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We develop a temperature-dependent theory for singlet exciton hopping transport in disordered semiconductors.
It draws on the transport level concept within a Förster transfer model and bridges the gap in describing the
transition from equilibrium to nonequilibrium time-dependent spectral diffusion. We test the validity range of the
developed model using kinetic Monte Carlo simulations and find agreement over a broad range of temperatures.
It reproduces the scaling of the diffusion length and spectral shift with the dimensionless disorder parameter and
describes in a unified manner the transition from equilibrium to nonequilibrium transport regime. We find that
the diffusion length in the nonequilibrium regime does not scale with the the third power of the Förster radius.
The developed theory provides a powerful tool for interpreting time-resolved and steady state spectroscopy
experiments in a variety of disordered materials, including organic semiconductors and colloidal quantum dots.
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I. INTRODUCTION20

The phenomenon of exciton diffusion is found to play a21

role in a remarkably wide range of physical systems, includ-22

ing disordered organic semiconductors [1,2], nanocrystalline23

quantum dots [3–6], semiconducting carbon nanotubes [7–10],24

and photosynthetic biological systems [11]. Moreover, there is25

a growing interest in describing electronic excitation energy26

transfer because exciton dynamics determines function in27

many technological applications. For example, in thin-film28

organic solar cells, exciton diffusion drives charge separa-29

tion [12,13], in organic light emitting diodes it determines30

the brightness and color of the device [14], in scintillator31

detectors it controls the response function and yield [15],32

while in quantum communication systems it facilitates photon33

antibunching [16].34

In disordered semiconductors that display weak intermolec-35

ular interactions, excitations created upon light absorption,36

carrier recombination, or annihilation processes are typically37

Frenkel excitons that are localized on single chromophore38

units (molecule, conjugated segment, quantum dot) and have39

a finite lifetime before relaxation to the ground electronic40

state occurs by radiative or nonradiative process. In the weak41

coupling regime, excitons transfer from one unit to the other42

with a Markovian incoherent hopping process and transport43

can be described as a simple diffusive motion [17]. However,44

chromophore units are not equivalent to each other as they can45

have different on-site excitation energies due to the different46

local environment, structure, or size as well as different47

excitonic couplings with neighbors. As a consequence, the48

*Electronic address: ansari.rad@shahroodut.ac.ir
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energy landscape has a distribution that is often approximated 49

by a Gaussian [18] and the standard deviation of the distribution 50

defines the disorder parameter σ . Therefore, in the course 51

of time, excitations sample the energetic landscape and on 52

average relax to lower energy sites until they “settle down” to 53

a steady state and equilibrium is achieved. However, because 54

excitations have a finite lifetime τ , the relaxation process 55

might be incomplete and, consequently, the exciton transport 56

out of equilibrium [19]. It should be emphasized that this 57

spectral relaxation process is different from the initial rapid 58

vibronic relaxation [20]. Another consequence of the finite 59

lifetime is that excitations have a limited spatial diffusion 60

range, determined by the diffusion length LD [19,21,22]. Spec- 61

troscopic techniques such as time-resolved and time-integrated 62

photoluminescence spectroscopy can provide information on 63

spectral diffusion [23–25] and a number of organic and inor- 64

ganic systems have been studied over a range of temperatures 65

[26–31]. 66

A common misconception exists, that in practical device 67

applications at room temperature, equilibrium transport pre- 68

vails and the description of transport in terms of normal 69

diffusion is sufficient. However, the distinction between equi- 70

librium and nonequilibrium exciton transport is quite a subtle 71

one and the transport regime is not uniquely defined only 72

by temperature. Whilst significant progress has been made 73

on understanding temperature dependent spectral relaxation 74

and exciton diffusion, including experimental measurements 75

[26–33] and computational models [19,21,33–44], currently 76

there is no analytical theory that can describe the transition 77

from equilibrium to nonequilibrium transport. In contrast, for 78

charges it has been suggested that the transport problem can 79

be modeled as a multiple-trapping process and it has been 80

shown that a unique level in the energy distribution exists, 81

the transport energy (TE), that plays the same role as the 82
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mobility edge in the multiple-trapping mechanism [45–47].83

Note that in contrast to the long-range nature of the dipole-84

dipole interaction facilitating singlet exciton transport [48],85

charge transport in disordered semiconductors occurs via a86

short-range tunneling mechanism [49].87

In this paper, we shall develop and test a theory that can treat88

the dynamics of exciton diffusion at both the equilibrium and89

nonequilibrium transport regime. In what follows, we develop90

a formalism based on the TE concept for the calculation of91

singlet exciton transport parameters, such as relaxation energy92

and diffusivity, including their temporal dependence. The93

validity of the TE level concept for Förster processes has been94

demonstrated by Baranovskii and Faber [50]. However, the TE95

level concept has not been applied yet to describe temperature96

and time dependent singlet exciton transport. In Sec. II, we97

repeat the main arguments and equations of Ref. [50] to enable98

the reader to follow theoretical consideration in Sec. III based99

on these equations. Section III includes the main results (Secs.100

III A, B, and E) along with a comparison of the theory to101

Monte Carlo simulations (Sec. III C), a discussion on the TE102

level concept for short vs long-range transfer and comparison103

with experiments (Sec. III D). Section IV summarizes the work104

and draws conclusions.105

II. TRANSPORT ENERGY LEVEL FOR FÖRSTER106

TRANSFER107

We consider thermally assisted Förster energy transfer108

between localized states described by the rate [19,50,51]109

ν(εd → εa ) =
1

τ
S(R)exp

[

−
�ε + |�ε|

2kBT

]

