus, let us give a general practical procedure leading to the solutions of both
(33) and (37) in general discrete models. This procedure will not require the
additional assumptions of Theorem 21, and therefore it will enable us to give
good approximations for x̃ and (z̃1, z̃2, w̃

+, w̃−) in a very general framework.
In order to shorten the exposition, we will assume that Π is linear, though the
extension to more general cases is not at all complex.
Suppose that the �nal underlying asset price ST will achieve a value be-

longing to the set U = {u0 < u1 < ... < um} ⊂ IR. Take −∞ < a = a0 < u0

and ∞ > b > um. Suppose that U equals the support of IP. With the natural
notation, if y = (y (u0) , y (u1) , ..., y (um)) = (y0, y1, ..., ym) ∈ L2 (IP), then (30)
leads to

J∗ (y) (v) =
∑
uj≥v

y (uj) IP (ST = uj)

for every v ∈ (a, b). Thus,

J∗ (y) (v) =
m∑
j=h

IP (ST = uj) yj (54)

for v ∈ (uh−1, uh], h = 0, 1, ...m (take u−1 = a = a0), and

J∗ (y) (v) = 0 (55)

for v ∈ (um, b). In particular, if y = z ∈ ∆ρ or y = zΠ then (18) and (24) lead
to

J∗ (y) (v) = 1 (56)

for every v ∈ (a, u0].
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With respect to the dual variables w+ and w− of (37), under optimality
they are given by (40). Thus, (40), (54), (55), (56) and the constraints of (37)
show that the optimal solutions w̃+ and w̃− (whose existence is guaranteed by
Theorem 18) remain constant in (uh−1, uh], h = 0, 1, ...,m, and (um, b). More-
over (55) and (56) show that w̃+ and w̃− must vanish on (a0, u0] and (um, b).
In other words, the dual variables w+ and w− may simplify to

(
w+

1 , ..., w
+
m

)
and

(
w−1 , ..., w

−
m

)
, where every w+

k (w−k ) represents the value of w
+ (w−) on

(uh−1, uh], h = 1, 2, ...,m. Hence, Problem (37) becomes

Min
m∑
j=1

(uj − uj−1)
(
w+
j + w−j

)
J∗ (z) (uj)− w+

j + w−j = J∗ (zΠ) (uj) , j = 1, 2, ...,m

w+
j ≥ 0, w−j ≥ 0, j = 1, 2, ...,m

z = (z0, z1, ..., zm) ∈ ∆ρ(
z0, z1, ..., zm, w

+
1 , w

+
2 , ..., w

+
m, w

−
1 , w

−
2 , ..., w

−
m

)
∈ IR3m−2 being the decision vari-

able. Bearing in mind (54), (55) and (56), and denoting zΠ = (zΠ,0, zΠ,1, ..., zΠ.m),
the dual above becomes

Min
m∑
j=1

(uj − uj−1)
(
w+
j + w−j

)
m∑
h=j

IP (ST = uh) zh − w+
j + w−j =

m∑
h=j

IP (ST = uh) zΠ,h, j = 1, 2, ...,m

w+
j ≥ 0, w−j ≥ 0, j = 1, 2, ...,m

z = (z0, z1, ..., zm) ∈ ∆ρ

(57)
Moreover, if (41) holds then the right hand side of the �rst constraint satis�es

m∑
h=j

IP (ST = uh) zΠ,h = IQ (ST ≥ uj) , (58)

j = 0, 1, 2, ...,m, where, once again, IQ is the risk-neutral probability, which is
equivalent to IP.
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For ρ = CV@Rβ one has (see (20))

Min
m∑
j=1

(uj − uj−1)
(
w+
j + w−j

)
m∑
h=j

IP (ST = uh) zh − w+
j + w−j =

m∑
k=j

IP (ST = uh) zΠ,h, j = 1, 2, ...,m

m∑
j=1

IP (ST = uj) zj = 1

0 ≤ zj ≤ 1/ (1− β) j = 0, 1, ...,m

w+
j ≥ 0, w−j ≥ 0, j = 1, 2, ...,m

(59)
The goal programming problems (57) and (59) attain their optimal values (The-
orem 18), and it is easy to solve them in practice (Tamiz et al., 1998).
Once a dual solution

