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Abstract 
 

 

 

The purpose of this work consists in finding a method able to detect anomalies and adapt to 

new behaviours in an IP-network. Here is possible to find a work of investigation about the 

different anomaly detection systems. 

During the introduction and the first points, the audience could realize how the field of 

anomaly detection is divided in two big groups: Anomaly detection systems based in rules, and 

adaptive anomaly detection systems. These two ideas will be discuss, and some examples of 

each technology are given. 

In the case of adaptive anomaly detection, there are some techniques proposed. One of them 

is developed during the rest of the work. I wanted to implement this technique in a small 

network property of the RUS department of the University of Stuttgart. The implementation, 

the problems found and additional information can be found in this report. Later the tests and 

results applied make us think if the behaviour is correct or not. 

The discussion and the ideas obtained can be found at the end of the report, where is possible 

to find also the advices for future developers. 

This report has been designed as a guide for developers which lend them to avoid too much 

time in understanding the present algorithm. The aid of this work is to be considered as a 

helper reference to people who wants to implement this kind of systems.  
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Glossary 

 

 

Anomaly Detection   System which detects anomalies due to enemy’s actions and 
networks failures 

Arbor Peak-Flow   Network monitoring tool property of Arbor Networks 
 
Arbor Peak-Flow   Software which manages the network traffic and is based in strict 

rules that can be modelled by the manager 

ATF   Arbor Peak-Flow file which includes information about rules to be installed 
 
Cisco Systems   Cisco is an Enterprise which develops software and hardware for 

networks. 

GLR    Generalized likelihood ratio 

GLRT    Generalized likelihood ratio test 

IDS  Intrusion Detection System 

Intrusion Detection   System which detects anomalies due to enemy’s actions and is 
based in static rules and are specify for only one anomaly 

MIB      Management Information Base 

OS       Operation System 

SNMP   Simple Network Management Protocol 

SYSLOG   Standard for forwarding log messages in IP networks. 
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1 Introduction 

1.1 Rationale 

Network security and robustness have become two of the bases in network design. Both 

aspects let the users to communicate with guaranties in the nets all around the world. 

Designers and intruders know this, so this part of the design of networks is always adapting to 

new circumstances. 

Apart from the attack detection, which is not the main purpose of this report, there have been 

many designs throughout the years since the advent of the communications networks. 

Developers in this field have been working on them trying to find the final system which will 

solve all the problems in the present and in the future. This is a hard work which has not been 

closed yet. For the moment, the only thing that designers can do is to approximate solutions to 

this ambitious idea. Techniques coming from the signal processing field started to be used, 

leading to more powerful systems. 

A network anomaly is a sudden and short-lived deviation from the normal operation of the 

network. Some anomalies are deliberately caused by intruders with malicious intent such as a 

denial-of-service attack in an IP network, while others may be purely an accident. Quick 

detection is needed to initiate a timely response. 

The problem of non-adaptive algorithms is such that the algorithms have to have clear rules 

which let them to identify an anomaly. Rules must describe all the anomalous behaviour in the 

network for which managers must specify them very carefully. The hard work identifying the 

best rules is the task I want to avoid with my work. This is the field where I will develop all my 

experiments. 

1.2 Objectives and task plan 

The purpose of this work is to find an adaptive anomaly-detection system, specify its 

advantages and disadvantages, and finally implement it in a real environment. 

The algorithm must be able to detect network anomalies specifying the area where it 

happened but not the kind of anomaly. This capability can be obtained with other algorithms, 

but I am not developing them in this report. 

The task plan that I need to carry out is summarized below: 

a) Study the problems in the networks and the best solutions for them. 

b) Choose an interesting adaptive anomaly-detection algorithm. 

c) Specify the advantages and disadvantages of this algorithm. 

d) Implement it. 

e) Present the results and discuss them. 

The development is carried out in the University of Stuttgart, more specifically in the RUS 

department. All the machines and equipment are supply by RUS. I had to limit my experiments 

to the available equipment in the department. 
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1.3 Document outline 

This work is divided in sections which describe the fields of action. The report presents 

different solutions to the problem of anomaly detection, and specifies one which has been 

chose in order to be implemented. 

Section 1 narrates the problem which must be solved and a brief description of the course of 

action in order to solve the problem.  

The solutions given along the years and the current situation are presented in Section 2. There 

is possible to find the past situation of this kind of systems and how they have been developed 

during the last years. As an example of the previous kind of algorithms used even these days, 

ArborPeakflow is presented. The solution given by this software is still useful in many 

situations. At the end of Section 2 the audience can find adaptive algorithms which try to 

improve the efficiency of the earlier algorithms like ArborPeakflow. Besides the algorithm 

developed in this work is exposed there. 

Section 3 contains the full description of the algorithm implemented composed by the 

theoretical issue and the environment. The theoretical part explains the work carried out by 

Marina Thottan and Chuanyi Ji (1). The environment is the natural situation where the 

algorithm works and how it interacts with the network. At the end of the section the problems 

found during the implementation of the algorithm are shown. 

The tests carried out can be found in Section 4. At the beginning the test environment is 

explained. It is not exactly the same as the environment proposed in Section 3, but it simulates 

the behaviour in small size in order to extrapolate the results to the natural environment. After 

that the tests proposed and the results are shown. This section finishes with an analysis of the 

results, comparison with other possible solutions and the confidence of the environment 

approach given for the tests. 

The conclusion and further ideas are contained in Section 5. There is a discussion about the 

viability of the algorithm proposed and future work based on this current development. 
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2 Analysis of solutions for network-failure 
In the last fifteen years, systems have changed the idea of detection of failures in the 

networks. Before 2000 the idea was intrusion detection but nowadays it is anomaly detection 

(2). They are different philosophies.  

The intrusion detection acts with static rules and defined assessments, trying to solve problems 

previously identified. In the other hand, the anomaly detection acts when there is an abnormal 

behaviour of the network. In this case, normal network behaviour is known, and every 

different situation is identified as a failure. Thus the system doesn’t need to know every single 

fault. As it is explained below, my work deals with this kind of systems. 

The conception of an anomaly detection system is based most of the cases in unsupervised 

data mining. Data mining is a signal processing technique that picks up relevant information 

from considerable amount of data. Moreover it is unsupervised because the algorithm doesn’t 

know which will be the result of its application. Data mining is very useful in many fields of 

sciences. It is important in business intelligence organizations and financial analysis too. 

2.1 Previous solutions. Arbor Peakflow 

I am focusing now in the detection systems before the advent of adaptive detection 

algorithms.  These systems work in many networks even these days. They have improved along 

the time, but since their conception they have followed the same guidelines.  

They consist in some fixed thresholds, which when exceeded, alarms are showed. This is good 

in many cases, but not always. The problem lies in new attacks. When a network is designed is 

basic to know which are the common fails and attacks. After that, thresholds can be chosen. 

But these thresholds do not work well with every new problem in the network. 

There is a kind of algorithms based in rules which try to detect intrusions in the system. These 

systems are called IDS (Intrusion Detection System). Here I show a brief introduction to IDS 

• An IDS or Intrusion Detection System is a security tool that tries to detect or monitor 

events in a particular computer system or computer network which attempt to 

compromise the security of that system. 

• The IDS seeks pre-defined patterns involving any kind of suspicious or malicious 

activity on our network or host. 

• The IDS brings security to our capacity for prevention and early warning against any 

suspicious activity. They are not designed to stop an attack, although they can 

generate certain types of response to them. 

• IDS: increases the security of our system, monitors traffic on our network, examines 

packages analyzing data in search of suspects and detect the early stages of any attack 

such as the analysis of our network, scanning ports, etc. 

We are not focusing on them, but we can realize that they are still alive and solve too many 

problems. 

The aim of the next point is to give an idea of this kind of systems, offering a brief description 

of the software Arbor Peakflow. 
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2.1.1 Arbor Peakflow. 

RUS department manages the network with the help of Arbor Peakflow. This is the main 

application for intrusion and anomaly detection. 

This tool is powerful software basing its conception on the idea: intrusion detection. The 

management of this tool is not so complicated because it has an intuitive interface. But the 

problem is that rules must be updated often in order to obtain a good behaviour of the 

software.  These rules are, in simple words, thresholds that detect all kind of failures in the 

network. 

Arbor Peak-Flow is able to detect attacks of phishing, pharming, worms and spyware, as well as 

network failures. For new attacks, network managers must be sure that an attack behaves in a 

special way. If programmers do not deliver so much about it, the rules can be wrong and 

damage the normal behavior of the network. 

Some aspects of Arbor Peak-Flow are:  

a) Behaviour: Several events that can be detected. 

b) Rules: When a strange behaviour is detected, rules specify the actions that must be 

taken. 

c) Alerts: Notifications are sent when an alarm is activated. 

d) Notification: There are three ways of notification, e-mail, SNMP, and SYSLOG traps. 

e) Policy: All the behaviours, rules and problem solutions that Arbor Peak-Flow generates 

for the network which is monitored. 

When Arbor Peak-Flow is installed for the first time, it creates common rules for the network. 

These rules can be modified later on, or corrected. It avoids too much work for the managers 

of the network. It lets adding of preconfigured rules from ATF files also. 

This tool let the managers check the traffic in the network, and see where the users go. It is a 

complex tool with a huge sort of applications. 

One of these useful tools is the presentation of network statistics in real time. The statistics 

can be defined in a range of time and the system presents them as graphics of traffic, 

behaviors… This information can be read in a table also, and it can be sort in different ways as 

destination IP address of the flow, or number of accesses to a web page. 

This has been a small description of the capacity handled by Arbor Peak-Flow. But for more 

information audience can search in the references (3) (4) or in the Arbor web page (5). 

2.2 Adaptive algorithms 

The next generation of algorithms is composed by those algorithms able to memorize the last 

information received and to process it, in order to get an adaptive technique. 

The advantage of adaptability decreases the probability of false alarm, because the algorithm 

changes the threshold and adjusts it at the correct level according to the conditions of the 

network at that moment. Once an alarm is declared, the algorithm starts considering that the 

next behaviour is normal again. 
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The interest of this kind of algorithms lies in the improvement of the network management, 

because they don’t need to be reconfigured once they are implemented in a network. They 

adapt to new situations which couldn’t be considered when the algorithm was implemented. 

In the other hand, adaptive algorithms require an important amount of stored information. 

And this is a problem when the network is complex because the stored data is proportional to 

the size of the network. But this effect can be softened by choosing the correct algorithm. 

Furthermore, processing time is another problematic parameter. It depends both on the 

quantity of data and the complexity of the algorithm. As well as the amount of stored data, the 

processing time grows proportionally to the size of the network. If the processing time is not 

short enough, some alarms may not be declared or noticed. 

2.3 Kinds of adaptive algorithms 

There are a great variety of adaptive techniques developed in order to solve the problem. Here 

I present three of them each one using different signal processing theories. The technique 

implemented here uses another approach and it is presented in point 2.3.4. I chose this 

algorithm because I thought it was easier to implement and to understand. At the end of this 

report the audience will notice that the results obtained are not as satisfactory as I thought at 

the beginning. 