, (1)

with110

S(R) =
(

RF

R

)6

, (2)

where τ is the intrinsic exciton lifetime,RF is the Förster radius,111

determined by the donor-acceptor spectral overlap, and kBT is112

the thermal energy. �ε = εa − εd is the difference between113

the donor and acceptor energies and R is the corresponding114

distance.115

We take into account a Gaussian distribution of energy116

states g(ε) = N/
√

2πσ 2 exp(−ε2/2σ 2), with N and σ the117

total density of states (DOS) and the width of the distribution,118

respectively. If the relaxation process is completed during the119

lifetime τ , excitons will occupy states around the equilibrium120

energy ε∞ (see Fig. 1) at which the product g(ε)f (ε, εF ) max-121

imizes [49]. Here, f (ε, εF ) = {1 + exp[(ε − εF )/kBT ]}−1 is122

the Fermi distribution and εF is the Fermi level, determined by123

the number density n of the excitons as124

n =
∫ +∞

−∞
g(ε)f (ε, εF )dε. (3)

Note that at low densities, the equilibrium energy ε∞ can be125

approximated by either −σ 2/kBT , at high temperatures [52],126

or by εF , at low temperatures; see Fig. 2(a).127

Now, we examine the possibility of the existence of a TE128

level εtr in the energy distribution that can serve as the mobility129

edge in our exciton diffusion problem [50]. In the presence of130

such an energy level, excitons with ε > εtr , will, on average,131

FIG. 1. Schematic illustration of interacting units in a disordered

semiconductor, resulting in a Gaussian broadened excitonic DOS.

Singlet exciton diffusion via Förster-type energy transfer process

triggers energy relaxation toward the equilibrium energy ε∞. Due

to the finite lifetime, excitons may decay at a higher energy, ετ . εtr is

the transport energy level.

move downward in the distribution, toward the TE level. On 132

the other hand, upward jumps of excitons with ε < εtr will be 133

in the vicinity of εtr . If we express the mean jump distance as 134

Rεtr
=

[

4π

3

∫ εtr

−∞
g(ε)f ′(ε, εF )dε

]−1/3

, (4)

we can obtain the following equation governing the position 135

of the TE level for the Förster transport problem: 136

g(εtr )f ′(εtr , εF ) =
1

2kBT

∫ εtr

−∞
g(ε)f ′(ε, εF )dε, (5)

where f ′(ε, εF ) = 1 − f (ε, εF ). We have used the approach 137

of Ref. [46] to obtain the above equation, according to which 138

one can find εtr by maximizing the upward transfer rate; see 139

Appendix A for more details. We emphasize that the form of 140

Eq. (5) directly follows from the inverse sixth power distance 141

dependence of the dipole-dipole interaction. Equation (5) also 142

shows that the position of εtr is independent of the character- 143

istic length RF and the density N , in contrast to the charge 144

transport problem in which εtr = εtr (α,N ). Interestingly, 145

Eq. (5) does not acquire a solution for an exponential DOS. 146

Again, this is in contrast to the charge transport problem, where 147

for both Gaussian and exponential DOS one can find a TE 148

level in the energy distribution. Charge transport in disordered 149

semiconductors occurs via short-range transfer mechanism, 150

with a rate similar to Eq. (1), but with S(R) = exp(−2R/α), 151

where α is the carrier localization length. 152

Figure 2(a) illustrates εtr as a function of disorder nor- 153

malized thermal energy. At high temperatures, εtr lies near 154

the center of the energy distribution. At lower temperatures, 155

εtr decreases to lower energies because by decreasing the 156

temperature thermal activation to higher energies becomes less 157

probable. We point out that a meaningful application of the TE 158

level requires that the condition εtr > ε∞ [49] is satisfied. To 159

test this condition, we plot a heat map of εtr − ε∞ as a function 160

of kBT/σ and excitation density in Fig. 2(b), which shows that 161

this condition is fulfilled over a broad range of temperatures and 162

exciton densities. Thus the concept of the TE can be used for 163

Förster-type exciton transport. In what follows, we consider the 164

weak excitation condition, with n/N ≪ 1 and therefore f ′ ≈ 1. 165

More precisely, we use σ = 0.065 eV, N = 1 nm−3 and 166

005200-2
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FIG. 2. (a) Transport energy level εtr , as a function of disorder

normalized temperature. Data are obtained using Eq. (5) with σ =
0.065 eV, N = 1 nm−3, and n/N = 1.6 × 10−5. εF is the Fermi level

and ε∞ is the thermal equilibrium energy, approaching −σ 2/kBT at

high temperatures. (b) Heat map of εtr − ε∞ for a broad range of

temperatures and exciton densities.

