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Gracias.

iii



This page was intentionally left blank



Abstract

Intracranial saccular aneurysms are a small portion of a vessel that bulges outward
forming a balloonlike sac. Approximately 3% of the worldwide population suffer from
this pathology and its rupture entails subarachnoid haemorrhage, causing in most of
the cases brain damage or even death. Many physical and clinical factors such as
its location, geometry and growth, the surrounding fluids, other underlying condition,
the sex or the age of the subject highly affect the evolution of aneurysms. However,
although it is known that many parameters affect their development, the main criteria
for deciding their treatment is their size.

The main contribution of this work is the development of a 3D mathematical model
to describe the behaviour of an idealized intracranial saccular aneurysm. An study
of its mechanical behaviour is performed to understand under which conditions the
aneurysm will break. The problem is divided into three main sections: the first one
considers an aneurysm surrounded by a non-viscous Newtonian fluid and a constant
internal pressure, the second one introduces the viscosity in the surrounding fluid and
the last one introduces an internal pulsatile pressure. Additionally, this work analyzes
how the variations of the internal pressure value, the thickness of the aneurysm and
the density of both the surrounding fluid and aneurysm’s wall, affect the behaviour of
the aneurysm.
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Chapter 1

Introduction

According to Tortora and Derrickson [52], an aneurysm is “a thin, weakened section of
the wall of an artery or a vein that bulges outward, forming a balloonlike sac.” They
can appear in different regions of the body, and according to their location they can
be classified as aortic, cerebral or peripheral aneurysms [39] Nowadays in the United
States, approximately 6 million people suffer from intracranial aneurysms, meaning
that 1 out of 50 people in the USA suffer from this condition [8].

Understanding how aneurysms work has been a major priority for their early diagnosis.
The refinement of the detection of aneurysms will allow physicians to prevent the
rupture of aneurysms and to minimise the risks when an intervention is needed for
their removal. In the field of biomechanics, approaches to understand how they grow,
how they evolve over time or how the surrounding parameters affect their behaviour
have been performed.

Along this work, a structural analysis of how an idealised intracranial saccular aneurysm
behaves under different constitutive models, varying different characteristics and sur-
rounding conditions is developed in order to try to clarify how and when a rupture of
the aneurysm will occur. Chapter 1 starts contextualizing aneurysms, which is their
impact in society, followed by the objectives of this work and how its results will affect
society. Then, in chapter 2, a brief background about aneurysms, the different existing
types and which factors affect their rupture is given. The state of the art, which con-
stitutes a summary of the different works in modelling intracranial aneurysms, is also
presented there. In chapter 3 the formulation of the problem addressed in this research
work is performed and in chapter 4 the different constitutive models are described. Fi-
nally, chapters 5 and 6 present the obtained results and the conclusions and future work
respectively. The budget and regulatory framework are included in the annexes, next
to the detailed explanation of specific sections from the problem formulation.
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2 Nonlinear Vibrations of an Idealized Saccular Aneurysm

1.1 Context

Nowadays, unruptured intracranial aneurysms have a prevalence of 3% in worldwide
population [15]. Most common symptoms involve localized headache, dilated pupils,
blurred or double vision, pain above or behind the eyes, weakness and numbness or
difficulties in speaking [8]. However, about 95% of the cerebral aneurysms are asymp-
tomatic [38], hardening early detection. When subarachnoid haemorrhages (SAH) re-
sults from the breakage of aneurysms, besides the previous symptoms, patients might
experiment a really severe headache, loss of consciousness, nausea and vomiting, stiff
neck, change in mental status, dizziness, photophobia, a seizure or even sudden death.
About 1%-3% of non-symptomatic aneurysms bleed annually and in about 70% of the
patients vasospasm (narrowing of the vessels due to vasoconstriction) occurs.

In 1992, Wiebers et al. [57] analysed the impact of aneurysms in the population of
United States. They estimated that about 10,300 patients were hospitalised every
year with unruptured intracranial aneurysms. The estimated cost was of $522,500,000,
which is a negligible cost when compared to the cost of patients with subarachnoid
haemorrhages (SAH), which implied a cost of $1,755,600,000 annually. Another study
from 1997 [38] reflected from autopsy data that about 5 million individuals in North
America had intracranial aneurysms, among them 28,000 ruptured every year. The
saccular aneurysms were found in 2% of the autopsy population and between the 20%
and 30% of the cases appeared with multiple saccular aneurysms.

However, a slight decrease in subarachnoid haemorrhages derived from the rupture of
aneurysms has been found between 1950 and 2005, probably because of the reduction
in smoking habits1 and the early detection and treatment [55]. In 2010 in Spain, 1.10%
of the total population suffered from deep brain damage caused from the rupture of
a cerebral aneurysm [43]. If this percentage is further analysed, 1.17% of the affected
individuals are women whereas men constitute a 1.04%.

A more recent study performed by Asaithambi et al. [3] shows that 15.6 out of 100,000
persons suffer from unruptured intracranial aneurysms, being 7.7 out of 100,000 ex-
perimenting SAH. However the largest prevalence occurs in people aged 75-84, which
constitute 61.6 persons out of 100,000. The SAH rate is also higher, being 30.1 persons
out of 100,000 older than 85 years old. Other studies reported a higher incidence in
women, being 22.5 out of 100,000 affected by unruptured intracranial aneurysms and
9.6 by SAH. However, they estimated that by 2018 in USA a budget of $4.4 trillion
would be needed, which will represent a 20% of the Gross Domestic Product 2.

1Smoking, with hypertension, has a great impact in the growth and rupture of intracranial
aneurysms, as it will be explained later in chapter 2

2GDP is the monetary value of all the goods and products produced by a country in a specific time
period [26].
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1.2 Motivation and Objectives

Due to the prevalence of intracranial aneurysms, there is a need for studying and
understanding how aneurysms evolve. A correct detection and treatment will improve
the survival rate of individuals suffering from this condition. As it will be presented
later, the rupture of an aneurysm will occur depending on the aneurysm’s wall structure
and its surrounding factors.

So, due to its prevalence and geometry, this project has selected an intracranial saccular
aneurysm for performing the dynamic analysis that will bring to light some of the
features affecting the growth and rupture of this type of aneurysms. Consequently, the
aim of this project is:

• To develop a mathematical model to study the non-linear vibrations of an ideal-
ized saccular aneurysm surrounded by the cerebrospinal fluid (CSF).

• Analyse how different biological and directly-related parameters affect the be-
haviour of an aneurysm.

• Compare how the system behaves under two different constitutive models and
see the strong dependencies between the material parameters.

In the parametric analysis the characteristics that are going to be tested are the density
of the aneurysm’s wall and of the cerebrospinal fluid, the pressure exerted by the
circulating blood flow and the difference in thickness of the aneurysm. It is analyzed
too how is the dynamic behaviour of the aneurysm given there is a viscous contribution
coming from the surrounding fluid. It is also included a pulsatile internal pressure to see
how it affects the behaviour of the aneurysm’s wall. Moreover, during the parametric
analysis the two constitutive models that are going to be employed are the Neo-Hookean
model and a Mooney-Rivlin model of three parameters, both calibrated for aneurysmal
tissue according to the data of Costalat et al.[13].

1.3 Socio-Economic Impact

A deeper understanding of the dynamics of intracranial saccular aneurysms could op-
timize the future treatment of patients suffering from this alteration. Although this
research is just a first step in the understanding of the development of this type of
aneurysms, it is accurate enough to clarify how the different biological parameters are
affecting their growth. Future works will consider all the parameters affecting the
development of intracranial saccular aneurysms and they will include more accurate
constitutive models describing the tissue. All this information will allow physicians to
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compare the data obtained by imaging techniques with the complementary information
reported by the model.

Nowadays, one of the main problems in this area is the lack of experiments. A larger
amount of experiments over aneurysm’s walls will allow an improvement of constitutive
models. Although this work develops a mathematical model for the dynamic behaviour
of spherical shells, it is highly influenced by the constitutive model, as will be introduced
later in chapter 5. The constitutive model describes the mechanical behaviour of the
aneurysm’s wall but one of the main problems of biological tissue is that it remodels
by itself much faster than other known inert material. Consequently, really accurate
experiments must be performed in order to register all the different conformations
an aneurysm’s wall achieve during its life cycle. The lack of those models and the
reduction of the geometry of the proposed problem make this work hardly useful for
early diagnosis and prediction of when the aneurysm will break.

However, for developing more sophisticated models that will allow the prediction of
the rupture of aneurysms some bases have to be set. This work is a first approach
in the understanding of how different biological parameters affect the development of
aneurysms and can be considered as a first step for future models. Improvement of
in-vivo diagnosis techniques will allow to study the conformation of the aneurysm’s
wall, returning some information that could be applied to the mathematical model.
This will provide physicians with another tool for contrasting information and predict
whether the aneurysm will break or not.

The use of a mathematical model for deciding whether an aneurysm is surgically re-
movable or not will improve the survival rate of affected individuals. Nowadays the
main criteria for deciding whether an aneurysms is operable or not is mainly its size,
discarding the removal of many aneurysms under 5 mm of diameter. However, in many
cases these aneurysms break and cause a really severe haemorrhage that leaks into the
subarachnoid space (see section 2.1). Thus, the inclusion of mathematical models into
the diagnostic procedure as a complementary technique to the already standard ones
will reinclude for consideration aneurysms that in other cases will not receive a cor-
rect treatment. By this way, these aneurysms will be traced with more attention by
physicians or even surgically removed in case some new hazardous indices appear.

Moreover, using reliable mathematical models describing the growth of such biological
structures will not only improve the survival rates for people having aneurysm, but
they also will save considerable amounts of money to the government. As presented
before, the overall cost of patients having a ruptured aneurysms triplicates the cost of
those with an unruptured one. Furthermore, patients suffering sequels from the SAH
will require more resources from the government or insurance companies. In summary,
a proper diagnosis and removal of intracranial saccular aneurysms will diminish extra
costs derived from patients suffering the effects of an avoidable SAH.



Chapter 2

Theoretical Background

2.1 Aneurysms: Theoretical Background

As presented before, aneurysms are outpouchings in the wall of an artery or a vein.
Depending on their location, they can be classified in different subgroups [39]:

• Aortic aneurysms: divided into abdominal aortic and thoracic aortic, depend-
ing in which region of the aorta they are found.

• Cerebral aneurysms: located in the brain, they normally produce no symp-
toms until they become large.

• Peripheral aneurysms: all those aneurysms located in arteries different from
the aorta or the brain ones. Normally their rate of rupture is lower than the
aortic ones but a clot detached may be fatal for the patient.

This study has been developed for intracranial saccular aneurysms so this brief intro-
duction is focused in understanding the different types of brain aneurysms, how they
grow and break and what are the factors affecting their rupture.

