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Abstract

There is an increasing interest in the use of line-commutated converter (LCC) tech-

nology to connect large offshore wind farms (OWFs) placed far from the coast by means

of a high voltage direct current (HVDC) link. This is due to the better features of LCCs

compared to voltage-source converters in terms of cost, reliability and efficiency. How-

ever, this technology requires a frequency control in the OWF to allow the operation

of both the wind turbine generator systems (WTGSs) and the LCC rectifier. There-

fore, this Thesis presents two frequency control proposals. First, a centralized volt-

age and frequency control for an OWF connected through LCC-rectifier-based HVDC

link is proposed. It is derived from an enhanced LCC-rectifier station average-value

model which indicates that the active power balance at the point of common coupling

drives the OWF voltage while the corresponding reactive power balance drives the

OWF frequency. Even though voltage control cannot be applied in case of using a

diode rectifier, the voltage magnitude variation is clamped between acceptable values.

As a second proposal, a decentralized frequency control for the diode-rectifier-based

HVDC link connection of OWFs is also presented. This control is based on a reactive

power / frequency droop which allows the WTGSs to reach synchronous operation

and equally share the reactive power without the need of communications among the

WTGSs. Moreover, the control proposals do not rely on a phase-locked loop, so con-

trols are not subject to grid disturbances or measurement noise. Another important

specification of the proposed control strategies is that they do not modify the active

power control channel of the WTGSs. Finally, the stability and the simulation results to

assess the performance of both control proposals are studied.
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1.1 State of the art and motivation

There are several factors that have recently pushed renewable energies, being the

most relevant one the contribution of greenhouse gas emissions to global warming.

The concern about these emissions has brought some limitations on them which have

turned into a significant growth in renewable energies [1]. This growth can be appre-

ciated nowadays, given that global renewable power capacity was increased by near

9 % in 2016 [2]. In fact, the aforementioned increment becomes higher than 17 % if the

well-known and well-established hydropower renewable energy is not considered.

Renewable energy capacity is led by wind power capacity just after hydropower

capacity [2]. This impact reveals not just its relative importance among the renewables

but also its global influence in electricity production. Moreover, wind power is recently

experiencing a growth which increases the global wind power installed as it can be

extracted from the cumulative wind power capacity shown in Figure 1.1 [3].

1



2 Chapter 1. Introduction

Figure 1.1: Global cumulative installed wind power capacity from 2001
to 2017.

Likewise, global annual wind power capacity increment is shown in Figure 1.2 [3].

The aforementioned increment depends on both the annual wind power installed and

decommissioned. It shows that last four years are the best wind power installation

years but it is worth mentioning that there is a decreasing trend in the last two years.

Figure 1.2: Global annual wind power capacity increment from 2001 to
2017.

1.1.1 Wind energy

Depending on the location, two different kinds of wind power plants can be con-

sidered: offshore and onshore. It should be pointed out that offshore wind energy is

less mature than onshore wind energy given that the first commercial offshore wind

farm (OWF) was installed in 1991 (in Denmark) [4]. Also, it is worth mentioning that

the development patterns of these two wind energy technologies are different [5]. Even

though annual wind power capacity increment has been reduced in the last years, this
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is not the situation of offshore wind energy, which has grown in the last year. Namely,

it has a global growing trend which is shown in Figure 1.3 [3].

Figure 1.3: Global annual offshore wind power capacity increment from
2012 to 2017.