For the moment, let’s see some ways to face the problem. Since the idea of adaptive anomaly 

detection, several algorithms have been developed as we can see briefly with the following 

examples. Each one has specific advantages, and the choice depends on the necessities of the 

network system. 

2.3.1 Maximum entropy method 

This proposed algorithm has been taken from the work of Yu Gu, Andrew McCallum and Don 

Towsley (6). They compare the information obtained from the network data with a baseline 

distribution. This is made by using the Maximum entropy method. This technique presents a 

new advantage, these algorithms can realize about the difference between abrupt and slow 

changes. Thus, the type of anomaly can be distinguished.  

2.3.2 Network anomalies using sketch subspaces 

Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca Lannaccone and 

Anukool Lakhina proposed this technique (7). In this work the idea is to compare traffic 

sketches with a subspace method. They say that the accuracy in anomaly detection using this 

technique is high. The technique detects which flows are the causes of the anomaly besides 

the IP addresses which origin it.  

2.3.3 ARP-based Anomaly Detection Algorithm Using Hidden Markov Model 

There are methods specified for different kinds of traffic, as this one that uses the information 

of the ARP traffic and applies a new algorithm focusing on Hidden Markov Model. The 

development of this method can be followed in the paper “An ARP-based Anomaly Detection 

Algorithm Using Hidden Markov Model in Enterprise Networks” (8). 
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2.3.4 Anomaly detection in IP networks using AR-models. 

This technique bases its idea in detecting abrupt changes over predefined MIB variables which 

represents the state in the network element. Further information about this algorithm can be 

found in the paper “Anomaly detection in IP networks” (1). This is the algorithm chose for my 

design. It will be explained in more detail in Section 3. 
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3 Algorithm Development 
This section contains the algorithm description as well as the environment where it should 

work. First point 3.1 describes the algorithm and the theoretical characteristics  

3.1 Proposed algorithm and technical description 

There are several ways to solve the problem with adaptive algorithms, as we saw briefly in 

Section 2.3. But for the moment, we focus in a selected algorithm that will be developed here.  

As it was explained the algorithm proposed has been taken from the results of Marina Thottan 

and Chuanyi Ji. The work is titled: “Anomaly detection in IP networks”. 

I chose the mentioned technique because I found easy to implement it in the environment of 

the university. The paper was easily understandable for me, and I saw that the system can be 

scaled to the size of the network. I wanted to develop this technique, and prove that it works 

in our environment as well as in the environment proposed in the paper. 

The writers explain that there are some ways to confront the problem. As they say: 

“Researchers have approached this problem using various techniques such as artificial 

intelligence, machine learning, and state machine modeling” (1). They classify network 

anomalies in two groups: 

1. Problems related with network failures and performance problems. File server failures, 

paging across the network, broadcast storms, babbling node, and transient congestion 

are performance anomalies. 

2. Security-related problems. Denial of service attacks and network intrusions belongs to 

the second group. 

In advance, my intention was to detect all of these anomalies, and to specify where they take 

place. Unfortunately, the test environment only allows me to detect anomalies in one network 

element, so I only can detect the anomalies in this place. For future developers shouldn’t be 

difficult to extrapolate this work to an entire network, and limit the failure to the area 

controlled by the network element which produces an alarm.  

In order to do this I have followed the steps proposed in the paper which will be explained in 

Section 3.1. For the data acquisition, I propose an alternative process, and I will decide if it is 

better or not that the one proposed in the paper. 

3.1.1 Application environment 

3.1.1.1 Typical architecture. 

In this section, I explain the application environment of the algorithm selected, which is the 

common architecture of it. Let’s consider the following structure. 
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The terminal with the algorithm implemented runs it with each network element. Usually 

these network elements are routers dividing the network in sub networks and switches 

separating domains in a LAN. The application of the algorithm in each network element brings 

as result if the domain of the element is suffering an anomaly or not. 

Using the algorithm in all important network elements, we are able to limit the area of the 

failure in order to easily solve it. 

3.1.1.2 Algorithm adaptive law. 

The selected algorithm bases the idea of learning, in the past data store. We define the 

algorithm to present the result each window time (we’ll see what is this later), but the 

information given by a predefined number of previous windows is stored and affects to the 

value of the current result. 

The idea of the algorithm consists on check the behaviour of the network during a predefined 

period. When the behaviour changes, that means when an abrupt change occurs, the 

algorithm gives a false alarm. The next steps, the algorithm tries to adapt to this new situation. 

As the time goes on it can be consider a new normal behaviour of the network. 

For example, if a server is disconnected, it will be detected, but if nobody solves the problem, 

the network traffic will be consider normal when the precise time has passed. It is very 

important to configure correctly the algorithm the first time, because the future behaviour of 

it will be affected. 

3.1.1.3 Software used and its application. 

For implementation I’m using some tools that will be explained in this section. First of all, the 

environment runs in Linux Machines. I have decided to use Linux because the tools able for 

working in this project are available in Linux environment and they are open-source. 

Switch 

Terminal with the 

algorithm 

implemented 

Figure 1 
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I design this system basing some points in the developments of my partner Laura Herranz. She 

is designing a system which is able to detect new attacks to the network of the university. The 

idea is to implement two adaptive tools able to identify the problems in the network. Because 

of that we share the laptops, and we have worked together in this part of the project.  

1. Linux platform: We had too many problems with Linux and libraries installation. Finally 

my laptop works with UBUNTU 8.04, and the laptop which belongs to Laura is 

configured in the same situation.  

2. SNMP: I use a Linux package for the data acquisition. As the rest of Linux tools this 

package is open-software and it let me to get the MIB variables from the network 

element. The functions given by this package allow obtaining the data in different 

ways. I use the function snmpdelta. The parameters needed are the IP address, the 

time between requests and the MIB variables which are requested. This information is 

stored in a temporary file with a table format; each variable is stored in one column. 

3. Packet Generator: It is another Linux application. It is used to generate traffic and 

simulate a normal situation in the net. It will be useful for the test part of the design in 

order to obtain a good behaviour in the network, because the traffic in the test 

network is not very stable. The generator is a Linux command which generates flow 

without information from one machine to other crossing the router. 

4. MATLAB 7.0: This is used for processing the information obtained with SNMP and 

adapt it in order to facilitate the processing of the data. The algorithm is implemented 

in MATLAB. MATLAB is the main program used in this work. Its functions are 

processing information, algorithm application, and results launch. 

5. Attacks generator: This package provided by my partner Laura Herranz, simulates 

attacks to the network we want to check. It sends a burst of attacks in a short time, 

and it is used to simulate failures over the network and check the correct behaviour of 

the algorithm. 

Linux distribution was obtained for free from the reference (9). SNMP and PacketGenerator 

are obtained for free also, because they are open-source software.  

In the case of MATLAB, it was downloaded with the university license. 

3.1.2 Implementation 

3.1.2.1 Starting 

The algorithm is implemented over MATLAB and the data acquisition over shell-script. The 

script programmed is run first. It executes the snmpdelta function in order to obtain the data 

in a file. The data is stored in a temporary file and when the data acquisition finish, MATLAB 

starts processing the data. This communication between MATLAB and shell-script is made by 

the use of system-signals.  

At the beginning MATLAB is executed from the shell-script, and then the shell-script starts with 

the data acquisition. MATLAB sends a WAIT-signal to itself. When the file is prepared for 

MATLAB, the shell-script sends a CONT signal to the MATLAB process, and then it starts with 

the algorithm. Once the algorithm has finished with the data, MATLAB resend the WAIT-signal 

to itself, and the iteration starts again. 
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3.1.2.2 Data acquisition 

In the paper is proposed a method for data acquisition. They use the application layer protocol 

SNMP (10) (11) in order to obtain the MIB (12)variables of each element in the network. These 

variables contain the information needed by the algorithm proposed. MIB variables for 

routers
1
 may be: number of packets received from all the interfaces (ipIR), number of packets 

correctly delivered to higher layers as this node was the last destination (ipID), and number of 

packets successfully sent from a higher layer of this router (ipOR). 

In my design, I first tried something different, but, finally, I used SNMP. I wanted to use the 

network protocol Net Flow (13). It is property of Cisco Systems and it is implemented in the 

routers of the university.  

The acquisition of data in this case shall be done obtaining the information of the network 

flows which cross the router. The management of this flow information is carried out with the 

program Flow Tools (14) (15).  

Flow Tools is open-source software, and it runs under UNIX platforms. In my case the OS 

(operation system) used is Linux UBUNTU 8.04. The laptop receives the Net Flow information 

from a router and work with it using the Flow Tools software. 

Because the information received is not the same with Net Flow than with SNMP, I had to 

process it before using the algorithm. While I was doing this, I realized that the overload in 

processing time was huge. Thus I decided to reject this solution, and follow the one proposed 

in the paper. 

In order to get the MIB variables from the router, I needed to install the SNMP package for 

Linux. With some of these functions I could ask the router for the three MIB variables needed 

in my design. The data acquisition works in the following way: 

• Be TS the sample period, the router is asked by the data acquisition routine each TS, 

and the routine receives the incremental value of the MIB variables since the last 

request. 

• The script which runs this routine, writes the data in a temporary file, and stores the 

information received during a window time, TW. The window time will be explained in 

next section. 

• Then the temporary file is copied in other file, from which data will be processed. Now, 

the script can overwrite again the temporary file with the new data to store. 

This procedure is necessary because otherwise data acquisition routine and data processing 

routine could access to the data at the same time, causing lost of data. 

Eventually the file format is composed by n columns (being n the number of MIB variables), 

and r rows (r is the number of samples inside a window period). 

                                                           
1
 These MIB proposed are for routers only. In case of switches, the writers propose to run a simple 

Principle Component Analysis in order to get the MIB variables that fix better the problem. 
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3.1.2.3 Data processing 

The algorithm for anomaly detection bases itself in processing signal theory. Our desire is to 

get a healthy function (fh) for each router (I take variables only from routers, not from 

switches), which can be compared to decide if the network suffers an anomaly or not in the 

mentioned router. This healthy function depends on the variables that we have chosen to 

characterize the behaviour of the network (e.g. number of packets received in a specific port, 

number of packets transferred to upper levels, etcetera.). As the audience can read in the 

reference proposed above, the healthy function is defined as: 

��������	
 = �����	 ∙  ∙ �����	� 
Where  is a � × � matrix, meaning � the number of variables chosen, and �����	 the 

abnormality vector 1 × �-sized. -matrix is the matrix of a linear operator, thus it has special 

requirements that shall be defined later on. In the next section it is specified the process to 

obtain the abnormality vector. 

Matrix A is design to be symmetric because it needs to be a linear operator. Several 

eigenvectors that compose it are associated with the anomalies of the network. And the 

minimum and maximum eigenvalues associated to them are �� and �� respectively. 

An alarm shall activate in the instant: 

�� = �����: ��������	
 ≥ ��� 

That means that an anomaly has occurred. But it will be explained in more detail in the 

following lines. 

 

3.1.2.3.1 Abnormality vector. 

In order to calculate the abnormality vector we need to obtain information from the network. 

First of all the information is obtained from each router, and separated in different MIB 

variables (e.g. number of packets received from a specific port, or number of packets 

transferred to upper levels, etcetera.). The time between two information requests is called 

sampling period TS
2
. We consider a number of samples contained in a window period TW

3
 for 

each iteration of the algorithm. 

