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The paper is organized as follows. After providing an
introduction to the OHS problem and the role of informa-
tion fusion processes in building a risk picture, Section II
briefly describes the state of the art and some application
domains. Section III focuses on a knowledge retrieval model,
its architecture, domain model and reasoning process. Section
IV depicts the formalization of the mining information used
by the context based reasoning process for threat detection
and recognition. Subsequently, a case study involving data
is presented in Section V. Finally, Section VI presents some
conclusive remarks and outlines the current and future work
been carried out in this area.

II. FOUNDATIONS

Data fusion has been defined in [10] as “a multi-level
process dealing with the association, correlation, combination
of data and information from single and multiple sources to
achieve refined position, identify estimates and complete and
timely assessments of situations, threats and their significance.
Data fusion (DF) and information fusion (IF) has been treated
similarly in literature but when talking about data fusion it
represents raw data, and when referring to information fusion,
it implies a higher semantic level of fusion. The problem of
information fusion has attracted significant attention in the
artificial intelligence community, trying to innovate in the
techniques used for combining the data and to refine state
estimates and predictions.

Information Fusion can be classified depending on the level
of abstraction [11]: low-level fusion, medium level fusion, high
level fusion and multi-level fusion. In the process of low level
fusion the raw data are directly provided as an input to the
data fusion process. The medium level fusion is a feature
level where features are fused to obtain other features that
could be employed for other tasks. In the high level fusion
a combination of symbolic representation is the entry of the
fusion process. And in the multi-level fusion the entry comes
from different levels of abstractions.

Others classifications are proposed: Dasarathys Functional
Model [12] or JDL (Joint Directors of Laboratories) conceptual
model proposed by the American Department of Defense
[10]. The JDL classification model consists of five processing
levels in the transformation of input signals to decision-ready
knowledge. These levels are: level 0 or source pre-processing;
level 1 or object refinement; level 2 or situation assessment;
level 3 or impact assessment and level 4 or process refinement.

High-level fusion starts at level 2. Situation assessment
(SA) aims to identify the likely situations given the observed
events and obtained data. It establishes relationships between
the objects. Relations (i.e., proximity, communication) are
valued to determine the significance of the entities or objects
in a specific environment. The aim of this level includes
performing high-level inferences and identifying significant
activities and events (patterns in general). The output is a set
of high-level inferences. Situation assessment is an important
part of the information fusion process because it is the purpose
for the use of IF to synthesize the multitude of information,
it provides an interface between the user and the automation,
and (3) focuses data collection and management.

Intensive research has been done in past years focused on
low-level information fusion, nowadays the focus is currently
shifting towards high-level information fusion [13]. Compared
to the increasingly mature field of low-level IF, theoretical and
practical challenges posed by high-level IF are more difficult to
handle. Some of the applications that involve high-level fusion
are: Defense [14]–[18], Computer and Information Security
[19], [20], Disaster Management [21]–[24], Fault Detection
[25]–[27], Environment [28]–[30]. Also techniques for using
contextual information in high-level information fusion archi-
tectures has been studied at [31].

In the context of oil and gas industry, is increasingly con-
cerned with achieving and demonstrating good performance of
occupational health and safety (OHS), through the control of
its OHS risks, which is consistent with its policy and objec-
tives. In the oil industry there exist standards to identify and
record workplace accidents and incidents to provide guiding
means on prevention efforts, indicating specific failures or
reference, means of correction of conditions or circumstances
that culminated in accident. So, events recognition is central
to OHS, since the system can selectively start proper pre-
diction services according to the user current situation and
past knowledge taken from huge databases. In this sense, a
fusion framework that combines data from multiples sources
to achieve more specific inferences is needed. An information
fusion system must satisfy the users functional needs and
extend their sensory capabilities [32].

