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Surface cracks commonly propagate in rotating machines due to cyclic loads. The propagation of these cracks in 
shafts is an important problem that can lead to catastrophic failure and put lives at risk. Although the majority of 
the works on cracked shafts consider that the shape of the front of the surface cracks is straight or almond, also 
sickle-shaped cracks can appear in shafts. In this study, we propose an expression that provides the value of the 
Stress Intensity Factor (SIF) of an open crack with sickle shape, located at the central section of a shaft, as a 
function of the relative depth of the crack, the shape factor and the relative position on the crack front To this 
end, the SIF along the crack front has been determined through a 30 numerical analysis considering different 
elliptical geometries of the crack. To validate the expression, we have compared the obtained results with other 
solutions obtained by numerical approaches of the literature. It has been found that they are in good agreement. 
Finally, the sickle crack propagation has been analp,ed using the expression for sickle cracks proposed and a 
developed algorithm based on the Paris Law. 

l. Introduction

Rotating shafts are oommonly used in engineering machines. The 

structural integrity of these elements can be severely affected by the 

presence of defects. Working in fatigue, cracks can initiate at the sur 

face and propagate to the inside. If they are undetected, they can grow 

during the lifetime of the shaft, until a fracture failure occurs, causing 

irreversible damages. 
To analyze the propagation of cracks, it is essential to obtain the 

Stress Intensity Factor (SIF), which is a parameter that quantifies the 
stresses at the crack front. The crack shape in shafts can be classified in 
three groups: straight, almond and sickle. At the beginning, most of the 
SIF studies considered that the crack front was straight [1 3). Black 
bum [1) and Carpinteri [2) calculated the SIF along the straight front of 
a crack contained in a shaft under tension by the Finite Element Method 
(FEM). Valiente [3) obtained the SIF at the central point of a crack with 
straight front by means of the stiffness derivative method oombined 
with the Finite Element Method. From the results developed a poly 
nomial expression which depends on the crack depth and allows esti 
mating the dimensionless SIF. Later, the studies of the SIF were ex 
tended to cracks with almond front. Many works of this kind of shape 
can be found in the literature [4 17). In this regard, Mackay and Al 
perin [ 4), Forman and Shivacumar [5), and Ponte [6) used fractography 
techniques to determine the SIF in shafts with almond cracks. They 

examined with optical and scanning electron microscopes the evolution 
of the shape of the almond surface cracks and developed a method to 
obtain the SIF in these cracks under different loading states. Lorentzen 
et al. [7) proposed a theoretical method to calculate the SIF in these 
type of cracks by using two and three dimensional photoelasticity ex 

periments with cracked shafts. Also, many authors developed expres 

sions for the SIF of almond cracks. Astiz [8) determined the SIF at the 
central point of a crack using the stiffness derivative technique to cal 
culate the energy release rate and determined an expression of the SIF 
as a function of the crack relative depth and the shape factor. Shih y 
Ch.en [10) used the numerical model developed by Carpinteri [9) to 
obtain an expression of the SIF at the central point of the crack and at 
the ends. Shin and Cai [14) developed a numerical model through the 
Finite Element Method to determine the SIF in almond cracks under 
tension and bending and, with the numerical results, made a poly 
nomial fitting dependent on the crack relative depth, the shape factor 
and the position on the crack front. Rubio et al. [17) developed an 
expression that provides the SIF value of an almond crack oontained in 
a rotating shaft as a function of the crack relative depth, the location on 
the crack front, the shape factor and the rotation angle taking into 
account the crack breathing when the shaft rotates. However, there are 
a limited number of studies of the SIF, available in the literature, re 
lated to sickle shaped cracks [18 23). Mattheck et al. [18) calculated 
the SIF at the deepest point of a crack with sickle shape using the Finite 
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Element Method and with the results obtained the weight function that
can be used for determining the SIF for any other loading case. Car
pinteri [21] calculated the values of the SIF at only two points of the
crack front of a surface crack with sickle shape in a shaft under bending
and tension using a 3D Finite Element Analysis. In other work, Car
pinteri [22] determined the SIF at two points of the front of a sickle
crack but, in this case, the crack exists at the root of a circumferential
notch in a round bar.