A cerebral aneurysm is a small dilatation of an artery or vein from the brain and
between 3% and 5% of the global population suffer from them [12]. There are different
types of cerebral aneurysms depending on their shape and cause of formation. Mycotic
aneurysms are usually formed after a bacterial infection whereas fusiform aneurysms
usually result from atherosclerosis and are located at the vertebrobasilar and internal
carotid artery regions [38]. Also some aneurysms appear because of some trauma or
because of the appearance of some tumor [46]. The other two types found are dissecting
aneurysms, found in the extracranial arteries, and saccular aneurysms [38], which are
the most common cerebral aneurysms and also seem to be the most common cause

5
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of non-traumatic subarachnoid haemorrhage [12, 36]. Notice that the breakage of the
aneurysm produces a leak of blood into the subarachnoid space, leading to some severe
health issues that may also lead to death.

Figure 2.1: Types of cerebral aneurysms.
Source: Joseph [30]

The growth of intracranial saccular
aneurysms is highly related to the histo-
logic structure of the arteries where the
appears. Cerebral arteries, as other along
the body, are formed by three main lay-
ers: tunica intima, tunica media and ad-
ventitia. Adventitia is the most outer
layer of the artery wall and is mainly com-
posed of connective tissue which also an-
chors the vessel to the tissues of the sur-
roundings. The layer of the middle, the
tunica media, is mainly formed of smooth
muscle in the case arteries located in the
brain but also some layers of elastic tis-
sue appear in some other arteries. Fi-
nally the inner layer, the tunica intima,
is composed of a thin layer of endothe-
lium, the basement membrane and vari-

able amounts of connective tissue. So, depending on the composition and condition of
those layers, aneurysms will be prompt to appear or not and to break or not.

Saccular aneurysms commonly appear in the bifurcations of the arteries, where the
muscular layer weakens or even disappears [12, 17, 45, 46]. Then, tunica intima and
tunica media must be absent or really weakened in order for the aneurysms to form
and break. More recent studies [12, 18] have shown that one of the main processes
involved in the disappearance of those layers is inflammation, where the apoptosis of
smooth muscle is induced and consequently, the extracellular matrix that is protecting
the vessel’s wall is destroyed since smooth muscles cells are one of the most important
synthesizers of this layer. Moreover, the formation of thrombus in the interior surface
of the aneurysm wall enhances its degradation and consecutive rupture [18]. However,
although the inflammatory process is highly related with the weakening of the vessel’s
wall, the question is which factors are provoking this inflammation and how can be
known how and when the aneurysms will break, which seems not to follow a standard
procedure or set of conditions.

Many studies have been developed to understand which factors affect the development
of aneurysms, going from more physical parameters to those more related with genetics
or even environmental factors.
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Location

It has been studied whether the location of the aneurysms in the brain is correlated
with the rupture of aneurysms. Although this phenomena occurs in different areas of
the brain, Sandasivan et al. [45] showed that between 70% and 75% of ruptures occur
in three areas: the middle cerebral artery, the posterior communicating artery and
the anterior communicating artery, which seem to show some correlation between the
possible rupture and its location.

Geometry and Growth

Growth increases considerably the risk of rupture. Risk of rupture was found to be
2.4% in aneurysms with growth versus only 0.2% in those without growth [54]. Some
factors driving aneurysm’s growth are inflammation and matrix degeneration but it is
also highly influenced by the initial size of the aneurysm and some habits as tobacco
smoking [12].

From different studies it seems that the size of the aneurysm also matters, being those
between 5 and 10 mm the ones with higher risk of rupture [45]. In general, an increase
in the size entails an increase in the risk of rupture [18]. However, some aneurysms with
an overall size smaller than 5 mm are associated with large and severe subarachnoid
haemorrhage [9, 42]. Nevertheless, this information is not so accurate for predicting the
rupture of aneurysm since the mean difference in size between ruptured and unruptured
ones is of at most about 1.5 mm [45]. Other parameters that can be used to describe the
rupture of an aneurysm are neck, depth, surface area, volume or aspect ratio [53].

So, the aspect ratio (ratio of size in different dimensions), considered to be a more
precise parameter when predicting the rupture of aneurysms, is around 1.6 for unrup-
tured aneurysms and 2.4 for ruptured ones [12, 45]. Ruptured aneurysms tend to have
an irregular surface as well as those with a high bottleneck factor and height to width
ratio (long and thin). Finally, a quite useful factor to consider the development of
small aneurysms will be the aneurysms to vessel size ratio.

Shape is also influencing whether aneurysms will break or not. Multilobular aneurysms
and those with non-spherical geometry are more prompt to break. In addition, those
to which blood flow is penetrating directly will fail more easily [9].

Prediction based in size and growth is around 70% - 75% [45] but more data and
parameters must be considered for an accurate prediction.
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Flow

Blood flow has a great impact in the creation of aneurysm. Hemodynamics is the
initiating factor for the formation of a cerebral aneurysm, easily seen in regions under-
going high hemodynamics stresses as bifurcations or abrupt angles of the vessels [12].
It is also known that non-physiological flow conditions can cause wall deterioration,
ending with the loose of endothelium. In addition, the variations in geometry of the
aneurysm may vary the wall shear stress conditions created by the fluid, ending in
more deterioration and de-endothelialization of the wall[18].

As presented before, saccular aneurysms commonly appear in areas where the wall is
subjected to a higher stress by the incoming flow, such as bifurcations of the arteries
[11]. Although the pressure and flow exerted over the internal wall of each aneurysm
vary with its geometry and for each patient, it can be considered that the pulsatile
blood pressure is the same in the systemics regions and in the cerebral one but with
some attenuation [45].

Genetics and Clinical Factors

In the most recent years it has been studied whether if there exists a correlation between
the breakage of an aneurysm and having some genetic related disease. It has been
found that some individuals having genetic diseases are more prompt to develop an
aneurysm. Some of the diseases related are Ehlers-Danlos type IV, a rare syndrome
where individuals have muscular weakness, or autosomal dominant polycystic kidney
disease, one of the most common hereditary diseases. Individuals having those diseases
conform between 10% to 13% of the population having cerebral aneurysms [9, 12].
Some other as fibromuscular dysplasia and Marfan syndrome affects the development
of intracranial aneurysms, as well hypertension, the family history and the ageing, that
also have an important impact in the appearance of aneurysm. In conclusion, people
with comorbidity tends to have a higher probability of developing aneurysms [55].

Some studies considering ruptured and unruptured aneurysms have correlated some
genes involved in the degradation of the vessel’s wall as well in the inflammation pro-
cess [18]. Hence, it has been seen in practice that genetic therapy resulted in the
prevention of aneurysm rupture, as for example by activating the macrophages in the
area [12].

Another factor mentioned before, has been a case of study in many researches directed
to understand the rupture of intracranial aneurysms. Hypertension is thought to be
a major cause of the aneurysms growth as well as of a non-correct repair of its wall
[9]. Hypertension also increases blood pressure, what in some patients increases the
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wall shear stress by 4.2%, resulting in an increase of a 14.5% - 17.5% of the area of the
intracranial aneurysm [50]. Overall, people who have been treated for hypertension at
some point in their lives shows more than three times more possibilities of developing
a SAH [4, 7].

Smoking also influences the appearance and growth of cerebral aneurysms. Actually,
cigarette smokers have five times more risk of ending with the rupture of aneurysms
than non-smokers. This habit weakens the arterial wall, predisposing them to develop
an aneurysm [2, 7, 9, 50]. Furthermore, if some individuals are having some specific
gene variations related to the formation of aneurysms, the risk of developing such
deformation in the wall increases dramatically. In contrast, regular physical exercises
decrease the risk of developing one [12].

No clear evidence has been found that allow the community to correlate the appearance
and rupture of aneurysms with the country where patients belong [55].

Age and Sex

Finally, different studies have been developed to prove that age and gender affects
the aneurysm’s formation. In general, a higher risk of developing cerebral aneurysms
is attributed to females. Specifically, women between the perimenopausal and post-
menopausal periods are found to be more prompt to develop an aneurysm. However,
since estrogens protect against the formation and growth of aneurysms but they ex-
periment a decrease during menopause in women [9], hormonal therapies have been
proved to protect from the SAH resulting from the rupture of aneurysms [12, 55]. Fur-
thermore, due to anatomical and physiological variations, the wall shear stress in the
bifurcations located in the middle cerebral artery is 17% higher in women than in men
whereas in the internal carotid artery is 50% higher, resulting in a higher pressure over
the vessel’s wall [33]. Moreover, women with smoking habits undergo more possibilities
of having an aneurysmal SAH [2].

With respect to the influence of age in the development and rupture of aneurysms, some
studies postulated that the risk of rupture rises with age, reaching a plateau in older
ages or even decreasing after the age of 50 [9]. Others as Vlak et al. suggested that
there is an inflexion point at the age of 30, where the prevalence of aneurysms increases
considerably [55]. However, some authors as Lindekleic et al. [33], concluded that there
is no strong correlation between the age and the risk of rupture of aneurysms.
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2.2 State of the Art

From the previous analysis of the parameters affecting the rupture of aneurysms, it
has been seen that it is highly affected by the geometry and size. Thereby, it is one
of the major criteria for deciding the future treatment of an aneurysmal patient. The
fail of the wall of the aneurysm is also affected by all the parameters presented before
but is just the combination of all what will determine whether an aneurysm will break
or not. Consequently, a study in the mechanical behaviour of the aneurysm’s wall will
bring to light how and under which conditions the aneurysm might break.

Notice that in this work the word bifurcation appears with two different meanings.
In the first part bifurcations refereed to the division of one vessel into two different
branches whereas from now on, it will refer to the end of oscillatory motion in the
mathematical model describing the behaviour of the aneurysm. On this last case,
bifurcation can be matched physically with the rupture of the aneurysm’s wall.

The question of whether mechanical instabilities, both static and dynamic, may cause
the enlargement and rupture of saccular aneurysms has been debated by the scientific
community during the last 40 years. Several researchers, such as Akkas [1] and Austin
et al. [5], signalled that the existence of limit point instabilities (i.e. mathematical
bifurcations occurring in the quasi-static response of the aneurysm) could be a reason
for the growth and rupture of this type of lesions.