In fact, our proposal is inspired in the semantic strategy
of Gomez et al. [31]. We actually propose a machine learning
algorithm to learn from past anomaly events and to predict
accidents events in time and space. It also use additional
knowledge, like the contextual knowledge: user profile, event
location and time, etc. Our proposed model provides the big
picture about risk analysis for that employee at that place in
that moment in a real world environment. Our contribution is to
build a causality model for accidents investigation by means
of a well-defined spatiotemporal constraints on offshore oil
industry domain. Also, we use ontological constraints in the
post-processing mining stage to prune resulting rules.

III. CONTEXT-BASED INFORMATION FUSION FOR

AMBIENT INTELLIGENCE

In this section more details about the context-based infor-
mation fusion model are provided. This is part of a previous
work [33]. First, a detailed description of the proposed archi-
tecture, domain ontology and reasoning process described by
means of inductive learning process.

A. Architecture

The architecture of our context-based fusion framework is
depicted in Fig. 1. The context-aware system developed has
a hierarchical architecture with the following layers: Services
layer, Context Acquisition layer, Context Representation layer,
Context Information Fusion layer and Infrastructure layer. The
hierarchical architecture reflects the complex functionality of
the system as shown in the following brief description of the
functionality of particular layers:

• Infrastructure Layer: The lowest level of the location
management architecture is the Sensor Layer which
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Fig. 2: Occupational Health and Security (OHS) ontology.

are the associating among items within the same type of
anomaly, where the notion of the transaction could be events
where the same user participate. However, inter-anomaly de-
scribes relationships among different transactions. That means
between incidents, accidents and neglects. Further details are
giving in the subsequent sections.

IV. MINING ANOMALY INFORMATION

As already explained, the task of providing context-based
information calls for the processing and extraction of informa-
tion in the form of rules. One of the possible ways of obtaining
those rules is to apply an association rule algorithm. In this
work we employ Aprori and FP-Growth algorithms in parallel
in order to mutually validate the results from each other.

As also explained in the above section, the fusion en-
gine implements an association rules model that combines
dynamically feature selection based on the role of the user

in order to find spatiotemporal patterns between different
types of anomalies (or event sequence, ex. neglects, incidents,
accidents) that match with the current location of the user.

The dataset of anomalies, S, is composed by anomaly
instances,

S := {A1, A2, . . . , An} , n ∈ N, (1)

with the instances defined as

Definition 1 (Anomaly instance): An anomaly instance
can be defined as the tuple,

A := 〈t, c,L,O,N ,F〉 , (2)

that is composed by:

• t, a time instant that marks when the anomaly took
place;

• c ∈ {accident, incident, neglect}, that sets the class of
anomaly, and, therefore, its associated gravity;
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• L, a set of geo-location description attributes, which
describe the geographical localization of the anomaly
at different levels of accuracy;

• O, a set of organizational location attributes that
represent where in terms of organization structure the
anomaly took place;

• N , a set of descriptive nominal attributes that charac-
terize the anomaly with a predefined values, and;

• F , a set of free-text attributes that are used to comple-
ment or improve the descriptive power reachable with
N attributes.

In order to make the rules produced interesting for the user
the mining dataset, S, must be preprocessed to meet the her/his
needs. Using the above described problem ontology, the set of
anomalies relevant for mining can be (i) filtered and (ii) its
attributed selected.

For the first task we defined a function

filter anomalies (u,S) → S ′,S ′ ⊆ S, (3)

which determines the subset, S ′, of the anomalies dataset, S,
that are of interest for a given user, u. For the second task we
created the function

filter attributes (u,S ′) → S∗, (4)

where ∀A′ =∈ S ′, ∃A∗ ∈ S∗ such that t∗ = t′, c∗ = c′,
L∗ ⊆ L′, O∗ ⊆ O′, N ∗ ⊆ N ′ and F∗ ⊆ F ′.

Relying on the S∗ dataset customized to the user profile
two classes of data mining operations can be carry out to
extract knowledge rules. The first mines for rules regarding
the relations of different attribute values in anomalies, and
hence was called intra-anomaly rule mining. The other, more
complex one, mines for relationships between anomalies,
that take place in a same location —either geographical or
organizational— and in similar dates. Because of that this
operation was denominated spatiotemporal or inter-anomaly
rule mining. In the subsequent sections we describe both
mining processes.

