uc3m Universidad Carlos III de Madrid

Grado de Ingeniería en Tecnologías Industriales 2016-2017

Trabajo Fin de Grado

"Estudio de algoritmos de localización mediante técnicas de multilateración"

Laura Rosso Naranjo

Tutor Guillermo Robles Muñoz

Leganés, 13 de julio de 2017

Estudios de algoritmos de localización mediante técnicas de multilateración

Trabajo de fin de grado

Autor: Laura Rosso Naranjo

Tutor: Guillermo Robles Muñoz

Firma del Tribunal

Presidente:

Vocal:

Secretario:

Calificación:

RESUMEN

La localización de descargas parciales resulta esencial para poder evitar que los daños causados por estas descargas sean tan grandes que puedan llegar a romper o inutilizar los aparatos eléctricos en los que se produzcan. Para ello, se aplica el método de localización por antenas, en el cual se mide la diferencia de tiempos de llegadas de las descargas desde que se producen en la fuente eléctrica hasta que se reciben en las diferentes antenas.

Para poder calcular las diferencias de tiempos de llegadas, hay que averiguar en qué momento comienza la descarga, para lo que se usan algoritmos de búsqueda de inicio de un pulso como los basados en los cambios de energía acumulada y curtosis.

Debido a que las descargas parciales se transmiten por radiofrecuencia, es importante filtrar la señal para eliminar todo el ruido posible y, así, localizar correctamente el punto en el que ocurre la descarga parcial.

ABSTRACT

The localization of partial discharges is of vital importance so as to prevent the discharges from being so considerable that they are able to break or make the electric devices in which the discharges take place, useless. For this localization, an antenna localization method is used. In this method, the time differences of arrival (TDOA) differences of the discharges are measured from the moment they are produced in the electrical source until the partial discharge arrives at the several antennas.

In order to calculate the incoming time differences of the discharges, the moment in which the discharge starts is needed to be found, for what pulse start search algorithms, such as the ones based on the cumulative energy and kurtosis changes, are used.

Due to the fact that partial discharges are transmitted through radio-frequency, it is essential to filter the signal in order to eliminate as much noise as possible and, therefore, locating the exact instant where the partial discharge takes place properly.

Índice de contenidos

RESUME	N		2
ABSTRAC	ст		2
Índice de	e figur	as	5
Índice de	e tabla	as	7
1. Intr	oduco	ción	9
1.1.	Moti	vación	9
1.2.	Obje ⁻	tivos	9
2. Esta	ado de	el arte	9
2.1.	Desc	argas parciales	11
2.1.	1.	Descargas parciales internas	12
2.1.	2.	Descargas parciales superficiales	12
2.1.	3.	Descargas tipo corona	13
2.2.	Med	ición de descargas parciales	L3
2.2.	1.	Método inductivo	14
2.2.	2.	Método de radiación	14
2.3.	Filtra	ido de señales	15
2.4.	Algor	ritmos de búsqueda del inicio de la señal	18
2.4.	1.	Energía	18
2.4.	2.	Curtosis	20
3. Filt	ros us	ando algoritmos	22
3.1.	Filtro	os paso bajo	22
3.2.	Filtro	os paso banda2	24
4. Me	didas	experimentales	27
4.1.	Mod	elo de generador eólico2	27
4.1.	1.	Señal 1 (s1)	27
4.1.	2.	Señal 2 (s2)	30
4.1.	3.	Señal 3 (s3)	32
5. Ens	ayo co	on dos antenas	35
5.1.	Seña	I B1	36
5.2.	Seña	I B4	37
5.3.	Seña	I M3	39
5.4.	Seña	I M4	11
6. Filt	ro con	ondículas	12

6.1.	Señal 1 - denoised1	43
6.2.	Señal 1 - denoised2	45
7. Ant	enas con ondículas	46
7.1.	Señal M3_ch1_denoised	47
7.2.	Señal M3_ch1_denoised_2	48
7.3.	Señal M3_ch2_denoised	49
7.4.	Señal M3_ch2_denoised_2	50
7.5.	Señal M4_ch1_denoised	51
7.6.	Señal M4_ch1_denoised_2	53
7.7.	Señal M4_ch2_denoised	54
7.8.	Señal M4_ch2_denoised_2	55
7.9.	Diferencias de tiempos de antenas con ondículas	56
8. Coi	nparaciones entre filtros y ondículas	58
8.1.	Filtro paso bajo – Ondícula s1	58
8.1	1. Filtro a 700 MHz:	58
8.1	2. Filtro a 300 MHz:	59
8.2.	Filtro paso bajo – Ondícula s2	60
8.2	1. Filtro a 700 MHz:	60
8.2	2. Filtro a 300 MHz:	61
9. Cor	nparaciones entre filtros y ondículas con las antenas	62
9.1.	Señal M3_ch1 y M3_ch2	63
9.1	1. Filtro a 700 MHz	63
9.1	2. Ondícula M3_ch1_denoised y M3_ch2_denoised	63
9.1	3. Ondículas M3_ch1_denoised_2 y M3_ch2_denoised_2	64
9.1	4. Comparación	64
9.2.	Señal M4_ch1 y M4_ch2	65
9.2	1. Filtro a 700 MHz	65
9.2	2. Ondículas M4_ch1_denoised y M4_ch2_denoised	66
9.2	3. Ondículas M4_ch1_denoised_2 y M4_ch2_denoised_2	66
9.2	4. Comparación	67
10. C		67
11. A	nalisis financiero	68
11.1.	Presupuesto del estudio	68
11.2.	Diagrama de Gantt	69

12.	Impacto socioeconómico	69
13.	Marco regulador	70
14.	Anexo	70
15.	Referencias	73

Índice de figuras

Figura 1: Disposición de 4 antenas y fuente de descarga	10
Figura 2: Reflectometría esquemática (derecha) y real (izquierda) de una señal de	
descargas parciales	12
Figura 3: Descarga parcial interna	12
Figura 4: Descarga parcial superficial	13
Figura 5: Descarga parcial con efecto corona	13
Figura 6: Filtro paso bajo	15
Figura 7: Filtro paso alto	15
Figura 8: Filtro paso banda	16
Figura 9: Filtro banda eliminada	16
Figura 10: Esquema de filtro FIR	17
Figura 11: Filtro tipo equiripple	18
Figura 12: Señal de la que se obtienen las Figuras 13-16	19
Figura 13: Energía acumulada	19
Figura 14: Energía mínima	20
Figura 15:Curtosis	21
Figura 16: Curtosis mínima	21
Figura 17: Respuesta del filtro a 700 MHz	22
Figura 18: Respuesta del filtro a 500 MHz	23
Figura 19: Respuesta del filtro a 300 MHz	23
Figura 20:Parámetros de filtro paso banda	24
Figura 21: Respuesta del filtro paso banda 1	24
Figura 22: Respuesta del filtro paso banda 2	25
Figura 23: Filtro paso banda 1 (azul)	26
Figura 24: Filtro paso banda 2 (azul)	26
Figura 25: Descarga parcial 1	27
Figura 26: Filtro a 700 MHz de s1 (azul) y señal original (naranja)	28
Figura 27: Filtro a 500 MHz de s1 (azul) y señal original (naranja)	29
Figura 28: Filtro a 300 MHz de s1 (azul) y señal original (naranja)	29
Figura 29: Descarga parcial 2	30
Figura 30: Filtro a 700 MHz de s2 (azul) y señal original (naranja)	31
Figura 31: Filtro a 500 MHz de s2 (azul) y señal original (naranja)	31
Figura 32: Filtro a 300 MHz de s2 (azul) y señal original (naranja)	32
Figura 33: Descarga parcial 3	32
Figura 34: Filtro a 700 MHz de s3 (azul) y señal original (naranja)	33
Figura 35: Filtro a 500 MHz de s3 (azul) y señal original (naranja)	34

Figura 36: Filtro a 300 MHz de s3 (azul) y señal original (naranja)	. 34
Figura 37: Disposición de antenas en el laboratorio	. 35
Figura 38: Señales de antenas B1	. 36
Figura 39: Señales B1 mostradas en MATLAB (azul para canal 1 y naranja para cana	ıl
2)	. 36
Figura 40: Señales de antenas B4	. 38
Figura 41: Señales de antenas M3	. 39
Figura 42: Señales de antenas M4	. 41
Figura 43: Descomposiciones Señal1_denoised1	. 44
Figura 44: Señal1_denoised1	. 44
Figura 45: Descomposiciones Señal1_denoised2	. 45
Figura 46: Señal1_denoised2	. 46
Figura 47: Descomposiciones Señal M3_ch1_denoised	. 47
Figura 48: Señal M3_ch1_denoised	. 47
Figura 49: Descomposición Señal M3_ch1_denoised_2	. 48
Figura 50: Señal M3_ch1_denoised_2	. 48
Figura 51: Descomposiciones señal M3_ch2_denoised	. 49
Figura 52: Señal M3_ch2_denoised	. 49
Figura 53: Descomposiciones señal M3 ch2 denoised 2	. 50
Figura 54: Señal M3 ch2 denoised 2	. 51
Figura 55: Descomposiciones señal M4_ch1_denoised	. 52
Figura 56: Señal M4_ch1_denoised	. 52
Figura 57: Descomposiciones de señal M4_ch1_denoised_2	. 53
Figura 58: Señal M4_ch1_denoised_2	. 53
Figura 59: Descomposiciones señal M4_ch2_denoised	. 54
Figura 60: Señal M4_ch2_denoised	. 54
Figura 61: Descomposiciones de señal M4 ch2 denoised 2	. 55
Figura 62: Señal M4 ch2 denoised 2	. 55
Figura 63: Comparación filtro paso bajo a 700 MHz (azul) y ondícula s1 (rojo)	. 58
Figura 64: Detalle de comienzos para el filtro paso bajo (morado) y para la ondícula s	51
(verde)	. 59
Figura 65: Comparación filtro paso bajo a 300 MHZ (azul) y ondícula s1 (rojo)	. 59
Figura 66: Detalle de comienzos para el filtro paso bajo(morado) y para la ondícula s	1
(verde)	. 60
Figura 67: Comparación filtro paso bajo a 700 MHZ (azul) y ondícula s2 (rojo)	. 60
Figura 68: Detalle de comienzos de filtro paso bajo (morado) y ondícula s2 (verde)	. 61
Figura 69: Comparación filtro paso bajo a 300 MHz (azul) y ondícula s2 (rojo)	. 61
Figura 70: Detalle de comienzos de filtro paso bajo (morado) v ondícula s2 (verde)	. 62
Figura 71: Señales M3 ch1 (azul) v M3 ch2 (narania) filtradas a 700 MHz	. 63
Figura 72: Ondículas M3 ch1 denoised (azul) v M3 ch2 denoised (naranja)	. 63
Figura 73: Ondícula M3 ch1 denoised 2 (azul) v M3 ch2 denoised 2 (narania)	. 64
Figura 74: Señales M4 ch1 (azul) v M4 ch2 (narania) filtradas a 700 MHz	. 65
Figura 75: Ondículas M4 ch1 denoised (azul) v M4 ch2 denoised (narania)	. 66
Figura 76: Ondículas M4_ch1_denoised_2 (azul) y M4_ch2_denoised_2 (narania)	. 66