After knowing the SIF along the crack front, the fatigue crack
growth can be analyzed by means of the Paris Law. Many authors have
studied the propagation of almond cracks in shafts [24 30]. Related to
the propagation of sickle shaped cracks, a reduced number of studies
can be found in the literature. Carpinteri [21] determined the evolution
of a sickle crack considering only two points of the front, the central
point and the end of the crack. Also, [22] analyzed the growth of a
sickle shaped surface crack in a notched round bar under cyclic loading.

In the present work, a polynomial expression of the Stress Intensity
Factor of an open sickle shaped surface crack in a shaft has been de
veloped in terms of the geometric parameters of the crack, relative
depth and shape factor, and the location on the front, considering a
linear elastic behavior of the material. Previously, a numerical analysis
has been employed to evaluate the values of the SIF along the front of a
sickle surface crack in a shaft. A wide range of crack geometries under
pure bending has been considered. The Finite Element code ABAQUS/
Standard [31] has been employed for this analysis. The comparison
with solutions found in the scientific literature has allowed to validate
the SIF expression. Finally, a propagation model for sickle cracks has
been developed and the crack front evolution has been analyzed
studying how the shape of the sickle crack changes with the growth.

2. Stress Intensity Factor calculation

The values of the SIF along the crack front have been determined by
using a 3D Finite Element Analysis. The FEM code ABAQUS/Standard
[31] has been used to perform the numerical simulations. A model of a
shaft containing a sickle surface crack in its central cross section has
been developed. The chosen material for the analysis has been alu
minum, with Poisson’s coefficient ν, density ρ and Young’s modulus
Eequal to 0.3, 2800 kg/m3 and 72 GPa, respectively. The geometrical
properties of the shaft are diameter D=20mm and length
L=900mm. The shaft is subjected to two loads F=100N located at a
distance d=225mm from the ends of the shaft (see Fig. 1). The finite
element mesh used in the calculations is shown in Fig. 2 and consists of
approximately 80000 twenty node quadratic isoparametric elements
(C3D20 in ABAQUS nomenclature). We have refined the mesh in the
vicinity of the crack front.

The transversal section of a shaft that contains a sickle shaped crack
is shown in Fig. 3. To describe the front of the crack, we have used an
ellipse with semi axes ′a and ′b whose center is located at point ′O (the
highest point of that section). The characteristic parameters of this type
of cracks are the following:

• =α a
D Crack relative depth.

• ′ = ′
′β a
b Shape factor of the crack ( ′ =β 0 corresponds to a crack of

straight front and ′ =β 1 corresponds to a circular crack).

• =γ w
h Relative position on the front.

Eight relative depths have been considered, varying from =α 0.1
until =α 0.8 in increments of 0.1 (see Fig. 4). Moreover, to find the

Nomenclature

E Young’s Modulus
ν Poisson ratio
F load
L length of the shaft
D diameter of the shaft
a crack depth and minor semi axe of the ellipse of a crack

with almond front
′a minor semi axe of the ellipse of a crack with sickle front
′b major semi axe of the ellipse of a crack with sickle front
′O center of the ellipse of a crack with sickle front

α nondimensional crack depth
′β nondimensional crack shape for a crack with sickle front
γ relative position on the crack front
FI nondimensional SIF

KI Stress Intensity Factor in mode I
Kijk coefficients of the fitting
σ maximum bending stress
i grade of the polynomial in α
j grade of the polynomial in ′β
k grade of the polynomial in γ
KΔ I SIF range

C m, material constants of the Paris Erdogan law
da
dN

crack propagation rate
a PΔ ( )j advance at any point at the crack front
a AΔ ( ) advance at the crack center

F P( )I j nondimensional SIF at the different points of the front
F A( )I nondimensional SIF at the crack center
α0 nondimensional initial crack depth
′β0 nondimensional initial crack shape

Fig. 1. Geometric model.
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influence of shape factor ′β , a range between 0 and 1, with increments
of 0.25, has been taken (Fig. 4). Thus, an amount of 40 different models
have been made. Finally, the SIF has been determined in eleven relative
positions on the front, that go from −0.83 to 0.83 in increments of

0.16. In the study, we have not considered the positions on the front
γ =−1 and 1 due to singularity power at these points depends on the
Poisson ratio and on the intersection angle and it is not −1/2
[32,9,33,11].