n/N = 1.6 × 10−5, corresponding to one exciton in a lattice167

of size (40 nm)3, as implemented in our kMC simulations. The168

same parameters were used in Fig. 2(a).169

III. NONEQUILIBRIUM EXCITON DYNAMICS170

A. Demarcation energy level and energy relaxation171

Having outlined the concept of the TE level and the gov-172

erning equations for singlet exciton transport [50], let us now173

turn our attention to the main problem, that is, the description174

of the relaxation dynamics. Excitons, generated randomly175

in the DOS, progressively thermalize into deeper energies.176

Notwithstanding their way to the deep energy levels, excitons177

need to be first activated to shallower energies, because the178

density of such levels is high in the energy distribution. Using179

the concept of the TE level we can say that these intermediate180

activations, necessary to approach thermal equilibrium, are181

most probable at the vicinity of the level εtr . As first introduced182

by Tiedje and Rose [53], we can define a demarcation energy183

εm(t ) in the system, such that during time t following the initial184

excitation, only the levels with ε > εm(t ) are likely to release185

their excitons to the TE level. Mathematically, this means that 186

tν(εm → εtr ) = θ , with θ being O(1). In a more explicit form, 187

t
1

τ

(

RF

Rεtr

)6

exp

[

−
εtr − εm(t )

kBT

]

= θ. (6)

From the above equation we find 188

εm(t ) = εtr − kBT ln

[

t

θτ

(

RF

Rεtr

)6
]

. (7)

On the other hand, if we consider the low density condition, we 189

can obtain the following equation for the mean jump distance 190

from Eqs. (4) and (5): 191

1

R3
εtr

=
8π

3
g(εtr )kBT . (8)

Inserting Eq. (8) in Eq. (7), and using g(ε) = N/ 192√
2πσ 2 exp(−ε2/2σ 2), we get the following expression for 193

the demarcation level: 194

εm(t ) = εtr

(

1 +
εtr

σ 2/kBT

)

− kBT ln

[

(

NF

kBT

σ

)2
2

θπ

t

τ

]

,

(9)

where NF = (4π/3)R3
FN . 195

According to Eq. (9), in the course of time, the demarcation 196

level sinks to deeper energies. However, we note that this can 197

continue only until time t = τ , which is the intrinsic lifetime 198

of the exciton. If we interpret the demarcation energy as a 199

quasi-Fermi level [54], at time τ most excitons are accumulated 200

around an energy level at which the product g(ε)f [ε, εm(τ )] 201

maximizes. This energy is in fact the same energy ετ shown 202

in Fig. 1. ετ is in general different from ε∞, but if the 203

thermalization is completed during the exciton lifetime, we 204

obtain ετ = ε∞. The energy, ετ is experimentally available 205

through fluorescence spectroscopy. We stress that our model 206

can also be applied for exciton transport in the presence of 207

quenching centers [21,55]. In such a situation, one has to 208

consider the demarcation energy at time t < τ . 209

The five energy levels discussed here, εtr (TE level), ετ (en- 210

ergy relaxation during exciton lifetime), εm(τ ) (demarcation 211

or quasi-Fermi level at time t = τ ), ε∞ (thermal equilibrium 212

energy), and εF (equilibrium Fermi level), are plotted in Fig. 3 213

for RF = 5 nm. We have used θ ≈ 0.2 since it gives excellent 214

agreement with kinetic Monte Carlo (kMC) simulations, see 215

below. As expected, at high disorder normalized temperatures 216

the thermalization is nearly complete, and therefore ετ coin- 217

cides with ε∞. However, by decreasing kBT/σ, ετ deviates 218

from ε∞, owing to the incomplete thermalization during the 219

exciton lifetime. 220

Two temperature regions in Fig. 3 need to be discussed in 221

detail. (i) Region with εm(τ ) > ε∞. The relaxation energy ετ in 222

this region reaches a minimum at a critical temperature where 223

εm(τ ) ≈ ε∞, and then increases by decreasing the temperature, 224

see inset of Fig. 3. This behavior, usually assigned to frustrated 225

relaxation, has been observed experimentally [30,31], and has 226

been predicted through kMC simulations to occur also for 227

Förster energy transfer [38]. Here, we see that our model 228

can naturally produce the frustrated relaxation feature, see 229

Sec.III D for more details. (ii) Region with εm(τ ) > εtr . In the 230
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FIG. 3. εtr (TE level), ετ (energy relaxation during the exciton

lifetime), εm(τ ) (quasi-Fermi level), ε∞ (thermal equilibrium energy),

and εF (equilibrium Fermi level), as a function of disorder normalized

temperature. Data are calculated using Eqs. (5) and (9) for RF = 5 nm.

temperature region given by the above condition, the multiple-231

trapping model is not applicable at all and introducing εm(τ ) is232

physically meaningless. In this region, excitons created in the233

system move, on average, downward toward the TE energy234

level, and therefore the picture of activation to a TE level235

is not correct. As we discuss below in the kMC section, an236

agreement between theory and simulation is not expected in237

this temperature region.238

An important feature of the Förster-type transport mech-239

anism is that the exciton transfer rate is coupled to the240

spontaneous decay rate, 1/τ ; see Eq. (1). Therefore, a longer241

exciton lifetime does not result in a higher degree of the242

thermalization, because the transfer rate, that determines the243

degree of thermalization, is also reduced. As a consequence, as244

predicted by Eq. (9), the demarcation energy at time t = τ , and245

hence ετ , are independent of the exciton lifetime. On the other246

hand, ετ is a strong function of the Förster radius. We discuss247

this dependency below, when presenting the kMC simulation248

results.249

B. Exciton diffusion length250

An important physical quantity related to exciton transport251

is the diffusion length. In what follows, we derive an expression252

for the exciton diffusion length using the TE level concept.253

Since the diffusion length is given by [56]254

LD =
√

Dτ, (10)

we must first find the diffusion coefficient D. To obtain this,255

one can use [57]256

D ≈ R2
εtr

/〈t〉, (11)

where 〈t〉 is the mean time that excitons spend in an energy257

state before activation to the TE level. 〈t〉 can be obtained by258

averaging the quantity 1/ν(ε → εtr ) for energies smaller than259

εtr [57,58]: 260

〈t〉 = τ

(

Rεtr

RF

)6

∫ εtr

−∞
exp

(

εtr − ε

kBT

)

g(ε)f ′[ε, εm(τ )]dε

∫ εtr

−∞
g(ε)f ′[ε, εm(τ )]dε

.