In each sampling period the algorithm request the network elements for the MIB variables. 

The objective is to detect the abrupt changes in the MIB variables. Let’s focus in one network 

element in order to make easy to understand the algorithm. 

The algorithm is applied for each window as it can be seen in the next Figure 2. 

                                                           
2
 TS is defined around 15 seconds. 

3
 This period is 5 minutes. TS and TW are design parameters, and should be fixed in order to obtain the 

best behavior of the algorithm. 
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Once the algorithm has enough samples for working (we have complete a whole TW period), it 

processes each variable separately. It considers the samples of each variable as an AR-Model 

(16). 

The AR-Model assumes that the data are correlated in time, so abrupt changes can be 

detected with past information. In order to obtain an accurate approach, the order of the AR-

Model must be short, in fact the writers propose a model with order one. Order is also called 

degree and is represented with the variable p. The rule of an AR-Model is presented in the 

next formula, but we are only interested in the variance obtained from the model as we will 

see. 

�� = � +  !" ∙ ��#"
$

"%&
+ '�  

The constant c is null in most of the cases as the audience can see in the reference (16). Here 

are presented another constants called at. Finally the random variable '�  is a Gaussian error 

term, which parameters are null mean and variance ().  

Let be the series of samples shown in the Figure 3, considering them as an AR-Model, we get 

the parameters mean and variance related with this model. 

MIB variable “n” (e.g. number of packets received from a specific port): 

I0  I1  I2 Packets received in 

each sample period 

IK 

   
t (time) 

I0  I1  I2 IK I0  I1  I2 IK 

Window   i Window   i+1 

Figure 2 
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With this process we get the variance associated to each MIB variable, and in the whole 

window. This variance is called in the reference as pooled variance. But the algorithm 

necessitates two parameters else. Writers divide the window in two groups.  

Thus window samples are separated in two groups: learning (L(t)) and test party (S(t)); and the 

variances of each one are obtained considering each group as a different AR-Model. The first 

“NL” samples are aggregated to the learning party, and the rest samples goes to the test. We 

need to calculate the statistics of each group, obtaining the variance, as we did for the whole 

window. Figure 4 shows the parameters NL and NS. 

 

 

Where *+ and *,  are the number of samples in the first group (learning) and in the second 

(training). 

The purpose is to obtain the component of the abnormality indicator associated to each MIB. 

In order to get this result we use the GLRT (generalized likelihood ratio test) algorithm. The 

data are tested using the GLR (generalized likelihood ratio).  

The likelihood ratio or abnormality indicator depends on the variances calculated previously, 

as can be noticed in next formula: 

� = (-#�. /(,#�. 0
(-#�. / (,#�. 0 + (1#��. /2�. 0	 ><1 

ipIR 

ipID 

ipOR 

a1 a2 a3 a4 ……………………………….. aM 

b1 b2 b3 b4 ……………………………….. bM 

c1 c2 c3 c4 ……………………………….. cM 

TS 

TW 

AR-MODEL 

AR-MODEL 

AR-MODEL 
µipIR ,  σipIR 

µipID ,  σipID 

µipOR ,  σipOR 

Figure 3 

Figure 4 
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*.- = *- − 6 

 *. , = *, − 6 

Parameter p is the degree of the AR algorithm. Parameters (- and (, are the variances 

obtained considering each group as an AR-Model. Finally the parameter (1 is the pooled 

variance of both groups, considering the whole window for the AR-Model. 

Once we have the abnormality indicator for each variable, we join them in a single vector 

which will be called abnormality vector, and will be defined as �����	.  In the case we work with 

a router we considered three MIB variables, and the abnormality vector is defined as: 

!8�9:;!<��= >?��9: = �����	 = @��$AB ��$AC ��$DBE 
For the rest of network elements the size of the abnormality vector is the same as the number 

of MIB variables used for it. 

�����	 = @�& �) … ��E 
Finally for the purpose of the normalization, a new component is added at the end of the 

abnormality vector, which represents the normal functioning of the network (probability of 

good behaviour). This component is updated each iteration of the algorithm. Then the 

component α is calculated in order to fix the next condition: 

�����	 = G@�& �) … �� �HE 
I�����	, �����	K = 1   →    G 

Parameter G is the normalization constant. 

3.1.2.3.2 A-matrix. 

As is defined in the paper, the A-matrix is formed with the following law but now, the �H 

component is not considered because it is used only for normalization purpose: 

��, M	 = I����	, �N��	K = 1O P ����	�N��	,

"%&
P 

��, �	 = 1 −  ��, M	
NQ�

 

The parameter T is a design parameter, and represents the memory of the system. It is the 

number of previous abnormality vectors calculated used in the A-matrix definition. By this 

way, A-matrix contains the information of the network in the last T windows. 

Once the matrix is calculated, it is necessary to obtain the eigenvectors and the eigenvalues. 

Parameters �� are the eigenvalues of A-matrix associated with anomalies in the network and 

RS����, the eigenvectors related with them. There are some eigenvectors with their eigenvalues 

associated, that form the faulty region. 
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The faulty region is defined as the group of eigenvectors that belongs to a linear combination 

of the current abnormality vector: 

���	 =  ��RS�����

�
 

Then the faulty region represents every failure state in the network, and depending on the 

previous linear combination, the abnormality vector is approached at the corresponding state 

of the network. The coefficients �� are the weights of each eigenvector and ��) represent the 

probability of the network of being in the state i-th.  

These parameters are very important because they will be used in order to define the faulty 

region. If the coefficient (��) because it is the probability) associated with a pair eigenvector-

eigenvalue, is very low, then this eigenvector doesn’t belong to the faulty region
4
. 

In the paper the next result is explained too. This rule gives the network healthy indicator in 

the current window, and helps to decide between alarm and normal behaviour of the network.   

T��	 = �� UR����	V =  ��)��
�

�%&
 

The alarm is activated when T��	 is upper than the minimum eigenvalue which belongs to the 

faulty region: 

T��	 > minZ[∈]Z^,Z^_`,…Zab���	 

As summary of this, I would like to emphasize how the algorithm adapts itself to the new 

situation. Each window, the algorithm takes data from the network, and when a window is 

complete, it processes the data in the explained way. Then the next iteration starts. The 

processing of the data network has to consider the past information. The past information of 

the network is stored in the A-matrix through the T past abnormality vectors. And abrupt 

changes detection is done by using an AR-Model of order 1, which let us detect changes 

occurred in a sample period. Other component that helps to consider the past information is 

the probability of good behaviour of the network. This parameter, as audience can remember, 

is added to the abnormality vector at the end, and represents the state of good functioning of 

the network. All of these steps in the algorithms aid to introduce the past information in the 

last decision of the system, when an alarm is declared or not. 

3.1.2.4 Flow diagrams 

The process explained in point 3.1.2.1, is represented in next flow diagram. It helps to 

understand the communication between shell-script and MATLAB.  

Figure 5 shows the flow diagram which represents this point. 

                                                           
4
 The parameter ��) is contained in the range [0-1], thus in my design, the threshold over which the 

eigenvector is consider belonging to the faulty region, is set to 0’1. 
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Some try-catch blocks can be found while running the software. These blocks allow the system 

to finish correctly the execution when an error occurs. 

As we can see in the previous picture the communication between MATLAB and shell-scritp 

has two ways of action. First one is the signalling communication. Using signals both threads 

can make use of the same files and in the correct order. So they will not destroy the work of 

the opposite thread. The second way of communication and the most important one is the 

data sending. Shell-script obtains the data from the router, write them in a file, and once the 

data acquisition is complete, it writes a new file which will be read by MATLAB at the 

appropriate time. 

 

Now I focus in the flow diagram which represents the algorithm implemented. There is 

possible to observe the steps followed in the previous point where the algorithm was 

explained. 

Figure 6 shows the flow diagram which helps to understand how the algorithm works. 

Shell script 

./getMIBs 

Matlab 

ADS.m 

1st Step 

snmpdelta (data 

acquisition) 

2nd Step 

Write in file 

MIBs.tmp 

Is Tw* 

finished? 

* Tw is the window time; it was explained in the algorithm description 

No 

- Copy MIBs.tmp to 

MIBs.txt 

- Delete MIBs.tmp 

wait 

Is MIBs.txt 

updated? 

No 

Yes 
Algorithm 

execution with 

new data 

CONT Signal Delete MIBs.txt 

Yes 

Figure 5 
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3.2 Problems found 

During the implementation of this algorithm I have solved many problems that affected 

directly the behaviour of the system. They have been technical problems and concept 

problems. 

3.2.1 Understanding the algorithm. 

One of the main parts of the work consists in a good understanding of the algorithm. During 

this task, I found some dark points. The bibliography helped me too many times. However, 

there were some points that couldn’t be solved neither with the bibliography nor Internet. In 

those cases, I had to contact the writers. They helped me with my doubts. 

3.2.2 System installation. Problems with the platform and package installation. 

Choose the correct platform was important, because MATLAB over Linux doesn’t run very well 

in some distributions. I tried a few distributions but finally I decided to use Ubuntu after check 

Get data from MIBs.txt 

and separate data in three 

variable series: 

ipIR, ipOR, ipID 

Obtain the 

variances of 

each series 

Get the abnormality 

indicator (with GLR) 

for each MIB 

variable. 

Group the abnormality 

indicators with the probability 

of good behaviour � 

abnormality vector: (t) 

Matrix A is calculated with 

the T last abnormality 

vectors. 

Matrix A: 

- eigenvectors: RS���� 

- eigenvalues:  �� 

�� calculated using 

�(t) and RS���� 

 

(t) 

RS���� 

 

�� define the 

faulty region 

T��	 calculated using  �� and ��  �� 

�� 

Comparison between T��	 and   �� contained 

in the faulty region. 

T��	 

Alarm 

Figure 6 
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in Internet that it is one of the most complete and stable distribution for Linux. After the 

decision, I didn’t notice problems with MATLAB anymore. 

Even with the rest of packages I installed (Flow Tools, SNMP) I didn’t have any problem of 

compatibility. 

3.2.3 Mounting the workstation. 

There were some problems not very important, during the installation of the workstation. I 

needed to connect my laptop to the router which I was going to use for the software design 

and test environment. For the correct functioning of the SNMP protocol, I was given some 

permission over the router. After that SNMP could run correctly. 

I realized that every connection to network elements should have this permission, if we are 

thinking in controlling the entire network. 

3.2.4 Understanding Flow-Tools, SNMP package and shell-script. 

All of this software has a complete and useful bibliography. I had many problems trying to 

understand how these tools work, but the access to the bibliography gave me a clear idea 

about them. 

3.2.5 Data acquisition: Flow-Tools or SNMP. 

As it was explained, the first idea was to implement the data acquisition with a tool able to 

manage the flows that runs over the network. I thought that with this capability I could identify 

not only the network element which fails, but also the original flow which causes it.  

Going deeply in the study of the algorithm, I realized that my intention wasn’t possible, 

because the algorithm was designed for detecting the anomalies in the network element. The 

charge of work caused by a design like this was huge, and I decided to follow the paper even in 

this part.  