Fig. 2. Mesh of the model. (a) Transversal direction; (b)
longitudinal direction.

Fig. 3. Characteristic parameters of the elliptical sickle
front.

Fig. 4. Different relative depths and shape factors considered.
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2.1. Results of the SIF

The SIF has been determined for all the considered cases. The di
mensionless expression is the following:

=F K
σ πaI

I

(1)

where σ is the maximum bending stress, a is the crack depth, and KI is
SIF in mode I obtained with the numerical study. In Fig. 5 the non
dimensional values of the SIF are shown as a function of the relative
position on the front γ for the different crack depths α and for three
crack shapes ( ′β =0; 0.5; and 1). Looking to the figure, and considering
that the results can be extended to other shapes, the following can be
concluded:

• The value of the SIF increases with the crack depth α. The stiffness
of the shaft decreases as the crack is deeper, due to cracked section
is greater.

• All curves of the SIF are symmetrical with respect to the midpoint of
the front and convex. The maximum value of SIF is always obtained

Fig. 5. Nondimensional SIF versus the relative position on
the front γ for the different crack depths α and for three
crack shapes ( ′β =0; 0.5; and 1).

Fig. 6. Procedure to follow to obtain the SIF expression for sickle cracks.
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at the center of the crack front, regardless of the crack depth α and
the crack shape ′β .

• The SIF at the crack center γ =0 increases with the crack shape ′β .
However, the SIF at the crack ends decreases by increasing the shape
of the crack ′β .

3. The SIF expression for sickle shaped cracks

The determination of an expression that allows obtaining the value
of the SIF at every point of the sickle crack front for different crack
geometries can be very practical to analyze the propagation of fatigue
cracks in shafts. The dimensionless SIF, FI , under bending can be

Fig. 7. Comparison among the solutions of the SIF ex-
pression and the numerical reference data.
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expressed in function of the relative crack depth, the crack shape factor
and the relative position on the front:

= ′F F α β γ( , , )I I (2)

This expression has been obtained by means of multiple regression
techniques and considering all the numerical results obtained in the
previous section:

∑ ∑ ∑= ′
= = =

F K α β γI
i j k

ijk
i j k

0

5

0

4

0

5

(3)

where i j, and k are the polynomial grades related to the parameters
′α β, and γ , respectively, and Kijk are the coefficients of the fitting. The

best fitting was obtained with a polynomial of grade 5 in α, grade 4 in ′β
and grade 5 in γ . A coefficient adjusted =R 0.99962 has been obtained.
In Tables 2 and 3 of Appendix A, the coefficients Kijk of the fitting are
shown. For the time being, no polynomial equation of the SIF for sickle
shaped cracks as a function of these parameters has been found in the
literature.

In Fig. 6, it can be observed the procedure followed to obtain the SIF
expression for sickle cracks.

4. Validation of the SIF expression for sickle shaped cracks

4.1. Comparison with the numerical results

Firstly, with the purpose of checking the goodness of the proposed
method, we compare the results obtained using the SIF expression and
the numerical model. In Fig. 7, the results obtained with the two pro
cedures have been plotted showing the comparison for three crack
depths (α=0.1; 0.4; and 0.8) and all the cases of ′β . Although we have
chosen these cases for the comparison, the results corresponding to

other crack geometries are very similar to the ones that have been ex
posed. Looking to the figure, it can be observed that there is a great
concordance between both results for all the cases. Table 1 shows the
MSE (Mean Squared Error) between the results obtained with the ex
pression and the numerical ones for every crack geometry, calculated
according to Eq. (4).

∑=
−

=

ε
n

F F
F

(%) 100 1
| |
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I EXP
i

I FEM
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I FEM
i

1

,
( )

,
( )

,
( )I

(4)

where FI EXP, is the dimensionless SIF obtained with the expression for
sickle shaped cracks, and FI FEM, is the dimensionless SIF obtained using
the numerical model.