Alternatively, other authors like Jain [28], Sekhar and Heros [46] and Sekhar et al.
[47] suggested that the pulsatile blood flow could excite the natural frequency of the
aneurysm making it dynamically unstable. This hypothesis was supported by the
results of Simkins and Stehbens [49] and Hung and Botwin [25], who studied the elas-
todynamics of berry (saccular) aneurysms and showed that the natural frequency of
these type of lesions may lie within the range of bruit frequencies that commonly ac-
company aneurysms. However, despite the nonlinear stress-strain response exhibited
by the aneurysm’s wall over finite strains, these authors used in their analysis the clas-
sical shell membrane theory 1, which assumes infinitesimal strains and linear material
behaviour. Furthermore, they ignored the contribution of the Cerebral Spinal Fluid
(CSF) surrounding the lesion. Thus, the idea that resonances may cause the rup-
ture of intracranial aneurysms has been gradually losing support within the scientific
community.

Shah and Humphrey [48] and David and Humphrey [14] studied the nonlinear elas-
todynamics of a sub-class of spherical aneurysms subjected to pulsatile blood pres-
sure and surrounded by CSF. The aneurysmal wall was modelled using a Fung-type

1The shell membrane theory stands that for sufficiently small thickness the stresses acting over
this direction can be negligible [20]
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pseudostrain-energy function which included strain rate dependence. These works
brought to light that both surrounding fluid and material viscosity help to increase
the dynamic stability of the aneurysm. Shortly after, Haslach and Humphrey [22]
provided further insights into the effect of the mechanical behaviour of the aneurys-
mal wall on the dynamic response of the lesion. Through the comparison of various
strain energy functions, the authors pointed out the great sensitivity of the dynamic
behaviour of the aneurysm to the constitutive model used to describe the aneurysmal
wall. In particular, they stressed the fact that it is essential for the (correct) analysis of
the dynamic stability of aneurysms to use constitutive models specifically formulated
and calibrated for the aneurysmal wall. It was shown that the opposite may give rise
to misleading results which predict dynamic instabilities that there are not present in
actual tissue.

Nevertheless, the work by Humphrey and co-workers [14, 22, 48] had been developed
in a 2-D framework. While many aneurysmal lesions show small wall thickness and
thus can be modelled relying on the membrane hypothesis, the necesity of using a 3D
formulation arises from the works of Suzuki and Ohara [51], MacDonald et al. [34] and
Costalat et al. [13] who obtained experimental evidences of intracranial aneurysms with
a ratio between wall thickness and inner radius larger that 0.1, leading to non-negligible
radial stresses through the aneurysmal wall.

So, due to the necessity of developing a three dimensional framework to describe the
dynamic behaviour of an intracranial saccular aneurysm based on the strong evidence
given by some authors [13, 34, 51], this project extends the work done by Humphrey and
co-workers [14, 22, 48] and develops it for an idealised saccular aneurysms surrounded
by an external fluid, discarding then the shell membrane theory. For two different
constitutive models, a parametric analysis of different affecting variables as the density
of the wall and the surrounding fluid, viscosity of the CSF, the radius of the aneurysm
and the variable internal pulsatile pressure is performed in order to clarify how this
parameters affect the bifurcation of the aneurysm and how is the dependency between
different constitutive models.





Chapter 3

Problem Formulation

In this chapter, the mathematical framework employed to model the problem of an
idealized saccular (spherical) aneurysms is presented. The aneurysm’s model will be
then tested for different situations according to the cerebrospinal fluid conditions. In
the most basic aneurysm’s model analyzed, the walls are surrounded by a non-viscous
incompressible Newtonian fluid and subjected to an internal constant blood pressure.
Thereafter, the viscosity of the fluid is included and finally, a pulsating radially sym-
metric blood pressure affecting the internal wall of the aneurysm (see figure 3.1) is also
incorporated.
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Figure 3.1: Schematic representation of an idealized saccular (spherical) aneurysm
surrounded by cerebral spinal fluid and subjected to radially symmetric pulsating blood
pressure. (a) Reference and (b) deformed configurations.
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The contribution of this work is to extend the 2D formulation developed by Humphrey
and co-workers [48, 14] to a 3D framework. As presented before, the motivation for a
3D formulation comes from the data provided by Costalat et al. [13], who pointed out
that the ratio between thickness and radius of intracranial aneurysms may be larger
that 0.1, leading to non-negligible radial stresses through the aneurysm’s wall (see
chapter 5).

3.1 The Aneurysm’s Wall

Following the work of Shah and Humphrey [48], the aneurysm’s wall is taken to be
incompressible and isotropic within the framework of finite non-linear elasticity. While
the hypothesis of homogeneous and isotropic properties is likely a gross approximation
[44], it is correct enough to study the elastodynamics of the aneurysmal lesion [23].

So, the aneurysms occupies a volume Ω0 defined by the spherical polar coordinates
(R,Θ,Φ) in some reference configuration such that A ≤ R ≤ B, being A the inner
radius of the sphere and B the outer radius. In this work A = 4.3 mm and B = 4.67 mm
are taken which, based on the work of Costalat et al. (2011), represent average values
for the inner and outer radii of intracranial aneurysmal lesions. Since the material is
deformed so that the spherical symmetry is maintained, the motion is given by

r = r(R, t); θ = Θ; φ = Φ (3.1)

where (r, θ, φ) are spherical polar coordinates in Ω configuration such that a ≤ r ≤ b,
being a the inner deformed radius and b, the outer deformed one, see figure 3.1.

From the second Newton’s law
∑ ~F = m~a = ρ dV ~̈r and setting the equilibrium for an

spherical volume element whose dV = r2 cosφdrdθdφ, the balance of linear momentum
in the radial direction results as equation (3.2) 1

∂σr
∂r

+ 2
(σr − σθ)

r
= ρr̈ (3.2)

where a superposed dot denotes differentiation with respect to time, σr(r, t) and σθ(r, t)
are the radial and circumferential Cauchy stresses respectively and ρ = 1050 kg/m3 is
the density of the aneurysm’s wall [48].

1For the complete derivation of equation (3.2), see appendix A.1.
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Now, let λr = ∂r
∂R

and λθ = λφ = r
R

= λ denote the radial and circumferential stretches
respectively. From the incompressibility condition (λrλθλφ = 1) it is deduced that

λ(r, t) =

(
B3

R3
(λ3b − 1) + 1

)1/3

(3.3)

where λb = b
B

stands for the circumferential stretch in the outer surface of the aneurysm’s
wall. The derivatives of equation (3.3) with respect to r and t are taken to obtain re-
spectively

∂λ

∂r
= −λ

3 − 1

R
(3.4)

λ̈ =
λ3 − 1

λ3b − 1

(
2λbλ̇b

2
+ λ2b λ̈b
λ2

− 2 λ4b λ̇b
2

λ5
λ3 − 1

λ3b − 1

)
(3.5)

Notice that when λ appears with some superimposed dots it means a derivative of the
stretch λ over time. By introducing the equations above (equation (3.4) and (3.5)) into
equation (3.2), the balance of linear momentum results as:

∂σr
∂λ
− 2

σr − σθ
λ(λ3 − 1)

= ρB2

(
2 λ4b λ̇b

2

(λ3b − 1)4/3
(λ3 − 1)1/3

λ5
− 2λbλ̇b

2
+ λ2b λ̈b

(λ3b − 1)1/3
1

λ2(λ3 − 1)2/3

)
(3.6)

From the work of Ogden [40], it is known that for an incompressible spherical shell

σr − σθ = −1

2
λ
dψ

dλ
(λ−2, λ, λ) (3.7)

where ψ is the strain energy function which determines the mechanical behaviour of
the material, which will be defined later in chapter 4. In addition, from the work by
Shah and Humphrey [48] it is known that:

σr (r, t) =

{
Pa, r = a

Pb, r = b

so, with the help of equation (3.7), if equation (3.6) is integrated over the thickness of
the aneurysm, equation (3.8) results:
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Pb − Pa+
∫ λb(

λ3
b
+f0−1

f0

)1/3

ψ′(λ)

λ3 − 1
dλ = ρB2

(
λbλ̈b

(
λb

(λ3b + f0 − 1)1/3
− 1

))
−

− ρB2

(
λ̇b

2
(

λ4b
2(λ3b + f0 − 1)4/3

− 2λb
(λ3b + f0 − 1)1/3

+
3

2

)) (3.8)

where the superscript prime denotes differentiation with respect to the circumferential
stretch. Moreover, f0 = A3

B3 = 0.78 is a dimensionless parameter which characterizes
the thickness of the aneurysm’s wall and Pa(t) and Pb(t) are the blood pressure and
the pressure exerted by the CSF on the aneurysm respectively, whose specifics forms
will be derived later in section 3.2. So equation (3.8) will be the final expression for
the balance of linear momentum 2.

3.2 Pressure Derivation

3.2.1 Blood pressure

As presented at the beginning of chapter 3, two different situations for the internal
pressure are employed. First, a constant pressure such as

Pa = Pm (3.9)

where Pm = 65.7 mmHg [48] (varied during the parametric analysis).

Then, based on the data measured by Ferguson [16] for human saccular aneurysms
and assuming that the pressure is uniform inside the lesion, the pulsating radially
symmetric blood pressure is represented by the following Fourier series

Pa(t) = Pm +
N∑
n=1

(An cos(nωt) +Bn sin(nωt)) (3.10)

where Pm = 65.7 mmHg is the mean pressure, An and Bn are the fourier coefficients
for N harmonics, and ω is the fundamental circular frequency. Following the work of
Shah and Humphrey [48], the 5 harmonics are: A1 = −7.13, B1 = 4.64, A2 = −3.08,
B2 = −1.18, A3 = −0.130, B3 = −0.564, A4 = −0.205, B4 = −0.346, A5 = 0.0662 and
B5 = −0.120, have been considered. All quantities are given in mmHg.

2For the complete derivation of equation (3.8), see appendix A.2
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3.2.2 Cerebrospinal fluid

Considering the Cerebrospinal Fluid (CSF) to be an incompressible and Newtonian
fluid, the continuity equation takes the form

1

r2
∂

∂r
(r2 vr) = 0 (3.11)

implying that the radial velocity is vr(r, t) = c(t)
r2

. The function c(t) is found matching
the fluid and aneurysm’s wall velocities at the outer surface of the aneurysm’s wall
such that r = b. Thus, it is obtained the following expression, which relates the radial
velocity of the CSF and the stretch (and stretch rate) in the outer surface of the
aneurysm

vr(r, t) =
B3λ2b λ̇b
r2

(3.12)

Moreover, the balance of linear momentum along the radial direction takes the form

ρf

(
∂vr
∂t

+ vr
∂vr
∂r

)
= −∂p

∂r
+ µ

(
1

r2
∂

∂r

(
r2
∂vr
∂r

)
− 2

vr
r2

)
(3.13)

where ρf = 1000 kg/m3 and µ = 1.26 10−4 Ns/m2 are the density and viscosity of the
CSF respectively [48] and p denotes pressure.