(
z̃0, ..., z̃m, w̃

+
1 , ..., w̃

+
m, w̃

−
1 , ..., w̃

−
m

)
has been obtained,

let us show that the optimal x̃ is easy to �nd as well.12 First of all, the value of
x̃ (u) for u ∈ (um, b) is irrelevant, because

IE (J (x̃) z) =
m∑
j=0

zjJ (x̃) (uj) IP (ST = uj)

for every z ∈ L2 (IP), and consequently (17) and (23) imply that only J (x̃) (uj),
j = 0, 1, ...,m, a¤ect the objective function of (33). Obviously, (28) imply that
x̃ (u) for u ∈ (um, b) does not a¤ect J (x̃) (uj), j = 0, 1, ...,m. Besides, one can
suppose that x̃ remains constant on every (uj−1, uj ], j = 0, 1, ...,m (recall that
u−1 = a = a0). Indeed,∫ uj

uj−1

x̃ (v) dv =
I

uj − uj−1

∫ uj

uj−1

dv, (60)

where

I =

∫ uj

uj−1

x̃ (v) dv,

so x̃ can be replaced by I/ (uj − uj−1) in the involved interval. Clearly, −1 ≤
x̃ ≤ 1 implies that −1 ≤ I/ (uj − uj−1) ≤ 1, and (60) implies that J (x̃) will
equal J (x̃′) out of a IP−null set if x̃′ is the obvious piecewise function. Lastly,
if x̃ (u) = x0 for u ∈ (a0, u0] then take

x̃′ =

{
0, u ≤ u0

x̃, otherwise

and we will have

J (x̃′) (u) =

∫ u

a0

x̃′dv = J (x̃) (u)− x0 (u0 − a0)

12Recall that x̃ does exist (Proposition 15).
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for u ≥ u0. Therefore, since ρ is translation invariant and only the support of
IP a¤ects ρ and Π,

ρ (J (x̃′)) + erTΠ (J (x̃′)) =
ρ (J (x̃) + x0 (u0 − a0)) + erTΠ (J (x̃))− x0 (u0 − a0)
= ρ (J (x̃)) + erTΠ (J (x̃)) .

Hence, the objective of (33) attains an identical value for x = x̃ or x = x̃′.
To sum up, we can consider that x̃ = (x̃1, x̃2, ...x̃m) in the sense that x̃ (u) =

x̃j for u ∈ (uj−1, uj ], j = 1, 2, ...,m, and x̃ = 0 otherwise. According to (33),
(38) and Theorem 18, the optimal SGD (x̃1, x̃2, ...x̃m) will be characterized by{

IE (J (x̃) z) ≥ IE (J (x̃) z̃) , ∀z ∈ ∆ρ〈
x̃j − 1, w̃+

j

〉
=
〈
x̃j + 1, w̃−j

〉
= 0, j = 1, 2, ...,m

As a particular case, the binomial model is very often used as an approxima-
tion of the BS model. If m is a natural positive number, then the time interval
[0, T ] may be divided intom+1 subintervals [t0 = 0, t1], [t1, t2],...,[tm−1, tm = T ]
such that tj − tj−1 = T/m, j = 1, 2, ...,m. Between tj−1 and tj the value of S

may be multiplied by eσ
√
T/m > 1 or e−σ

√
T/m < 1, the physical ηph and the

risk-neutral ηrn probability of multiplying by e
σ
√
T/m equal

ηph = eµ(T/m)−e−σ
√
T/m

eσ
√
T/m−eσ

√
T/m

ηrn = er(T/m)−e−σ
√
T/m

eσ
√
T/m−eσ

√
T/m

.