(12)

Combining Eqs. (10)–(12), as shown in Appendix B, we get 261

the following expression for the diffusion length: 262

LD ≈
(

9θ3

16π2

N ′ − n′

n′3

)1/6

, (13)

where n′ =
∫ εtr

−∞ g(ε)f [ε, εm(τ )]dε and N ′ =
∫ εtr

−∞ g(ε)dε. 263

Note that, since according to Eq. (9) εm(τ ) is a function of the 264

Förster radius RF, the diffusion length is also RF dependent. 265

However, it is clear from Eq. (13) that the dependency of LD 266

on RF is more complex than that traditionally expected, that 267

is, LD ∝
√

D ∝
√

ν ∼ R3
F (which is deduced from a simple 268

nearest neighbor random walk picture). This is because, for 269

the problem of exciton transport in energetically disordered 270

systems, RF is not merely a multiplicative factor, but according 271

to Eq. (9), it also controls the thermalization process, which, in 272

turn, affects the dispersivity of the diffusion process. Another 273

important result of our theory, as discussed in Appendix C, 274

is that both the quantity ετ/σ and the diffusion length LD in 275

Eq. (13) scale with the dimensionless disorder strength σ/kBT . 276

Indeed, the scaling of both the exciton diffusion length and 277

spectral relaxation has been predicted in the past by one of 278

the authors using Monte Carlo simulations [19,39,59]. In the 279

following section, we test the validity of our approach to the 280

problem of nonequilibrium exciton transport against Monte 281

Carlo simulations. 282

C. Kinetic Monte Carlo simulations 283

Monte Carlo simulations provide an insightful and predic- 284

tive computational method for studying incoherent hopping 285

transport phenomena in disordered semiconductors. In this 286

paper, we use a kMC method [19] to simulate the time 287

evolution of singlet exciton transport, confirm the validity of 288

the developed theoretical model and test its applicability range. 289

The computational protocol is as follows. 290

We consider a regular cubic cell of 40 nm × 40 nm × 40 nm 291

with a lattice constant a = 1 nm. Each lattice point corresponds 292

to an exciton transport site, while periodic boundary conditions 293

are implemented along all directions of the cell using the 294

minimum image criterion. Individual Monte Carlo runs start 295

by placing one exciton at a random site in the cell with each 296

site having an energy drawn from a Gaussian distribution with 297

a zero mean and variance σ 2. Förster transfer rates νij from 298

the exciton occupied site i to each neighboring hopping site 299

j , within a cutoff radius of rcut = 5 nm, are calculated using 300

Eq. (1). At each Monte Carlo step, waiting times for each 301

hopping event are calculated according to τij = − 1
νij

ln X, with 302

X a random number from a box distribution from zero to 303

unity, resulting in 514 events for the chosen cutoff radius. An 304

additional waiting time for exciton recombination is computed 305

as τir = −τ ln X. If the event with the shorter waiting time 306

is a hopping event, then exciton transfers to the new site and 307
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(a) (b)

FIG. 4. (a) Energy relaxation during the exciton lifetime, ετ as

a function of disorder normalized temperature. kMC simulations

(circles) and theory (solid lines), for two different Förster radii,

RF = 2 and 5 nm. The critical points at which εm(τ ) = εtr , are

indicated as segments. Dashed line indicates the thermal equilibrium

energy ε∞. (b) Same as (a) with rcut = 5 nm (empty circles) and 2 nm

(filled circles).

simulation advances whereas if it is recombination, the exciton308

is removed from the system and the run is terminated. By309

averaging over 105 individual exciton trajectories, we obtain310

the quantities of interest, i.e., the relaxation energy ετ and311

the diffusion length LD . The first is calculated from the final312

energy of each exciton before recombination, while the latter313

from the displacement between the initial, exciton generation,314

and the final, exciton recombination, position. We allow to315

vary independently the temperature T and Förster radius RF316

parameters, while disorder σ and lifetime τ remain constant.317

In fact, due to the Förster rate inverse dependence on τ, τ does318

not impact neither the ετ nor the LD values, while a scaling319

law exists for both of them with respect to the dimensionless320

disorder parameter σ/kBT [19,38].321

The central results comparing theory with Monte Carlo322

simulations are presented in Fig. 4 for the spectral relaxation323

and Fig. 5 for the diffusion length. Figure 4(a) shows the Monte324

FIG. 5. Diffusion length LD as a function of disorder normalized

temperature. Data from kMC simulation (symbols) and theory (solid

lines), for different Förster radii, RF = 2, 3, 4, and 5 nm.