Note that most of the mean squared errors are less 2% and the
maximum one is 3.95% showing a great concordance and the goodness
of the proposed expression.

4.2. Validation of the SIF expression

4.2.1. Comparison with the numerical results for other crack geometries
Secondly, to validate the SIF expression, the values obtained using

the expression have been compared with the numerical data for other
crack geometries that have not been used to determine the expression.
As an example, two cases, that have been arbitrarily chosen, show the
good agreement:

• Case 1: α=0.27 and ′β =0.63.

• Case 2: α=0.61 and ′β =0.15.

Fig. 8 shows the comparison between both results. It can be seen a
good agreement for the two cases. The MSE are always less than 4.5%
for the first case and less than 3% for the second case. For other couple
of data ( ′α β, ) the result are similar.

4.2.2. Comparison with results obtained from the literature
Finally, a comparison among the solutions of the SIF expression and

the results obtained by Carpinteri [21] has been made. Carpinteri [21]
calculated the SIF at two points of the front of an open surface crack
with sickle shape contained in a shaft under bending using a 3D nu
merical model and the quarter point displacement technique. Fig. 9
compares the Carpinteri [21] solutions with the current results at the
central point of the crack front ( =γ 0). In this case, the SIF has been
plotted versus the crack relative depth for the different shape factors.
We can see that the results agree very well. We also have obtained the
MSE (Mean Squared Error) between both results, according to Eq. (4),

Table 1
Mean relative error (%).

′ =β 0 ′ =β 0.25 ′ =β 0.5 ′ =β 0.75 ′ =β 1

=α 0.1 0.30 0.29 0.31 0.50 0.67
=α 0.2 1.41 1.57 1.59 2.15 2.45
=α 0.3 2.44 2.61 2.65 3.53 3.95
=α 0.4 0.89 0.91 1.14 1.15 1.33
=α 0.5 1.37 1.59 1.27 1.95 2.17
=α 0.6 1.60 1.76 1.47 2.10 2.85
=α 0.7 0.53 0.57 0.47 0.75 3.84
=α 0.8 0.05 0.26 0.11 0.65 1.72

Fig. 8. Comparison with the numerical data for other crack
geometries.
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and it is less than 3%. Therefore, these results and the ones obtained at
the previous section allow us to validate the SIF expression for sickle
shaped cracks.

5. Propagation and crack front evolution for sickle shape cracks

In this section, we have analyzed the crack front evolution for sickle
shape cracks until it changes to almond shape using the expression
obtained previously. The propagation model for the whole front has
been developed to obtain the crack front evolution. This model assumes
that, as mentioned before, the crack front has sickle elliptical shape and
advances following the Paris Erdogan Law [24,10,11,26,34 36,27]:

=da
dN

C KΔ I
m

(5)

where KΔ I is the SIF range; da
dN

is the crack propagation rate; C and m are
the material constants of the Paris Erdogan Law which are assumed to
be = × −C 45 10 9 and m=2.9.

First, the SIF at each point of the front has been calculated using the
expression for sickle cracks determined in the previous section. Then,
the SIF range at each point has been determined as follows:

= −K K KΔ I I max I min, , (6)

where KI max, is the maximum value of the SIF corresponding to the load

=F 100 N and KI min, is the minimum value of the SIF corresponding to
the load =F 0 N. Consequently, the SIF range at the considered point is
equal to the maximum value of the SIF, corresponding to the load
=F 100 N.
We have obtained the crack advance, by integrating the Paris

Erdogan Law:

=a N C KΔ Δ · ·[Δ ]I m (7)

where NΔ is the number of cycles.
The crack depth variation of the point located at the crack center (A)

and another point (Pj), are given by the following expressions:

=a A N C K AΔ ( ) Δ · ·[Δ ( )]I
m (8)

=a P N C K PΔ ( ) Δ · ·[Δ ( )]j I j
m (9)

where j is the number of points along the crack front.
Hence, the crack advance at each point of the crack front a PΔ ( )j can

be expressed as follow:

⎜ ⎟= ⎛
⎝

⎞
⎠

a P a A
K P
K A

Δ ( ) Δ ( )
Δ ( )
Δ ( )j

I j

I

m

(10)

where K P( )I j is the SIF at the different points of the front; K A( )I is the
SIF at the crack center; and a AΔ ( ) is the advance at the crack center
that has been given an initial value (see Fig. 10).