The comparison of offshore wind energy to onshore wind energy brings both the

following main advantages and disadvantages of the offshore sites [1]. A first advan-

tage comes from the location itself. Best onshore locations are already in use, although

repowering projects can be relevant here. However, the sea provides larger suitable

and free areas for wind power installation. In fact, this is probably the reason why an-

nual wind power installed did not grow last year while installed offshore wind power

grew. Moreover, due to the longer distance to populated areas, some wind energy

drawbacks like the noise emission and the visual impact can be reduced. A second

advantage corresponds to the resource quality because wind speed is generally higher

and more consistent in the sea. Furthermore, onshore wind turbines are higher than

their equivalent offshore ones due to the features of the turbulent-air layer close to the

ground and the sea, respectively. Nevertheless, there are important disadvantages of

offshore wind power. The main one is related to costs, which are bigger in offshore

sites. Some reasons for this cost increment are, for instance, the corrosive environment,

the fixed or floating wind turbine foundation, construction and operation and mainte-

nance difficulties because of the accessibility problem, the integration to onshore and

the higher separation between wind turbines because of the higher turbulences prop-

agation compared to onshore sites. Regarding the economics of OWFs, studies show

a big variability of its cost components with an increasing trend that seems to be stag-

nated for the vessels rental and the wind turbines acquisition [6].

As it can be extracted, offshore wind technology is still being developed and there

are several ongoing research areas which will probably make OWFs be more cost-

effective in the future. Specifically, this research work is focused on the integration of

OWFs which are located far from the coast. Note that the increasing penetration level

of offshore wind energy and high-power capacity of OWFs has recently made trans-

mission system operators (TSOs) codes to increase the service requirements to OWFs,

as it can be frequency support contribution, for instance. This has made some experts

to start talking about offshore wind power plants (OWPPs), although the term OWF is

generally used to refer to both concepts along this Thesis.
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1.1.2 WTGS technology

It is worthy to give a brief overview of the main wind turbine generator system

(WTGS) types [7, 8, 9], which can be also addressed as wind-energy conversion units

(WECUs) and wind-energy conversion systems (WECSs). These systems are respon-

sible for extracting the wind energy and converting it into kinetic energy and finally

into electrical energy. First, squirrel-cage induction generators (SCIGs) were used with

a multiple-stage gearbox and were directly connected to grid through a step-up trans-

former. It is a fixed speed concept which is addressed as type-1 WTGS. Then, fixed

speed limitations were improved with the limited variable speed concept (Optislip),

where variable rotor resistance and pitch control approaches were used. This is ad-

dressed as type-2 WTGS. Next, type-3 WTGS corresponds to a variable speed concept

which uses an induction generator with a partial-scale power electronics converter that

feeds the rotor winding, the doubly-fed induction generator (DFIG). This WTGS has

been widely used because of its controllability while just a reduced power rating con-

verter which is around 30 % of the WTGS rated power is needed. Finally, there are

variable speed concepts with full-scale power electronics converter, where the alternat-

ing current (AC) part of the generator stator is completely decoupled from the AC grid.

Typically, an electrically excited synchronous generator (EESG) or a permanent magnet

synchronous generator (PMSG) is used with a single-stage gearbox or even without

gearbox because of the use of a multi-pole machine with the corresponding reduced

speed. These are addressed as type-4 WTGSs. Nowadays, wind power technology

mainly uses type-3 and type-4 WTGSs, variable speed concepts which offer different

advantages. The partial-scale converter makes type-3 cost be more attractive and it has

lower power losses than the full-converter solution of type-4. However, type-4 WTGS

avoids the brushes problems (failures and maintenance) of type-3 WTGS and it has a

better control flexibility with a better fault ride-through (FRT) response [9] which helps

provide the different TSO requirements for OWFs.

1.1.3 OWF interconnection technology: HVAC versus HVDC

Most promising areas for offshore wind power are located at long distances far from

the shore, so long transmission lines are required for their interconnection. These inter-

connections can be accomplished by using two different technologies: high voltage al-

ternating current (HVAC) and high voltage direct current (HVDC). The decision about

the use of these technologies mainly depends on the transmission distance which af-

fects the different cost components: lines, converters/platforms and losses [10]. There-

fore, several studies have tried to establish the break-even distance which defines the

length above which the most cost-effective technology is HVDC, as it is shown in Fig-

ure 1.4 [10]. There are many factors that affect this distance calculation, so different

estimated values can be found. Nevertheless, it seems to be below 100 km [10, 11] for
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marine transmissions, although some authors consider 50 km [12, 13, 14]. Therefore,

HVDC is assumed to be the preferred technology for the connection of large OWFs

which are located far from the coast [13, 15].