Carlo results for ετ , for two Förster radii RF = 2 and 5 nm. The 325

theoretical predictions, calculated based on the TE concept 326

and using the averaging method (see Appendix D), are also 327

shown in the figure. As pointed out above in Fig. 4(a), the 328

multiple-trapping picture is not valid when εm(τ ) > εtr . The 329

exact points at which εm(τ ) = εtr are calculated and marked in 330

the figure. In the region where the TE concept is applicable, the 331

theory is in very good agreement with the kMC results. Since 332

the density of the energy levels is higher near the center of the 333

Gaussian distribution, most excitons generated in the system 334

will have energies ε ≈ 0 and according to the TE concept, those 335

excitons initially move, on average, downward to the TE level 336

εtr . However, en route to the TE level, some upward in energy 337

jumps are also necessary to avoid the blockade of excitons due 338

to disorder. Therefore, for larger Förster radii, the TE concept 339

is valid over a broader range of temperatures, because a larger 340

RF results to a higher probability to overcome local energy 341

barriers. 342

A recent combined experimental and computational study 343

highlighted the dominant contribution of long-distance jumps 344

to singlet exciton migration in metal-organic frameworks [60]. 345

To illustrate the importance of long-distance hopping, we have 346

also performed simulations with rcut = 2 nm (i.e., restrict- 347

ing exciton hopping only to the first 32 nearest neighbors). 348

Figure 4(b) shows that in comparison to rcut = 5 nm (514 349

nearest neighbors), the energy relaxation shows a pronounced 350

frustrated dynamics, inconsistent with the theory prediction. 351

This clearly demonstrates that especially at low temperatures, 352

long-range jumps contribute significantly to the relaxation 353

process. In other words, due to the long-range nature of the 354

Förster mechanism, modeling the singlet exciton transport as 355

a simple nearest-neighbor random walk process may result 356

in an incorrect description of the energy transfer dynamics. 357

We can also conclude that for inherently short-range transport 358

mechanism, like charge or triplet exciton transport problem, 359

a strong frustration is expected, as indeed reported in earlier 360

simulations [38,39]. We revisit this issue in more detail in Sec. 361

III D, below. 362

Figure 5 compares LD obtained from the kMC simulations 363

with those calculated using Eq. (13). Apart from an additional 364

constant factor (≈ 1.5) needed to fit the theory to the simulation 365

(see Sec. III E), the theoretical results are in good agreement 366

with the kMC simulations showing a steep increase of the 367

diffusion length with disorder normalized thermal energy. 368

We point out that in contrast to spectral relaxation, reliable 369

estimates for LD from the theoretical model can be obtained 370

even in the regime where εm(τ ) > εtr as LD is less sensitive 371

to εm(τ ) in that region. It must be noted that our results are 372

in agreement with experimental reports on the temperature 373

dependence of the exciton diffusion length [29,32]. Finally, 374

Fig. 6 shows that the traditional picture of LD ∝ R3
F does not 375

hold true at the intermediate and low temperature region, as 376

predicted and discussed in the theory section above. 377

D. TE level for short vs long-range transfer and 378

comparison with experiment 379

Herein, we discuss the main differences on the TE level 380

for short vs long-range excitation transfer and the resulting 381

influence on energy relaxation. We also include a comparison 382
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FIG. 6. Diffusion length LD as a function of the Förster radius for

different temperatures on a log-log scale. Data from kMC simulations

(symbols) and theory (solid lines). Dashed line indicates the slope

expected from LD ∝ R3
F.

with published experimental data of temperature dependent383

fluorescence relaxation in organic semiconductors. Although384

in this paper we have focused on the hopping dynamics of385

singlet excitons that transfer by a Förster process, i.e., with a386

long-range transfer rate that is ∝ τ−1(RF/R)6, within a Gaus-387

sian DOS, of particular interest is also the relaxation process388

of charge carriers and triplet excitons that follow a Dexter389

type of transfer mechanism. This short-range transfer process390

requires wave-function overlap and can be described by a391

Miller-Abrahams (MA) type of rate ∝ ν0 exp(−2R/α). An392

important difference between those two transfer mechanisms393

is that whilst for Förster transfer, exciton transport and decay394

are coupled to each other, due to the inverse dependence of the395

rate on the exciton lifetime τ , for MA transfer the attempt to396

hop frequency prefactor ν0 is independent of the lifetime, with397

typically τ ≫ ν−1
0 .398

The TE level has been used before to study energy relaxation399

of charges and triplet excitons that transfer by short-range400

hopping rate transfer [34,53,61]. Motivated by experimental401

observations of photoluminescence spectra [30,31] that show402

a nonmonotonic dependence of the relaxation energy upon403

cooling, those studies along with kMC simulations [34,38,39]404

have revealed that charges and triplet excitons show a strong405

frustrated relaxation, of the order of a few σ , as depicted406

schematically in Fig. 7(a). To describe this behavior, we first407

note that the TE level for short-range transfer (MA rate)408

[47,62] lies above the TE level for Förster transfer across the409

intermediate and low temperature range, as shown in Fig. 7(b).410

We highlight that for MA transfer, εtr is a function of disorder411

normalized thermal energy kBT/σ , exciton density N , and412

localization length α and is independent of ν0. For Förster413

transfer, however, εtr is only a function of kBT/σ and is inde-414

pendent of N, RF, and τ . The relative position of the pertinent415

TE levels is therefore valid for any combination of transport416

parameters, unless for very large, unrealistic values of α.417

According to the multiple-trapping picture, upward excitation418

hops are mainly at the vicinity of the TE level. Henceforth, for419

short-range MA transfer, with decreasing thermal energy such420

(a)

(b)

(c)

FIG. 7. (a) Illustration of temperature-dependent energy relax-

ation for long- vs short-range transfer processes. Short-range transfer

(relevant for charges and triplet excitons) results in a strong frustra-

tion, of the order of σ at low temperatures. (b) Relevant ordering

of temperature-dependent TE levels for long-range (Förster rate)

and short-range (MA rate) transfer for typical transport parameters.