Índice de tablas

Tabla 1: Retrasos de los diferentes filtros	22
Tabla 2: Comienzo de la señal original s3	25
Tabla 3: Comienzos de la señal s3 para los distintos filtros paso banda	25
Tabla 4: Comienzos de la señal original s1	27
Tabla 5: Comienzos de la señal s1 en los diferentes filtros	28
Tabla 6: Comienzos de la señal original s2	30
Tabla 7: Comienzos de la señal s2 en los diferentes filtros	30
Tabla 8: Comienzo de la señal original s3	33
Tabla 9: Comienzo de la señal s3 para los distintos filtros	33
Tabla 10: Diferencia de tiempos de señales b1	37
Tabla 11: Diferencias de tiempos de señales b1 filtradas a 700 y 500 MHz	37
Tabla 12: Diferencias de tiempos de señales b4	38
Tabla 13: Diferencias de tiempos de señales b4 filtradas a 700 y 500 MHz	38
Tabla 14: Diferencias de tiempos de señales m3	39
Tabla 15: Diferencias de tiempos de señales m3 corregidas	39
Tabla 16: Diferencias de tiempos de señales m3 filtradas a 700 y 500 MHz	40
Tabla 17: Diferencias de tiempos de señales m3 filtradas a 700 y 500 MHz corregidas	s40
Tabla 18: Diferencias de tiempos de señales m4	41
Tabla 19: Diferencias de tiempo de señales m4 corregidas	41
Tabla 20: Diferencias de tiempos de señales m4 filtradas a 700 y 500 MHz	42
Tabla 21: Diferencias de tiempos de señales m4 filtradas a 700 y 500 MHz corregidas	\$42
Tabla 22: Comienzos de Señal1_denoised1	45
Tabla 23: Comienzos de Señal1_denoised1 filtradas a 700 y 300 MHz	45
Tabla 24: Comienzos de Señal1_denoised2	46
Tabla 25: Comienzos de Señal1_denoised2 filtradas a 700 y 300 MHz	46
Tabla 26: Comienzos de señal M3_ch1_denoised	47
Tabla 27: Comienzos de señal M3_ch1_denoised_2	48
Tabla 28: Comienzos de señal M3_ch2_denoised	50
Tabla 29: Comienzos señal M3_ch2_denoised_2	51
Tabla 30: Comienzos de señal de M4_ch1_denoised	52
Tabla 31: Comienzos M4_ch1_denoised_2	54
Tabla 32: Comienzos de señal M4_ch2_denoised	55
Tabla 33: Comienzos de M4_ch2_denoised_2	56
Tabla 34: Diferencias de tiempos de señales M3_ch1_denoised y M3_ch2_denoised	56
Tabla 35: Diferencias de tiempos de M4_ch1 denoised_2 y M4_ch2_denoised_2	56
Tabla 36: Diferencias de tiempos en M3 filtrada	.57
Tabla 3/: Diferencias de tiempos de senales M4_ch1_denoised y M4_ch2_denoised	57
Tabla 38: Diferencias de tiempos de senales M4_ch1_denoised_2 y	
M4_ch2_denoised_2	57
Tabla 39: Diferencias de tiempos de M4 filtrada	50
Tabla 40: Comienzos de la senal filtrada y la ondicula	. 39
Tabla 41: Comienzos de la señal filtrada y la ondicula	0U
Tabla 42: Comienzos de la señal filtrada y la ondicula	61
Table 44. Diferencies de tiempos de coñcles M2 filtredes	02 62
radia 44: Diferencias de tiempos de senaies M3 filtradas	03

Tabla 45: Diferencias de tiempos entre las ondículas correspondientes a M3	64
Tabla 46: Diferencias de tiempos de ondículas correspondientes a M3	64
Tabla 47: Diferencias de tiempos de señales M4 filtradas	65
Tabla 48: Diferencias de tiempos de ondículas correspondientes a M4	66
Tabla 49: Diferencia de tiempos de ondículas correspondientes a M4	67
Tabla 50: Diferentes actividades realizadas	68
Tabla 51: Presupuesto total	68
Tabla 52: Diagrama de Gantt de actividades realizadas	69

1. Introducción

Este estudio trata de localizar eventos eléctricos que se originan en los aparatos eléctricos cuando están sometidos a alta tensión. Para ello, se usan técnicas de multilateración. Estas técnicas usan diferencias de distancias de distintas antenas entre sí y con respecto a una fuente emisora.

En este caso, se calcula las diferencias de tiempos de llegadas entre dichas antenas con la fuente y se establece una relación entre tiempo y distancia.

1.1. Motivación

La motivación de este estudio es conseguir localizar diferentes eventos, en este caso, descargas parciales, usando métodos de radiofrecuencia. De este modo, se puede saber de dónde viene la señal y, así, localizar activos eléctricos en la red que puedan estar dañados.

Si se consigue localizar estas descargas parciales, se podrá evitar que los daños causados por éstas sean mayores y puedan provocar grandes desperfectos en los aparatos. Por ello, resulta importante saber si usando el método de diferencia de tiempos de llegadas mediante antenas se puede localizar correctamente la fuente de la descarga o si, por el contrario, será necesario usar distintos filtros en las señales.

1.2. Objetivos

Entre los objetivos que se esperan de este estudio se pueden encontrar:

- Comprensión de la importancia de localizar correctamente el lugar en el que ocurren las descargas parciales, ya que el mínimo error puede hacer que dicha localización no sea posible. Un error en la medida de tiempos de llegada a las antenas de 200 ps puede acumularse hasta darnos un error de metros a la hora de localizar la fuente.
- Uso de datos reales de medidas de descargas parciales tomadas en el laboratorio.
- Estudiar el efecto que tienen diferentes técnicas de filtrado en la determinación del inicio de pulso recogido por la antena.
- Conseguir averiguar si es necesario filtrar todas las señales para eliminar todo el ruido posible o si, por el contrario, hay que hacer un análisis previo para saber si es necesario filtrar la señal o no.

2. Estado del arte

En este estudio se van a analizar distintas técnicas de multilateración usando antenas con el fin de localizar dónde se producen descargas parciales, que ocurren en los aislamientos de diferentes máquinas o aparatos eléctricos.

Estas técnicas podemos dividirlas entre iterativas y no iterativas.

• Técnicas iterativas: realizan la búsqueda utilizando la técnica de optimización de Newton Raphson [17].

La localización de la fuente se corresponde con las coordenadas (x_s, y_s, z_s) y las de cada antena i (x_i, y_i, z_i) hasta 4 antenas.

De este modo se obtienen las siguientes ecuaciones (1-4) que relacionan cada antena con la fuente, como se observa en la Figura 1.

Figura 1: Disposición de 4 antenas y fuente de descarga

La relación entre tiempo de cada antena a la fuente t_i y la distancia a la fuente D_i de cada antena, se relaciona con la velocidad de la luz c en la Ecuación (1):

$$t_i \cdot c = D_i \qquad (1)$$

Siendo D_i las Ecuaciones (2-5):

$$D_1 = \sqrt{(x_s - x_1)^2 + (y_s - y_1)^2 + (z_s - z_1)^2}$$
(2)

$$D_2 = \sqrt{(x_s - x_2)^2 + (y_s - y_2)^2 + (z_s - z_2)^2}$$
(3)

$$D_3 = \sqrt{(x_s - x_3)^2 + (y_s - y_3)^2 + (z_s - z_3)^2}$$
(4)

$$D_4 = \sqrt{(x_s - x_4)^2 + (y_s - y_4)^2 + (z_s - z_4)^2}$$
(5)

Además, se sabe que:

$$\tau_{ij} \cdot c = D_i - D_j \qquad (6)$$

Siendo τ_{ij} la diferencia de tiempos entre las antenas i j expresados en la Ecuación (6).

Se dan, por tanto, las siguientes técnicas de minimización basadas en estas ecuaciones para problemas no lineales:

• Mínimos cuadrados estándar (SLS): Se obtienen los resultados de la fuente haciendo distintas iteraciones con la Ecuación (7) [24].

$$S(\hat{x}_s, \hat{y}_s, \hat{z}_s, \hat{t}) = \sum_{i=1}^{N} \left(\widehat{D}_i - \widehat{t}_i \cdot c \right)^2$$
(7)

Siendo S la localización de la fuente, teniendo las coordenadas x, y, z estimadas y el tiempo t estimado como $\hat{t}_i = (\hat{t}_1 + \tau_{i1})$, siendo N el número de antenas y \hat{D} la distancia estimada de cada antena a la fuente.

• Mínimos cuadrados hiperbólicos (HLS): Las posibles soluciones de la fuente son hipérbolas usando la Ecuación (8) [25].

$$S(\widehat{x}_{s}, \widehat{y}_{s}, \widehat{z}_{s}) = \sum_{i=2}^{N} \left(\widehat{D}_{i} - \widehat{D}_{1} - \tau_{i1} \cdot c \right)^{2}$$
(8)

Además, se incluyen también las siguientes técnicas de optimización iterativas:

Optimización por enjambre de partículas (PSO): Se minimiza una única ecuación, cuya solución x, y, z será la localización de la fuente. Este método, además de evitar mínimos locales, al cabo de pocas iteraciones localiza de forma óptima la fuente [18] según la Ecuación (9).

$$S(\hat{x}_{s}, \hat{y}_{s}, \hat{z}_{s}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (\hat{D}_{i} - \hat{D}_{j} - \tau_{ij}c)^{2} \quad (9)$$

 Algoritmos genéticos: Se trata de una técnica metaheurística que usa la evolución darwiniana para encontrar una solución óptima. Este método va evolucionando a través de distintas generaciones y converge mediante la Ecuación (10).

$$S(\hat{x}_{s}, \hat{y}_{s}, \hat{z}_{s}) = \frac{1}{1 + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (\hat{D}_{i} - \hat{D}_{j} - \tau_{ij}c)^{2}}$$
(10)

Técnicas no iterativas: Entre las que encontramos el algoritmo de posición hiperbólica (HPA), algoritmo Bancroft (BA) y el algoritmo de estimador de máxima similitud (MLEA) [26-28]. Estas técnicas no se van a usar ya el estudio se centra en determinar τ_{ij} lo más exactamente posible ya que es el parámetro más crítico y su error no es fácil de subsanar.

2.1. Descargas parciales

Las descargas parciales son un fenómeno generado por una avalancha de electrones que se produce en aislamientos eléctricos o dieléctricos, ya sean en un sistema sólido o líquido, sometidos a condiciones de alta tensión [1]. Esta avalancha de electrones es provocada por una diferencia entre la permitividad del aire y la del material aislante y produce un cortocircuito muy rápido de una duración de tan solo un instante de tiempo en la zona dañada del dieléctrico [12].

Las descargas parciales se dan como pulsos de corriente (Figura 2) siguiendo un proceso aleatorio a lo largo del tiempo.

Figura 2: Reflectometría esquemática (derecha) y real (izquierda) de una señal de descargas parciales

Cuando se producen muchas descargas parciales de forma continuada a lo largo del tiempo, las zonas dañadas se hacen más grandes y pueden llegar a provocar una rotura total [2].

Dependiendo de dónde ocurra dicho problema, podremos diferenciar distintos tipos de descargas parciales [3]:

2.1.1. Descargas parciales internas.

Estas descargas parciales se producen cuando hay zonas en el interior del dieléctrico que están dañadas (Figura 3), produciendo una concentración de campo eléctrico en esa zona mayor que en los extremos del dieléctrico.

Detectar esta descarga parcial puede resultar complicado debido a que, al darse en el interior de nuestros dispositivos, no es visible hasta que el problema no tiene una solución sencilla o posible.

Figura 3: Descarga parcial interna

2.1.2. Descargas parciales superficiales.

Estas descargas parciales ocurren en la superficie del dieléctrico debido a su heterogeneidad, suciedad o deposiciones de contaminación y humedad. Esto provoca que haya una divergencia del campo eléctrico en dicha superficie, provocando la descarga (Figura 4).

Es un tipo de descarga bastante común que puede ser muy dañina con los dispositivos, por lo que resulta muy importante detectarla para intentar evitar la pérdida del aislante y conseguir repararlo antes de que el daño sea mayor [13].

Figura 4: Descarga parcial superficial

2.1.3. Descargas tipo corona.

Estas descargas de producen en algún elemento eléctrico que se encuentra deshilachado o cuando hay puntas en la zona de tensión. Se genera un gradiente de campo eléctrico muy elevado que produce una ionización del aire que rodea el dieléctrico (Figura 5). Esta ionización provoca un movimiento de cargas que produce radiación electromagnética y genera nuestro efecto corona [14].

Figura 5: Descarga parcial con efecto corona

2.2. Medición de descargas parciales

Las descargas parciales son pulsos muy pequeños (de alrededor de 5 pC hasta varios miles de pC), lo que genera corrientes de pocos mA. Esto hace que las tensiones obtenidas sean del orden de V o decenas de mV. Además, son pulsos de muy corta duración, en los que los tiempos de subida son del orden de ps y tienen unas duraciones de pulso inferiores a la decena de ns, lo que hace que resulte complicado medirlas.

En el caso de medir con antenas, los frentes de onda tienen tiempos de subida del mismo orden que el pulso y oscilaciones debidas a rebotes y distorsión de la respuesta de la antena en frecuencia de la antena, que pueden llegar a durar centenas de ns.

Existen diversos métodos para medir las descargas parciales:

2.2.1. Método inductivo.

Este método sirve para observar cómo se propagan las descargas a través de un cable y poder ver las tensiones generadas con un osciloscopio [10].

2.2.2. Método de radiación.

En este método, medimos la radiación que producen las descargas parciales utilizando antenas [11]. Las antenas que se usan son monopolos de ¹/₄ de onda [9], es decir, estas antenas están diseñadas de tal modo que la longitud de la antena es ¹/₄ de la longitud de onda.