For further developments it could be possible to use a flow analyzer like Flow Tools. We would 

need to collect all the flows which cross over the network element and then process them in 

order to obtain similar information than MIB variables give. Besides, it doesn’t seem to 

improve the behaviour of the algorithm. This processing charge, the waste of time trying to 

adapt this solution to the algorithm and the possibility of a small improvement in the 

efficiency, decided me to change my mind and follow the specifications of the paper. 

3.2.6 Implementation in MATLAB. 

I didn’t found too many problems in the implementation of the algorithm. I chose MATLAB 

because it contains functions for all the formulas and algorithms I needed to use. I had to 

decide between the different MATLAB’s AR functions. Finally I chose one of them, the most 

common, imaging that the results would not vary too much. 

Actually there was a problem with the MATLAB implementation. When I obtain the variances, 

sometimes the value obtained is indeterminate form. In these cases I was force to bring any 

value to the software in order to make it work properly. I defined all the indeterminate forms 

that the algorithm could bring with their associated real value. Then when the result is 

indeterminate form the software assign to the result the associated real value. 
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Figure 7 shows the correct values of abnormality indicator in case of indeterminate form: 

 

 

3.2.7 Signal communication between MATLAB and shell-script. 

I spent too much time trying to solve problem with the synchronization between MATLAB and 

shell-script. I got too many problems trying to stop MATLAB, while it hadn’t available data. 

Finally I found the MATLAB function which lets it to send system-commands. I used this 

function to send a WAIT-signal from MATLAB to itself, while the CONT-signal was send by the 

shell-script.
5
 

This problem was important because if MATLAB and shell-script are not synchronized, the 

system finally fails. Depending on the TW and the time spent in the algorithm, there will be a 

moment when MATLAB tries to access to a file that doesn’t exist and finishes its execution, 

while the script continues with the data acquisition. 

3.2.8 MATLAB execution from shell-script. Configuration file. 

When shell-script executes MATLAB for the first time, introduce arguments on it is impossible. 

I wanted to introduce some parameters by the command-line, such parameters are AR-Model 

                                                           
5
 This explanation was explained in section 3.1.2.1 and graphically in section 3.1.2.4. 

No 

No 

� = 0.5 
σL == 0 

σT == 0 

σP == 0 

Yes 

σP == 0 

 

No Yes 

σL == ∞ 

σT == ∞ 

σP == ∞ 

Yes 

σP == ∞ 

 

No Yes 

� = 0 

σL == 0 

 

No 

σS == ∞ 

 

σS == 0 

 

Yes 

� = 0 

� =1 No 

No 

NL>NS 

 

NL<NS 

 

� = 0 

� =1 

� = 0 

� =1 

Yes 

Yes 

Yes 

Yes 

No 

No 

Figure 7 



 

 DEVELOPMENT OF AN ADAPTIVE LEARNING NETWORK-FAILURE DETECTION SYSTEM        

28 Algorithm Development 

degree, or number of samples used for the learning window. But I found impossible to send 

them by arguments to MATLAB, so I decided to create a configuration file at the beginning. 

This file is created by the shell-script, with the data it receives by arguments. Then, when 

MATLAB starts the first thing that does is to read the configuration file, and obtain the values 

of the parameters. 

3.2.9 Read the data from MATLAB. 

The function which lets MATLAB to read correctly the data from the file is called textscan. This 

function is very useful because it allows reading a file and interpreting the spaces as cells 

separations in a table. 

3.2.10 Exceptions caught.  

When something is not working, every unsuspected error is caught by an Exception block. This 

block closes the shell-script process which is obtaining the data. It assures that everything is 

closed in the correct way. I had too many problems before implementing this block in MATLAB. 

But it was impossible to implement the block in the shell-script; I couldn’t find a function that 

lent me catch the exceptions. 

3.2.11 Probability of good behaviour. Solution proposed. 

During the algorithm implementation, I found another important problem. The writers didn’t 

specify how to implement the component probability of good behaviour. So then I decided to 

act by myself again.  

I start the algorithm considering this parameter with a value like 0’9. Then each ith iteration I 

apply the next formula: 

6� = 6�#& � − 1� + 1�  
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4 Tests and Results 
The goal would be to work in a normal network and make one or several servers to fail, as 

writers of the reference paper make. But due to the situation where my work is carried out, 

the only thing I can do is to attack the network and observe the failures produced (which is not 

the main purpose of the algorithm). 

The paper brings some examples of application, and different environments with respective 

attacks. But the authors don’t present a unique configuration. They give the idea of the 

algorithm but don’t present their own parameter configuration for their tests. 

This task is one of the steps that I develop in my design. The algorithm must be adapted to the 

conditions of the network in use. This should be a previous work in each implementation. I give 

the idea of how these parameters affect to the algorithm behaviour. The purpose is to bring a 

brief developer’s guide which let the designer to limit and facilitate the configuration time. 

This point is divided in two parts: Test environment and Results. In the first part, the 

environment used to test the algorithm is provided. It is also discuss if the environment 

proposed is suitable to represent the behaviour of the algorithm in other situations.  

The Results section presents the results of the tests executed. The audience can find there the 

study of the best parameters, and the behaviour of the algorithm already configured with 

these parameters. Besides, it is possible to find there the analysis and comparison with other 

solutions.  

4.1 Tests environment 

The development of the work takes place in the University of Stuttgart, and it has been carried 

out with the help of the people working in RUS department. 

 I was offered an environment where I could develop the work. I received connectivity to the 

main router in the network of Daidalos
6
, and I carried out all my tests in this network.  

For further information about Daidalos, visit the reference (17). 

 I was given a laptop in which I installed all the necessary tools and I connected it to the main 

router of this network. My laptop became a node of the network, and I could search the 

information that I needed for my algorithm. The traffic generated over the network by my 

algorithm is negligible. 

Figure 8 shows the connections and configuration of all the elements participants in the test 

bench. 

                                                           
6
 Daidalos is a project carried out by several universities and companies. The University of Stuttgart 

belongs to this group of universities, and it has a network for this programme. 
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As we can see in the Figure, the tools used were described in previous sections. Furthermore, 

there are other functions needed to simulate special situation on the network. For example, 

the Linux package idswakeup is used to simulate malefic attacks to the network. In other tests I 

create traffic in order to normalize the network traffic. In this situation the traffic produced by 

my system is not negligible, but allows simulating the traffic present in a “normal” network 

(recall that the router is used in the Daidalos network, a network for tests). 

The result of the tests consists in two files:  

• First one stores the alarms given by the system. It is necessary for presenting them in 

the graphics shown in Section 4. 

• The second file stores the full response of the system, including abnormality vector, A-

matrix, eigenvalues, alarm and the probability of good behaviour besides of other 

parameters. This file let me understand which has been the progress of the algorithm 

and obtain conclusions for each situation.  

Below, both files are showed: 

 

Inigo’s laptop 

- SNMP package 

- Matlab 

- Shell script 

- Idswakeup (Linux package for attack generation) 

- Normalization traffic tool (I generate traffic in 

order to obtain a normal distribution) 

Laura’s laptop 
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Daidalos network 
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generated from Inigo’s machine 
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Normalization 

traffic 

MIBs info 

Figure 8 
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This file keeps the iteration when an alarm was declared. In this example, the iteration is with 

five minutes of length. The complete test had twelve hours of duration. 

For the data presentation, I show a graph with time in the abscissa’s axis and alarm declared in 

the ordinate’s axis. I only calculate the time of an alarm declaration by multiplying the iteration 

number by the iteration length. 
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File Results 

Iteration 6 
A = 
    0.6434    0.1374    0.2192 
    0.1374    0.7025    0.1601 
    0.2192    0.1601    0.6208 
ci = 
    0.0664 
   -0.0208 
   -0.8685 
eigenvalues = 
    0.4102 
    0.5565 
    1.0000 
E_lambda = 
    0.7564 
Warning: No alarm:6 
> In ADS at 86 
p_anom = 
    0.9167 
 
Iteration 7 
A = 
    0.6283    0.1545    0.2173 
    0.1545    0.6558    0.1898 
    0.2173    0.1898    0.5929 
ci = 
   -0.2230 
   -0.7120 
    0.2143 
eigenvalues = 
    0.3839 
    0.4930 
    1.0000 
E_lambda = 
    0.3149 
Warning: No alarm:7 
> In ADS at 86 
p_anom = 
    0.9286 
 
Iteration 8 
A = 
    0.6434    0.1600    0.1966 
    0.1600    0.6608    0.1792 
    0.1966    0.1792    0.6241 
ci = 
   -0.8089 
    0.0491 
    0.2996 
eigenvalues = 
    0.4324 
    0.4959 
    1.0000 
E_lambda = 
    0.3739 
Warning: No alarm:8 
> In ADS at 86 
p_anom = 
    0.9375 

Figure 10 
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This second example file contains the results of three iterations of the algorithm. The first 

parameter obtained is the A-matrix, followed by the ci components, which allows the 

algorithm to decide which eigenvectors belong to the faulty region. The third parameter 

showed is the network healthy indicator which is compared with the eigenvalues of the 

eigenvectors in the faulty region. The result of the comparison is presented in red, indicating if 

the alarm is declared or not. As we can see, there are not alarms declared in this file, that’s 

why the probability of good behaviour in the network is increasing each time. 

4.1.1 Tests structure 

In section 4.2 we develop the tests. They are divided in four groups. The three first groups are 

those formed by the tests run in order to obtain the best parameter configuration of the 

algorithm (Tests 1 to 22). The fourth group are the results of the application of the algorithm 

with the best parameters configuration. 

First group of test (Tests 1 to 8) have the same parameter configuration as second group of 

test (Tests 9 to 16) respectively, but in different environmental situations. Both groups helped 

me to specify with more accuracy the parameter configuration of the third group (Tests 17 to 

22). In this case the parameters configurations at the beginning are: 

 

AR-Model 

order (p) 

Percentage 

of learning 

samples 

U cdcd2ceV 

Initial 

probability of 

good 

behaviour 

(p_anom) 

Memory of 

the algorithm 

(T) 

Sampling 

period in 

seconds (Ts) 

 

Window time 

in minutes 

(Tw) 

Tests 1 & 9 1 80 0.9 6 15 5 

Tests 2 & 10 1 80 0.9 2 15 5 

Tests 3 & 11 1 80 0.9 15 15 5 

Tests 4 & 12 1 80 0.9 6 3 2 

Tests 5 & 13 1 80 0.9 6 45 20 

Tests 6 & 14 1 20 0.9 6 15 5 

Tests 7 & 15 1 40 0.9 6 15 5 

Tests 8 & 16 1 80 0.5 6 15 5 

Table 1 

But I needed to run these tests in two different situations. At the beginning the tests were 

done supposing that there weren’t normalization traffic over the network and attacks (Tests 1 

to 8) and they are scanned during a time of twelve hours. Then in the second situation the 

tests were executed generating a traffic flow which crossed the router and attacking from one 

network interface of the router to another (Tests 9 to 16), and they are executed during 6 

hours. For the purpose of normalization I use the command: 

cat /dev/zero | ssh inigo@192.108.37.4 cat - > /dev/null& 

This command generates traffic from the machine 192.108.37.4 (connected to the router of 

Daidalos) to the machine where the command is executed (this machine must be connected to 

a different interface of the router). This traffic doesn’t carry any information. 