A. Mining for intra-anomaly rules

In this case the data pre-processing before mining is pretty
straightforward, as the interest is to discover relationships
between the values of different attributes and the possible
presence of probabilistic implication rules between them. In
particular, each anomaly in S∗ is treated as a transaction
whose items are the non-null values of the corresponding N ∗.
The descriptive attributes that take part of the mining process
depend in the user profile. In order to model this we created
a function the function

N sel = select attributesintra (N , u) , (5)

which returns the subset of attributes, N sel ⊆ N , that are of
interest to a given user, u.

The results of applying the rule mining algorithms need to
be post-processed to eliminate cyclic rules and to sort them
according to an interestingness criterion. The outcome from
this process should uncover relations between different values
of the attributes. Some of those relationships might have a
trivial

B. Mining for inter-anomaly rules

Mining spatiotemporal rules calls for a more complex pre-
processing. As the most relevant anomalies are the accidents
mining is centered around them. In this case, transactions
will be constituted by anomalies that took place in the same
location (deduced from the user profile) and with a given
amount of time of precedence.

More formally, having the set of all accidents Λ =
{A ∈ S∗|A.c = accident}, for each element λ ∈ Λ, we con-
struct the set of co-occurring anomalies, C (λ) as,

C (λ) := {κ ∈ S∗|λ.t− κ.t ≤ Δt; loc (λ, u) = loc (κ, u)}
∪ {λ} , (6)

with loc(·), a function that for a given anomaly and user
returns the value of the location attribute of interest for that
user according to her/his role, and Δt, a time interval for
maximum co-occurrence.

The set of co-occurring anomalies {C(λ)|∀λ ∈ Λ} is used
as transactions dataset for the mining algorithms. However,
anomalies can not be used as-is, as it is necessary to express
them in abstract form, in order to achieve sufficient general-
ization as to yield results that not are excessively particular or
refined.

For this task, again depending on the user profile, a group
of elements of each N ∗ is selected to create the abstract
anomaly. This reduced set of attribute values are then used to
construct the transactions. Therefore, as in the intra-anomaly
case, we can construct a function

N sel = select attributesinter (N , u) , (7)

that having given a user, u, returns the subset of attributes,
N sel ⊆ N , that are of interest to u. Relying on N sel,
the abstracted anomaly Aabstract as the concatenation of the
attribute/value pairs,

Aabstract = ⊕
a∈N sel

a⊕A.a, (8)

where ⊕ is the concatenation operator. As this concatenated
representation is inefficient from a computational point of view,
they can be transformed into a reduced form by applying a
hashing [37] or a compression [38] operator.

This process is better understood with an illustrative ex-
ample. Fig. 3 puts forward such co-occurrence and abstraction
process example. In this case, we have a simplified anomalies
dataset Ssim where, having a given user, u, we also have the
location attribute l = loc (λ, u), ∀λ ∈ Ssim and the time of
anomaly is denoted by t. For brevity reasons in the figure, the
anomaly class is represented as c = {A, I, N}, for representing
accidents, incidents and neglects, respectively, and the set of
descriptive nominal attributes N = {a1, a2, a3}.

In this sample, there are three anomalies, which are marked
with the A symbol. Assuming that N sel = {a1, a2} (shaded
in grey) and a Δt = 2, three transactions are created in the
co-occurring anomalies dataset. This is because of that, for
every accident, λ, λ.c = A the anomalies that took place in
the same location and with time in the interval [λ.t−Δt, λ.t]
are abstracted and added as a transaction to the mining dataset.
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The resulting inter-anomaly mining dataset is composed
by transactions that contain the abstracted version of the co-
occurring anomalies for a given accident –or other class of
anomaly of interest. As in the previous case, post-processing
is necessary to filter out possible irrelevant and/or cyclic
rules. For this a set of domain-principled filtering rules were
proposed by the experts in order to define the most interesting
consequent —accidents and incidents— and the preferred form
of rules. As this is part is a sensitive element of the solution,
involving trade decisions, we are not discussing it in detail.