Debido a que la radiación es electromagnética de onda sinusoidal, se aplica este método y se toma la velocidad de propagación de la onda como la velocidad de la luz para obtener las Ecuaciones (11-12).

$$Longitud \ de \ onda \ = \ \frac{Velocidad \ de \ la \ luz}{Frecuencia}$$
(11)
$$Longitud \ de \ la \ antena \ = \ \frac{Longitud \ de \ onda}{4}$$
(12)

De este modo, sabiendo que las antenas empleadas tienen una longitud de 10 cm y que la velocidad de la luz es de $3 \cdot 10^8$ m/s, se podrán tomar medidas hasta 750 MHz como muestra la Ecuación (13).

Frecuencia =
$$\frac{3 \cdot 10^8 \, [m/s]}{4 \cdot 0.1 \, [m]} = 750 \, MHz$$
 (13)

Esto que significa que las frecuencias que mejor reciben las antenas son las que se encuentran a 750 MHz. Debido a que las descargas parciales están sintonizadas en ese espectro de frecuencias, se pueden medir.

Con este método no solo se puede detectar las descargas parciales, sino que, si se es capaz de medir bien las diferencias de tiempos de llegadas desde la fuente en que se produce la descarga a cada antena que se coloque, es posible localizar el punto exacto en que se ha producido. Al conocer el punto en el que se produce el problema de aislamiento, se puede averiguar qué equipo es el que está dañado [16].

Las medidas que se toman en este estudio se realizan en transformadores secos que tienen 3 tubos, uno por cada fase, en los que se encuentran los arrollamientos [23]. Si se conectan las antenas alrededor de estos tubos, se puede, incluso, detectar en qué fase se produce el fallo.

Por tanto, la localización de la fuente depende de si se miden bien los tiempos de llegada [15]. Un error mínimo en la diferencia de llegadas puede hacer que no se localice la fuente. El problema que aparece es que la radiación que se recibe es un impulso de la descarga parcial que, al propagarse por distintos medios, llega distorsionado, con muchas oscilaciones que impiden ver correctamente la señal. A esto hay que añadir las imperfecciones que tienen las antenas y que la señal electromagnética se mezcla con las

señales de radio, móvil y televisión, que se encuentran en el rango de frecuencias en que se realizan las mediciones. Todo ello provoca que la medición del impulso se complique.

Si se realiza la medida alejada de la fuente, la señal será pequeña y la relación señalruido (SNR), que relaciona la potencia de una señal frente a la potencia del ruido, será muy mala. Por ello, la solución es filtrar la señal para poder quedarnos con la señal que se corresponde con la energía de la descarga parcial.

2.3. Filtrado de señales.

Un filtro es un proceso que altera una señal y discrimina determinadas frecuencias, por lo que se puede modificar tanto su fase como su amplitud.

Se pueden encontrar filtros analógicos, que tienen tanto entrada como salida analógica, o filtros digitales. Estos últimos resultan más útiles por su mayor flexibilidad y programabilidad, además de que no varían con el tiempo por su estabilidad [21].

Se pueden usar distintos tipos de filtro: filtro paso bajo, alto, paso banda y banda eliminada.

1. Filtros paso bajo: solo dejan pasar aquellas frecuencias que son inferiores a una determinada frecuencia de corte, (Figura 6).

Figura 6: Filtro paso bajo

2. Filtros paso alto: solo dejan pasar las frecuencias que son superiores a una determinada frecuencia de corte, (Figura 7).

Figura 7: Filtro paso alto

3. Filtros paso banda: dejan pasar la señal que se encuentra entre una determinada banda de frecuencias y atenúa el resto (Figura 8).

Figura 8: Filtro paso banda

4. Filtro banda eliminada: atenúa la parte de la señal que queda entre una determinada banda de frecuencias, dejando pasar el resto de la señal (Figura 9).

Figura 9: Filtro banda eliminada

Todos los filtros que se usan en el estudio son de tipo FIR (Finite Impulse Response) [4] ya que dan una respuesta finita al impulso (caen a cero después de un tiempo finito), mientras que los IIR (Infinite Impulse Response) dan una respuesta infinita, es decir, la respuesta al impulso se da de forma indefinida [5]. Los filtros FIR (Figura 10) tienen sus polos únicamente en el origen, lo que hace que siempre sean estables y, además, tienen una respuesta de fase lineal.

Figura 10: Esquema de filtro FIR

La función de transferencia que tienen los filtros FIR es la Ecuación (14):

$$y(n) = \sum_{i=0}^{M} h_i \cdot x (n-i)$$
 (14)

Siendo y(n) el output de la señal, x(n) el imput de la señal, M el orden del filtro y h la respuesta al impulso entre los instantes 0 y N.

Para filtrar las señales se definen diferentes parámetros que resultan necesarios en el filtrado, como son la frecuencia de muestreo (cantidad de muestras que tomamos por unidad de tiempo), la frecuencia de paso y de detención, en las que se determina qué frecuencias pasan y cuáles no.

La frecuencia de muestreo que se usa es de 5 GHz $(5 \cdot 10^9 \text{ muestras/segundo})$ y los coeficientes que se introducen en el passband de nuestros filtros se calculan de tal modo que las frecuencias que pasen sean de 700, 600, ..., 300 MHz, siendo la banda de detención 0,1 veces la banda de paso introducida.

Con estas condiciones, MATLAB® nos da unos determinados coeficientes FIR, lo que significa que MATLAB® no comenzará a filtrar hasta que no pasen esas muestras. Estos coeficientes se corresponden con el retraso que tienen las señales al ser filtradas, y que hay que tener en cuenta a la hora de comparar resultados. En este estudio, no resulta un problema el hecho de que haya retrasos en torno a las 20 muestras debido a la frecuencia de muestreo seleccionada.

Los filtros usados son del tipo equiripple, es decir, de rizado constante. Éstos distribuyen el rizado uniformemente en cada banda $(1 + \delta_p, 1 - \delta_p)$, tanto la pasante como la atenuada, de modo que el error máximo de cada una queda minimizado. Se define el orden del filtro y los distintos límites de las bandas, así como los distintos rizados a partir de una frecuencia de corte ω_c (Figura 11).

Figura 11: Filtro tipo equiripple

El problema que se da con los filtros es que poseen un retraso de grupo [6] que se tiene que tener en cuenta y quitarlo para poder tomar bien las medidas de las señales filtradas. Además, al filtrar una señal, se quita parte de dicha señal, lo que hace que el tiempo de subida de la señal se alargue, es decir, el flanco de subida disminuye su pendiente, suavizándose y ocupando más tiempo, lo que dificulta la toma de tiempos de llegadas al no poder calcular bien los inicios de las señales.

Por ello, se tiene que conocer bien la señal para poder filtrar a las frecuencias adecuadas y, así, eliminar todo el ruido posible y que afecte mínimamente a la señal que se corresponde con la descarga parcial.

2.4. Algoritmos de búsqueda del inicio de la señal.

Para poder localizar el comienzo de las distintas señales, se programan en MATLAB® una serie de algoritmos de búsqueda. Estos algoritmos son de la Energía y de la Curtosis [20].

2.4.1. Energía.

Con este algoritmo se puede ir acumulando energía de una señal *s*, que se mostrará en la señal con una pendiente positiva debido a esta acumulación, hasta que, en un determinado momento, esta pendiente cambie de forma repentina, Ecuación (15) (Figura 13). Este cambio vendrá dado por el comienzo de la señal, aunque, si la señal tiene mucho ruido, puede hacer que el algoritmo no encuentre el comienzo real de la señal, sino el de una perturbación causada por el ruido.

Energía acumulada (Eacum) =
$$\sum_{m=1}^{n} s^2(m)$$
 (15)

Siendo s la señal y n el número de muestras.

Figura 12: Señal de la que se obtienen las Figuras 13-16

Figura 13: Energía acumulada

Con el fin de evitar que el algoritmo encuentre el comienzo de la señal en un lugar incorrecto, se añade una pendiente negativa *a* a la ecuación y se busca el punto de mínima energía, Ecuación (16) (Figura 14), lugar donde comienza la señal (Ver Anexo.1).

Energía mínima (Emin) = Eacum -
$$a \cdot n \cdot \frac{E_N}{N} = \sum_{m=1}^n s^2(m) - a \cdot n \cdot \frac{E_N}{N}$$
 (16)

Siendo E_N la energía total de la señal y N el número total de muestras.

Figura 14: Energía mínima

En esta señal, se puede observar gráficamente que el punto de mínima energía se encuentra alrededor de la muestra 1000 y el algoritmo encuentra el comienzo de señal en la muestra 997.

2.4.2. Curtosis.

Con este algoritmo, y partiendo de que nuestras señales siguen un proceso estacionario, la media y varianza se mantendrán constantes. En el momento en que comience la señal, se introduce un valor que no se corresponde con una distribución Gaussiana y se produce un gran incremento del índice de Curtosis. Este índice de Curtosis mide el grado de desviación que tiene una distribución respecto a la normal, en la que la curtosis es 3, es decir, la concentración de datos que se dan alrededor de la media. Por tanto, se busca la muestra donde se produce ese cambio, Ecuación (17) (Figura 15).

$$k(n) = \frac{\frac{1}{n} \sum_{m=1}^{n} [s(m) - \bar{s}]^4}{\left(\frac{1}{n} \sum_{m=1}^{n} [s(m) - \bar{s}]^2\right)^2}$$
(17)

Siendo k la curtosis, n el número de muestras, s la señal y \overline{s} la media de los valores de la señal.

Figura 15:Curtosis

Para evitar que el algoritmo encuentre un comienzo de señal incorrecto, se añade un modificador de pendiente *a* a la señal y se busca el punto de mínima Curtosis. Para ello, hay de buscar la muestra que daba la Curtosis máxima Ecuación (18-19) (Figura 15) (Ver Anexo.2).

Curtosis máxima (kurt_max) = max[k(n)] (18)
Curtosis minima (kurt) =
$$k(n) - a \cdot \frac{1}{n} \cdot kurt_max$$
 (19)

Siendo *kurt_max* la muestra donde se da la curtosis máxima, *n* el número de muestras y *kurt* la muestra en la que la curtosis es mínima.

Figura 16: Curtosis mínima

En la Figura (16), se puede observar que la Curtosis mínima correspondiente al comienzo se encuentra en torno a la muestra 1000 a pesar de que hay más mínimos causados por el ruido. El algoritmo encuentra el comienzo en la muestra 989.

3. Filtros usando algoritmos

Se usan dos tipos de filtro en este estudio, filtros paso bajo y filtros paso banda. Se analizará si los filtros modifican o no los inicios de las diferentes señales, aunque solo se podrá confirmar en el caso en que se usan dos antenas, ya que en ese caso sí se conocen las diferencias de tiempos entre los distintos comienzos.

3.1. Filtros paso bajo

Se usan filtros paso bajo para quitar la señal de móvil. Estos filtros se realizan entre 700 y 300 MHz teniendo en cuenta que la frecuencia de muestreo utilizada es 5 GHz (Ver Anexo.5). Al ser filtros FIR, y con los datos establecidos en el diseño de los filtros a estudiar, el retraso que se produce al filtrar las señales se mantiene constante a lo largo del tiempo dando los siguientes retrasos (Tabla 1):

Frecuencias [MHz]	700	600	500	400	300
Número de muestras	16	18	22	27	36
	m 11 1 D	1 1 1.0	01.7		

Tabla 1: Retrasos de los diferentes filtros

Estos retrasos han de ser tenidos en cuenta a la hora filtrar para que se puedan comparar correctamente la señal filtrada con la señal original.

Los resultados obtenidos para cada señal filtrada se dan a las frecuencias más significativas, tomando estas como las frecuencias a 700 MHz, 500 MHz y a 300 MHz.

Las Figuras (17-19) corresponden a la respuesta del filtro de 700 MHz, 500 MHz y 300 MHz, respectivamente. En ellas, el rizado de la banda de paso es 1 dB y la atenuación en la banda de rechazo es de 60 dB.

Figura 17: Respuesta del filtro a 700 MHz

En este filtro, (Figura 17) la señal filtrada cae suavemente al llegar a la frecuencia de corte. Al ser de tipo equiripple, el rizado de la banda de paso es constante y de 1 dB mientras que el de la banda de detención es de 60 dB.