We need to define the next parameter configuration for the third group of tests. This 

configuration will be shown in next section basing in the results of two first groups. 
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Once we observe the results with these parameters we decide which values are the best for 

each one. Tests 1 to 8 suppose that the best case is when the probability of alarm is very small, 

because these tests are executed under the supposition of no attacks in the network. These 

tests help to understand which parameters are the most important. Tests 9 to 16 specify which 

values are the best for solving the problem, because they are approaching better to the final 

solution (normalization flow and attacks or failures). Then the next group of tests try to fix 

better the problem approaching more to the real solution. Finally the fourth group, is the 

application of the algorithm with the best parameters and the results are discussed. 

The tests run for this purpose are
7
 those executed in normal conditions and there are some 

attacks applied. Comparing the time response for each alarm, I calculate a mean for this time, 

and this result is compared with the results given in the paper. 

With these results is possible to detect if the parameters defined in the previous section are 

the best. These results help to identify if the algorithm is giving the solution we were waiting 

for. 

4.1.2 Analysis of the test environment 

The main question of this design is if the test environment proposed can represent a general 

network environment. The answer is yes in most of the cases. 

When we manage a network with several routers, we need to apply the algorithm to every 

router, and obtain a result for it. But each application is independent of the application over 

other routers, so we can manage several routers at the same time.  

If we would like to obtain all the alarms of the routers at the same time, the algorithm should 

check the whole network during the window period (e.g. the algorithm needs 30 seconds to 

obtain a decision from a network element, the window time is 5 min, then we can only 

manage 10 network elements at most). This is one thing to consider if we want to extend the 

application of the algorithm to other network elements. 

Furthermore, we are developing the tests over a router. But what happen with the rest of 

network elements like switches? In this case, we shouldn’t use the same MIB variables, and 

we’ll possibly need to reconfigure and test the algorithm again in order to implement it. 

4.2 Results 

4.2.1 Test 

In this section all the tests run over the system are presented, and the alarms activated during 

the test period are showed in a graph. Furthermore, some deductions over the values 

observed in the results file are given. 

4.2.1.1 Best parameters decision. Step 1. 

After first eight tests I describe which the influence of the parameters on the algorithm is. For 

each test, the result is presented in a graphic. The probability of alarm and the probability of 

good behaviour
8
 are given In order to make easy to understand the result. 

                                                           
7
 All of them are carried out with the decision of the best parameters made in the previous tests. 
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4.2.1.1.1 Test 1 

 

 

 
p % of learning p_anom T Ts Tw 

Test 1 1 80 0.9 6 15 5 

Table 2 

 

Figure 11 

f:98!8�<��= 9� <!:; =  0.4565 

f:98!8�<��= l99m 8?ℎ!>�9o: =  0.5528 

4.2.1.1.2 Test 2 

 

 p % of learning p_anom T Ts Tw 

Test 2 1 80 0.9 2 15 5 

Table 3 

 

Figure 12 

f:98!8�<��= 9� <!:; =   0.1620 

f:98!8�<��= l99m 8?ℎ!>�9o: =  0.8373 

                                                                                                                                                                          
8
 The probability of good behavior is the probability calculated by the algorithm. It doesn’t know if his 

alarm is false; thus this alarm will be considered as a failure for the future probability. 
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4.2.1.1.3 Test 3 

 

 p % of learning p_anom T Ts Tw 

Test 3 1 80 0.9 15 15 5 

Table 4 

 

Figure 13 

f:98!8�<��= 9� <!:; =  0.3721 

f:98!8�<��= l99m 8?ℎ!>�9o: =  0.5917 

 

4.2.1.1.4 Test 4 

 

 p % of learning p_anom T Ts Tw 

Test 4 1 80 0.9 6 3 2 

Table 5 

 

Figure 14 

f:98!8�<��= 9� <!:; =  0.2373 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.5246 
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4.2.1.1.5 Test 5 

 

 p % of learning p_anom T Ts Tw 

Test 5 1 80 0.9 6 45 20 

Table 6 

 

Figure 15 

f:98!8�<��= 9� <!:; =  0.3 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.7286 

 

4.2.1.1.6 Test 6 

 

 p % of learning p_anom T Ts Tw 

Test 6 1 20 0.9 6 15 5 

Table 7 

 

Figure 16 

f:98!8�<��= 9� <!:; =  0.3478 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.8204 
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4.2.1.1.7 Test 7 

 

 p % of learning p_anom T Ts Tw 

Test 7 1 40 0.9 6 15 5 

Table 8 

 

Figure 17 

f:98!8�<��= 9� <!:; =  0.6087 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.5276 

 

4.2.1.1.8 Test 8 

 

 p % of learning p_anom T Ts Tw 

Test 8 1 80 0.5 6 15 5 

Table 9 

 

Figure 18 

f:98!8�<��= 9� <!:; =  0.4275 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.5699 
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4.2.1.1.9 Test 9 

 

 p % of learning p_anom T Ts Tw 

Test 9 1 80 0.9 6 15 5 

Table 10 

 

Figure 19 

f:98!8�<��= 9� <!:; =  0.7273 

f:98!8�<��= l99m 8?ℎ!>�9o: =  0.4514 

 

4.2.1.1.10 Test 10 

 

 p % of learning p_anom T Ts Tw 

Test 10 1 80 0.9 2 15 5 

Table 11 

 

Figure 20 

f:98!8�<��= 9� <!:; =   0.0429 

f:98!8�<��= l99m 8?ℎ!>�9o: =  0.9569 
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4.2.1.1.11 Test 11 

 

 p % of learning p_anom T Ts Tw 

Test 11 1 80 0.9 15 15 5 

Table 12 

 

Figure 21 

f:98!8�<��= 9� <!:; =  0.4386 

f:98!8�<��= l99m 8?ℎ!>�9o: =  0.6229 

 

4.2.1.1.12 Test 12 

 

 p % of learning p_anom T Ts Tw 

Test 12 1 80 0.9 6 3 2 

Table 13 

 

Figure 22 

f:98!8�<��= 9� <!:; =  0.3046 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.7044 
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4.2.1.1.13 Test 13 

 

 p % of learning p_anom T Ts Tw 

Test 13 1 80 0.9 6 45 20 

Table 14 

 

Figure 23 

f:98!8�<��= 9� <!:; =  0.1667 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.8765 

 

4.2.1.1.14 Test 14 

 

 p % of learning p_anom T Ts Tw 

Test 14 1 20 0.9 6 15 5 

Table 15 

 

Figure 24 

f:98!8�<��= 9� <!:; =  0.3636 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.65 
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4.2.1.1.15 Test 15 

 

 p % of learning p_anom T Ts Tw 

Test 15 1 40 0.9 6 15 5 

Table 16 

 

Figure 25 

f:98!8�<��= 9� <!:; =  0.2879 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.7292 

 

4.2.1.1.16 Test 16 

 

 p % of learning p_anom T Ts Tw 

Test 16 1 80 0.5 6 15 5 

Table 17 

 

Figure 26 

f:98!8�<��= 9� <!:; =  0.6667 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.3542 
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4.2.1.1.17 Parameters decision for the third group. 

The first two groups show us how the algorithm behaves in different situations. Let’s see which 

conclusions are obtained for the next group parameters configurations.  

During the first eight tests we look for the algorithm which brings fewer alarms. We suppose 

that during the execution of these tests there are not attacks and failures over the network. 

Then the normal behaviour would be no failure. If we observe the tests we realize that with 

these parameter configurations there are always some alarms executed.  

First group of tests gives the best results for the tests 2 and 5. Probability of Alarm is lower in 

these cases. Furthermore, test 2 is better as test 5. As we can observe, the best parameters 

values during this group of tests are: 

p % of learning p_anom T Ts Tw 

1 80 0.9 2 15 5 

Table 18 

In case of using more samples (as it was done in test 5), we can observe that the result is good 

too. But I decided to use window period of 5 minutes, and the sampling period of 15 seconds 

because these are the values proposed in the paper. 

During the second group of tests, I applied flow normalization and attacks (marked in the 

figures with red circles). However the results are not the same than in previous case. In this 

case the best tests are those which better approach to the alarms executed. So I think they are 

more important than tests in first group. 

We need to work with the parameters which better fix the alarms activated. So the tests which 

bring the best results are tests 14 and 15. And comparing both, I decided the best one is 15, 

because it presents fewer alarms as 14, and the time of detection
9
 is short. The parameters 

proposed in this case are: 

p % of learning p_anom T Ts Tw 

1 40 0.9 6 15 5 

Table 19 

With these two tests I decided that the percentage of learning samples stands around 40%. 

But I was not very sure about the value of T, so the next block of tests tries to specify the best 

percentage and the best value of T. 

The order of p, never changes, and the parameters Ts and Tw are 15sec and 5min respectively. 

The probability of good behaviour at the beginning doesn’t changes. 

4.2.1.2 Best parameters decision. Step 2. 

I will try to specify with this block which is the best percentage of learning samples, and the 

best value for the T parameter. In the last three tests I decreased the number of attacks 

because of the special parameters in use. 

                                                           
9
 Time needed by the algorithm for detecting an alarm. 
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4.2.1.2.1 Test 17 

 

 p % of learning p_anom T Ts Tw 

Test 17 1 40 0.9 4 15 5 

Table 20 

 

Figure 27 

f:98!8�<��= 9� <!:; =  0.2206 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.7875 

 

4.2.1.2.2 Test 18 

 

 p % of learning p_anom T Ts Tw 

Test 18 1 30 0.9 3 15 5 

Table 21 

 

Figure 28 

f:98!8�<��= 9� <!:; =  0.2609 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.7472 
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4.2.1.2.3 Test 19 

 

 p % of learning p_anom T Ts Tw 

Test 19 1 30 0.9 1 15 5 

Table 22 

 

Figure 29 

f:98!8�<��= 9� <!:; =  0 

f:98!8�<��= l99m 8?ℎ!>�9o: =   1 

 

4.2.1.2.4 Test 20 

 

 p % of learning p_anom T Ts Tw 

Test 20 1 30 0.9 2 15 5 

Table 23 

 

Figure 30 

f:98!8�<��= 9� <!:; =  0.1304 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.8736 
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4.2.1.2.5 Test 21 

 

 p % of learning p_anom T Ts Tw 

Test 21 1 30 0.9 8 15 5 

Table 24 

 

Figure 31 

f:98!8�<��= 9� <!:; =  0.3478 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.6545 

 

4.2.1.2.6 Test 22 

 

 p % of learning p_anom T Ts Tw 

Test 22 1 30 0.9 5 15 10 

Table 25 

 

Figure 32 

f:98!8�<��= 9� <!:; =  0.0313 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.96 
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4.2.1.2.7 Parameters conclusion 

During the last block of tests we can decide that the best solutions are those given by tests 17 

and 18. As we can see, not all the alarms are detected with these tests. However, they detect 

most of them, and the problem lies in the time of detection, because the tests finish before 

the time of detection has finished (The alarm which is never detected is the last one). 