Finally, from these points, a new crack front with elliptical sickle
shape is fitted using the Least Squared Method. The procedure is re
peated iteratively until the depth of the crack reaches a fixed value
which has been selected previously in order to finish the propagation
study.

As mentioned before, the advance at the crack center a AΔ ( ) is given
an initial value which remains constant in the whole process. With the
purpose of determining the optimum value of this advance at the crack
center a AΔ ( ), a sensitivity analysis for the a AΔ ( ) has been carried out.
The results of the sensitivity analysis are shown in Fig. 11. The shape
factor ′β , against the depth α have been plotted for the different values
of the crack advance showing the crack front evolution. Two different
cases have been represented. In the first case the initial crack depth

=α 0.10 and initial shape factor ′ =β 10 (Fig. 11(a)), and in the second
case =α 0.30 and ′ =β 0.750 (Fig. 11(b)). The values of the crack advance
that have been considered are: , , ,D D D D

100 200 300 400 .
We can see that for both cases, the crack front becomes straighter

with the growth of the crack, that means that the shape factor decreases
progressively until it becomes zero. We can observe that there is a good
concordance between the curves corresponding to =a AΔ ( ) D

300 and D
400

,

so =a AΔ ( ) D
300 is the value of the advance that has been used in the

propagation model.

Fig. 9. Comparison among the solutions of the SIF ex-
pression and the results obtained by Carpinteri [21] at
=γ 0.

Fig. 10. Fatigue sickle crack growth at each point of the front.

7



5.1. Results of the evolution of the crack front for sickle shape cracks

Fig. 12 shows the evolution of the shape of the sickle crack front
that has been obtained by plotting the shape factor ′β , against the depth
α for different initial sickle cracks. The initial crack configurations that
have been shown are: initial crack relative depth α0 =0.2; 0.4; and 0.6,
and initial shape factor ′β0 =0.25; 0.5; 0.75; and 1. The results corre
sponding to other initial crack configurations are analogous to the ones
that have been exposed. Note that all the initial sickle cracks tend to
become straight with the growth. We can observe that as the initial
crack is more circular, it takes longer to become straight. For example,
an initial sickle crack of α0 =0.6 ′β0 =0.25 becomes straight when it
reaches a depth =α 0.64 and an initial sickle crack of =α 0.60 ′ =β 10
becomes straight when it reaches a depth =α 0.78, therefore, this crack
takes longer to become straight, that means that the crack is deeper
when it becomes straight. Once, the crack adopts the straight shape, as
the SIF at the ends of the crack is bigger than the SIF at the center of the
crack, the shape will change to almond and the propagation paths
should be analyzed with the propagation model [28] developed for
almond cracks.

In Fig. 13, the evolution of the front shape of the initial circular
cracks ( ′ =β 10 ) considered in Fig. 12 is also shown. We can see clearly
that regardless of the initial geometry, the front gradually becomes
straight with the growth. In addition, the proposed propagation algo
rithm also allows studying the number of cycles required to reach a

certain depth. The number of cycles required for a circular cracks of
αo =0.2 0.4; 0.6 to adopt straight shape are 4.3·10 , 2.9·105 5 and 5.2·104

respectively.