Next, by inserting equation (3.12) into equation (3.13), equation (3.14) is obtained

∂p

∂r
= −ρf

(
B3

r2

(
2λbλ̇

2
b + λ2b λ̈b

)
− 2B6λ

4
b λ̇

2
b

r5

)
(3.14)

If equation (3.14) is integrated over the range r ∈ (b,∞), the expression for the pressure
exerted by the CSF on the outer surface of the aneurysm results as

Pbf (t) = p∞ + ρfB
2

(
3

2
λ̇2b + λbλ̈b

)
(3.15)

where p∞ = 3 mmHg is the remote pressure and it is assumed constant [48].

From the constitutive equations of incompressible Newtonian fluids it is known that
the dynamic pressure (radial stress) caused by the deformation of the CSF on the
aneurysm’s wall is given by
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Pbs(t) = −4µ
λ̇b
λb

(3.16)

where µ is the viscosity of the CSF.

3.2.3 Total pressure

From the geometry of the problem it is known that the total pressure exerted by the
cerebral spinal fluid on the outer surface of the aneurysm is

Pb(t) = Pbs(t) − Pbf (t) (3.17)

So, the final pressure will be composed by the contribution of the internal fluid (blood
flow) and the external surrounding fluid (CSF) i.e, P (t) = Pa(t) + Pb(t). Hence, the
final expression3 for the total pressure results as

P (t) = Pa(t)− p∞ − ρfB2

(
3

2
λ̇2b + λbλ̈b

)
− 4µ

λ̇b
λb

(3.18)

3.3 Non-linear Governing Equation

Finally, the combinations of equations (3.8) and (3.18) results in the governing equation
of the problem i.e., the final equation describing the deformation of an idealized saccular
aneurysm subjected to internal and external pressure

Pa(t)− p∞ = ρfB
2

(
3

2
λ̇b

2
+ λbλ̈b

)
+ 4µ

λ̇b
λb

+

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ′(λ)

λ3 − 1
dλ−

− ρB2λbλ̈b

(
1− λb

(λ3b + f0 − 1)1/3

)
−

− ρB2λ̇b
2
(

λ4b
2(λ3b + f0 − 1)4/3

− 2λb
(λ3b + f0 − 1)1/3

+
3

2

) (3.19)

Then, the following non-dimensional length, mass and time scales have been introduced
in order to pose the problem in non-dimensional form

3For the complete derivation of equation (3.18), see appendix A.3
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[L] = B; [M ] = ρB3; [T ] =

√
ρB2

CN10

(3.20)

where CN10 is a material constant further discussed in section 4. Previous non-dimensional
groups are applied to equation (3.19) to obtain the following dimensionless governing
equation which shows that λb is the only unknown of the problem

∆P =

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3 − 1
dλ+ 4κ

λ̇b
λb

+ ρ

(
λbλ̈b +

3

2
λ̇2b

)
−λbλ̈b

(
1− λb

(λ3b + f0 − 1)1/3

)
− λ̇b

2
(

3

2
+

λ4b
2(λ3b + f0 − 1)4/3

− 2λb
(λ3b + f0 − 1)1/3

)
(3.21)

where now a superposed dot denotes differentiation with respect to the dimensionless
time. Note that when f0 −→ 1 Eq. (12) of Shah and Humphrey [48] is recovered. For
the case Pa(t) defines a pulsatile flow, the dimensionless expression is

Pa(τ) = Pm +
N∑
n=1

(
An cosnwτ +Bn sinnwτ

)
(3.22)

Notice that this procedure returns 7 non-dimensional groups that, in addition to f0,
which was already introduced in equation (3.8), govern the problem

ω = ω

√
ρB2

CN10

κ =
µ

B
√
ρ C

ρ =
ρf
ρ

Pm =
Pm
CN10

p∞ =
p∞
CN10

ψ(λ) =
ψ(λ)

CN10

Ai =
Ai
CN10

Bi =
Bi

CN10

for i = 1, 2, 3, 4, 5
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where ψ(λ) = ψ(λ)/CN10 is the non-dimensional strain energy function, κ defines
the ratio between the characteristic time scales (speed of stress waves) of CSF and
aneurysm’s wall, ρ is the ratio between CSF and aneurysm’s wall densities and ω
the dimensionless fundamental angular frequency. Moreover, Pm is the dimensionless
mean pressure applied in the inner surface of the aneurysm and p∞ is the dimensionless
remote pressure, which together may be found as ∆P = Pa(τ)− p∞ i.e., the pressure
difference between the blood flow and the far field in the CSF. Notice that the parameter
CN10 is used to non-dimensionalize both constitutive models since to be compared they
have to be subjected to the same conditions. Ai and Bi are just the factors determining
the behaviour of the pulsatile flow.

3.4 Balance of Mechanical Energy

For further characterization of the problem energies are calculated. So if equation
(3.21) is multiplied by 2λ2b ,

2λ2b ∆P = ρ
d

dλb

(
λ3b λ̇b

2
)

+ 8 κ λbλ̇b+

+ 2λ2b

∫ (
λ3b+f0−1

f0

)1/3

λb

W ′(λ)

λ3 − 1
dλ− d

dλb

((
1− λb

(λ3b + f0 − 1)1/3

)
λ3b λ̇b

2
) (3.23)

Now, equation (3.23) is integrated over λ between λb(0) and λbmax and λb(0) = 1 and
λ̇b(0) = 0 considered as initial conditions (the aneurysm is initially at rest and un-
stretched). Then, by performing a change of variable where λb = ζ and the integration
limits become 1 and λb the final expression4 for the energy terms is:

2∆P
λ3b − 1

3
= ρλ3b λ̇

2
b + 8κ

∫ λb

1

λbλ̇bdζ+

+ 2

∫ λb

1

λ2b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3b − 1
dλ dζ − λ3b λ̇b

2
(

1− λb
(λ3b + f0 − 1)1/3

) (3.24)

4For the complete derivation of equation (3.24), see appendix A.4
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From the previous equation, it can be observed that the balance of mechanical energy
is

Πe = Πs +Ks +Kf +Df (3.25)

So, comparing equation (3.24) and (3.25) and performing a change of variable to inte-
grate equation (3.24) along time, considering that dλb = λ̇bdξ, the final expressions for
the energies governing the problem result as:

Πe = 2AP
λ3b − 1

3
(3.26a)

Πs = 2

∫ τ

0

λ2b λ̇b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3b − 1
dλ dξ (3.26b)

Ks = −λ3b λ̇b
2
(

1− λb
(λ3b + f0 − 1)1/3

)
(3.26c)

Kf = ρλ3b λ̇
2
b (3.26d)

Df = 8κ

∫ τ

0

λbλ̇
2
bdξ (3.26e)

where Πe is the work done by the external forces, Πs the elastic energy stored by the
aneurysm’s wall, Ks the kinetic energy of the aneurysm, Kf the kinetic energy of the
CSF and Df the viscous dissipation given by the surrounding CSF.

3.5 Analitical Solution

For the case κ = 0 (i.e. non-viscous Newtonian CSF), equation (3.24) turns into a single
variable equation that can be solved analytically. So without the viscous depending
term and solving for the stretch rate from equation (3.24), it results that:

λ̇b =

2AP
λ3b−1
3
− 2

∫ τ
0
λ2b λ̇b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3b−1
dλ dξ

λ3b

(
ρ− 1 + λb

(λ2+fo−1)
1
3

)


1
2

(3.27)
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The final expression of the stretch rate λ̇b depending in the stretch λb in terms of the
total potential energy is presented below:

λ̇b(λb) =

 Πe − Πs

λ3b

(
ρ− 1 + λb

(λ2+fo−1)
1
3

)


1
2

(3.28)

3.6 Numerical Solution

Finally, in order to obtain λb in any conditions, equation (3.21) is reduced to a system
of two first-order differential equations. Being z1 = λb and z2 = λ̇b

z2 = ż1 (3.29)

ż2 =

∆P −
∫ (

z31+f0−1

f0

)1/3

z1

ψ
′
(λ)

λ3−1 dλ− 4κ z2
z1

+ z22

(
3
2

+
z41

2(z31+f0−1)
4/3 − 2z1

(z31−f0−1)
1/3 − 3

2
ρ

)
z1

(
ρ+ z1

(z31+f0−1)
1/3 − 1

)
(3.30)

they are solved numerically using a fourth-order Runge-Kutta method available in
MATLAB for stiff differential equations. Recall that the motion of every material
point along the aneurysm’s wall is determined once λb is known.



Chapter 4

Constitutive Modelling

A constitutive model is a mathematical description of how materials respond to various
loadings [41]. It is calculated by fitting all the data obtained after performing different
tests to the desired material. Then, the isotropic elastic properties of materials are
described in terms of a strain-energy function [21] such as:

ψ = f (I1, I2, I3)

where I1, I2 and I3 are the three invariants of the Cauchy-Green deformation tensor.
In terms of the principal stretches they are:

I1 = λ21 + λ22 + λ23

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1

I3 = λ21λ
2
2λ

2
3

In this work, two different strain energy functions are used to describe the mechanical
behaviour of the aneurysmal wall. They both respond to the following polynomial
form:

ψ =
N∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j (4.2)

where Cij are empirically determined material parameters and I1, I2 are the first and
second invariants of the left Cauchy-Green strain tensor, respectively. Namely, the
so-called Neo-Hookean and 3-parameters Mooney-Rivlin models are used. These two

23
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models probably are the ones better known and more used [21] but also they fit quite
well the data coming from aneurysms [45]. The aim of this work was to select two
constitutive models calibrated for biological parameters. Furthermore, they have been
selected so that one of them will bifurcate at some point whereas the other will never
bifurcate (later deeply explained in chapter 5). So finally, the resulting constitutive
models are:

• Neo-Hookean model

ψ = CN10(I1 − 3) (4.3)

• 3-parameters Mooney-Rivlin model

ψ = CM10(I1 − 3) + CM01(I2 − 3) + CM11(I1 − 3)(I2 − 3) (4.4)

The 3-parameter Mooney-Rivlin model was calibrated by Costalat et al. [13] us-
ing experimental results obtained from 16 intracranial saccular aneurysms tested in
uniaxial tension under physiological conditions. The resulting parameters values are:
CM10 = 0.19 MPa, CM01 = 0.024 MPa and CM11 = 7.87 MPa. For the Neo-Hookean
model, which is a reduction of the Mooney-Rivlin model, CN10 = 0.214 MPa has been
taken to ensure that Neo-Hookean and Mooney-Rivlin models provide the same initial
shear modulus. The comparison between these two models developed in chapter 5
brings to light the key role played by the mechanical behaviour of the aneurysmal wall
in the dynamic response of the aneurysm.