I decided test 17 gives better results as test 18 because the detection time is shorter in 17 than 

in 18. Therefore I established the value of percentage of learning samples and the value of 

memory of the system, T. 

As I said, I would like to bring a guide for future developers and therefore I will present some 

rules or behaviour laws obtained from my experience. Of course they can be discussed with 

new results, which could bring a new perception of the problem. 

During all the tests executions I could obtain some ideas. We can infer the next rules: 

1) The memory of the system shouldn’t be long. In this case the algorithm stabilises easily 

to the new situation avoiding false alarms. Therefore, as we could see, the tests with 

small T give better results in adaptability. 

2) The best values for TS and TW are the values proposed in the paper. As we can see in 

the previous tests, when the window time decreases the number of false alarms 

increases, and in the opposite case, when the window time increases, not all the 

attacks are detected. 

3) Probability of good behaviour at the beginning must be high when the algorithm 

starts. Observing tests 8 and 16, the audience can realize that the false alarms 

detected at the beginning are too much.  Therefore, the less probability at the 

beginning, the more false alarms declared.  

4) Decreasing the percentage of learning samples the behaviour also changes. We need 

to find the correct percentage which allows detecting almost all the alarms. It is 

obvious that the percentage is not 80% as it was at most of the tests run. In the third 

group of tests we decided that the best parameter is 40%. 

5) In the case of the degree of the AR-Model, I decided not to change it because it was 

one of the design rules given by the writers in their paper. 

Then, after testing the algorithm in these different situations, I am able to define which will be 

the best configuration parameters in order to obtain the best behaviour of the system. 

The tests provided in next section are configured with the following best parameters: 

 

p % of learning p_anom T Ts Tw 

1 40 0.9 4 15 5 

Table 26 
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4.2.1.3 Anomaly situations with the best parameters 

The results given in this section are execution of the algorithm with the best parameters. Here 

I only present the results obtained. The analysis of them is presented in section 4.2.2. 

The paper presents some parameters which lend to define the algorithm behaviour. The table 

in the paper contains the following parameters  

• Prediction Time: 

The writers of the paper, studies the frequency of different failures in their network. 

So that is why they present this parameter. In my case it has no sense, because the 

failures are produced by me, and I only consider the failures in those cases. 

 I could have done what writers do, detect the anomaly using another process and 

compare the results with my own detection. But I supposed that the overload of work 

trying to synchronize both processes would be huge. Therefore I simplified the study. 

• Detection time: 

This time is defined as the time that the algorithm needs for detecting failures. It is the 

time which starts when the anomaly happens and finish when the algorithm gives a 

false alarm. 

• Time between false alarms: 

This is another control parameter which contains the time between two false alarms. 

• Not detected alarms: 

I would like to add a new parameter in order to define the behaviour. This parameter 

extracts the number of alarms which could not be detected by the algorithm. 

The parameters detection time and time between false alarms are presented in each of the 

following tests. They are the average of the times that they represent. 

After the following test presentation, I will discuss about the results that writers obtain in the 

paper, and my own results. Later, I will discuss this algorithm comparing it with the other 

solutions proposed previously and ruled out because of the complexity. 

4.2.1.3.1 Test 23 

The alarms are activated in minutes of execution: 130 and 150. 

The attacks were made in minutes of execution: 45, 90 and 135. 

As we can observe, the successes happen in minutes 130 and 150. The rest are alarms not 

detected. 
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>?:!l? u?�?���9� O�;? =  40 min +15;�� 2 = 27�5;�� 

>?:!l? ��;? 8?�v??� �!<w? !<!:;w =   *9 �!<w? !<!:;w m?�?��?m 

*9� m?�?��?m !<!:;w =  1 

f:98!8�<��= 9� <!:; =  0.0625 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.9343 

4.2.1.3.2 Test 24 

The alarms are activated in minutes of execution: 50, 55, 85, 125, 150 and 160. 

The attacks were made in minutes of execution: 45, 90 and 135. 

As we can observe, the alarms success are those in minutes 50, 125 and 150. The rest of them 

are false alarms. 

  

0 20 40 60 80 100 120 140 160 180
-0.5

0

0.5

1

1.5
Test 23

Minutes

A
la

rm
 a

ct
iv

at
ed

 

 

Alarm activated when y = 1

0 20 40 60 80 100 120 140 160 180
-0.5

0

0.5

1

1.5
Test 24

Minutes

A
la

rm
 a

ct
iv

at
ed

 

 

Alarm activated when y = 1



 

 DEVELOPMENT OF AN ADAPTIVE LEARNING NETWORK-FAILURE DETECTION SYSTEM        

50 Tests and Results 

>?:!l? u?�?���9� O�;? =  5 min +35;�� + 15;��3 = 18′3;�� 

>?:!l? ��;? 8?�v??� �!<w? !<!:;w =   25;�� + 75;��2 = 50;�� 

*9� m?�?��?m !<!:;w =  0 

f:98!8�<��= 9� <!:; =  0.1875 

f:98!8�<��= l99m 8?ℎ!>�9o: =   0.8250 

The results in this case bring fewer alarms activated than in other cases, but we are not sure if 

the algorithm has detected all the failures.  Let’s continue with the rest of the tests. 

4.2.1.3.3 Test 25:  
The alarms are activated in minutes of execution: 45, 75, 80, 145, 170 and 175. 

The attacks were made in minutes of execution: 45, 90 and 135. 

As we can observe, the alarms success are those in minutes 45 and 145. The rest of them are 

false alarms. There is an attack not detected 
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4.2.2 Analysis of results and comparison with other solutions 

As we could observe in the results are not as precise as we thought. In this section I am 

comparing the results of my work with the result given by the paper. I will present the 

efficiency given by other solution proposed above. 

If we join the results obtained by the tests 23, 24 and 25 the values of the parameters are: 

Average 

detection time 

Average time 

between false 

alarms 

Not detected 

alarms/Number 

of alarms 

Probability of 

alarm 

Probability of 

good behaviour 

16.93 min 41.65min 2/9 0.1458 0.8614 

Table 27 

Now the results proposed in the algorithm joining all the possible failures in the system: 

 

Figure 33 

 

Average detection time Average time between false alarms 

26.5min 316.6min 

Table 28 

We can observe that the results are not very similar. This is probably caused by several factors, 

which we will see below. The detection time I obtained is around the order of the result 

presented in the paper. For my parameter definition this time is shorter, but on the other hand 

the time between false alarms differs too much. 

The detection time is very important for the algorithm because if there are two failures very 

close, we will probably not detect the second failure. This is one of the characteristics which 

makes this algorithm weak. 

I must explain that in my case I only try to detect one type of failures because of the limited 

environment where I run my tests. It is possible that some of the alarms which I decided as 
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false alarms are, in fact, real alarms caused by other kinds of failures. It is necessary to realize 

that the writers do not use the attacks to the network in order to obtain their results. 

Other explanation is a bad decision over the best parameters calculated. I needed to make too 

many tests to obtain the best configuration parameters, and I made several suppositions 

which could be wrong. These suppositions were not solved by the writers of the paper when I 

asked for them. The future developers could continue with my work and try to accuracy the 

functionality of the algorithm. 

I am talking now about the adaptability of the algorithm. Not all the attacks are detected, but 

most of them are detected independently on the time were they occurs. That means that the 

algorithm adapts to the normal behaviour of the network. When the network changes the 

behaviour and it receives an attack, the algorithm does not consider the change in the 

behaviour but the attack. This can be observed in the tests, because the alarms are detected in 

most of the cases in a short period of time. 

 

I will focus now in the other kinds of algorithms and the features which made them more 

suitable or not to be implemented instead of the method proposed in this work. 

• Maximum entropy method: 

This method is very precise as the writers say. The precision in their experiments 

stands around 0.9 (where 1 is the highest value).  

It brings better results than the one chose for this work, but more overload to the 

system which manages it. 

The problem of this algorithm is the difficult understanding it. The method requires a 

constant memory and a computation time proportional to the traffic rate. Many 

interesting aspects of this approach still remain to be explored, and comparison with 

other methods such as Holt-Winter, when possible, will be useful. (6) 

• Network anomalies using sketch subspaces  

In this case, the probability of non-detection of anomalies with a network of about 20 

or less computers stands around 0.2.  

This method can detect IP flows and specify which flow is causing the failure. The time 

needed for detecting an anomaly is short.  

The Defeat algorithm presented in this paper uses multiple random traffic projections 

to robustly detect anomalies. In a week-long trace from the Dante backbone, Defeat 
detects nearly 200 more anomalies than prior work while missing only one. It is, in 

addition, able to automatically infer the IP flows responsible for an anomaly, a feature 

missing in any previously published work. Defeat brings on-line anomaly detection and 

identification within the realm of feasibility, which forms our future work. (7) 
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• ARP-based Anomaly Detection Algorithm Using Hidden Markov Model: 

The writers propose three different methods using this technique. They present the 

results in function of what they call false alarm rate. This rate is the probability of false 

alarm which can be introduced in the system. The variation of this rate produces a 

variation of the anomaly detection rate. The highest value of this rate, the best 

behaviour of the algorithm in the network. 

For the third method the anomaly detection rate stands around 0.98. This is too much 

better than the algorithm proposed. 
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5 Conclusion and Further Developments 
The main objective of this work was to find an adaptive algorithm able to change the detection 

threshold as the network changes. I found the solution with the algorithm proposed and 

developed. This algorithm adapts its behaviour to new situations in the network and detects all 

kind of failures produced in a system. 

The accuracy of this method is not as good as in other solutions, but it is easily developed in 

almost any kind of IP network. The configuration of the algorithm is a hard step to carry out, 

but when the algorithm is running it is very stable. 

This algorithm was chose because I found it simple to understand at the beginning. I read the 

other algorithms briefly as well, and finally I decided to implement this one, because the idea 

was clear in my mind. Later I found some complex points which I didn’t realize. But at the end 

the solution was possible and helpful for the understanding of this kind of algorithms. It is a 

good choice with a network with not too many requirements. 

The algorithm can detect broadly speaking the place where the anomaly happens. In fact the 

algorithm bases itself in an analysis of each network element, and detects the anomaly on it. It 

means that the failure happens in the area near the network element. Actually the algorithm 

detects the area of influence of the failure. This feature cannot be found in this work, because I 

only worked with one network element, but it can be easily solved by adding a manager which 

reads all the alarms and give the places of failure to the human manager.  

Future works: Going deeply in this area is possible, but the new adapting algorithms work with 

other signal processing techniques, which seem to be more powerful and efficient. However 

the correct development of this work can be helpful and simple. I hope this work could help 

new developers to design this kind of systems faster and easier.  

It might be possible to design this algorithm in non-IP networks, if the data acquirement 

changes and the information is obtained from other traffic. 

5.1 Viability 

The work carried out has been tested in a small environment, as it was explained. But the 

solution obtained can be extrapolated to a big network. The same algorithm can manage some 

network elements, but it has a top limit of them which depends on the parameters used to 

configure the algorithm. 

If the network is higher than the limit established by the algorithm, then the network can be 

divided in areas, creating an agent (machine which runs the algorithm) in each area. In this 

case there must be a general machine which receives the alarms detected by the different 

agents and processes the information given to the human manager. 