Se comprueba que la respuesta del filtro se corresponde con el filtro a 700 MHz sabiendo que, en frecuencias normalizadas, 2π se corresponde con la frecuencia de muestreo que se use, tal como se muestra en la Ecuación (19).

$$\pi = \frac{frecuencia \ de \ muestreo}{2} = \frac{5000 \ MHz}{2} = 2500 \ MHz \qquad (19)$$

Al observar la Figura (17), la frecuencia de detención normalizada es $0,28 \frac{\pi rad}{muestra}$, por lo que se obtiene la Ecuación (20).

$$f_{normalizada} = 2500 \cdot 0,28 = 700 MHz$$
 (20)

Figura 18: Respuesta del filtro a 500 MHz

En este filtro (Figura 18), la señal filtrada cae más bruscamente que la anterior al llegar a la frecuencia de corte.

Figura 19: Respuesta del filtro a 300 MHz

En este caso, (Figura 19) la señal cae aún más bruscamente que en los anteriores filtros.

3.2. Filtros paso banda

Se realiza un filtro paso banda para dejar pasar las frecuencias de la señal comprendidas entre 300 y 600 MHz, ya que es, aproximadamente, el rango de frecuencias en el que se encuentran las señales analizadas (Ver Anexo.4).

Se realiza con un filtro FIR paso banda del tipo equiripple (Figura 20) para que el rizado sea constante y en el que se define el orden, los limites superior e inferior de las bandas de paso y atenuación de la parada y los distintos rizados.

Figura 20: Parámetros de filtro paso banda

La primera respuesta al filtro (Figura 21) se obtiene con un fpass1 de 250 MHz y un fpass2 de 650 MHz, y con unos fstop1 de 150 MHz y fstop2 de 750 MHz, siendo, además Rp 1 dB y Rs 60 dB. Con ello, se consigue que la señal caiga bruscamente.

Figura 21: Respuesta del filtro paso banda 1

La segunda (Figura 22), se obtiene con unos fpass1 de 300 MHz y un fpass2 de 650 MHz con unos fstop1 de 250 MHz y un fstop2 de700 MHz y un Rp 1 dB y Rs 60 dB. En este caso, la señal cae más bruscamente que en la primera.

Figura 22: Respuesta del filtro paso banda 2

La señal original, que se explica más detenidamente en el siguiente capítulo, (Figura 33) comienza en las siguientes muestras (Tabla 2):

Algoritmos	Posición
Energía	997
Curtosis	989
m 11 A G 1	1.1

Tabla 2: Comienzo de la señal original s3

Aplicamos los dos filtros paso banda a la señal *s* y obtenemos los siguientes comienzos según los algoritmos de la Energía y de la Curtosis (Tabla 3).

fpass 1,2 [MHz]	fstop 1,2 [MHz]	Energía [n]	Curtosis [n]
250,650	150,750	983	955
300,650	250,700	972	963

Tabla 3: Comienzos de la señal s3 para los distintos filtros paso banda

Ambos algoritmos encuentran el comienzo de la señal filtrada antes que el comienzo de la señal original (Figuras 23-24).

Puesto que se desconoce si los comienzos de la señal original son los correctos, no se puede afirmar si los resultados obtenidos son mejores. Además, los resultados obtenidos en la Tabla (3) no muestran una tendencia clara.

Tanto en la Figura 23 como en la 24, los resultados de los distintos comienzos para ambos algoritmos son bastante dispares debido a que ambos algoritmos perciben cambios

de energía o de curtosis más grandes de lo normal a pesar de que no sean los comienzos correctos.

Figura 24: Filtro paso banda 2 (azul)

4. Medidas experimentales

4.1. Modelo de generador eólico

A continuación, se muestran distintas descargas parciales tomadas con un modelo de generador eólico con diferente ruido que se produjeron en torno a 3700 V, desde la que tiene más ruido, *s1*, a la que menos, *s3*. Esta última, además, tiene un comienzo de señal más claro que las anteriores. Se van a comparar los comienzos de las señales según los algoritmos de Energía y Curtosis antes mencionados para comprobar cómo funcionan dichos algoritmos con distintos ruidos en las señales.

En todas las gráficas (Figuras 26-28) se representa amplitud frente al número de muestras en lugar de tiempo, ya que para el estudio resulta más útil la representación en número de muestras por ser más visual. Al tener una frecuencia de muestreo de 5 GHz y 5000 muestras, cada muestra se corresponde con 0,2 ns, que servirá para calcular el tiempo en que comienzan las señales.

La señal naranja se corresponde con la señal original, mientras que la azul se corresponde con la señal filtrada.

4.1.1. Señal 1 (s1)

Esta señal (Figura 25) tiene mucho ruido por lo que el filtro ayudará a encontrar el comienzo de la señal al poder quitar parte de ese ruido.

Figura 25: Descarga parcial 1

Para los distintos algoritmos utilizados, la señal original comienza en las siguientes posiciones o muestras (Tabla 4):

Algoritmos	Posición [n]	
Energía	945	
Curtosis	953	

Tabla 4: Comienzos de la señal original s1

Tras filtrar la señal a distintas frecuencias, se obtienen distintos valores de comienzo para cada algoritmo (Tabla 5):

Filtros [MHz]	Energía [n]	Curtosis [n]
700	952	952
600	946	959
500	926	957
400	926	954
300	954	954
150	945	953

Tabla 5: Comienzos de la señal s1 en los diferentes filtros

Los valores, por lo general, se ven retrasados con respecto a la señal original debido a que, al filtrar la señal, esta tarda en reconocer cuándo comienza, por lo que se retrasa.

En la siguiente gráfica (Figura 26) se muestra dónde comienza la señal en el filtro de 700 MHz.

Tanto en el algoritmo de la Energía como en el de Curtosis, la señal comienza en la muestra 952.

Figura 26: Filtro a 700 MHz de s1 (azul) y señal original (naranja)

En la siguiente gráfica (Figura 27) se muestra dónde comienza la señal en el filtro de 500 MHz.

En el algoritmo de la Energía, la señal comienza en la muestra 926 ya que el algoritmo percibe como comienzo un punto en el que la energía varía más que en muestras anteriores, aunque no sea el comienzo real, mientras que en el de Curtosis comienza en 957, ya que los picos anteriores son considerados como normales para la Curtosis.

Figura 27: Filtro a 500 MHz de s1 (azul) y señal original (naranja)

En la siguiente gráfica (Figura 28) se muestra dónde comienza la señal en el filtro de 300 MHz.

Tanto en el algoritmo de la Energía como en el de Curtosis, la señal comienza en la muestra 954.

Figura 28: Filtro a 300 MHz de s1 (azul) y señal original (naranja)

4.1.2. Señal 2 (s2)

La señal 2 (Figura 29) tiene menos ruido que la anterior, pero tiene un comienzo más definido.

Figura 29: Descarga parcial 2

Tras usar los algoritmos, la señal comienza en las siguientes posiciones o muestras (Tabla 6):

Algoritmos	Posición [n]
Energía	992
Curtosis	992
T 11 (C '	1 1 ~ 1 · · 1 0

Tabla 6: Comienzos de la señal original s2

Filtramos la señal a distintas frecuencias y obtenemos distintos valores de comienzo para cada uno de los algoritmos (Tabla 7).

Filtros [MHz]	Energía [n]	Curtosis [n]
700	987	987
600	987	986
500	984	984
400	986	986
300	1004	998
150	992	992

Tabla 7: Comienzos de la señal s2 en los diferentes filtros

En la siguiente gráfica (Figura 30) se muestra dónde comienza la señal en el filtro de 700 MHz.

Tanto en el algoritmo de la Energía como en el de Curtosis, la señal comienza en la muestra 987.

Figura 30: Filtro a 700 MHz de s2 (azul) y señal original (naranja)

En la siguiente gráfica (Figura 31) se muestra dónde comienza la señal en el filtro de 500 MHz.

Tanto en el algoritmo de la Energía como en el de Curtosis, la señal comienza en la muestra 984.

Figura 31: Filtro a 500 MHz de s2 (azul) y señal original (naranja)

En la siguiente gráfica (Figura 32) se muestra dónde comienza la señal en el filtro de 300 MHz.

Para el algoritmo de la Energía, la señal comienza en la muestra 1004, mientras que en el de Curtosis comienza en la muestra 998.

Figura 32: Filtro a 300 MHz de s2 (azul) y señal original (naranja)

4.1.3. Señal 3 (s3)

Esta señal (Figura 33) tiene muy poco ruido y el comienzo de la señal es muy brusco, lo que facilitará la búsqueda del comienzo de la señal con los algoritmos.

Figura 33: Descarga parcial 3

Para los distintos algoritmos, la señal comienza en las siguientes posiciones (Tabla 8):

Algoritmos	Posición [n]
Energía	997
Curtosis	989

Tabla 8: Comienzo de la señal original s3

Tras filtrar la señal a distintas frecuencias, obtenemos distintos valores de comienzo para cada algoritmo (Tabla 9):

Filtro [MHz]	Energía [n]	Curtosis [n]
700	995	988
600	994	983
500	992	977
400	990	975
300	1000	979
150	996	993

Tabla 9: Comienzo de la señal s3 para los distintos filtros

En la siguiente gráfica (Figura 34) se muestra dónde comienza la señal en el filtro de 700 MHz.

Para el algoritmo de la Energía, la señal comienza en la muestra 995, mientras que en el de Curtosis comienza en la muestra 988.

Figura 34: Filtro a 700 MHz de s3 (azul) y señal original (naranja)

En la siguiente gráfica (Figura 35) se muestra dónde comienza la señal en el filtro de 500 MHz.

Para el algoritmo de la energía, la señal comienza en la muestra 992, mientras que en el de Curtosis comienza en la muestra 977.

Figura 35: Filtro a 500 MHz de s3 (azul) y señal original (naranja)

En la siguiente gráfica (Figura 36) se muestra dónde comienza la señal en el filtro de 300 MHz.

Para el algoritmo de la Energía, la señal comienza en la muestra 1000, mientras que en el de Curtosis comienza en la muestra 979.

Figura 36: Filtro a 300 MHz de s3 (azul) y señal original (naranja)

5. Ensayo con dos antenas

Se realizan medidas en el laboratorio de pares de señales para poder comparar la diferencia de tiempos en los que tarda en llegar la señal a cada antena.

Estas señales serán descargas parciales de tipo superficial. Las señales serán emitidas por la fuente y llegarán a los receptores o antenas de 10 cm se utilizan. La antena 1 se encuentra a 1 m del dispositivo y se encuentra conectada al canal 1 del osciloscopio, mientras que la antena 2 se encuentra a 3 m y en el canal 2. Las antenas, además, se colocan alineadas con la fuente para poder medir mejor las distancias entre ellas.

Se usan los algoritmos de búsqueda del inicio de la señal con cada par de señales para, así, poder calcular las muestras de separación entre cada señal. Al conocer la frecuencia de muestreo y que hay 5000 muestras, se sabe que cada muestra es 0,2 ns y podremos pasar las muestras a tiempos. Con estos tiempos podremos, finalmente, calcular la distancia a las antenas.

Como se conoce la distancia que separa las antenas, también se sabe que cuando llegue la señal de la antena 1 al receptor, aún le quedarán 2 m por recorrer a la señal de la antena 2. Se utiliza este dato para calcular la diferencia de tiempos que debería haber entre ellas. Esta diferencia de 2 m se corresponde con 6,6 ns o 33 muestras.

Por tanto, como la antena 1 está situada más cerca, teóricamente la señal de la antena 1 debería llegar 33 muestras antes que la de la antena 2.

A continuación, se muestra la disposición de las antenas y la fuente en el laboratorio para la realización de la toma de señales (Figura 37).

Figura 37: Disposición de antenas en el laboratorio
Se toman distintas señales, en las que se comparan los resultados de las señales sin filtrar y al filtrarlas a 700 y 500 MHz en los distintos algoritmos.

Estas señales las se dividen como buenas (B1 y B4) y malas (M3 y M4), teniendo 4 señales distintas de cada tipo, de las cuales se analizan las dos más representativas.

5.1. Señal B1

La señal B1 (Figura 38-39) se obtiene a una tensión de 3850 V. Se puede apreciar las dos señales que reciben las diferentes antenas, siendo la amarilla la señal del canal 1 (antena 1) y la azul la señal del canal 2 (antena 2).

Figura 38: Señales de antenas B1

Figura 39: Señales B1 mostradas en MATLAB (azul para canal 1 y naranja para canal 2)

Se aplican los filtros paso bajo a las señales de ambos canales y calculamos la diferencia de tiempos (Tabla 10), comparando con las señales sin filtrar:

Señales	Energía [n]	Curtosis [n]
b1-ch1	1003	1003
b1-ch2	1036	1037
	Diferencia [n]	Diferencia [n]
	33	34
	Tiempo [ns]	Tiempo [ns]
	6,6	6,8

Tabla 10: Diferencia de tiempos de señales b1

En la señal sin filtrar obtenemos buenos resultados ya que la diferencia entre la señal del canal 1 y la del canal 2 del osciloscopio en ambos algoritmos es bastante exacta.