Chapter 5

Results

The following chapter analyzes how different biological parameters affect the behaviour
of the aneurysm. In section 5.1, the most basic model where the internal applied
pressure is constant and there is no viscosity contribution from the surrounding cere-
brospinal fluid is considered. The model is tested for different values of the dimen-
sionless constant internal pressure, the dimensionless thickness and the dimensionless
density. From this analysis it is concluded how these parameters affect the possible
rupture of the aneurysm’s wall.

In section 5.2, the viscosity given by the external surrounding fluid is incorporated
to the model. It is explored how the aneurysm’s growth is affected when applying a
viscosity value similar to that one of the CSF in humans and which viscosity will be
necessary to attenuate the oscillation of the aneurysm wall.

Finally, in section 5.3 is included a pulsatile pressure applied to the internal wall of the
aneurysm. Living beings are characterised for having a pulsatile blood flow circulating
along the body and here it is explored how it affects the development of the aneurysm
and if it has a relevant role on its possible rupture.

5.1 Aneurysm’s Model: Non-Viscous CSF and Con-

stant Internal Pressure

The different affecting parameters are explored to the limit case where the aneurysm
bifurcates (it is assumed that at the point of the bifurcation the aneurysm will break).
All of them are presented in comparison with the reference case, considering the refer-
ence pressure, density and radius as those ones presented in the works of Costalat et
al. and Shah and Humphrey, where Pm = 67.5mmHg, p∞ = 3mmHg, ρ = 1050kg/m3,

25



26 Nonlinear Vibrations of an Idealized Saccular Aneurysm

ρf = 1000 kg/m3 [32, 48] and A = 4.3 mm and B = 4.67 mm [13]. Those values result
in the following dimensionless parameters:

∆P = 0.0391 ρ = 0.9524 f0 = 0.7806

which are the ones varied during the parametric analysis. Remember that in this
section there is no viscosity contribution from the external surrounding fluid and that
the internal pressure is constant.

In all the cases, the two constitutive models analyzed in this work are presented to-
gether, comparing their different features. The models, as explained in section 4, are
the Neo-Hookean and the Mooney-Rivlin with 3 parameters. Since the problem has
been develop in a 3 dimensional framework, every model of order 3 or smaller will
bifurcate at some point whereas those with order higher than 3, won’t bifurcate. In
this case, the Neo-Hookean model, who is an O(3) constitutive model, will always
bifurcate at some point, as checked later in this section. In contrast, Mooney-Rivlin
for three parameters won’t reach the bifurcation point at any time since it is an O(4)
model.

In this work the limit cases when the aneurysm model bifurcates are explored in order
to see whether the bifurcation point coincides with an achievable biological value or not.
Furthermore, the study of those cases allow to set at which conditions the intracranial
saccular aneurysm, under the selected constitutive model, will break.

So now starts the analysis of the model given there is a constant internal pressure and
zero viscous CSF contribution. For the case of variable pressure values, figure 5.1 shows
three different cases: the first one, represented with a continuous blue line and marked
in the legend with and asterisk (*), represents the reference case, for which none of the
parameters presented above have been varied, the second one, dashed orange line, is
the case associated with one of the first values at which the bifurcation occurs and the
third one, dotted green line, corresponds with a case at which the models bifurcates
from the very beginning. Notice that this scheme is the same in figure 5.2.

When no bifurcation occurs, the total potential energy (graphs 5.1a and 5.1b for both
Neo-Hookean and Mooney-Rivlin models) remains positive. Also notice that when
there is no bifurcation, the total potential energy varies when changing the parame-
ters, meaning that the distribution of energy is shifting between the external forces
and the solid’s wall. However, when a bifurcation occurs and the aneurysm stops os-
cillating, the potential energy passes to be dominated by the energy provided by the
solid, which diverges to negative values. Additionally, in the case of bifurcation, the
stretch ratio tends to a constant value, as it is shown in graph 5.1c.
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Figure 5.1: Comparison of the aneurysm’s model subjected to two different constitutive
models, Neo-Hookean, a) and c), and Mooney-Rivlin, b) and d), for various dimension-
less pressure at f0 = 0.7806, ρ = 0.9524 and κ = 0. a) and b) corresponds with the
variation of potential energy for the different models whereas c) and d) represent the
phase diagrams resulted form each model.

It is shown that no bifurcation occurs at biological values (there is no bifurcation
at the reference case) neither for the Neo-Hookean model neither for the Mooney-
Rivlin of three parameters. Maintaining the thickness and density parameters constant
but varying the dimensionless internal constant pressure from 0.0391 (dimensionless
reference pressure) to 0.1850, a bifurcation occurs in the Neo-Hookean model. Thus,
for any value higher than 0.1850 in the Neo-Hookean model a bifurcation will occur
and the aneurysm’s wall will break.

However, according to the data provided by Williams et al. [58], just adults with a
severe type of hypertension will achieve values of pressure equal or higher to 180 mmHg,
which corresponds with a dimensionless pressure of 0.1121. Although this value is not
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Figure 5.2: Comparison of the aneurysm’s model subjected to two different consti-
tutive models, Neo-Hookean, a) and c), and Mooney-Rivlin, b) and d), for various
dimensionless radius at ∆P = 0.0391, ρ = 0.9524, κ = 0. a) and b) correspond with
the variation of potential energy for the different models whereas c) and d) represent
the phase diagrams resulted form each model.

enough for the bifurcation to occur and is relatively far from the pressure needed (about
296 mmHg) it seems that the influence of pressure is relevant enough and it should be
explored for other and more accurate constitutive models.

In contrast, Mooney-Rivlin’s model behaves in a different manner. It does not bifurcate
for the same values as Neo-Hookean. Furthermore, much higher values have been
explored (up to ∆P = 1000) but no bifurcation appears. This phenomena occurs due
to the relation between the order of the constitutive model and the dimension in which
the problem is formulated, demonstrating that the final problem highly depends on the
constitutive model.
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Now, continuing with figure 5.2, the variations with respect to the internal and external
radius are explored. As before, three different situations appear, one with the reference
case and another two exploring the bifurcations points. So, for the case of Neo-Hookean
model, the bifurcations appears at a value of f0 = 0.9478, far enough from the reference
value (f0 = 0.7806) at physiological conditions. To check this fact, a further point
is explored (f0 = 0.9650) to confirm the behaviour of the model for values of the
dimensionless thickness equal or greater than 0.9478. As it is possible to see in this
figure, the curve bifurcated at the very beginning of the cycle. Then, as expected, no
bifurcation occurs at any of the presented points for the case of the Mooney-Rivlin. It
has been tested for values of f0 −→ 1, resulting in no bifurcation.

Notice that having the dimensionless parameter f0 ∼ 1, means having a really thin
aneurysm’s wall where the internal and external radius are almost the same and at this
case the membrane theory (section 2.2) could be assumed. Moreover, in this simulation
having a value greater than 1 has no sense since it would mean having an internal radius
grater than the external, what is physically impossible.

As occurred when changing the pressure values, the total potential energy varies be-
tween the different cases, ending with negative values when the model bifurcates. For
the cases no bifurcation occurs, the potential energy experiments a variation and the
maximum stretch achieved during each oscillation is incremented, as well as the velocity
of the oscillation.

When talking about biological values there is a broad range of possibilities. This
project, following the work of Costalat et al. [13], has considered the thick-walled
theory to compute the model. However, the thickness of aneurysms vary considerably,
finding in literature small aneurysms with a thickness between 0.02 mm [10, 24] and
0.08 mm [27], whose models could be calculated assuming the membrane’s theory, and
others with larger thickness as 0.375mm [56] or even 0.51mm [31]). By this reason, not
assuming the membrane’s theory allow more accurate results when defining the fate of
the aneurysm. Small differences in thickness will be registered and considered for thin
aneurysms that otherwise would be considered to have the same one and also it will
be valid for aneurysms with a thicker wall.

Figure 5.2c shows that at reference conditions no aneurysm will break. However, for
the thinner intracranial aneurysms there will a limit thickness for which a bifurcation
will occur and consequently, the rupture of the aneurysm. So aneurysms with a thick-
ness around 0.08 mm or smaller, whose f0 ∼ 0.92590 or higher, will break given the
rest of the parameters remain constant as occur in the reference case. Nevertheless,
the thicker ones will not rupture.
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Figure 5.3: Analysis of the different energies for the Neo-Hookean model for dimension-
less densities, AP = 0.0391, f0 = 0.7806, κ = 0 and constant internal pressure, being Πe

the work done by the external forces, Πs the elastic energy stored by the aneurysm’s
wall, Ks the kinetic energy of the aneurysm, Kf the kinetic energy of the CSF and
Df the energy dissipated by the CSF, respectively. a) is the variation of energies for
ρ = 0.9524, b) the variation for ρ = 0.0952, c) the phase diagram in reference case and
d) the phase diagram for ρ = 0.0952.

Finally, the last parameter analyzed for the case of constant internal pressure and no
viscosity contribution is the dimensionless density. In this case no bifurcation occurs
neither in the Neo-Hookean model neither in the Mooney-Rivlin for three parameters.
For the case of the reference viscosity ρ = 0.9524 it is shown a determined amplitude for
the oscillation of the aneurysm’s wall. Depending on which density has more influence,
the velocity of the oscillation of the aneurysm’s wall will be bigger or smaller but the
maximum and minimum stretch will remain constant along different densities. By
this way, by increasing the dimensionless density up to ρ = 2.0000 the velocity of the
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oscillation decreases whereas by decreasing it to ρ = 0.0952, the velocity increases
much more. Thereby, an increase in the dimensionless density results in a decrease in
the velocity of vibration of the aneurysm’s wall while a decrease in the dimensionless
density, into an increase in the velocity of the oscillation (see figure 5.3a and 5.3d).

In this case the variation of potential energy has no interest at all since the values of
the maximum and minimum stretches are the same and the model never bifurcates.
This is translated into a non-dependant potential energy in the density of the solid and
the fluid. However, the potential energy is not the only one governing the problem,
so an analysis of the different energies affecting the deformation of aneurysm’s wall is
presented in figures 5.3a and 5.3b.

First of all notice that the contribution due to the dimensionless fluids viscosity Df
(dashed purple plot) is always 0, which has sense since this sections is studied without
the contribution of the external fluid’s viscosity, i.e. κ = 0. Then, the potential energy
Πs−Πf (dashed-dotted green plot) is always keep constant and shows no variation with
respect to the variations in the dimensionless density, as explained before. Therefore,
the total contribution from the work exerted by the external forces and the elastic
energy of the aneurysm’s wall is maintained constant since it is a conservative system
and no energy is dissipated. Finally, it is possible to appreciate that the variations in
the dimensionless density are dominated by the total kinetic energy. For higher values
of the density, as the reference one, the total kinetic energy of the cerebrospinal fluid
Kf (blue line) almost totally overcomes with the total kinetic energy. However, as the
dimensionless density is diminished the kinetic energy of the solid Ks (dotted orange
graph) plays a major contribution on the total kinetic energy of the system. Therefore,
the lower the dimensionless density, the higher the contribution exerted by the kinetic
energy of the solid and therefore, for sufficiently small values of the dimensionless
density, the contribution to the model of the external surrounding cerebrospinal fluid
will be almost none.