(c) Schematic illustration showing the different relaxation pathways

for charges and triplet excitons (C,T) and singlet excitons (S). The

TE level for long-range transfer, i, lies below the TE level for

short-range transfer, ii. Paths ©1 and ©2 result to relaxation toward

deep energy levels. At intermediate and low temperatures, however,

thermal activation via path ©2 is forbidden, leading to frustrated

relaxation.
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hops are less probable and the relaxation process terminates at421

higher energies, because intermediate activations to the TE422

level are necessary to reach the equilibrium level. This is423

schematically shown in Fig. 7(c). On the other hand, since the424

TE level for long-range Förster transfer is at lower energies,425

thermal activations to this level are more likely and therefore426

subsequent relaxation to deep energy levels is an allowed427

process. Note that although for a Gaussian DOS, sites with428

low energy levels are limited, the long-range nature of the429

Förster rate makes upward energy jumps more probable for430

singlet excitons [Path ©1 in Fig. 7(c)]. It is well established that431

for disordered organic semiconductors and colloidal quantum432

dots, a Gaussian DOS describes the distribution of localized433

energy states [18], whereas for inorganic semiconductors an434

exponential DOS is a more appropriate choice [34,61,63,64].435

An important feature of the Gaussian DOS, in contrast to the436

exponential one, is that for a broad temperature range the most437

populated energy level (ε∞ or ετ ) does not lie near the Fermi438

level (εF or εm); see Fig. 3. Therefore, for calculating the439

amount of the energy relaxation, we have used the energy440

ετ and not the demarcation energy εm. For an exponential441

DOS however, since ε∞(τ ) ≃ εF (m), one can use the position442

of the demarcation energy as the energy relaxation, as done in443

Refs. [34,61] for short-range type of transfer in an exponential444

DOS.445

Finally, we compare our theoretical results for the energy446

relaxation (ετ ) based on the TE level formulation with previ-447

ously published experimental data in conjugated polymers and448

oligomers. Figure 8 shows experimental data obtained from449

the fluorescence spectra of four different films: dioctyloxy-450

poly(p-phenylene) (DOOPPP), polyfluorene (PF2/6), ladder-451

type poly(p-phenylene) (MeLPPP), and PF2/6 trimer (Trimer)452

as reported in Refs. [30,38]. It is evident that the theory453

reproduces the experimental data for reasonable Förster radii454

(best fits are obtained with RF = 2.5 and 4.5 nm, as indicated455

in the figure). Note that according to Eq. (9), the quantity NR3
F456

is the fit parameter. Here, however, we have decided to fix the457

total density of states (N = 1 nm−3) and only vary the Förster458

radius to obtain the above data. In Fig. 8, in addition to ετ ,459

we also display ε∞ (energy relaxation at equilibrium) and the460

quantity −σ 2/kBT . Interestingly, the equilibrium quantity ε∞461

fits the experimental data for the DOOPPP polymer over the462

whole temperature range, showing that singlet excitons reach463

equilibrium conditions during their lifetime. This, in turn, is464

a result of the high density of localized states, a large Förster465

radius, or a combination of these two factors.466

E. Subdiffusive transport467

Having established the effectiveness of the analytical model468

to describe spectral relaxation, we now turn our attention469

to obtaining the time dynamics of exciton diffusion. Very470

recently, it has been reported experimentally that exciton471

diffusion in a system of disordered colloidal quantum dots is472

dispersive and can be described as a subdiffusive transport473

[3], in which D(t ) ∝ tβ with β < 0. Similar results have been474

obtained from Monte Carlo simulations for triplet exciton and475

charge transport in a Gaussian DOS [39,65]. To investigate476

whether our model can explain these observations, we expand477

the TE concept to take into account the time dependence of the478

(a)

(b)

FIG. 8. Energy relaxation during the exciton lifetime, ετ as a

function of disorder normalized temperature. Theoretical data based

on the TE level (solid line) and experimental data obtained from the

fluorescence spectra of (a) PF2/6 trimer (empty squares) and DOOPPP

polymer(filled squares) films (from Ref. [30]) and (b) PF2/6 (empty

squares) and MeLPPP (filled squares) polymer films (from Ref. [38]).

The Förster radii RF used in the calculations are indicated in the plots.