Filtro [MHz]	Señales	Energía [n]	Curtosis [n]
700 b1-ch1		999	1000
	b1-ch2	1035	1035
		Diferencia [n]	Diferencia [n]
		36	35
		Tiempo [ns]	Tiempo [ns]
		7,2	7
500	b1-ch1	992	997
	b1-ch2	1034	1034
		Diferencia [n]	Diferencia [n]
		42	37
		Tiempo [ns]	Tiempo [ns]
		8.4	7.4

Tabla 11: Diferencias de tiempos de señales b1 filtradas a 700 y 500 MHz

Al realizar los filtros de 700 y 500 MHz (Tabla 11), los resultados en ambos algoritmos se alejan del correcto, lo que empeora los resultados respecto a la señal sin filtrar.

5.2. Señal B4

La siguiente señal (Figura 40) se obtiene a una tensión de 7100 V. Se pueden ver las dos señales, siendo la amarilla la que comienza antes por ser la de la antena 1, más cercana, y la azul después, por ser la correspondiente a la antena 2, la más lejana.

Figura 40: Señales de antenas B4

Los comienzos de las señales sin filtrar son (Tabla 12):

Señales	Energía [n]	Curtosis [n]
b4-ch1	1002	1002
b4-ch2	1036	1036
	Diferencia [n]	Diferencia [n]
	34	34
	Tiempo [ns]	Tiempo [ns]
	6,8	6,8

Tabla 12: Diferencias de tiempos de señales b4

La señal sin filtrar obtiene buenos resultados en ambos algoritmos, acercándose ambas a 6,6 ns.

Filtro [MHz]	Señales	Energía [n]	Curtosis [n]
700	b4-ch1	1002	1001
	b4-ch2	1032	1034
		Diferencia [n]	Diferencia [n]
		30	33
		Tiempo [ns]	Tiempo [ns]
		6	6,6
500	b4-ch1	1001	998
	b4-ch2	1035	1033
		Diferencia [n]	Diferencia [n]
		34	35
		Tiempo [ns]	Tiempo [ns]
		6,8	7

Tabla 13: Diferencias de tiempos de señales b4 filtradas a 700 y 500 MHz

Al filtrar la señal (Tabla 13), en general, se obtienen resultados similares a la señal sin filtrar, aunque empeoran ligeramente.

5.3. Señal M3

Estas señales (Figura 41) se obtienen a 3850 V. Tienen descargas parciales menos claras que las anteriores señales, ya que no se aprecia tan claramente el comienzo de la descarga.

E la	Eat	Vertical	Horiz/Aca	Tria	Display	Cursors	Measure	Mask	Meth	MyScope	Analyze	Litities	Help			DBOZ	Te	k 📃	
			_																
																	C 111	-1 7 8	
				0			()											51 X P01	<u>a</u> –
																		4.0ns	
																	Cu	s2 X Pot	b
																		134ns	
																			_
																			•
					all and	a.d.,				L.				A					
ę	100		TTR THE	d d	10.0	TTTT T		1111		TRACT				÷.	A		-		
								i i		, , ‡		, i							
ľ	C1	10.0mV/c	liv :	50Ω E	w:2.5G		11 4.0ns		٦ ا			A' C	7 10	0.0mV	100	ns/div 5.	0GS/s	200p	s/pt
	C2	10.0mV/c	liv	50Ω	w:2.5G		134ns								Pres	lew	Single	Seq	1
							41 130ns		-						0 ac	qs Eebra	any 24-2	RL:5.0	k

Figura 41: Señales de antenas M3

Se aplican los filtros a las señales y se calcula las diferencias de tiempos (Tabla 14).

Señales	Energía [n]	Curtosis [n]
m3-ch1	990	1003
m3-ch2	91	1250
	Diferencia [n]	Diferencia [n]
	- 899	247
	Tiempo [ns]	Tiempo [ns]
	179,8	49,4

Tabla 14: Diferencias de tiempos de señales m3

En esta señal, la Energía encuentra el comienzo de la señal de la antena 2 antes que l de la antena 1. Esto es imposible ya que se encuentra más lejos del receptor. Esto puede deberse a que el algoritmo encuentra otro pico con una gran diferencia de energía y cree que ese es el comienzo. Para evitarlo, se busca el comienzo entre las muestras 1000 y 1200 (Tabla 15).

Señales	Energía [n]	Curtosis [n]
m3-ch1	990	1003
m3-ch2	1038	1038
	Diferencia [n]	Diferencia [n]
	48	35
	Tiempo [ns]	Tiempo [ns]
	9,6	7

Tabla 15: Diferencias de tiempos de señales m3 corregidas

En la señal sin filtrar, al hacer la búsqueda entre las muestras en las que sabemos que se encuentra el comienzo de las descargas, no se consigue obtener unos resultados que se acerquen a los tiempos esperados.

Filtro [MHz]	Señales	Energía [n]	Curtosis [n]
700	m3-ch1	987	997
	m3-ch2	496	10
		Diferencia [n]	Diferencia [n]
		<u>-491</u>	- 987
		Tiempo [ns]	Tiempo [ns]
		-98,2	-197,4
500	m3-ch1	989	993
	m3-ch2	520	5
		Diferencia [n]	Diferencia [n]
		-469	-988
		Tiempo [ns]	Tiempo [ns]
		-93,8	-197,6

Tabla 16: Diferencias de tiempos de señales m3 filtradas a 700 y 500 MHz

Al filtrar la señal (Tabla 16) vuelve a ocurrir lo mismo, por lo que, en el filtro a 700 MHz, para ambos algoritmos busco entre 1000 y 1200 y en el filtro a 500 MHz busco entre 1000 y 1200 para la Energía y entre 1010 y 1200 para la Curtosis (Tabla 17).

Filtro [MHz]	Señales	Energía [n]	Curtosis [n]
700	m3-ch1	987	997
	m3-ch2	1036	1022
		Diferencia [n]	Diferencia [n]
		49	25
		Tiempo [ns]	Tiempo [ns]
		9,8	5
500	m3-ch1	989	993
	m3-ch2	1034	1024
		Diferencia [n]	Diferencia [n]
		45	31
		Tiempo [ns]	Tiempo [ns]
		9	6.2

Tabla 17: Diferencias de tiempos de señales m3 filtradas a 700 y 500 MHz corregidas

En las señales filtradas, los resultados no son visiblemente mejores que en las señales sin filtrar, por lo que se puede decir si resulta mejor el filtrado o no.

En el caso de la Curtosis, está dando una diferencia menor de la que es físicamente posible (6,6 ns). Esto se debe a que, al no tener un comienzo claro de la señal, toma como comienzo un cambio brusco de Curtosis diferente al real.

5.4. Señal M4

Estas señales (Figura 42) se obtienen a una tensión de 3900 V. Tienen mucho ruido y el comienzo de la descarga no es muy claro en ninguna de las dos señales.

Figura 42: Señales de antenas M4

Se aplican los filtros a las dos señales y se analizan las señales sin filtrar (Tabla 18):

Señales	Energía [n]	Curtosis [n]
m4-ch1	936	1001
m4-ch2	728	11
	Diferencia [n]	Diferencia [n]
	-208	-990
	Tiempo [ns]	Tiempo [ns]
	-41,6	-198

Tabla 18: Diferencias de tiempos de señales m4

En este caso, busco la señal entre 900 y 1200 para la Energía y entre 1003 y 1200 para la Curtosis ya que me está encontrando otros picos con gran diferencia de Energía o Curtosis (Tabla 19).

Señales	Energía [n]	Curtosis [n]
m4-ch1	936	1001
m4-ch2	965	1031
	Diferencia [n]	Diferencia [n]
	29	30
	Tiempo [ns]	Tiempo [ns]
	5,8	6

Tabla 19: Diferencias de tiempo de señales m4 corregidas

En la señal original, y tras buscar en la zona en que se encuentran los comienzos, los resultados obtenidos se alejan de los resultados que cabría esperar.

Filtro las señales (Tabla 20):

Filtro [MHz]	Señales	Energía [n]	Curtosis [n]
700	700 m4-ch1		1002
	m4-ch2	779	1003
		Diferencia [n]	Diferencia [n]
		-162	1
		Tiempo [ns]	Tiempo [ns]
		-32,4	0,2
500	m4-ch1	941	942
	m4-ch2	779	780
		Diferencia [n]	Diferencia [n]
		-162	-162
		Tiempo [ns]	Tiempo [ns]
		-32.4	-32.4

Tabla 20: Diferencias de tiempos de señales m4 filtradas a 700 y 500 MHz

Para el filtro a 700 MHz busco entre 900 y 1200 para la Energía y entre 1000 y 1200 para la Kurtosis y en el filtro a 500 MHz entre 900 y 1200 para la Energía y entre 960 y 1200 para la Curtosis (Tabla 21).

Filtro [MHz]	Señales	Energía [n]	Curtosis [n]
700	m4-ch1	941	1002
	m4-ch2	974	1029
		Diferencia [n]	Diferencia [n]
		33	27
		Tiempo [ns]	Tiempo [ns]
		6,6	5,4
500	m4-ch1	941	942
	m4-ch2	974	975
		Diferencia [n]	Diferencia [n]
		33	33
		Tiempo [ns]	Tiempo [ns]
		6,6	6,6

Tabla 21: Diferencias de tiempos de señales m4 filtradas a 700 y 500 MHz corregidas

Tras filtrar la señal, los dos filtros mejoran claramente los resultados en ambos algoritmos y se llega a obtener resultados prácticamente exactos.

6. Filtro con ondículas

La transformada de ondículas, también llamadas wavelet, es una herramienta que se usa para separar en distintos intervalos de frecuencia una señal, dando información de forma simultánea de distintas frecuencias [7, 8].

Con este método, similar a los filtros, se esperan conseguir mejores resultados que con los filtros paso bajo y paso banda [22].

Se quita el ruido a la señal 1 mediante este método. Las ondículas usadas son en una dimensión y del tipo Daubechies (dB), por ser la más parecida a las señales originales, de nivel 7. Además, este método permite modificar el intervalo de frecuencias que queremos que muestre y, así, obtener la señal que se quiera analizar fácilmente.

Las descomposiciones las realiza dividiendo la frecuencia de muestreo entre dos para obtener la primera descomposición. Repetirá este proceso tantas veces como descomposiciones queramos hacer.

$$Frecuencia \ de \ las \ des \ composiciones = \frac{frecuencia \ de \ muestreo}{2^n}$$

Siendo n el número de descomposiciones

Es decir, la primera descomposición se encuentra entre 2500 y 1250 MHz, la segunda se encuentra entre 1250 y 625 MHz y así sucesivamente como se muestra en las Ecuaciones (21-22).

$$f_{descomposición 1} = \frac{2500 MHz}{2^{0}} = 2500 MHz$$
(21)
$$f_{descomposición 2} = \frac{2500 MHz}{2^{1}} = 1250 MHz$$
(22)

Al realizar estas descomposiciones se puede ver a cuál de ellas se parece más nuestra señal ya que se conoce entre qué frecuencias se encuentra. En este estudio, las más parecidas serán las que se encuentren en unas frecuencias comprendidas entre 400 y 700 MHz aproximadamente.

6.1. Señal 1 - denoised1

Para obtener esta señal, se realizan 5 descomposiciones (Figura 43). En la primera no se consigue quitar el ruido, pero en la segunda ya se puede apreciar la forma real de nuestra señal sin ruido. Al llegar al nivel 5, quitamos demasiada señal, por lo que la imagen se distorsiona y no se puede apreciar la forma de la señal.

Figura 43: Descomposiciones Señal1_denoised1

Tras aplicar este método, la señal que se obtiene (Figura 44) al quitar las frecuencias que no nos interesan es mucho más limpia que la original, permitiendo ver el comienzo de la señal más claramente.

Figura 44: Señal1_denoised1

Se aplican los algoritmos de Energía y Curtosis para obtener los comienzos de la señal (Tabla 22).

Algoritmos	Posición [n]
Energía	953
Curtosis	953
T 11 22 C '	1 0 ~ 11 1 1 11

Tabla 22: Comienzos de Señal1_denoised1

Al ser una señal tan limpia, ambos algoritmos encuentran el mismo inicio de señal.

Tras filtrar la señal, en el filtro a 700 MHz, ambos algoritmos dan el comienzo de la señal en la muestra 952, mientras que en filtro a 300 MHz la señal comienza en la muestra 953, según la Energía y en la 954, según la Curtosis (Tabla 23).