V. CASE STUDY

In this section we present a case study that was carried out
with the intention of asserting from an experimental point of
view the viability of the solution put forward in this work.

In order to create a controlled context for the tests it is
required to (i) select a subset of the fused dataset, which
contains all available anomalies, of such a size that can be
directly handled by an expert and with such properties that
guaranties the existence of rules (ii) create a custom user role
that when applied selects a group of features for intra-anomaly
mining and other for inter-anomaly mining.

In order to obtain the data set we applied a complex data
query that filtered all accidents in a given time interval and
their corresponding co-occurring anomalies. From that set, the
accidents that did not have at least one more accident with
the same abstracted co-occurring set were eliminated. These
actions produced a set of about 2000 anomalies in which it
was certain that there were latent rules relating some of them.

As the amount of anomalies in the dataset is of a manage-
able size the application of data visualization and inspection of
software, along with the use of basic statistical tools allow to
uncover at least some of the rules that are latent in the dataset.
Therefore, two sets of expected rules were manually extracted
with the purpose of verify that the mining algorithms were
capable of discovering rules known to exist beforehand.

In all experiments the threshold parameters of the rule
mining algorithm were set as: support, 0.2, and confidence,
0.8.

A. Intra-anomaly rule mining results

The application of FP-Growth in the intra-anomaly case
yielded 71 frequent sets of items and 76 rules. The Apriori
algorithm, in the other hand, generated 64 frequent item sets
and 64 rules. An important analysis is to compared at what
degree the frequent itemsets and rules generated by each
approach overlaps the other. This can be posed as counting
the number of itemsets and rules that have been generated by
both methods. This comparison is presented in Table I. There
it can be perceived that all itemsets and rules discovered by
the Apriori method were also found by FP-Growth. This fact
is a fundamental step to assert the validity of results.

Using the semi-automatic method explained above six rules
extracted with the semi-automatic procedure. There rules were
found to five of those rules were detected by Apriori, while
only one by FP-Growth.

TABLE I: Similarity of the results produced by Apriori and
FP-Growth in the intra- and inter-anomaly mining scenarios.

Number shared Shared Apriori
results

Shared FP-Growth
results

— Intra-anomaly mining —

Freq. item sets 64 100.0000% 90.1408%

Rules 64 100.0000% 84.2105%

— Inter-anomaly mining —

Freq. item sets 230 100.0000% 100.0000%

Rules 2670 100.0000% 100.0000%

TABLE II: Presence of the rules previously extracted by a
semi-automatic procedure in the results of Apriori and FP-
Growth algorithms.

Apriori results FP-Growth results

— Intra-anomaly mining —

Expected rules found 5 1
Coverage of expected rules 62.5000% 12.5000%

Per cent of true positives 7.8125% ≈ 0.0000%
Per cent of non-expected rules found 92.1875% 100.0000%

— Inter-anomaly mining —

Expected rules found 6 6
Coverage of expected rules 100.0000% 100.0000%

Per cent of true positives 0.2247% 0.2247%
Per cent of non-expected rules found 99.7753% 99.7753%

B. Inter-anomaly rule mining results

After carrying out the process of abstraction and anomaly
co-occurrence grouping a dataset with 1025 transactions was
passed to the rule mining algorithms. Similarly, in that dataset,
six rules were extracted by the semi-automatic method.

The results of both algorithms in this case are interesting.
Table I show that Apriori and FP-Growth found the same num-
ber of frequent itemsets, 230, and of rules (before filtering),
2670. Again, this results validate the approach proposed.

When determining how many hand-drawn rules were actu-
ally found by the algorithms the results are also encouraging.
All six rules were found by both algorithms as demonstrated
in Table II.

VI. FINAL REMARKS

In this work we have presented an information fusion
framework for providing context-aware services related to risk
prevention in offshore oil industry environment. The proposal
put forward aims at providing context-based information re-
lated to accidents and their causes to users depending on their
profiles and location.