From section 3.3 it is known that ρ =
ρf
ρ

, being ρf the density of the fluid and ρ the
density of the aneurysm’s wall. Therefore, the above results has sense since the lower
the dimensionless density is, the higher is the contribution of the solid’s density and
therefore, the kinetic energy exerted by the solid. Vice versa, the higher the value of
the dimensionless density, the higher the contribution of the external fluid’s density
and consequently, the higher the kinetic energy of the CSF.
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5.2 Aneurysm’s Model: Viscous CSF and Constant

Internal Pressure

In this subsection, the viscosity of the external fluid is included into the model (κ 6= 0).
Remember that κ is not exactly the dimensionless viscosity but the ratio between the
time scales of CSF and the aneurysm’s wall i.e.,

κ =
µ

B
√
ρCN10

However, since the rest of the parameters are going to be maintained constant in this
analysis, the variation of κ means a variation in the viscosity of the CSF. Therefore,
this subsection is going to analyze what is the real role of the viscosity coming from
the CSF and if the dissipation of energy considerably augments. Hence, its behaviour
over the aneurysm’s wall is going to be observed as well as its real contribution in the
bifurcation of the model.

In a first attempt, the model has been computed with the viscosity given by Shat et al.
[48]. Using κ = 1.8 ·10−6, which corresponds with a viscosity value of 1.26 ·10−4 Ns/m2
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Figure 5.4: Aneurysm’s model at reference conditions (∆P = 0.0391, ρ = 0.9524 and
f0 = 0.7806) with a viscosity of κ = 0.5 and a constant internal pressure for the Neo-
Hookean model. Graph a) shows how the stretch evolves over time and graph b), the
phase diagram.
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no differences were found with respect the reference conditions at which κ = 0. The
viscosity given by the fluid is so small that is almost negligible. Hence, it results into a
system that is mainly elastic where almost no dissipation of energy is appreciated and
no cushioning of the oscillation of the aneurysm’s wall appears.

Consequently, a further analysis is performed with a viscosity higher enough to study
the limit case at which this parameter plays a major role in the attenuation of the
oscillation. When exploring the possible values for κ, it was found that the one needed
for the viscosity to govern the attenuation of the aneurysm was κ = 0.05, that cor-
responds with a viscosity of 3.5002 Ns/m2, which is much more orders of magnitude
higher than the biological one. Although some authors have reported variations in
the viscosity of the CSF [6], none of them have reported such a big value. From this
data it can be concluded that the contribution of the viscosity coming from the CSF
in reference conditions is not relevant to the problem. Nevertheless, since κ is not a
single parameter dependent, it is going to be studied the limit case to understand how
it affects the dynamic behaviour of the aneurysm and which values are required for
this behaviour to occur.

Figure 5.4a shows the variation of the stretch along the dimensionless time τ . It can be
easily deduced from the graph that the aneurysm is oscillating at time τ = 0 but that
the amplitude of the oscillation decreases in each period. At the end, the oscillations
dies in an attractor point 1 that corresponds with an stretch value of λb ∼ 1.02. From
this value is concluded that the final state of the aneurysm is a deformed non-oscillating
one and that the aneurysm do not undergo any bifurcation. Figure 5.4b represents
the phase diagram of the aneurysm’s model with κ = 0 under reference conditions
(dashed blue line) and κ = 0.05 (continuous orange line). As observed in graph a),
the viscous contribution is sufficiently high to decrease the amplitude of the oscillation
to none, dissipating all the energy over the system and leading to a deformed static
aneurysm.

5.3 Aneurysm’s Model: Viscous CSF and Pulsatile

Internal Pressure

Finally, an internal pulsatile flow is included into the model. This section is oriented
to understand which is the behaviour of aneurysms under a pulsatile internal pressure,
so the different parameters affecting the model are not going to be varied. Since κ at
reference conditions has almost no contribution to the model, it is increased to κ = 0.05
for a better illustration of energy dissipation by the CSF.

1An attractor points corresponds with the stretch value at which an oscillation stops.
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Figure 5.5: Effect of a variable internal pressure in the aneurysm’s model at f0 = 0.7806,
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Notice that when the reference value is employed, there will be a point at which a limit
cycle will be achieved. However, the required time for reaching this state will be much
longer. So as before, the aneurysm is assumed to be initially unstretched and at rest
and the applied frequency will be ω = 1 since it is near to the frequency of resonance
of the solid structure, ω ' 1.16 .

Therefore, figure 5.5a shows the dependence of the applied pressure with time. T cor-
responds with the period given by dimensionless frequency, which is determined by the
time elapsed between two consecutive peaks. Then in figure 5.5b, the circumferential
stretch in the outer surface of the aneurysm evolves over the dimensionless loading
time. Two different states are distinguished: the transient state (dotted blue line)
and the steady state (solid red line). The transient state last until τ ' 80 and is
characterised by the evolution of λb before it stabilises in time. The circumferential
stretch undergoes a brief variation in the amplitude of its oscillation until it stabilises,
behaviour caused by the energy dissipation produced by the CSF. Then, during the
steady state, at any dimensionless time τ ≥ 80, the aneurysm’s wall will undergo the
same oscillation corresponding with the stabilisation of the circumferential stretch over
time. This will be the periodic response of the aneurysm.

Finally, figure 5.5c shows the phase diagram corresponding to the outer surface of the
aneurysm. In this case the dashed line also corresponds with the transient response
whereas the solid red one, with the steady state. The transient response is associated
with a gradual reduction in the velocity and amplitude of the oscillations until it reaches
the steady state, where the motion of the oscillations becomes periodic and follow the
non-symmetric geometry illustrated in the limit cycle. The limit cycle (solid red line)
results from the balance between the work of the applied pressure and the energy
dissipated by the CSF and corresponds with the cycle in the phase diagram around
which the oscillation of the wall of the aneurysm stabilizes.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

3% of the worldwide population is affected by intracranial aneurysms. Among them, the
most common ones are the intracranial saccular aneurysms. Their rupture leads to sub-
arachnoid haemorrhages, which in most cases results in brain damage or death.

There are many factors affecting the growth and rupture of intracranial aneurysms.
They can vary depending on where they are located, their geometry and their growth,
how the flow interacts with the aneurysm’s wall, if an individual has a genetic disease or
not or even it he smoke or have hypertension and his sex and age. All those factors have
been proved to influence the rupture of the aneurysms; however, when the physicians
are about to decide the treatment of the aneurysm, the most important parameter to
consider is the size.

Therefore, there is a need on physically understanding how the aneurysm evolve con-
sidering all the aforementioned parameters. By this reason, this work has developed a
mathematical model of an idealized intracranial saccular aneurysm in an attempt to
understand how the aneurysm’s wall behaves when modeled with different constitutive
formulations, which include the characteristics of the aneurysm’s wall.

In this project the formulation developed by Shah and Humphrey [48] has been ex-
tended to a 3D framework to model the dynamic behaviour of idealized intracranial sac-
cular aneurysms subjected to pulsatile blood flow and surrounded by the cerebrospinal
fluid. The need for a 3D formulation arises from the experimental measurements of
Suzuki and Ohara [51], MacDonald et al. [34] and Costalat et al. [13] who provided
evidences of saccular aneurysms with ratios between wall thickness and inner radius
larger that 0.1.

37
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So, starting from an infinitesimal spherical element and setting the equilibrium, the
3D framework is developed. In addition, for a further understanding of the problem,
the different governing energies are also obtained. The work is divided in an analy-
sis of three different situations: firstly the mathematical model is presented with an
internal constant pressure and with no viscous contribution by the external surround-
ing fluid, secondly, the viscosity is included and finally, an internal pulsatile pressure
that simulates human’s blood flow. In the first case, two different constitutive models
(Neo-Hookean and Mooney-Rivlin for three parameters) are compared. However in
the following sections, just the Neo-Hookean is consider for the computations. Fur-
thermore, in the first case a parametric analysis is performed in order to clarify which
is the effect of some biological parameters as the pressure, thickness and density. The
use of Mooney-Rivlin model shows that the mathematical model is strongly affected
by the constitutive model and the that the results are highly dependant on it.

For the case of constant internal pressure and no external fluid viscosity, the dimension-
less pressure, the dimensionless ratio of the radius and the dimensionless density have
been analyzed. For the case of constant pressure it has been found that the pressure
needed for a bifurcation to occur is out of the range of the biological ones. In the Neo-
Hookean model a bifurcation will occur approximately at a Pm = 296mmHg. However,
since this value of pressure is not so far from the highest achieved by humans in the
extreme situations and the model is highly dependent on the constitutive model, it is
possible that other constitutive models may bifurcate at a lower pressure value.

When analyzing the effect of the dimensionless radius, it was found that some of the
biological sizes of the wall aneurysm lay between the bifurcation range. But more
important that the average size, it is the thickness of the wall. For a Neo-Hookean
model a bifurcation occurs at f0 = 0.9478, which means that aneurysms with thick-
ness around 0.08 mm or smaller will break. Of course, it is highly dependent on the
constitutive model, which includes all the parameters influencing the behaviour of the
aneurysm.

Finally, the last parameter analyzed was the dimensionless density, which has no influ-
ence in the rupture of the aneurysm (no bifurcation occurs when changing the density of
the solid and the fluid but it influences the velocity of the oscillation of the aneurysm’s
wall). However, from this analysis it is concluded that as the density of the fluid is
incremented over the solids one, the kinetic energy governing the problem will be that
one of the fluid and vice versa.

When including the viscosity exerted by the CSF, resulted that it is so small value that
it not contributes to the dissipation of energy neither to the reduction of the oscillation
of the aneurysm’s wall. However, notice that the parameter κ is highly dependent in
other parameters such the constitutive constant CN10, the external radius B and the
density ρ of the solid, so the limit case for which the oscillation of the aneurysm is
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attenuated by κ may be achieved when varying those parameters.

Finally, it is observed that when an internal pulsatile pressure is inserted under the
conditions presented above, the aneurysm’s wall reaches a limit cycle along which it
will oscillate. Due to the non-linear behaviour of the aneurysm the path followed by the
aneurysm will not be linear. In addition, the fact that the internal pressure is pulsatile
does not affect the bifurcation of the problem but the way it oscillates. Notice that all
this framework presents a non-linear model but that for sufficiently small amplitudes,
it behaves as a linear one.