Filtro [MHz]	Energía [n]	Curtosis [n]
700	952	952
300	953	954

Tabla 23: Comienzos de Señal1_denoised1 filtradas a 700 y 300 MHz

6.2. Señal 1 - denoised2

En este caso, se hacen 8 descomposiciones (Figura 45). A partir del nivel 5, la señal está muy distorsionada y no se consigue apreciar la forma de la señal. Además, el nivel 2 es el más cercano a la forma que tiene la señal sin ruido.

Figura 45: Descomposiciones Señal1_denoised2

Tras modificar los intervalos de las frecuencias de cada descomposición, se obtiene una señal (Figura 46) que prácticamente carece de ruido para poder localizar correctamente el inicio de señal.

Se aplican los algoritmos de búsqueda para encontrar el comienzo de la señal (Tabla 24).

Algoritmos	Posición
Energía	949
Curtosis	950

Tabla 24: Comienzos de Señal1_denoised2

Al filtrar la señal a 700 MHz, ambos algoritmos encuentran el inicio de señal en la muestra 952, mientras que, en el filtro a 300 MHz, el algoritmo de energía encuentra el comienzo en la muestra 953 y el de Curtosis en la muestra 954 (Tabla 25).

Filtro [MHz]	Energía [n]	Curtosis [n]
700	952	952
300	953	954

Tabla 25: Comienzos de Señal1_denoised2 filtradas a 700 y 300 MHz

7. Antenas con ondículas

Se aplica el método de las ondículas a las señales tomadas con las antenas con el fin de conseguir quitar todo el ruido posible y mejorar los resultados obtenidos con los filtros. Se usan las peores señales ya que son las que tienen más ruido y son las que dan peores resultados a la hora de encontrar el comienzo de la señal y, por tanto, da peores localizaciones de la fuente.

En todas las señales las ondículas empleadas son de una dimensión, de tipo dB de nivel 7 y realizamos 5 descomposiciones.

7.1. Señal M3_ch1_denoised

Se modifican los parámetros de las frecuencias de las distintas descomposiciones (Figura 47) para conseguir obtener una señal lo más limpia posible.

Figura 47: Descomposiciones Señal M3_ch1_denoised

Se observa que la descomposición 2 es la que aporta una imagen más clara de la señal y posteriormente obtenemos la siguiente señal al quitar el ruido (Figura 48).

Figura 48: Señal M3_ch1_denoised

Se aplican los algoritmos de búsqueda del inicio de señal y se obtiene (Tabla 26):

Algoritmos	Posición [n]
Energía	979
Curtosis	974

Tabla 26: Comienzos de señal M3_ch1_denoised

7.2. Señal M3_ch1_denoised_2

Se realiza de nuevo el cálculo sin modificar tanto la señal original M3_ch1 y se obtienen las siguientes descomposiciones (Figura 49):

Figura 49: Descomposición Señal M3_ch1_denoised_2

La señal obtenida es (Figura 50):

Figura 50: Señal M3_ch1_denoised_2

Tras aplicar los algoritmos se obtienen las siguientes posiciones (Tabla 27):

Algoritmos	Posición [n]
Energía	990
Curtosis	992

Tabla 27: Comienzos de señal M3_ch1_denoised_2

7.3. Señal M3_ch2_denoised

Se modifican los parámetros de las frecuencias de las distintas descomposiciones para conseguir obtener una señal lo más limpia posible (Figura 51).

Figura 51: Descomposiciones señal M3_ch2_denoised

Se ve que esta señal tiene mucho más ruido que la que recibe el canal 1. Al aplicar los distintos intervalos de frecuencias se obtiene la siguiente señal (Figura 52):

Figura 52: Señal M3_ch2_denoised

Se aplican los algoritmos de búsqueda del inicio de señal y se obtiene (Tabla 28):

Algoritmos	Posición	
Energía	1009	
Curtosis 1009		
Tabla 28: Comienzos de señal M3 ch2 denoised		

En esta señal no está muy claro dónde comienza la señal ya que no hay un cambio brusco en la señal, solo se encuentra una zona en la que se ve una mayor concentración de la señal.

7.4. Señal M3_ch2_denoised_2

Como en la señal M3_ch1_denoised, se vuelven a modificar los umbrales elegidos en la ondícula para que la nueva señal sea más parecida a la real.

Tras modificar los parámetros usados en la anterior ondícula, se obtienen las siguientes descomposiciones de señal (Figura 53):

Figura 53: Descomposiciones señal M3_ch2_denoised_2

Se obtiene la siguiente señal (Figura 54):

Figura 54: Señal M3_ch2_denoised_2

Tras aplicar los algoritmos buscando entre las muestras 950 y 1200 se obtienen los siguientes comienzos (Tabla 29):

Algoritmos	Posición [n]
Energía	1027
Curtosis	1028

Tabla 29: Comienzos señal M3_ch2_denoised_2

En todas las señales de M3 obtenidas, se puede ver que es una señal con mucha acumulación de ruido y resulta complicado quitarlo, ya sea mediante filtros paso bajo o mediante diferentes ondículas.

A pesar de haber probado con más ondículas, no se ha llegado a obtener ninguna ondícula de M3 que mejores considerablemente los resultados ya obtenidos. Esto se debe al excesivo ruido de las señales de ambos canales, que dificultan el proceso de filtrado e impiden obtener buenos resultados.

7.5. Señal M4_ch1_denoised

Se modifican los parámetros de las frecuencias de las distintas descomposiciones para conseguir obtener una señal lo más limpia posible.

La señal no se aprecia muy bien en las descomposiciones (Figura 55). Las más cercanas a la forma real son las descomposiciones 2 y 3.

Figura 55: Descomposiciones señal M4_ch1_denoised

La señal obtenida (Figura 56) con las ondículas es muy limpia, por lo que ambos algoritmos encuentran el comienzo de forma similar.

Figura 56: Señal M4_ch1_denoised

Aplicamos los algoritmos de búsqueda del inicio de señal y obtenemos (Tabla 30):

Algoritmos	Posición
Energía	987
Curtosis	987
T 11 20 T 1	

Tabla 30: Comienzos de señal de M4_ch1_denoised

7.6. Señal M4_ch1_denoised_2

Se realiza una segunda ondícula del canal 1 quitando menos señal que en la ondícula anterior.

Se obtienen las siguientes descomposiciones (Figura 57):

Figura 57: Descomposiciones de señal M4_ch1_denoised_2

La señal obtenida es (Figura 58):

Se obtienen los siguientes comienzos (Tabla 31) tras aplicar los algoritmos a partir de la muestra 950:

Algoritmos	Posición
Energía	1002
Curtosis	1004

Tabla 31: Comienzos M4_ch1_denoised_2

7.7. Señal M4_ch2_denoised

Se obtienen las siguientes descomposiciones de la señal del canal 2 (Figura 59):

Figura 59: Descomposiciones señal M4_ch2_denoised

La señal del canal 2 obtenida tras aplicar las ondículas es (Figura 60):

Figura 60: Señal M4_ch2_denoised

Se aplican los algoritmos de búsqueda del inicio de señal (Tabla 32) y se obtiene:

Algoritmos	Posición
Energía	1017
Curtosis	1017

Tabla 32: Comienzos de señal M4_ch2_denoised

7.8. Señal M4_ch2_denoised_2

Tras quitar menos ruido, se obtienen las siguientes descomposiciones (Figura 61):

Figura 61: Descomposiciones de señal M4_ch2_denoised_2

La señal obtenida es (Figura 62):

Figura 62: Señal M4_ch2_denoised_2

Se aplican los algoritmos de localización (Tabla 33) y se obtiene:

Algoritmos	Posición	
Energía	1036	
Curtosis 1037		
Tabla 33: Comienzos de M4_ch2_denoised_2		

7.9. Diferencias de tiempos de antenas con ondículas

Se calculan las diferencias de tiempos que hay entre las primeras ondículas correspondientes a las señales M3 y M4:

Señal	Energía [n]	Curtosis [n]
M3_ch1_denoised	979	974
M3_ch2_denoised	1009	1009
	Diferencia [n]	Diferencia [n]
	30	35
	Tiempo [ns]	Tiempo [ns]
	6	7

Tabla 34: Diferencias de tiempos de señales M3_ch1_denoised y M3_ch2_denoised

Tras aplicar las ondículas a la señal M3 (Tabla 34), tanto a la recibida en el canal 1 como a la del canal 2, se obtiene que la diferencia de tiempos entre ambas señales es de 6 ns para la Energía, mientras que es de 7 ns para la Curtosis.

A pesar de que ninguno de los resultados es el correcto, el resultado de la Curtosis se podría considerar mejor puesto que es posible, es decir, la diferencia de tiempos es físicamente imposible que sea menor de 6,6 ns, ya que se conocen todos los datos necesarios para dicho cálculo.

Es posible que, por el ruido provocado por distintos agentes externos, la señal se distorsione y por ello de otros resultados.

En el caso de la Energía, el tiempo da menor a 6,6 ns. Esto indica que el algoritmo encuentra un pico grande de energía y lo toma como inicio de la señal.

Posteriormente se realiza el mismo cálculo para las segundas ondículas corr4espondientes a la señal M3:

Señal	Energía [n]	Curtosis [n]
M3_ch1_denoised_2	990	992
M3_ch2_denoised_2	1027	1028
	Diferencia [n]	Diferencia [n]
	37	36
	Tiempo [ns]	Tiempo [ns]
	7,4	7,2

Tabla 35: Diferencias de tiempos de M4_ch1 denoised_2 y M4_ch2_denoised_2

En este caso, las nuevas ondículas de M3 (Tabla 35) no mejoran los resultados de las primeras ondículas realizadas para M3. En ambos algoritmos se superan los 6,6 ns, dando 7,4 ns para la Energía y 7,2 ns para la Kurtosis.

Si se comparan estos resultados con los que se obtuvieron en los filtros a 700 y 500 MHz (Tabla 36) se puede ver que, aunque los resultados de las ondículas no son tan buenos como se esperaba, sí se acercan más a los valores esperados que los resultados de los filtros.

Señales	Energía	Curtosis
	Diferencia [n]	Diferencia [n]
M3_ch1 y M3_ch2	49	25
filtradas a 700 MHz	Tiempo [ns]	Tiempo [ns]
	9,8	5
	Diferencia [n]	Diferencia [n]
M3_ch1 y M4_ch2	45	31
filtradas a 500 MHz	Tiempo [ns]	Tiempo [ns]
	9	6,2

Tabla 36: Diferencias de tiempos en M3 filtrada

En el caso de la señal M4, aplicamos las ondículas a ambas señales para ver las diferencias de tiempos de llegadas.

Señal	Energía [n]	Curtosis [n]
M4_ch1_denoised	987	987
M4_ch2_denoised	1017	1017
	Diferencia [n]	Diferencia [n]
	30	30
	Tiempo [ns]	Tiempo [ns]
	6	6

Tabla 37: Diferencias de tiempos de señales M4_ch1_denoised y M4_ch2_denoised

Ambos algoritmos dan una diferencia de 6 ns (Tabla 37), inferior al 6,6 ns calculado, por lo que ambos algoritmos encuentran mínimos locales que le confunden a la hora de obtener el inicio de señal correcto.

Además, ambos algoritmos encuentran exactamente en las mismas muestras los inicios de señal. Por ello, es posible que el mínimo local sea muy cercano o similar al inicio de la señal y por ello no encuentre el correcto.

Señal	Energía [n]	Curtosis [n]
M4_ch1_denoised_2	1002	1004
M4_ch2_denoised_2	1036	1037
	Diferencia [n]	Diferencia [n]
	34	33
	Tiempo [ns]	Tiempo [ns]
	6,8	6,6

 Tabla 38: Diferencias de tiempos de señales M4_ch1_denoised_2 y M4_ch2_denoised_2

Estas nuevas ondículas (Tabla 38) mejoran notablemente con respecto a las anteriores, llegando a obtener los resultados esperados.

Si se comparan los resultados con los que se obtuvieron en los filtros a 700 y 500 MHz (Tabla 39) se puede observar que, aunque es una señal considerada como mala, se le pueden aplicar bien tanto filtros como ondículas. En el caso de la primera ondícula el resultado no es muy bueno porque se quitó demasiado ruido y partes de señal, pero tanto en la segunda ondícula como en los filtros obtenemos buenos resultados.