The set of the m+ 1 potential values of ST becomes

U =
{
S0e
−mσ
√
T/m < S0e

(−m+2)σ
√
T/m < S0e

(−m+4)σ
√
T/m... < S0e

mσ
√
T/m

}
,

The probabilities in U become
IP
(
ST = uj = S0e

(−m+2j)σ
√
T/m

)
=

(
m
j

)
ηjph

(
1− ηph

)m−j
IQ
(
ST = uj = S0e

(−m+2j)σ
√
T/m

)
=

(
m
j

)
ηjrn (1− ηrn)

m−j

j = 0, 1, ...,m. If ρ = CV@Rβ then (58) shows that (59) becomes

Min
m∑
j=1

(uj − uj−1)
(
w+
j + w−j

)
m∑
k=j

(
m
k

)
ηkph

(
1− ηph

)m−k
zk − w+

j + w−j = IQ (ST ≥ uj) , j = 1, 2, ...,m

m∑
j=1

(
m
j

)
ηjph

(
1− ηph

)m−j
zj = 1

0 ≤ zj ≤ 1/ (1− β) j = 0, 1, ...,m

w+
j ≥ 0, w−j ≥ 0, j = 1, 2, ...,m

(61)
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This simple linear problem has a new dual that can be considered as the double-
dual of (33). This double-dual becomes (Tamiz et al., 1998)

Max
m∑
j=1

(uj − uj−1) ÎP (ST ≥ uj)λj + λm+1 +
1

1− β
2m+2∑
j=m+2

λj

IP (ST = u0)λm+1 + λm+2 ≤ 0
(u1 − u0) IP (ST = u1)λ1 + IP (ST = u1)λm+1 + λm+3 ≤ 0{

(u1 − u0) IP (ST = u1)λ1 + (u2 − u1) IP (ST = u2)λ2+
IP (ST = u2)λm+1 + λm+4 ≤ 0

...{
(u1 − u0) IP (ST = um)λ1 + ...+ (um − um−1) IP (ST = um)λm+
IP (ST = um)λm+1 + λ2m+2 ≤ 0

−1 ≤ λ1, λ2, ..., λm ≤ 1 and λm+2, λm+3, ..., λ2m+2 ≤ 0
(62)

λ = (λ1, λ2, ..., λ2m+2) being the decision variable. Moreover, following a similar

result of Balbás et al. (2015), if λ̃ =
(
λ̃1, λ̃2, ..., λ̃2m+2

)
solves (62), then x̃ =(

λ̃1, λ̃2, ..., λ̃m

)
solves (33), and therefore (61) and (62) allow us to �nd both

optimal solutions
(
z̃0, ..., z̃m, w̃

+
1 , ..., w̃

+
m, w̃

−
1 , ..., w̃

−
m

)
and (x̃1, x̃2, ...x̃m). �

5 Conclusion

Smooth self-�nancing strategies with negative risk (SGD) frequently exist and
may be easily constructed. If the selected risk measure is ρ = V@R then the
SGD is just the sale of a �golden European option�along with the investment of
the option price in a riskless asset. The strike of the option is easy to estimate,
and the existence of this option does not require particular assumptions. Actu-
ally, one can involve risks with both bounded and unbounded expectation, as
well as friction-free and non-friction-free pricing rules. Numerical experiments
have been reported.
If ρ is a coherent and expectation bounded risk measure then the framework

has to be more limited, but it is still general enough. Actually, expectations and
variances have to remain �nite, and the pricing rule Π must be continuous, but
Π may still incorporate potential frictions. Under this setting the existence of
SGDs has been characterized by means of practical conditions. If ρ = CV@R
then the optimal SGD is composed of the sale of a �golden European put�along
with the investment of the put price in a riskless asset. Numerical experiments
have been reported.
Though computational issues have been properly addressed, it has been also

shown that they become really simple in a discrete framework, since only �nite-
dimensional linear programming methods have to be involved. Discrete models
are interesting for both reasons, they are simple and the usual pricing models
often have a good enough discrete approximation. �
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