Our approach relies on a domain ontology to capture the
relevant concepts of the application and the semantics of the
context in order to create a high-level fusion of information.
Along with that we have introduced an innovative use of rule
mining for provisioning knowledge for situation assessment
and decision making regarding risk an accidents prevention.
This form of rule mining is capable of an online high-
level knowledge extraction that represents relations between
different kinds of anomalies that have taken place at the user
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t l c a1 a2 a3

1 L1 N α δ τ

2 L1 I β δ τ

3 L2 R β ε υ

A 4 L1 A α ζ τ

5 L2 N α δ υ

A 6 L2 A β ζ τ

7 L2 N α δ τ

8 L2 I γ δ υ

9 L1 N γ ζ τ

A 10 L1 A α ζ υ

11 L1 N α δ υ

...
...

...
...

...
...

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c = A|a1 = α|a2 = γ c = I|a1 = α|a2 = γ c = N|a1 = α|a2 = γ

c = A|a1 = α|a2 = γ c = I|a1 = α|a2 = γ c = N|a1 = α|a2 = γ

c = A|a1 = α|a2 = γ c = I|a1 = α|a2 = γ

...
...

... ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ssim

co-occurring anomalies abstracted dataset

Fig. 3: Schematic representation of a co-occurrence and abstraction process example. The example is replies in a simplified
anomalies dataset Ssim where, having a given user, u, the location attribute is l = loc (λ, u), ∀λ ∈ Ssim and the time of anomaly
is denoted by t. For brevity reasons, the anomaly class is represented as c = {A, I, N}, for representing accidents, incidents and
neglects, respectively, and the set of descriptive nominal attributes N = {a1, a2, a3}. In this sample, there are three anomalies,
which are marked with the A symbol. Assuming that N sel = {a1, a2} (shaded in grey in the schema) and a Δt = 2, three
transactions are created in the co-occurring anomalies dataset. This means that, for every accident, λ, λ.c = A the anomalies
that took place in the same location and with time in the interval [λ.t−Δt, λ.t] are abstracted and added as a transaction to the
mining dataset.

location and that the system has determined that had lead to
an accident.

This feature has the potential of lowering at great length
the development of accidents and incidents as it allows the
users to directly act on the causes and conditions that have
prompted such situations in the past. It empowers the users
with the tools that help them to modify their routine and to
avoid possible hazards or dangers.

This work is of particular relevance when taking into
account the significant human, social, economical and en-
vironmental impact of accidents in this application context.
From human and social points of view, the class of application
described here is important as the remoteness and isolation of
the installations render any assisting action more complicated
and risky than usual. Similarly, oil industry is a heavily cost-
minded industry, where accidents trend to have a important
economical repercussions derived from the stop of production
and the cost of the equipment and repair activities. Last, but
certainly not least, the dramatic environmental impact of this
industry has been sadly verified in the last years. Accidents,
in the form of oil spills and fires are one of the main risks
and one of the main dangers perceived by society regarding
this industry. The environmental issue implies damages that are
frequently impossible to assess in quantitative terms and whose
footprint can potentially remains latent for future generations.
It also has human, social and economic ramifications that fall
in the above mentioned areas.

The solution presented here is currently deployed and in
active use by a major oil extraction and processing industrial
conglomerate of Brazil. It is currently used in the off-shore and
inland oil extraction facilities as well as industrial and support
locations.

The authors and collaborators are actively working in
further improvements to the solution presented here. One
important effort is directed towards the extension of the inter-
anomaly relationship mining. The current model is being
extended in order to be able to perform a multi-location
mining. This work is being carried out in three main directions:
(i) combine organizational and geographical localization; (ii)
convert current location into a more abstract representation that
could be generalizable across different installations, and; (iii)
including geographical or topological neighbourhood informa-
tion regarding the organizational or geographical location and
relying on that extend the co-occurrence function definition.
There is another important area or work that is focused on
the integration of this framework in a multi-level information
fusion framework. Similarly, the algorithms for knowledge
discovery are currently being revised. Other machine learning
paradigms like fuzzy inference, genetic programming or deci-
sion trees can be use to extract rules. They should be assessed
and experimentally compared.
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