Señales	Energía	Curtosis
	Diferencia [n]	Diferencia [n]
M4_ch1 y M4_ch2	33	27
filtradas a 700 MHz	Tiempo [ns]	Tiempo [ns]
	6,6	5,4
	Diferencia [n]	Diferencia [n]
M4_ch1 y M4_ch2	33	33
filtradas a 500 MHz	Tiempo [ns]	Tiempo [ns]
	6.6	6.6

Tabla 39: Diferencias de tiempos de M4 filtrada

8. Comparaciones entre filtros y ondículas

En este apartado, se comparan las señales que se obtienen al filtrar con filtros paso bajo en la señal *s1* usando los filtros de 700 y 300 MHz con las dos ondículas obtenidas a partir de dicha señal y se analizan los comienzos de las señales.

La señal con el filtro paso bajo es azul y la señal con ondículas es roja. Además, los marcadores usados para la señal con filtro serán moradas, un triángulo para la energía y un cuadrado Kurtosis, y en la ondícula serán verdes con las mismas formas que en el caso de los filtros.

8.1. Filtro paso bajo – Ondícula s1

Figura 63: Comparación filtro paso bajo a 700 MHz (azul) y ondícula s1 (rojo)

Si se aplica zoom (Figuras 63-64) se puede apreciar que los algoritmos de energía y Curtosis en la señal filtrada a 700 MHz y en la ondícula, dan un comienzo de señal muy similar, solo diferenciándose en una muestra de diferencia entre una señal y otra.

Figura 64: Detalle de comienzos para el filtro paso bajo (morado) y para la ondícula s1 (verde)

Los comienzos de la señal para filtros y ondículas son (Tabla 40):

Algoritmos	Filtro [n]	Ondícula [n]
Energía	952	953
Curtosis	952	953
Table 40. Consistence de la coñol Gluer de se la condéceda		

Tabla 40: Comienzos de la señal filtrada y la ondícula

Figura 65: Comparación filtro paso bajo a 300 MHZ (azul) y ondícula s1 (rojo)

Al aplicar zoom (Figuras 65-66) se aprecia que, tanto la filtrada como la ondícula, tienen su comienzo en las muestras 953 exceptuando la Curtosis en la filtrada, que comienza en la 954.

Figura 66: Detalle de comienzos para el filtro paso bajo(morado) y para la ondícula s1 (verde)

Los comienzos de la señal para filtros y ondículas son (Tabla 41):

Algoritmos	Filtro [n]	Ondícula [n]
Energía	953	953
Curtosis	954	953

Tabla 41: Comienzos de la señal filtrada y la ondícula

8.2. Filtro paso bajo – Ondícula s2.

Figura 67: Comparación filtro paso bajo a 700 MHZ (azul) y ondícula s2 (rojo)

Aplicando zoom (Figuras 67-68) se ve que la filtrada comienza en la muestra 952 en ambos algoritmos en la ondícula.

Figura 68: Detalle de comienzos de filtro paso bajo (morado) y ondícula s2 (verde)

Los comienzos de la señal para filtros y ondículas son (Tabla 42):

Algoritmos	Filtro [n]	Ondícula [n]
Energía	952	949
Curtosis	952	950
T 11 10 C 1	1 1 ~ 1 01 1	1 1/ 1

Tabla 42: Comienzos de la señal filtrada y la ondícula

Figura 69: Comparación filtro paso bajo a 300 MHz (azul) y ondícula s2 (rojo)

Aplicando zoom (Figuras 69-70) se puede apreciar que la señal filtrada comienza en la muestra 953 para la energía y en la 954 para la Curtosis, mientras que la ondícula lo hace en la 949 y en la 950, respectivamente.

Figura 70: Detalle de comienzos de filtro paso bajo (morado) y ondícula s2 (verde)

Los comienzos de la señal para filtros y ondículas son (Tabla 43):

Algoritmos	Filtro [n]	Ondícula [n]
Energía	953	949
Curtosis	954	950
Table 42. Consistence de la construction de la conference		

Tabla 43: Comienzos de la señal filtrada y la ondícula

En la señal s1, se puede observar que tanto los filtros paso bajo como las ondículas aplicadas funcionan de un modo muy similar en ambos algoritmos ya que no se aprecian grandes diferencias a la hora de encontrar el comienzo de las señales.

9. Comparaciones entre filtros y ondículas con las antenas

Se procede a comparar las señales tomadas con las antenas al aplicar filtros (Figura 71,74) y al aplicar ondículas (Figura 72-73, 75-76). Se analizan las diferencias de tiempos que hay con cada método para comprobar cuál es mejor.

La señal correspondiente al cañal 1 es azul con marcadores morados, siendo un triángulo para la energía y un cuadrado para la Curtosis, y la señal del canal 2 es naranja con marcadores verdes con las mismas formas que en el canal 1.

Figura 71: Señales M3_ch1 (azul) y M3_ch2 (naranja) filtradas a 700 MHz

Las diferencias de tiempos en las ondículas son (Tabla 44):

Diferencia Energía [n]	Diferencia Curtosis [n]
49	25
Tiempo [ns]	Tiempo [ns]
9,8	5

Tabla 44: Diferencias de tiempos de señales M3 filtradas

Figura 72: Ondículas M3_ch1_denoised (azul) y M3_ch2_denoised (naranja)

Las diferencias de tiempos en las ondículas son (Tabla 45):

Diferencia Energía [n]	Diferencia Curtosis [n]
30	35
Tiempo [ns]	Tiempo [ns]
6	7

Tabla 45: Diferencias de tiempos entre las ondículas correspondientes a M3

9.1.3. Ondículas M3_ch1_denoised_2 y M3_ch2_denoised_2

Figura 73: Ondícula M3_ch1_denoised_2 (azul) y M3_ch2_denoised_2 (naranja)

Las diferencias de tiempos en las ondículas son (Tabla 46):

Diferencia Energía [n]	Diferencia Curtosis [n]
37	36
Tiempo [ns]	Tiempo [ns]
7,4	7,2

Tabla 46: Diferencias de tiempos de ondículas correspondientes a M3

9.1.4. Comparación

En el caso de la señal filtrada (Figura 71), obtenemos que la diferencia de tiempos en el algoritmo de la Energía es de 9,8 ns, por lo que el algoritmo encuentra un inicio posterior al real. El algoritmo de Curtosis, sin embargo, da una diferencia de tiempos de 5 ns, por lo que es bastante inferior a 6,6 ns. Esto indica que nuestro algoritmo encuentra un mínimo anterior y no es capaz de localizar correctamente el inicio de señal.

Estas diferencias pueden verse dadas por el filtrado, es decir, al filtrar la señal, esta se distorsiona y cambia y, si cambia demasiado, los algoritmos encuentran los inicios de las nuevas señales filtradas, que no tienen por qué ser los mismos que los de las señales sin filtrar. Por ello resulta tan importante filtrar bien, para conseguir encontrar de forma correcta los inicios para localizar bien el origen de la descarga parcial.

En el caso de las ondículas 1 (Figura 72) ocurre algo similar. La Energía da una diferencia menor de la real mientras que en la Curtosis ocurre lo contrario. Nuevamente nos encontramos con el problema de obtener buenas ondículas para tener señales más similares a las originales. Si al hacer las distintas descomposiciones quitamos demasiado ruido, podemos quitar también partes de la señal, lo que hará que los comienzos de las señales sean incorrectos.

Para las ondículas 2 (Figura 73) se obtienen peores resultados que en las ondículas 1 o, al menos, no mejores. Los resultados en general son mejores que en el filtro, pero no llegan a dar el resultado esperado.

9.2. Señal M4 ch1 y M4 ch2

Figura 74: Señales M4_ch1 (azul) y M4_ch2 (naranja) filtradas a 700 MHz

Las diferencias de tiempos en las ondículas son (Tabla 47):

Diferencia energía [n]	Diferencia Curtosis [n]
33	27
Tiempo [ns]	Tiempo [ns]
6,6	5,4

Tabla 47: Diferencias de tiempos de señales M4 filtradas

Figura 75: Ondículas M4_ch1_denoised (azul) y M4_ch2_denoised (naranja)

Las diferencias de tiempos en las ondículas son (Tabla 48):

Diferencia Energía [n]	Diferencia Curtosis [n]
30	30
Tiempo [ns]	Tiempo [ns]
6	6

Tabla 48: Diferencias de tiempos de ondículas correspondientes a M4

9.2.3. Ondículas M4_ch1_denoised_2 y M4_ch2_denoised_2

Figura 76: Ondículas M4_ch1_denoised_2 (azul) y M4_ch2_denoised_2 (naranja)

Diferencia Energía [n]	Diferencia Curtosis [n]
34	33
Tiempo [ns]	Tiempo [ns]
6,8	6,6

Las diferencias de tiempos en las ondículas son (Tabla 49):

Tabla 49: Diferencia de tiempos de ondículas correspondientes a M4

9.2.4. Comparación

Tras aplicar el filtrado a la señal M4 (Figura 74), la Energía da la diferencia de tiempos exacta que se espera mientras que la Curtosis da una diferencia menor. Esto ocurre porque, al filtrar, la señal modifica su forma y hace que el algoritmo, en este caso solo el de Curtosis, falle.

La ondícula 1 (Figura 75) obtiene los mismos resultados en ambos algoritmos. Estos dan una diferencia menor a 6,6 ns, por lo que encuentran distintos mínimos que confunden con el inicio de señal. Esto se debe a que al aplicar las ondículas, hemos quitado parte de la señal que habíamos considerado ruido.

La ondícula 2 (Figura 76), sin embargo, tiene unos resultados mucho mejores que la ondícula 1. Además, los resultados son también mejores en general que en el caso de las señales filtradas.

10. Conclusión

De esta investigación se obtienen diversas conclusiones:

- 1. Tras realizar una comparación entre las señales originales y las señales filtradas de las señales calificadas como buenas (B1 y B3), se puede observar que el filtrado no mejora visiblemente los resultados obtenidos. Así, en señales que tengan poco ruido y una descarga parcial clara, no resulta necesario el uso de ningún filtro. En los dos casos observados de señales buenas, los resultados que se obtienen sin filtrar tienen un error menor que los resultados obtenidos tras el filtrado.
- 2. Por el contrario, tras realizar la misma comparación entre las señales originales y las filtradas en las señales calificadas como malas (M3 y M4), se observa que los resultados mejoran considerablemente. En estos casos, al ser señales más ruidosas, se tuvo que buscar el comienzo de las señales en el rango de muestras en que se podía observar el comienzo, ya que los algoritmos encontraban mínimos locales. En ambos casos, pero especialmente en la señal M4, se puede ver que los resultados que se obtienen al filtrar son prácticamente exactos o simplemente más cercanos al valor esperado que la señal sin filtrar.

- 3. En el caso de filtrado con ondículas, hay que tener especial cuidado con la elección de los umbrales que se determinan en cada descomposición. Esto se debe a que, si no se presta demasiada atención a dicha elección, se puede eliminar, no solo el ruido, sino que también parte de la señal. En ese caso, la localización de las antenas no es buena ya que la señal cambia demasiado y la diferencia de tiempos no es correcta. Sin embargo, si se presta atención y se hace una elección de los umbrales más meticulosa, los resultados son buenos e, incluso, mejores que los resultados obtenidos con los filtros paso bajo. Por ello, resulta muy interesante aplicar este método ya que, si se eligen bien los parámetros, los resultados son satisfactorios.
- 4. En el primer grupo de medidas tomadas con un generador eólico, no se puede asegurar que los resultados obtenidos para los comienzos de las distintas señales sean los correctos. Esto se debe a que, al realizar la medida con una única antena, no podemos comparar las distancias o tiempos de llegada entre señales. En los casos en los que los comienzos de los filtros difieran mucho de los resultados de las señales sin filtrar, no se puede decir cuál es más correcto.
- 5. En el segundo grupo de medidas en el que se toman datos con dos antenas, sí se conocen las diferencias de tiempos, y podemos comparar los resultados obtenidos tras filtrar y comprobar qué métodos funcionan mejor.

11. Análisis financiero

11.1. Presupuesto del estudio

Para dar un presupuesto (Tabla 51), se divide el proyecto en las diferentes actividades realizadas, dando un precio de mano de obra de 40 €/h. Además, se tiene en cuenta el uso del material de laboratorio de alta tensión, en el que dividimos entre la maquinaria utilizada y los productos fungibles, en los que incluimos cables, conexiones, antenas, ...

Actividad	Precio/hora [€/h]	Tiempo [h]	Presupuesto [€]
Programación	40	145	5800
Búsqueda de información	40	202,5	8100
Obtención de resultados	40	122,5	4900
Redacción del informe	40	80	3200
Alquiler de equipos	-	-	1000
Fungibles	-	-	500

Se estima que el tiempo de realización equivale a 2,5 horas el número de días empleados en cada actividad como se muestra en la Tabla (50).