In conclusion, the mathematical model presented in this work is good enough to obtain
an overview of which parameters affect the possible rupture of aneurysms. Whereas
pressure and thickness seems to highly influence their behaviour, some others as the
density of the solid and the density and viscosity of the external surrounding cere-
brospinal fluid have a lower influence in the development, growth and rupture of in-
tracranial saccular aneurysm. Moreover, the effect of a pulsatile blood flow causes the
aneurysm to oscillate periodically.

6.2 Future Work

This work has presented how different biological parameters affect the behaviour of an
intracranial saccular aneurysm. However, since this is a first approach in the under-
standing of it behaviour, it shows some limitations.

A further study of how the different parameters are affecting the model must be per-
formed. Here the bases were set but now it has to be study how the interactions are
when more than one parameter are altered. In addition, they have to be studied for a
variable internal pulsatile pressure and see if bifurcations occur or not. As presented in
section 5.2, κ depends in other parameters different from the viscosity. So for example,
with the variation of the constitutive model’s constants and the size of the aneurysm
it may be the case in which the theoretical value of κ needed for strongly influence the
behaviour of the problem may be achieved.

During the whole work, it has been stayed that the constitutive model is the compo-
nent with more relevant influence in the dynamic behaviour of the aneurysm and that
it has been developed a mathematical model valid for all spherical shell structures.
Consequently, a further study using different constitutive models and comparing then
with patients data is a natural step in the approach to determine the best mathe-
matical model simulating the behaviour of an intracranial aneurysm. Moreover, much
more experiments are needed in order to properly define the wall characteristics of
each patient. Remember that one of the main issues of biological tissues is that many
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parameters as stiffness, rigidity of the wall, thickness or even mass change continuously
between biological structures but also between patients and along time. So predicting
the behaviour of such structure is almost impossible without a proper characterization
of the tissue itself.

Finally, some authors proposed that the rupture of an aneurysm may be caused by
the resonance phenomena. This theory states that the natural frequency of the heart
coincides with the natural frequency of the aneurysm and when this overlap occurs,
the aneurysm breaks. Although other authors have refused this hypothesis, the non-
linearity of the problem could bring closer than expected the resonance frequencies
of the aneurysm to the usual frequencies of the heart. “Nonlinear resonances of an
idealized saccular aneurysm” is a further study resulted from this work that has been
already submitted to the International Journal of Engineering Science and it is waiting
for acceptance.



Appendix A

Derivation of Equations

A.1 Proof: Balance of Linear Momentum for a Spher-

ical Volume Element

According to the following geometry
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Figure A.1: Infinitesimal spherical element.
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the equilibrium results as:

ρr2 cosφr̈dθdφdr =

(
σr +

∂σr
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dr
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(r + dr)2 cosφdθdφ− σrr2 cosφdθdφ−
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(A.1)

Due to the symmetry of the problem σθ = σφ and for sufficiently small angles cosx = 1
and sinx = x. In addition, high order terms are almost zero so they are negligible:

(
σr +

∂σr
∂r

dr

)(
r2 + rdr

)
− σrr2 − σθdrr − σθdrr = ρr2r̈dr

Simplifying equation (A.1), the balance of linear momentum for a spherical volume
element is shown in equation (A.2):

∂σr
∂r

+ 2
σr − σθ

r
= ρr̈ (A.2)
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A.2 Proof: Kinematics Relationships

Applying the incompressibility condition

λrλθλφ = 1

and considering that

λr =
∂r

∂R
, λθ = λφ =

r

R
= λ

it results that

J =
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dR

(
r

R

)2

= 1

integrating along the thickness of the sphere with respect to the outer radius given
that

A < r < B

where A is the inner radius and B is the outer radius, the following expression is
obtained:
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Performing the derivative with respect to R of λ:

dλ

dR
=

1

3

(
1 +

λ3b − 1

R
3

)−2
3

(
−3R

2
(λ3b − 1)

R
6

)
= −λ

3
b − 1

λ2R
4



44 Nonlinear Vibrations of an Idealized Saccular Aneurysm

and introducing λb
3 − 1 = R

3
(λ3 − 1), the final derivative is:

dλ

dR
= −λ

3 − 1

λ2R

Now, applying the incompressibility condition where dr
dλ

dλ
dR

(
r
R

)2
= 1

dr

dλ
=
R

2

r2
1
dλ
dR

= −R
2

r2
λ2R

(λ3 − 1)
= − R

λ3 − 1

ending with:

dλ

dr
= −λ

3 − 1

R
(A.4)

By performing the first and second derivative of λ with respect to time

λ̇ =
1

3

(
1 +

λ3b − 1

R
3

)−2
3 3λ2b λ̇b

R
3 =

λ2b λ̇b

λ2R
3 (A.5)

λ̈ = −2λ−3λ̇
λ2b λ̇

R
3 +

2λbλ̇b
2

λ2R
3 +

λ2b λ̈b

λ2R
3 =

=
1

R
3

(
2λbλ̇b

2
+ λ2b λ̈b
λ2

− 2λ4b λ̇b
2

λ5
λ3 − 1

λ3b − 1

)
=

=
λ3 − 1

λ3b − 1

(
2λbλ̇b

2
+ λ2b λ̈b
λ2

− 2λ4b λ̇b
2

λ3b − 1

λ3 − 1

λ5

) (A.6)

and since λ = r
R

and therefore r̈ = Rλ̈, joining equations (A.2) and (A.6)

∂σr
∂r

+ 2
σr − σθ

r
=
∂σr
∂λ

∂λ

∂r
+ 2

σr − σθ
Rλ

= −∂σr
λ

λ3 − 1

R
+ 2

σr − σθ
λR

=

= R
λ3 − 1

λ3b − 1

(
2λbλ̇b

2
+ λ2b λ̈b
λ2

− 2λ4b λ̇b
2

λ3b − 1

λ3 − 1

λ5

)
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∂σr
∂λ
− 2

σr − σθ
λ (λ3 − 1)

=
R

2

λ3b − 1

(
2λ4b λ̇b

2

λ3b − 1

λ3 − 1

λ5
− 2λbλ̇b

2
+ λ2b λ̈b
λ2

)

the following expression is obtained:

∂σr
∂λ
− 2

σr − σθ
λ (λ3 − 1)

=
(λ3b − 1)

−2
3

(λ3b − 1) (λ3 − 1)
2
3

(
2λ4b λ̇b

2

λ3b − 1

λ3 − 1

λ5
− 2λbλ̇b

2
+ λ2b λ̈b
λ2

)
=

=
2λ4b λ̇b

2

(λ3b − 1)
4
3

(λ− 1)
1
3

λ5
− 2λbλ̇b

2
+ λ2b λ̈b

(λ3b − 1)
1
3

1

(λ3 − 1)
2
3 λ2

(A.7)

Given that σr − σθ = −1
2
λdW
dλ

(λ−2, λ, λ) where W corresponds with the constitutive

model of the material, and that σr (r, τ) =

{
Pa, r = inner

Pb, r = outer
, if equation (A.7) is

integrated along λ between the inner and the outer surface of the sphere

Pb−Pa +

∫ λb

λa

W
′

λ3 − 1
dλ =

=
2λ4b λ̇

2
b

(λ3b − 1)
4
3

∫ λb

λa

λ−5
(
λ3 − 1

) 1
3 dλ− 2λbλ̇b

2
+ λ2b λ̈b

(λ3b − 1)
1
3

∫ λb

λa

1

λ2 (λ3 − 1)
2
3

dλ =

=
2λ4b λ̇

2
b

(λ3b − 1)
4
3

(λ3b − 1)
4
3

4λ4b

1− λ4b(
λ3b +R

3 − 1
) 4

3

−

− 2λbλ̇b
2

(λ3b − 1)
1
3

(λ3b − 1)
1
3

λb

1− λb(
λ3b +R

3 − 1
) 1

3

−

− λ2b λ̈b

(λ3b − 1)
1
3

(λ3b − 1)
1
3

λb

1− λb(
λ3b +R

3 − 1
) 1

3


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and considering that fo = R
3
, the final governing equation is obtained:

Pa(t)−Pb(t) +

∫ λb

λa

W
′

λ3 − 1
dλ =

= λbλ̈b

(
λb

(λ3 + fo − 1)
− 1

)
− λ̇b

2

(
λ4b

2 (λ3b + fo − 1)
4
3

− 2λb

(λ3b + fo − 1)
1
3

+
3

2

)
(A.8)
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A.3 Proof: Pressure Exerted by the Cerebrospinal

Fluid

Assuming the CSF surrounding the aneurysm to be incompressible and Newtonian 1,
Navier-Stoke equations govern its behaviour. Assuming flow in the radial direction,
from the continuity equation in the absence of body forces it is known that:

∇ · v = 0 → 1

r2
∂

∂r

(
r2vr

)
= 0 (A.9)

By integrating equation (A.9) and solving it for vr, it results that:

vr =
g(t)

r2
(A.10)

Since the velocity of the fluid at the aneurysm’s wall matches with the velocity of the
aneurysm’s wall membrane

∂

∂t
(ur) =

∂

∂t
(b(t)−B) =

∂

∂t
(b(t)) → vr = Bλ̇ (A.11)

and knowing that λ = b(t)
B

, joining equations (A.10) and (A.11)

Bλ̇ =
g(t)

r2
→ g(t) = λλ̇2B3

Consequently, the final expression for the radial velocity results as:

vr =
B3

r2
λλ̇ (A.12)

where B corresponds to the external radius of the aneurysms without deformation.