The levels ε∞ (thick dashed line) and −σ 2/kBT (thin dashed line) are

also plotted.

dynamics for t < τ . This can be achieved by considering 479

the demarcation energy εm(t ), instead of εm(τ ) used in the 480

previous calculations. Below, we present results for the energy 481

relaxation shift εt�τ and the diffusion coefficient D(t ), while 482

we derive the time-dependent expressions in Appendix B. 483

Figure 9 shows the temporal evolution of εt�τ and D(t ) for 484

two different temperatures and two Förster radii, RF = 2 and 485

5 nm. As seen in Fig. 9(a), in the course of time, excitons relax 486

to lower energy levels. For a Förster radius of RF = 5 nm and 487

at high temperatures, excitons reach the equilibrium energy 488

during their lifetime [this is also apparent in Fig. 4(a)] and 489

a stationary state is indeed established at t < τ . In contrast, 490

at low temperatures and/or small Förster radius, the relaxation 491

process is incomplete and the stationary state can not obtained. 492

Interestingly, our theoretical results for low temperatures 493

show a linear dependence with time in the logarithmic scale 494

εt�τ ∼ − ln(t/τ ), with the same slope for both RF = 2 and 495
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(a)

(b)

FIG. 9. (a) Energy relaxation (shift) as a function of time. Data for
T = 140, and 300 K, and RF = 2 and 5 nm. (b) Diffusion coefficient
D(t ) as a function of time calculated using Eq. (B5). Data for T = 140
and 300 K and RF = 2 and 5 nm. The dotted line shows the scaling
of the diffusion coefficient with time in the nonequilibrium regime.
Stars indicate the equilibrium values.

5 nm, and are in agreement with results from Movaghar496

et. al. [51]. The time evolution of the diffusivity is shown in497

Fig. 9(b). As a result of exciton relaxation to lower energy498

levels with time, based on the multiple-trapping picture, the499

waiting time needed to jump to the TE level increases with time.500

Therefore, the diffusion coefficient becomes time-dependent,501

i.e., dispersive transport, and decreases with time. As derived502

in Appendix B, in this nonequilibrium regime we obtain503

D(t ) ∝
(

t

τ

)−2/3

, (14)

which clearly demonstrates the dispersive nature of singlet504

exciton diffusion. Nevertheless, at high temperatures and large505

Förster radius, since equilibrium can be established during506

the exciton lifetime, the diffusion coefficient approaches its507

equilibrium, time-independent, value.508

In obtaining Eq. (13) for the diffusion length, the diffusion509

coefficient at time t = τ has been used in the calculations.510

However, since the exciton transport occurs almost entirely in511

the nonequilibrium regime and the diffusion coefficient is time-512

dependent, using D(t = τ ) may result in an underestimation513

of the diffusion length. This argument shows why an additional514

factor was required to fit the theory with the kMC results in515

Fig. 5. One can estimate this factor by using the following516

relation for the diffusion length of excitons : 517

LD =

√

∫ τ

0
D(t )dt . (15)

Using Eq. (14) we have 518

LD ≈

√

D(τ )τ
∫ τ

0
(t/τ )−2/3d(t/τ ) =

√
3 ×

√

D(τ )τ .

(16)

The factor
√

3 justifies the additional factor used in Fig. 5 to 519

match the theory with the kMC results. 520

IV. CONCLUSION 521

A theory for singlet exciton hopping transport has been 522

developed and tested. It describes diffusive transport via long- 523

range Förster transfer in a Gaussian distribution of localized 524

states through a multiple-trapping mechanism, with the TE 525

playing the role of the mobility edge. The theory provided 526

in this paper fully describes the transition from equilibrium 527

to nonequilibrium transport. The global validity range of the 528

theory is illustrated by comparison to Monte Carlo simulations. 529

We find that for Förster radius values smaller than 5 nm, 530

typical in organic semiconductors, exciton transport occurs 531

mainly in the nonequilibrium regime and the diffusion length 532

deviates from the cubic dependence upon the Förster radius. 533

An important feature of the theory is that it takes into account 534

explicitly the temporal evolution of the spectral relaxation 535

energy and diffusivity and can be used to understand time-gated 536

spectroscopic experiments in a wide range of disordered semi- 537

conducting materials. Understanding the exciton dynamics is 538

also important for exploiting novel device applications. In the 539

current paper, we take a step toward this goal and anticipate 540

that it will motivate further studies. In future work, we hope 541

to tackle the excitation density dependence of the relaxation 542

dynamics and transport in spatially correlated disordered 543

systems. 544
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APPENDIX A: POSITION OF THE TRANSPORT ENERGY 553

According to Eq. (1), the upward exciton jump rate is given 554

by 555

ν(εd → εa ) =
1

τ

(

RF

R

)6

exp

(

−
εa − εd

kBT

)

, (A1)

where εa − εd > 0 is the difference between the acceptor and 556

donor energy. Let us denote this rate by ν↑(εd, εa, R). For steep 557

energy distributions, the typical upward jump distance is given 558
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by [Eq. (4) in the main text]559

Rεa
=

[

4π

3

∫ εa

−∞
g(ε)f ′(ε, εF )dε

]−1/3

. (A2)

Now, according to the standard approach of calculating the TE560

level, we seek to find if such an acceptor energy level exists561

that it maximizes all typical upward jumps, independent of the562

donor energy. In other words, we look for a unique acceptor563

energy, εtr , that meets the condition564

∂ν↑(εd , εa, Rεa
)

∂εa

∣

∣

∣

∣

εa=εtr

= 0. (A3)