The system might be chaotic in a big environment if the algorithm is not well configured. The 

number of false alarms detected can confuse the manager, and bother so much. It is very 

important the good configuration of the algorithm and a specific planning for the network. 
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This system can be implemented in many IP networks, because the protocol used for the data 

acquisition can be found in almost all network elements. It is very important to find out if our 

network works with SNMP before developing the system. 

This algorithm has been tested only over one router. If we wanted to run it over other network 

elements, we should find out which are the best MIB variables for each kind of network 

element. The writers propose to collect data from the element and run a Principle component 

analysis in order to specify which the best variables are. 

The future developers should not take this work as the only reference. There are too many 

bibliographies available about this field. 
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APPENDIX: Spanish summary 
 

A. Introducción 

Este proyecto ha sido desarrollado en el departamento RUS de la Universidad de 

Stuttgart, bajo la supervisión de Antonio Cuevas y Patrick Mandic. La duración del mismo 

ha abarcado 7 meses desde el comienzo hasta la última presentación. Durante su 

desarrollo, se han realizado dos exposiciones, una a los cuatro meses presentando la 

solución propuesta, y otra al final haciendo un resumen general del proyecto, 

implementación y resultados. 

El departamento RUS, se encarga de monitorizar las redes de la universidad y a su vez 

realiza proyectos de comunicaciones telemáticas con empresas y universidades. 

Participan en el proyecto Daidalos (Designing Advanced network Interfaces for the 

Delivery and Administration of Location independent, Optimized personal Services) para 

el cuál poseen una red de ordenadores dedicada. 

Es en esta red donde se me propone el objetivo de mi proyecto. Diseñar un sistema capaz 

de detectar anomalías en la red de manera adaptativa. Para ello tuve que realizar un 

primer trabajo de investigación sobre las tecnologías existentes en este campo y posibles 

desarrollos. En segundo lugar se hizo necesaria la elección de un algoritmo que permitiera 

solucionar el problema de manera eficiente, e implementarlo en la red propuesta. Por 

último el problema se centró en la experimentación con este sistema y la comparación de 

la solución con el resultado esperado. 

Vamos a aclarar por el momento que era realmente un sistema adaptativo de detección 

de anomalías en la red. 

Detección de anomalías en red: También conocida como análisis de comportamiento de 

la red, la detección de anomalías está diseñada para proporcionar una clara visión del 

comportamiento de la red y detectar automáticamente las amenazas activas a la 

seguridad, el comportamiento de usuario arriesgado, las cuestiones de rendimiento y las 

actividades que no siguen las normas, como el acceso a áreas restringidas y los cambios 

en la red no autorizados. Estos sistemas examinan continuamente el comportamiento de 

los usuarios, la red y las aplicaciones. 

Existen dos tipos de sistemas para detectar anomalías: adaptativos y no adaptativos.  

•••• Sistemas no adaptativos: Este tipo de sistemas son los primeros que se propusieron 

para solucionar este tipo de fallos en red. Se basan en la definición de reglas para la 

identificación de los distintos ataques y fallos. Cuando un nuevo fallo o ataque es 

identificado, el administrador de la red debe definir cómo se comporta este nuevo 

fallo o ataque e inducir un grupo de reglas que permitan identificarlo en un futuro. 

Cuando estas reglas son introducidas en un sistema no adaptativo, el sistema será 

capaz de decidir si el tráfico se comporta de forma normal o si está sufriendo este 

nuevo fallo. Así con todo, este tipo de sistemas necesitan muchas actualizaciones a lo 
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largo de su vida para poder seguir funcionando correctamente, y el administrador de 

la red precisa de mucho tiempo para configurar el sistema. 

•••• Sistemas adaptativos: Estos sistemas aparecieron algo más tarde que los no 

adaptativos intentando introducir tratamiento de señal sobre la información 

obtenida de la red con el fin de identificar un comportamiento normal de la red y 

actuar sobre los comportamientos anómalos (fallos en la red). La ventaja de este tipo 

de sistemas radica en que no hace falta que sean actualizados, ya que van 

adecuándose al nuevo comportamiento de la red según pasa el tiempo, y cada 

cambio sobre este comportamiento se considera un fallo. 

Como ejemplo de sistemas no adaptativos estudié un sistema que funciona actualmente 

en la red de la Universidad de Stuttgart, Arbor Peakflow. Es un sistema de detección 

avanzado que permite al administrador de red descargarse las reglas que definen los 

fallos más comunes y ataques detectados últimamente en redes. Pese a todo, el 

administrador necesitará definir sus propias reglas para cierto tipo de comportamientos 

en su red. 

También realicé un estudio sobre los sistemas adaptativos, tal y como los definiré a 

continuación: 

• Método de la máxima entropía: Este algoritmo se obtuvo del trabajo de Yu Gu, 

Andrew McCallum y Don Towsley (6). Comparan la información obtenida de la red 

con una distribución baseline. Esta comparación se realiza con el método de la 

máxima entropía. Con esta tecnología se obtiene una nueva ventaja ya que el 

algoritmo se da cuenta de cuando existe un cambio lento o abrupto en el 

comportamiento de la red. Esto implica que el tipo de anomalía puede ser detectada.  
• Detección de anomalías en la red usando aproximación por subespacios: Xin Li, 

Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca Lannaccone y 

Anukool Lakhina proponen la técnica en (7). La realización de este algoritmo se basa 

en dividir el tráfico en trozos que son aproximados por el método de los subespacios. 

Los autores han presentado unos resultados donde puede apreciarse que la precisión 

del algoritmo es muy alta. Además esta técnica es capaz de detector que flujos 

causan la anomalía y cuál es la IP de origen de la anomalía.  

• Algoritmo de detección de anomalías basado en tráfico ARP usando el Modelo 

oculto de Markov: Este método utiliza la información proporcionada por el tráfico 

ARP para identificar la anomalía. El algoritmo de tratamiento de señal propuesto para 

este caso es el Modelo oculto de Markov. El desarrollo de este algoritmo se puede 

encontrar en el paper “An ARP-based Anomaly Detection Algorithm Using Hidden 

Markov Model in Enterprise Networks” (8). 

• Detección de anomalías en redes IP usando modelos AR: Esta técnica basa su idea 

en la detección de cambios abruptos sobre variables MIB predefinidas, que 

representan el estado en el que se encuentra el elemento de red sobre el que se 

aplica el algoritmo. Puede encontrarse más información en el paper “Anomaly 
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detection in IP networks” (1). Por supuesto también en el presente trabajo, ya que 

este es el algoritmo seleccionado para su desarrollo. 

B. Descripción del algoritmo e implementación. 

El algoritmo propuesto en el último apartado de la introducción fue elegido porque se 

consideró que era el más sencillo de implementar y entender. El paper era fácil de 

entender y me decidió la posibilidad de escalar el sistema al tamaño de nuestra red. 

Decidí implementarlo y probar como se comportaba en el entorno que yo disponía en la 

Universidad de Stuttgart. 

Como se define en el trabajo el entorno de desarrollo de este algoritmo sería una cosa 

como la siguiente: 

 

 

Como se puede observar el sistema realiza el algoritmo a cada uno de los elementos de 

red que conforman la red que queremos monitorizar. Estos elementos de red son 

principalmente routers y switches. Para cada uno de estos elementos decidimos si su 

comportamiento es normal o anormal y podemos definir el lugar aproximado donde se 

produce la anomalía. 

El algoritmo se basa en el siguiente esquema de funcionamiento. El programa obtiene los 

valores de las variables MIB predefinidas cada tiempo de muestreo, durante un tiempo de 

ventana mayor que este tiempo de muestreo. La información es almacenada en un 

fichero de texto para ser posteriormente procesada.  

Cada tiempo de ventana el algoritmo obtiene un valor que indica si hay una anomalía en 

la red o no. Estos valores (tiempo de ventana y tiempo de muestreo) son, entre otros, 

parámetros de diseño. 

Switch 

Terminal con el 

algoritmo 

implementado 

Figure 34 
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Lo que hace el algoritmo durante un tiempo de ventana para obtener este valor de alarma 

o no se define a continuación. Una vez que los datos de una ventana han sido 

almacenados se procesan aplicando el algoritmo. 

Lo primero que habría que hacer para detectar una anomalía es identificar cambios 

abruptos en la variable MIB, esto significa que cambia drásticamente el valor que va 

teniendo normalmente. Para detectar estos cambios abruptos usamos la teoría de 

modelos AR (modelos autorregresivos). Consideraremos la serie de valores que toma la 

variable durante el tiempo de ventana y supondremos que es un modelo AR. Obtenemos 

la varianza obtenida al considerar esta serie un modelo autorregresivo. 

Por otro lado consideramos la misma serie de datos como dos series, una de aprendizaje 

que será un número de muestras del comienzo (parámetro de diseño del algoritmo), y 

otra que es de test compuesta por el resto de muestras hasta el fin de ventana. Para estas 

dos series procederemos de igual forma que en el caso anterior. Se consideran modelos 

AR y se obtienen sus varianzas asociadas. 

Mediante el método GLR (Generalized likelihood ratio) aplicado sobre las tres varianzas 

obtenidas conseguiremos un parámetro conocido como el indicador de abnormalidad 

asociado a la variable MIB correspondiente. 

Realizando este proceso sobre las N variables MIB que tengamos para el elemento de red, 

vamos a obtener un vector compuesto por los indicadores de abnormalidad obtenidos de 

cada variable y un indicador de probabilidad de buen comportamiento de la red, con una 

dimensión de (N+1)x1.  

El siguiente proceso implica la acumulación de los últimos vectores obtenidos en pasadas 

ventanas y el obtenido en la ventana actual. El número de vectores pasados que se 

utilizan es también un parámetro de diseño. 

Una vez seleccionado el número de vectores se procede al cálculo de la matriz A a partir 

de estos vectores. Esta matriz es fundamental ya que mediante sus autovectores puede 

definirse la región de fallo y si el elemento está en esta región de fallo. Si lo está, quiere 

decir que se ha detectado una anomalía en el elemento durante la ventana que nos 

ocupa. 

La implementación se ha realizado sobre Matlab, la parte de cálculo y sobre Shell-script la 

parte de adquisición de datos.  El sistema se ha implementado sobre Linux debido a que 

ofrece muchas soluciones de software libre.  

Matlab ha sido escogido por poseer implementadas las funciones de cálculo necesarias. 

Se pierde cierta eficiencia al elegir este lenguaje, pero se gana en simplicidad de código. 

Hay funciones que implementadas en c reducirían también bastante la eficiencia. 

En la siguiente figura puede observarse un esquema de los procesos que se llevan a cabo 

para comunicar Matlab con Shell-script. 
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C. Desarrollo Práctico. 

En mi caso este entorno era teórico ya que el entorno disponible para mis pruebas era 

mucho más simple. Esto pudo afectar en cierto modo a los resultados que presentó el 

sistema pese a que parecía que la escalabilidad del sistema era buena.  

El entorno disponible en la universidad estaba compuesto un sólo router por el cual 

pasaba todo el tráfico de la red. Mi desarrollo sólo consideraba este router como nodo de 

red sobre el que aplicar el algoritmo. Así que el comportamiento era bastante limitado. 