So now, consider the only non-trivial Navier-Stoke equation for the linear momen-
tum:

ρf

(
∂vr
∂t

+ vr
∂vr
∂r

)
= −∂p

∂r
+ µ

(
1

r2
∂

∂r

(
r2
∂vr
∂r

))
− 2

∂vr
∂r

1Newtonian fluids are those fluids for which there is a linear proportionality between the viscous
stresses and the strain rates.
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where ρf , µ and p correspond to the density, the viscosity and the pressure of the fluid
respectively. If the expression for the radial velocity (equation (A.12)) is inserted:

ρf

(
∂

∂t

(
B3

r2
λλ̇

)
+

(
B3

r2
λλ̇

)
∂

∂r

(
B3

r2
λλ̇

))
=

= −∂p
∂r

+ µ

(
1

r2
∂

∂r

(
r2
∂

∂r

(
B3

r2
λλ̇

)))
− 2

∂

∂r

(
B3

r2
λλ̇

)

it results that:

ρf

(
B3

r2

(
λ2λ̈2 + 2λλ̇2

)
− 2B6λ4

r5
λ̇2
)

= −∂p
∂r

(A.13)

From before it is already known that b = Bλ being b and B the outer radius of
the aneurysm deformed and non-deformed respectively. So, if expression (A.13) is
integrated with respect to r between b and ∞ it results that:

Pbf (t) = p∞ + ρfB
2

(
3

2
λ̇2b + λbλ̈b

)
(A.14)

For an incompressible Newtonian fluid it is known that:

σrrs = −pbs + 2µ
∂vr(t)

∂r

Since

vr(t) =
B3λ2b λ̇b
r2b

the final expression for the radial stress in the aneurysm’s wall is:

σrrs = −pbs + 2µB3λb2λ̇b
∂

∂r

(
r−2
)

= −pbs + 2µB3λb2λ̇b(−2)r−3b
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Since rb = Bλb and σrrs = 0, the pressure contribution by the wall of the aneurysm
is

Pbs = −4µ
λ̇

λ
(A.15)

Thus, the final pressure given by the cerebrospinal fluid is:

Pb(t) = Pbs(t)− Pbf (t) = −p∞ − ρfB2

(
3

2
λ̇2b + λbλ̈b

)
− 4µ

λ̇

λ
(A.16)
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A.4 Proof: Energy Terms

To obtain the energies governing the problem, multiply the non-dimensional governing
equation by 2λ2b :

2λ2b ∆P = 2λ2b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3 − 1
dλ+ 2λ2b 4κ

λ̇b
λb

+

+ 2λ2b ρ

(
λbλ̈b +

3

2
λ̇2b

)
− 2λ3b λ̈b

(
1− λb

(λ3b + f0 − 1)1/3

)
−

− 2λ2b λ̇b
2
(

3

2
+

λ4b
2(λ3b + f0 − 1)4/3

− 2λb
(λ3b + f0 − 1)1/3

) (A.17)

To solve expression (A.17), it is needed to divide it in different parts. So, starting
with

2λ2b ρ

(
λbλ̈b +

3

2
λ̇2b

)
= ρ

(
2λ3b λ̈b + 3λ2b λ̇

2
b

)
and applying the relation presented in equation (A.18),

2f(x)ẍ+
df(x)

dx
ẋ2 =

d

dx

(
f(x)ẋ2

)
(A.18)

if it is considered that f(λb) = λ3b and therefore, df(λb)
dλb

= 3λ2b , it results that:

ρ

(
λ̇2b

df(λb)

dλb
+ 2λ̈bf(λb)

)
= ρ

d

dλb

(
f(λb)λ̇b

2
)

;

2λ2b ρ

(
λbλ̈b +

3

2
λ̇2b

)
= ρ

d

dλb

(
λ3b λ̇

2
b

)
(A.19)

Notice that the proof of equation (A.18) is:

d

dx

(
f(x) ẋ2

)
= ẋ2

df(x)

dx
+ f(x)

d

dx

(
ẋ2
)

= ẋ2
df(x)

dx
+ f(x)2ẍ
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So now, taking a second part of equation (A.17),

2λ3b λ̈b

(
1− λb

(λ3b + f0 − 1)1/3

)
+

λ̇b
2
(

3λ2b +
λ6b

2(λ3b + f0 − 1)4/3
− 4λ3b

(λ3b + f0 − 1)1/3

) (A.20)

but now considering that

f(λb) =

(
λ3b −

λb

(λ3b + f0 − 1)
1/3
λ3b

)
= λ3

(
1− λb

(λ3b + f0 − 1)
1/3

)

and that

d

dλb
(f(λb)) =

d

dλb

(
λ3b −

λ4b

(λ3b + f0 − 1)
1/3

)
=

= 3λ2b −
4λ3b

(λ3b + f0 − 1)
4/3

+
λ6

(λ3b + f0 − 1)
1/3

equation (A.20) results as:

2λ3b λ̈b

(
1− λb

(λ3b + f0 − 1)1/3

)
+

d

dλb

(
λ3b −

λ4b

(λ3b + f0 − 1)
1/3

)
=

= 2 f(λb) λ̈b +
d

dλb
(f(λb))λ̇2b =

d

dx

(
f(x)ẋ2

)
=

=
d

dλb

((
1− λb

(λ3b + f0 − 1)1/3

)
λ3b λ̇

2
b

) (A.21)

Joining terms solved in equations (A.19) and (A.21) to the rest ones of equation (A.17),
it results that:

2λ2b ∆P = ρ
d

dλb

(
λ3b λ̇b

2
)

+ 8 κ λbλ̇b+

+ 2λ2b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3 − 1
dλ− d

dλb

((
1− λb

(λ3b + f0 − 1)1/3

)
λ3b λ̇b

2
) (A.22)
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Finally, integrate equation (A.22) over λ between λb(0) and λbmax , considering as initial
conditions λb(0) = 1 and λ̇b(0) = 0 (the aneurysm is initially at rest and unstretched).
Then, by performing a change of variable where λb = ζ, whose integration limits
transform into 1 and λb, the final expression for the energy terms is:

2∆P
λ3b − 1

3
= ρλ3b λ̇

2
b + 8κ

∫ λb

1

λbλ̇bdζ+

+ 2

∫ λb

1

λ2b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3b − 1
dλ dζ − λ3b λ̇b

2
(

1− λb
(λ3b + f0 − 1)1/3

) (A.23)

From this expression it can be deduced the final balance of mechanical energy is:

Πe = Πs +Ks +Kf +Df

where

Πe = 2∆P
λ3b − 1

3
(A.24a)

Πs = 2

∫ λb

1

λ2b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3b − 1
dλ dζ (A.24b)

Ks = −λ3b λ̇b
2
(

1− λb
(λ3b + f0 − 1)1/3

)
(A.24c)

Kf = ρλ3b λ̇
2
b (A.24d)

Df = 8κ

∫ λb

1

λbλ̇bdζ (A.24e)

where Πe is the work done by the external forces, Πs the elastic energy stored by the
aneurysm’s wall, Ks the kinetic energy of the aneurysm, Kf the kinetic energy of the
CSF and Df the viscous dissipation given by the surrounding CSF.
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Since the viscous dissipation cannot be integrated along the stretch, a change of variable
is performed in order to integrate it along time. For that, considering that dλb = λ̇bdξ,
the final expressions for the energies governing the problem are:

Πe = 2∆P
λ3b − 1

3
(A.25a)

Πs = 2

∫ τ

0

λ2b λ̇b

∫ (
λ3b+f0−1

f0

)1/3

λb

ψ
′
(λ)

λ3b − 1
dλ dξ (A.25b)

Ks = −λ3b λ̇b
2
(

1− λb
(λ3b + f0 − 1)1/3

)
(A.25c)

Kf = ρλ3b λ̇
2
b (A.25d)

Df = 8κ

∫ τ

0

λbλ̇
2
bdξ (A.25e)





Appendix B

Regulatory Framework and
Budget

B.1 Regulatory Framework

Bio-research has brought into discussion some issues that were unthinkable even a few
decades ago. The question of whether experimentation with human beings is ethical or
not has been extensively discussed during the last century, though an agreement has
not been achieved yet. Depending on their beliefs, traditions and culture, each country
has a different legislation, and even within countries people hold debates about these
issues. For some people, experimenting with some parts of the body is a crime and
should be strictly forbidden, whereas for others it is just a natural step in human
evolution and should be promoted, and a great diversity of opinions can be found in
between. What it remains a truth is that science needs from human research in order
to advance in a great variety of fields such as regenerative medicine or prosthetics. In
fact, human research would be a required step in order to validate the mathematical
model presented in this work.

In general, there is a consensus that research with human subjects must ensure the
integrity of individuals under study and should never compromise their lives and apti-
tudes. Even if some research works could save thousands of lives if they crossed some of
these boundaries, for many people this research would remain unethical, and the com-
munity is not willing to accept it. Probably it is a matter of time that some alternatives
to humans for clinical trials will appear but until that moment, some regulations are
needed in order to ensure humans rights.

Although this project is not directly affected by any specific regulation, it has estab-
lished a need for clinical experimentation in order to validate the mathematical model.
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The need of contrasting the data obtained with real subjects suffering from intracranial
saccular aneurysms and of performing further experimentation to get the appropriate
constitutive models that will fit this model entails many considerations. Consequently,
different regulations can be found affecting mainly two groups of subjects: dead sub-
jects and living subjects.

Dead subjects

In Spain, the use of parts or the whole body of a death individual is regulated at a
country-level, although each region has further legislation. There is no specific regu-
lations for donations of corpses for teaching or anatomic research [19]. However, with
respect to the use of human tissue, the law “Real Decreto 411/1996, de 1 de marzo, por
el que se regulan las actividades relativas a la utilización de tejidos humanos” [37] estab-
lishes the use of human tissues for therapy, teaching and research always respecting the
fundamental rights of an individual and the ethics concerning the biomedical research.
By this way, the use of intracranial saccular aneurysms coming from autopsies could
be employed for performing some constitutive tests and fit the parameters to already
existing models or even developing some new models that describe the behaviour of
these aneurysms.

Living subjects

Legislation is more strict when it involves living subjects. According to “Ley 41/2002,
de 14 de noviembre, básica reguladora de la autonomı́a del paciente y de derechos y
obligaciones en materia de información y documentación cĺınica” [29], every patient
has the right to use the methods employed in a research project and in any case it
will not conform an extra risk for his health. Furthermore, all subjects involved in
clinical research must be appropriately informed and they will freely and voluntary
decide about their participation, requiring an explicit consent. Nevertheless in the
experiments proposed in this project, no further legislation will be needed since it is
just a matter of comparing information and it does not involve any procedure that may
endanger humans integrity.

B.2 Budget

Due to the remarkable theoretical character of this work, the weight of the budget does
not resides in any material expenses but in the personal required the project. So the
expected expenses are going to be presented below.
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In table B.1, two sections are presented. The first one includes all the expenses in
human resources i.e., the salaries per hour for each member of the research project,
which includes a project manager, a research assistant and a bachelor student. The
second consist in the materials expenses. Notice that the prize for the computer is
calculated with a lineal depreciation. So, in case the computer costs e1200 and that
it has an expected life time of 4 years, the price per year will be of e600. Then, the
price selected for the Matlab license [35] is that one corresponding with the academic
use for a single individual. Finally, the concept of consumables includes the papers and
pens employed for thinking and deriving the equations and the ink expenses, needed
for printing bibliography and the final bachelor thesis itself.

Human resources

Concept Unit price (e/h) Hours Total cost (e)

Project manager 120 80 9600
Research assistant 60 80 4800
Student 20 400 8000

Subtotal 22400

Materials

Concept Unit price (e) Qty. Total cost (e)

Computer 300 / year 2 600
MATLAB license 500 / year 2 1000
Consumables 100 / year 2 200

Subtotal 1800

Total 24200

Figure B.1: Detailed budget for the current project.
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