Tabla 50: Diferentes	actividades	realizadas
----------------------	-------------	------------

Presupuesto total [€]	22600	
Tabla 51: Presupuesto total		

Con estos datos, por tanto, el presupuesto estimado es de 22600 €.

11.2. Diagrama de Gantt

Para el siguiente análisis financiero, se tienen en cuenta las horas empleadas en distintos ámbitos: en proceso de búsqueda de información, programación, toma de datos en laboratorio tanto de descargas parciales tomadas con generador eólico, como la toma de datos de descargas parciales con 2 antenas y obtención de resultados.

Para ello, se realiza un diagrama de Gantt (Tabla 52) en el que se muestra el tiempo empleado en cada proceso.

Tabla 52: Diagrama de Gantt de actividades realizadas

12. Impacto socioeconómico

Esta investigación resulta interesante para distintas aplicaciones en la industria. Debido a que la localización de descargas parciales resulta esencial para poder averiguar dónde hay o puede haber fallos de aislamiento, este estudio puede ayudar a establecer una ruta que se puede seguir para dicha detección. Primero sería interesante establecer si la descarga parcial es muy clara y tiene poco ruido, en cuyo caso podría probarse a localizar sin realizar ningún filtrado. En caso contrario, es decir, la señal es débil y con mucho ruido, resulta mejor filtrar la señal. Para ello, los filtros paso bajo funcionan bien, al igual

que las ondículas. En este último caso, hay que cuidar la selección de los parámetros de las ondículas para obtener esos buenos resultados.

En el caso de poder localizar correctamente las descargas parciales, se podría ahorrar dinero empleado en reponer máquinas que han sido dañadas por dichas descargas y que ya no resultan adecuadas para su correcto funcionamiento.

13. Marco regulador

La normativa empleada en este estudio es la que se refiere a las descargas parciales. Se dan dos normas:

IEC 60270:2000 aplicada a la medida de descargas parciales. Se trata de la norma convencional de métodos inductivos de la medida de localización de descargas parciales en medios aislados.

IEC TS 62478:2016 aplicada a la medida de descargas parciales mediante métodos electromagnéticos y acústicos. Esta norma se centra en la medida de descargas parciales que ocurren en aislamientos de aparatos eléctricos.

14. Anexo

Programación de algoritmos en MATLAB®

1. <u>Energía:</u>

```
close all
clear all
N=5000;
load('..\Datos Gamesa\senal3');
sruido=s3;
e=cumsum(sruido.^2);
E=sum(sruido.^2);
r=[1:N]*E/N;
emin=e-r';
plot(s3)
[v,i]=min(emin);
hold on
plot(e,'g')
plot(emin,'r')
```

2. <u>Curtosis:</u>

```
clear all
close all
N=5000;
load('..\.\Datos Gamesa\senal3.mat')
sruido=s3;
smed=s3(1);
```

```
plot (sruido, 'c')
hold on
for n=2:N
    smed(n) = (((n-1)/n) * smed(n-1)) + (sruido(n)/n);
end
resta=sruido-smed;
acum=cumsum(resta.^4);
ac=cumsum(resta.^2);
k_n = (1./(1:N)).*acum./((1./(1:N)).*ac).^2;
plot (k n)
[u,i]=max(k n(1:N));
a=0.2;
kurt=k n-a*((1:N)*(u/i));
[v,j] = min(kurt);
plot (kurt,'g')
figure(2),plot(s)
```

3. Programación de los algoritmos como funciones en MATLAB®

```
function [ener,i]=EnergiaAcum(s)
N = length(s);
e=cumsum(s.^2);
E=sum(s.^2);
r=(1:N)*E/N;
ener=e-r';
[v,i]=min(ener(1:round(N/4)));
end
```

```
function [kurt,j] = KurtosisAcum(s)
N = length(s);
smed = s(1);
for n=2:N
    smed(n)=(((n-1)/n)*smed(n-1))+(s(n)/n);
end
```

```
resta=s'-smed;
acum=cumsum(resta.^4);
ac=cumsum(resta.^2);
k_n=(1./(1:N)).*acum./((1./(1:N)).*ac).^2;
[u,i]=max(k_n(1:N));
a=0.2;
kurt=k_n-a*((1:N)*(u/i));
[v,j]= min(kurt(1:round(N/4)));
end
```

4. Programación filtro paso banda en MATLAB®

```
%equiripple
load ('Datos Gamesa\senal1.mat')
```
```
d =
fdesign.bandpass('N,Fst1,Fp1,Fp2,Fst2,C',100,150e6,250e6,650e6,750e6,5
e9);
d.Stopband1Constrained = true;
d.Astop1 = 60;
d.Stopband2Constrained = true;
d.Astop2 = 60;
Hd = design(d, 'equiripple');
%para el delay
D=round(mean(grpdelay(Hd.Numerator,1)))
fvtool(Hd)
y = filter(Hd, [s1; zeros(D, 1)]);
y = y(D+1:end);
figure
plot(y, '.-')
hold on
plot(s1, '.-')
   5. Programación filtro paso bajo en MATLAB®
close all
clear all
fs = 5e9;
f = 700e6;
Ap = 1;
Ast = 60;
load ('ondiculas antenas\m4 ch1.mat');
load ('ondiculas antenas\m4 ch2.mat');
w = m4 ch1 wavelet denoised';
%filtro
Fp = f/(fs/2);
Fst = Fp*1.5;
d = fdesign.lowpass('Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);
Hd 1 = design(d, 'equiripple');
D=round(mean(grpdelay(Hd 1.Numerator,1)))
fvtool(Hd 1)
```

```
y_1 = filter(Hd_1, [m4_ch1; zeros(D,1)]);
y_1 = y_1(D+1:end);
y_2 = filter(Hd_1, [m4_ch2; zeros(D,1)]);
y_2 = y_2(D+1:end);
subplot(311)
plot(s1)
subplot(312)
plot(y_1)
subplot(313)
```

```
plot(w)
save('filtro_s1.mat', 'Hd_1', 's1', 'y_1')
save('filtro s1.mat', 'Hd_1', 'y_1', 'y_2')
```

88

```
%Posición de la energía en la señal filtrada
[enery1,i1] = EnergiaAcum(m4_ch1);
%Posición de la energía en la señal filtrada con wavelet
[enerw,indxE] = EnergiaAcum(w);
%Posición de la energía en la señal original
[eners1,i2] = EnergiaAcum(m4_ch2);
nzoom1=900;
nzoom2=1100;
figure(66)
hold on
plot(nzoom1:nzoom2,m4_ch1(nzoom1:nzoom2),'.',nzoom1:nzoom2,m4_ch2(nzoo
m1:nzoom2),'.-','LineWidth',1,'MarkerSize',10)
plot(i2,m4_ch2(i2),'^','MarkerSize',20)
plot(i1,m4_ch1(i1),'v','MarkerSize',20)
plot(indxE,w(indxE),'p','MarkerSize',20)
```

8 %

```
%Posición de la kurtosis de la señal filtrada
[kurty1,j1] = KurtosisAcum(m4_ch1);
%Posición de la energía en la señal filtrada con wavelet
[kurtw,indxK] = KurtosisAcum(w);
%Posición de la kurtosis de la señal original
[kurts1,j2] = KurtosisAcum(m4_ch2);
```

```
plot(j2,m4_ch2(j2),'o','MarkerSize',20)
plot(j1,m4_ch1(j1),'s','MarkerSize',20)
plot(indxK,w(indxK),'h','MarkerSize',20)
```

15. Referencias

[1] G. C. Stone, "Partial discharge diagnostics and electrical equipment insulation condition assessment," *IEEE Trans. Dielectr. Electr. Insul.*, vol. 12, pp. 891-904, 2005.

[2] P. M. Eleftherion, "Partial discharge. XXI. Acoustic emission based PD source location in transformers," *IEEE Electr. Insul. Mag.*, vol. 11, pp. 22-26, 1995.

[3] E. Gulski, "Digital analysis of partial discharges," *IEEE Trans. Dielectr. Electr. Insul.*, vol. 2, pp. 822-837, 1995.

[4] X. Chen and T. Parks, "Design of FIR filters in the complex domain," *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 35, pp. 144-153, 1987.

[5] S. Sriram *et al*, "Signal denoising techniques for partial discharge measurements," *IEEE Trans. Dielectr. Electr. Insul.*, vol. 12, pp. 1182-1191, 2005.

Grado de Ingeniería en Tecnologías Industriales

[6] R. E. James, B. T. Phung and Q. Su, "Application of digital filtering techniques to the determination of partial discharge location in transformers," *IEEE Transactions on Electrical Insulation*, vol. 24, pp. 657-668, 1989.

[7] L. Satish and B. Nazneen, "Wavelet-based denoising of partial discharge signals buried in excessive noise and interference," *IEEE Trans. Dielectr. Electr. Insul.*, vol. 10, pp. 354-367, 2003.

[8] C. K. Chui, An Introduction to Wavelets. Elsevier, 2016.

[9] C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons, 2016.

[10] S. Boggs, A. Pathak and P. Walker, "Partial discharge. XXII. High frequency attenuation in shielded solid dielectric power cable and implications thereof for PD location," *IEEE Electr. Insul. Mag.*, vol. 12, pp. 9-16, 1996.

[11] P. J. Moore, I. E. Portugues and I. A. Glover, "Partial discharge investigation of a power transformer using wireless wideband radio-frequency measurements," *IEEE Trans. Power Del.*, vol. 21, pp. 528-530, 2006.

[12] T. Tanaka, "Internal partial discharge and material degradation," *IEEE Transactions on Electrical Insulation*, pp. 899-905, 1986.

[13] R. A. Anderson and J. P. Brainard, "Mechanism of pulsed surface flashover involving electron-stimulated desorption," *J. Appl. Phys.*, vol. 51, pp. 1414-1421, 1980.

[14] J. Chang, P. A. Lawless and T. Yamamoto, "Corona discharge processes," *IEEE Trans. Plasma Sci.*, vol. 19, pp. 1152-1166, 1991.

[15] R. Bartnikas, "Partial discharges. Their mechanism, detection and measurement," *IEEE Trans. Dielectr. Electr. Insul.*, vol. 9, pp. 763-808, 2002.

[16] P. J. Moore, I. E. Portugues and I. A. Glover, "Radiometric location of partial discharge sources on energized high-voltage plant," *IEEE Trans. Power Del.*, vol. 20, pp. 2264-2272, 2005.

[17] M. J. Lindstrom and D. M. Bates, "Newton—Raphson and EM algorithms for linear mixed-effects models for repeated-measures data," *Journal of the American Statistical Association*, vol. 83, pp. 1014-1022, 1988.

[18] J. Kennedy, "Particle swarm optimization," in *Encyclopedia of Machine Learning*Anonymous Springer, pp. 760-766, 2011.

[19] G. Konig and K. Feser, "A new digital filter to reduce periodic noise in partial discharge measurements," in *6th Intern. Sympos. HV Engineering*, pp. 1-4, 1989.

[20] G. Robles, J. M. Fresno and R. Giannetti, "Ultrasonic bone localization algorithm based on time-series cumulative kurtosis," *ISA Trans.*, vol. 66, pp. 469-475, 2017.

[21] L. R. Rabiner and B. Gold, "Theory and application of digital signal processing," *Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975.777 P.,* vol. 1, 1975.

[22] H. de Oliveira Mota *et al*, "Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines," *Electr. Power Syst. Res.*, vol. 81, pp. 644-659, 2011.

[23] E. R. i Oliva, *Transformadores De Potencia, De Medida Y De Protección.* Marcombo, 1972.

[24] O. El Mountassir *et al*, "Evaluation of an iterative method used for partial discharge RF location techniques," in *Environment and Electrical Engineering (EEEIC), 2011 10th International Conference On,* 2011, pp. 1-4.

[25] L. Tang *et al*, "Location of partial discharges in power transformers using computeraided acoustic techniques," *Canadian Journal of Electrical and Computer Engineering*, vol. 21, pp. 67-71, 1996.

[26] Y. T. Chan and K. C. Ho, "A simple and efficient estimator for hyperbolic location," *IEEE Transactions on Signal Processing*, vol. 42, pp. 1905-1915, 1994.

[27] S. Bancroft, "An algebraic solution of the GPS equations," *IEEE Trans. Aerospace Electron. Syst.*, pp. 56-59, 1985.

[28] R. Bucher and D. Misra, "A synthesizable VHDL model of the exact solution for threedimensional hyperbolic positioning system," *VIsi Design*, vol. 15, pp. 507-520, 2002.