Entonces fue cuando decidí enfocar el trabajo como una guía de desarrollo para futuras 

implementaciones, siguiendo con la consideración de que la escalabilidad era buena. 

Para el desarrollo práctico decidí explorar otra solución para la toma de datos. Es decir 

obtener la información a través de otro sitio  que no fuera el protocolo SNMP. Así que 

investigué  la obtención de la información a través de los flujos que atravesaban el router. 

Esta solución hacía mucho más complejo el desarrollo del algoritmo además de 

ineficiente. 

Después de haber desarrollado el software debemos comprobar que funciona 

correctamente por lo que el entorno de pruebas se divide en dos fases. Una primera en la 

que se intentan aproximar los parámetros de diseño a su mejor valor para que el 

funcionamiento en nuestro entorno de pruebas sea lo más correcto posible. La segunda 

Shell script 

./getMIBs 

Matlab 

ADS.m 

1er Paso 

snmpdelta 

(adquisic datos) 

2º Paso 

Escribe en 

MIBs.tmp 

¿Terminó la 

ventana? 

No 

- Copiar MIBs.tmp 

en MIBs.txt 

- Borrar MIBs.tmp 

espera

¿Está MIBs.txt 

actualizado? 

No 

Yes 
Ejecución del 

algoritmo con 

datos nuevos 

Señal CONT Borrar MIBs.txt 

Yes 

Figure 35 



 

 DEVELOPMENT OF AN ADAPTIVE LEARNING NETWORK-FAILURE DETECTION SYSTEM        

62 Appendix: Spanish summary 

consiste en el test del sistema una vez que este ha sido configurado con los mejores 

parámetros de diseño hallados. 

Esto se debe a que los autores no proponen valores para estos parámetros de diseño, de 

modo que debemos investigarlos nosotros, aunque propone varios entornos de aplicación 

y distintas pruebas con varios tipos de fallos de red. 

Como he comentado previamente, el desarrollo del banco de pruebas se llevó a cabo en 

el departamento RUS de la Universidad de Stuttgart, en la red habilitada para el proyecto 

Daidalos. Para mi trabajo recibí un portátil sobre el que tuve que instalar las aplicaciones 

necesarias y especificadas antes además de una conexión al router para probar y 

experimentar tanto como quisiera. 

Por lo tanto el entorno de trabajo viene presentado en la siguiente figura: 

 

 

A la hora de simular los fallos en la red el entorno de trabajo del que disponía se quedaba 

demasiado corto. No podía desconectar ningún servidor para ver como se comportaba el 

sistema ya que estos nodos de la red realizaban tareas importantes. Los únicos fallos que 

podía simular y controlar en la red fueron ataques que realizaba desde mi mismo equipo a 

otro equipo. Estos ataques eran inofensivos aunque producían un comportamiento 

anormal en la red, con lo que era capaz de detectar y afinar la precisión de mis 

parámetros de diseño. 

La red utilizada no tenía un comportamiento demasiado regular, por lo que mis tutores 

me propusieron que generara un tráfico de normalización para trabajar sobre una red de 

comportamiento más uniforme. 

Inigo’s laptop 

- SNMP package 

- Matlab 

- Shell script 

- Idswakeup (Linux package for attack generation) 

- Normalization traffic tool (I generate traffic in 

order to obtain a normal distribution) 

Laura’s laptop 

This machine receives the attacks 

from Inigo’s machine 

 

Daidalos network 

Daidalos machine (192.108.37.4) 

This machine receives the traffic 

generated from Inigo’s machine 

Attacks 

Normalization 

traffic 

MIBs info 

Figure 36 
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Como entorno de pruebas, realicé un grupo de test para obtener el valor de los 

parámetros de diseño que obtienen los mejores resultados. Esta parte se considera una 

de las más importantes del diseño, ya que se deduce de la misma cómo afectan los 

parámetros sobre el resultado del algoritmo.  

Esta última parte se considera muy importante en la misión para la que se ha realizado el 

proyecto. Ofrece unas guías de comportamiento para los parámetros y el algoritmo de 

modo que futuros desarrolladores obtengan los mejores resultados sólo con seguir estas 

directrices, evitándoles muchas horas de configuración y test. 

Se realizan tres grupos de test para la configuración del sistema. Los test realizados en los 

dos primeros grupos tienen una duración de 12 horas. En el tercer grupo cada test se 

ejecuta durante 6 horas.  

Los dos primeros grupos de test ejecutados en la configuración de parámetros pueden 

verse en la siguiente tabla. 

 

AR-Model 

order (p) 

Percentage 

of learning 

samples 

U cdcd2ceV 

Initial 

probability of 

good 

behaviour 

(p_anom) 

Memory of 

the algorithm 

(T) 

Sampling 

period in 

seconds (Ts) 

 

Window time 

in minutes 

(Tw) 

Tests 1 & 9 1 80 0.9 6 15 5 

Tests 2 & 10 1 80 0.9 2 15 5 

Tests 3 & 11 1 80 0.9 15 15 5 

Tests 4 & 12 1 80 0.9 6 3 2 

Tests 5 & 13 1 80 0.9 6 45 20 

Tests 6 & 14 1 20 0.9 6 15 5 

Tests 7 & 15 1 40 0.9 6 15 5 

Tests 8 & 16 1 80 0.5 6 15 5 

Table 29 

Los primeros ocho test se ejecutan sobre la red directamente sin considerar ataques 

como fallos, es decir, intentan identificar simplemente mal comportamiento en la red sin 

saber con certeza si realmente se ha dado este mal comportamiento. Se considera que 

hay un buen comportamiento del algoritmo en este grupo cuando la probabilidad de 

alarma en la red es lo más baja posible. La consideración es que no existen fallos en la red 

durante el tiempo de test. 

Los siguientes ocho se han realizado con normalización de tráfico sobre el elemento de 

red y con ataques de una interfaz del mismo a otra. En este caso sabemos cuándo se 

realizan los ataques, por lo tanto, el buen comportamiento es cuando las alarmas se 

activan en poco tiempo a la ocurrencia de un ataque. 

Esta tabla ofrece una primera aproximación de parámetros.  

p % of learning p_anom T Ts Tw 

1 40 0.9 6 15 5 

Table 30 
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A partir de ellos se ejecuta un nuevo grupo de test que tratan de afinar más el 

comportamiento del algoritmo. A continuación se referencia la configuración de 

parámetros probada para cada test. 

 

AR-Model 

order (p) 

Percentage 

of learning 

samples 

U cdcd2ceV 

Initial 

probability of 

good 

behaviour 

(p_anom) 

Memory of 

the algorithm 

(T) 

Sampling 

period in 

seconds (Ts) 

 

Window time 

in minutes 

(Tw) 

Tests 17 1 40 0.9 4 15 5 

Tests 18 1 30 0.9 3 15 5 

Tests 19 1 30 0.9 1 15 5 

Tests 20 1 30 0.9 2 15 5 

Tests 21 1 30 0.9 8 15 5 

Tests 22 1 30 0.9 5 15 10 

Table 31 

Aparte de estos test, se han obtenido los resultados que daba el sistema para los mejores 

parámetros que se ha deducido que son los siguientes. 

p % of learning p_anom T Ts Tw 

1 40 0.9 4 15 5 

Table 32 

Esta configuración aproxima los mejores resultados del algoritmo sobre mi sistema. En el 

desarrollo del trabajo se han facilitado unas directrices del comportamiento de estos 

parámetros en sistemas de modo que sea fácil su configuración. 

Una vez obtenidos estos parámetros se ejecutan tres test de tres horas cada uno 

intentando identificar los ataques. A partir de estos resultados, comparamos con los 

resultados esperados por el paper. 

Los resultados obtenidos en mi caso han sido: 

Tiempo de 

detección 

medio 

Tiempo medio 

entre falsas 

alarmas 

Alarmas no 

detectadas/Total 

alarmas 

Probabilidad de 

alarma 

Probabilidad de 

buen 

comportamiento 

de la red 

16.93 min 41.65min 2/9 0.1458 0.8614 

Table 33 

Estos resultados deben ser comparados con los esperados en el trabajo en el que me he 

basado. 

Tiempo de detección medio Tiempo medio entre falsas alarmas 

26.5min 316.6min 

Table 34 



 

 DEVELOPMENT OF AN ADAPTIVE LEARNING NETWORK-FAILURE DETECTION SYSTEM        

65 Appendix: Spanish summary 

Como puede observarse el tiempo de detección medio mejora en mi trabajo pero a su vez 

mi algoritmo detecta más falsas alarmas debido a que el tiempo medio entre falsas 

alarmas es mucho más pequeño. 

Comparando estos resultados con los obtenidos mediante otras técnicas más complejas 

llego a la conclusión de que el algoritmo propuesto se puede implementar pero los 

resultados no son demasiado buenos. Otros algoritmos como  los propuestos también en 

este trabajo permiten llegar a mayores precisiones.  

Otra conclusión obtenida es que al incrementar levemente la complejidad del algoritmo 

seleccionado, la eficiencia obtenida mejora en mayor medida. Para futuros proyectos de 

desarrollo en este entorno, propuse al departamento del RUS en Stuttgart implementar 

otros algoritmos que mejorarían mucho los resultados. 

D. Conclusiones 

El objetivo principal de este trabajo era encontrar un algoritmo adaptativo que fuera 

capaz de cambiar los umbrales de detección de fallos en una red a lo largo del tiempo. La 

solución encontrada ha sido propuesta e implementada como trabajo. A su vez se ha 

estudiado su comportamiento para ver si funcionaba igual que las expectativas teóricas. 

Como ha podido observarse el algoritmo es capaz de detector fallos y situaciones extrañas 

en la red y adaptarse a  las mismas. 

Si el sistema empieza a detectar muchas veces el mismo fallo o comportamiento anómalo, 

lo más probable es que acabe considerándolo un comportamiento normal. Véase el caso 

en que se  introduce una nueva aplicación en la red que genera un tráfico sospechoso. El 

administrador de la red verá que el algoritmo genera una alarma pero sabiendo que acaba 

de instalarse una nueva aplicación, lo más probable es que no necesite hacer caso al 

algoritmo y esperará a que este se estabilice con la nueva situación. 

Como trabajo futuro se puede seguir desarrollando este sistema para obtener mejores 

resultados o desarrollar nuevas técnicas de procesamiento de señal que ofrezcan mejores 

resultados. Sin embargo el correcto desarrollo de este sistema propuesto en un entorno 

más realista puede fácilmente solventar el problema propuesto y se ofrece como un 

sistema con poca carga de trabajo y efectivo. Aunque para redes que requieran una 

mayor precisión y aproximación se hará necesario otro tipo de algoritmos más complejos. 

Espero que con mi estudio se facilite el trabajo de futuros desarrolladores y sirva como 

una guía que permita reducir el tiempo de estudio de este tipo de sistemas. Como digo no 

es un trabajo totalmente finalizado ya que aún queda mucho por desarrollar en este 

campo. Estudios como este, espero que ayuden a clarificar un poco el problema que se 

presenta y den una idea simple de los algoritmos y procedimientos existentes. 
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