6. Conclusions

We have presented an expression to determine the Stress Intensity
Factor at any point of the front of a sickle shaped crack contained in a
shaft in terms of the geometric parameters of the crack (depth and
shape) and the position on the front. To determine this expression, it
has been necessary to develop a 3D numerical model of a shaft in
bending using The Finite Element code ABAQUS/Standard. The SIF has
been determined along the crack front considering different crack
geometries. Taking into account all the numerical results, an expression
of the SIF has been obtained using multiple regression techniques. The
expression of the SIF has been validated comparing the results with the
reference numerical data for other crack geometries and with some data
of the literature. It can be found that there is a great concordance with
all the analyzed cases. It can be concluded that SIF expression seems to
be adequate to determine the SIF along the whole crack front for open
sickle cracks in shafts and can be used to analyze the propagation of
these types of cracks. Finally, the sickle crack propagation has been
analyzed using a developed algorithm based on the Paris Law and the
expression for sickle cracks proposed. The results obtained with the
propagation method indicate that, regardless of the initial geometry,

Fig. 11. Sensitivity analysis. (a) =α 0.10 ′ =β 10 ; (b)

=α 0.30 ′ =β 0.750 .
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Fig. 12. Factor shape ′β against the depth α for different
initial shape factors ′βo and for three initial crack depths

αo =0.2; 0.4; 0.6

9



Fig. 13. Evolution of the front shape of the
initial circular cracks ( ′β0 =1) for three in-

itial crack depths αo =0.2; 0.4; 0.6.

Table 2
Coefficients Kijk

i j 0 1 2 3 4

=k 0
0 0.4875 −0.6294 0.4064 −3.2428 −2.0759
1 9.4830 11.4342 1.9751 50.1501 55.2848
2 −74.6025 −66.0138 −101.7651 −198.8668 164.7026
3 248.3798 153.4645 651.3657 72.5478 −242.4057
4 −365.8062 −142.0032 −1412.5163 692.4108 −48.3627
5 205.5437 37.6398 1000.8080 −754.5669 211.7913

=k 1
0 0.0002 1.4244 −6.1846 8.5633 −3.8024
1 −0.0012 −28.4193 123.4194 −171.0350 76.0250
2 0.0002 192.1328 −834.3504 1156.6009 −514.3335
3 0.0118 −570.5779 2477.4128 −3434.5284 1527.5815
4 −0.0245 763.5559 −3314.7462 4595.2807 −2043.9624
5 0.0145 −375.0129 1627.7396 −2256.4368 1003.6576

=k 2
0 −0.2157 2.4339 −8.1080 14.9954 −5.1173
1 −0.7368 −48.0285 154.4174 −289.8887 94.2611
2 9.4266 326.6910 −1039.5254 1955.5829 −634.2120
3 −32.9586 −976.8284 3006.8426 −5721.0236 1784.8208
4 50.8222 1323.8809 −3905.5388 7553.8428 −2240.8577
5 −29.8109 −664.9542 1848.9177 −3688.0599 1016.0860

=k 3
0 0.0012 −3.7715 16.3692 −22.6579 10.0569
1 −0.0211 74.7819 −324.9914 450.6514 −200.3945
2 0.1275 −500.0042 2173.7802 −3016.3124 1342.2937
3 −0.3414 1461.6847 −6354.7701 8819.6861 −3926.0042
4 0.4165 −1915.3652 8326.0826 −11555.8189 5144.4539
5 −0.1889 914.9745 −3976.7434 5519.0415 −2456.9982

=k 4
0 −0.3794 −4.5817 24.3150 −29.1518 7.2788
1 1.4279 91.0277 −482.5878 569.7931 −132.5685
2 −0.8874 −622.1710 3293.9067 −3841.2626 849.3060
3 −9.4784 1873.6263 −9889.1298 11278.5935 −2255.9302
4 22.1273 −2556.8488 13441.9982 −14891.1075 2556.1960
5 −14.5266 1282.7155 −6701.4332 7070.2149 −869.4949

Table 3
Continued coefficients Kijk

i j 0 1 2 3 4

=k 5
0 −0.0032 2.3887 −10.3261 14.2595 −6.3171
1 0.0465 −46.9954 204.0124 −282.8193 125.7355
2 −0.2465 309.4811 −1345.7990 1868.6919 −832.0334
3 0.6031 −884.4633 3848.8105 −5347.8440 2382.6944
4 −0.6890 1122.6893 −4886.7860 6792.0216 −3027.0819
5 0.2971 −512.8212 2232.4716 −3103.3668 1383.3587
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the sickle crack becomes straight with growth.
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Appendix A

The coefficients Kij that has been used to determine the SIF expression are the following:
Tables 2 and 3
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