By algebraic manipulation of the above equation, we obtain565

Eq. (5).566

APPENDIX B: DIFFUSION COEFFICIENT567

In this appendix, a general expression for the diffusion568

coefficient is obtained, from which the time-dependency of569

the diffusion coefficient and the singlet diffusion length can be570

extracted. First, we note that the integral in the numerator of571

Eq. (12) can be rewritten as572

exp

(

εtr − εm

kBT

) ∫ εtr

−∞
exp

(

εm − ε

kBT

)

g(ε)f ′(ε, εm)dε,

(B1)

where, for brevity, we have used εm for εm(t ). This, bearing in573

mind that f ′ = 1 − f , can be simplified as574

exp

(

εtr − εm

kBT

) ∫ εtr

−∞
g(ε)f (ε, εm)dε. (B2)

On the other hand, using Eq. (6), for the exponential term in575

the above equation we have576

exp

(

εtr − εm

kBT

)

=
t

τ θ

(

RF

Rεtr

)6

. (B3)

Using these simplifications, and if we define577

n′ =
∫ εtr

−∞ g(ε)f (ε, εm)dε and N ′ =
∫ εtr

−∞ g(ε)dε, we obtain578

D(t ) =
θ

t
R2

εtr

N ′ − n′

n′ , (B4)

that, using Eq. (4), can be rewritten as579

D(t ) =
θ

t

(

4π

3

)−2/3
(

N ′ − n′)1/3

n′ . (B5)

From this general result, one can obtain Eq. (13) for the580

diffusion length LD =
√

D(τ )τ .581

To obtain the time-evolution of the diffusion coefficient in582

nonequilibrium regime, we use the fact that the demarcation583

energy is high at short and intermediate times such that we can584

write f ≈ 1 and 1 − f ≈ exp{[ε − εm(t )]/kBT }. Therefore,585

since εm(t ) = εm(τ ) − kBT ln(t/τ ), we can obtain the follow-586

ing time-dependent behavior for the diffusion coefficient (valid587

only for the nonequilibrium regime):588

D(t ) ∝ (t/τ )−2/3. (B6)

On the other hand, at the equilibrium regime where the589

demarcation energy lies deep in the energy distribution, we590

can use the approximation f ≈ exp{−[ε − εm(t )]/kBT } and 591

N ′ − n′ ≈ N ′. These approximations result in a stationary 592

diffusion coefficient as 593

Dst ∝ (t/τ )0. (B7)

APPENDIX C: SCALING BEHAVIOR OF THE 594

DIFFUSION LENGTH 595

Equation (3) shows that at a given density n, the Fermi level 596

εF is determined by the temperature and the width of the energy 597

distribution. By expressing this integral in terms of a new 598

variable x = ε/σ , we find that the temperature-normalized 599

Fermi level, that is, εF /kBT , is a function of the dimensionless 600

disorder parameter σ/kBT . Using this result, and the same 601

change-of-variable for the integral of Eq. (5), we find that 602

εtr/σ is a function of σ/kBT . Inspection of Eq. (9) for the 603

demarcation level shows that the same scaling behavior holds 604

for εm(τ )/σ , and since ετ is the energy at which the product 605

g(ε)f [ε, εm(τ )] maximizes, we find that ετ/σ also scales with 606

σ/kBT . Using the above scaling features and Eq. (13), we 607

obtain that LD = LD (σ/kBT ). 608

APPENDIX D: AVERAGING METHOD FOR THE 609

CALCULATION OF THE RELAXATION ENERGY 610

The equilibrium energy ε∞ can be calculated in two 611

different ways. As pointed out in the main text, we have 612

introduced ε∞ as the energy that maximizes the product 613

g(ε)f (ε, εF ). Accordingly, the relaxation energy ετ can be 614

found by maximizing the product g(ε)f [ε, εm(τ )]. On the 615

other hand, one can define the equilibrium or relaxation energy 616

as the average energy of the carriers. In this definition, the 617

equilibrium energy is calculated as 618

〈ε〉 =

∫

εg(ε)f (ε, εF )dε

∫

g(ε)f (ε, εF )dε

. (D1)

To obtain ετ , one needs to replace εF with εm(τ ) in the 619

above equation. We find that the averaging method gives 620

excellent agreement with Monte Carlo simulations. In compar- 621

ison, the method of maximizing the product f × g results in 622

slightly lower values for the equilibrium energy at intermediate 623

and higher temperatures and a more pronounced minimum 624

(Fig. 3). However, since the product f × g is approximately 625

a symmetric function of energy, the two definitions result in 626

the same overall trend and similar values for the relaxation 627

energy. From a practical point of view, while the first method 628

is numerically more tractable, the second definition is most 629

suitable for comparing with kMC simulation results, where 630

the relaxation energy is obtained by averaging over different 631

exciton trajectories. Throughout this paper, we adopted the 632

first method, except in Figs. 4 and 8 where we compare ετ 633

with kMC calculations and experimental results. 634

005200-9



MEHDI ANSARI-RAD AND STAVROS ATHANASOPOULOS PHYSICAL REVIEW B 00, 005200 (2018)

[1] C. J. Bardeen, Annu. Rev. Phys. Chem. 65, 127 (2014).

[2] O. V. Mikhnenko, P. W. Blom, and T.-Q. Nguyen, Energy

Environ. Sci. 8, 1867 (2015).

[3] G. M. Akselrod, F. Prins, L. V. Poulikakos, E. M. Lee, M. C.

Weidman, A. J. Mork, A. P. Willard, V. Bulović, and W. A.
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