Figure 1.4: Dependence of HVAC and HVDC transmission costs on the
distance.

1.1.4 HVDC technology: LCC versus VSC

This Thesis explores OWFs connected to onshore with HVDC transmission. Be-

cause of the direct current (DC) transmission, some researchers propose replacing the

conventional AC collection offshore grid by a DC one [16, 17]. The main advantage of

such a collection grid is the elimination of huge and heavy power transformers, which

is quite interesting for marine applications. It allows us to omit half of the power elec-

tronics conversion in type-4 WTGSs, while it implies including converters in the other

WTGS types, as it is established in [17]. However, the need of further research to over-

come the DC protection drawbacks makes DC collection grids to be still under investi-

gation [17].

This Thesis seeks an improvement for HVDC-connected OWFs which use the tra-

ditional AC collection offshore grid. These offshore grids are very likely isolated grids

that need the corresponding voltage and frequency control in order to be operated.

There are two kinds of HVDC transmission depending on the AC-DC conversion tech-

nology: line-commutated converter (LCC) and voltage-source converter (VSC). On the

one hand, VSCs use self-controlled semiconductors which can belong to different types

as turn-off thyristors (GTOs), being insulated gate bipolar transistors (IGBTs) the semi-

conductors used in most industrial applications [18]. The main advantage of VSC tech-

nology is its control flexibility which becomes quite important for OWF applications

where it can provide the offshore AC grid (voltage and frequency) needed in such an

isolated scenario. Moreover, the frequency spectrum of the AC waveforms requires
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less filtering than LCC technology and it can be even unnecessary in the modern mod-

ular multilevel converter (MMC). On the other hand, traditional LCC technology uses

thyristors. Although conventional LCC-HVDC links are made of thyristors, the unidi-

rectional power flow of an OWF application suggests the possibility of using diodes in

the HVDC rectifier converter, which also corresponds to a line-commutated converter.

The disadvantage of LCC technology lies in its commutation nature which needs an

AC grid (voltage and frequency) to provide AC-DC conversion during operation. LCC

can operate connected to the AC grid in the onshore terminal of the HVDC link but not

in the likely isolated offshore grid terminal. This implies that some means external to

the HVDC link must be used in order to form and control the offshore AC grid volt-

age which is a challenge of this technology. It is worth mentioning that the offshore

AC grid forming, during the startup, requires some active power which cannot be gen-

erally extracted from the HVDC link because of the unidirectional power flow nature

of diode rectifiers. It is worth mentioning that the bidirectional power flow opera-

tion, which could be interesting for the startup of the OWF, requires reversing the DC

voltage polarity while VSC just reverses the DC current. Furthermore, LCCs require

huge AC filters which become quite important in marine applications where offshore

substations are installed on platforms in the sea. Despite LCC drawbacks, this technol-

ogy is superior to VSC technology in the following features [19]: maturity, reliability,

efficiency, converter volume (converter footprint), cost and semiconductors overload

capacity. Table 1.1 sumarizes the main advantages of both technologies LCC and VSC

for OWF applications.

Table 1.1: Advantages of HVDC technologies: LCC versus VSC.

LCC VSC

Lower cost Black start / AC grid forming capability

Lower losses Active and reactive power capability

Higher overload capacity Smaller footprint (reduced filtering)

Longer experience and proven reliabil-
ity

Bidirectional operation wihtout revers-
ing DC voltage

LCC drawbacks are responsible for the absence of LCC-HVDC connected OWFs in

the current offshore wind power scenario. Therefore, VSC is the current technology

used for the interconnection of OWFs by means of HVDC links. However, LCC ad-

vantages have recently motivated the needed research in order to make this type of

interconnection possible in a cost-effective way. Even though the huge passive filters

imply a non-negligible drawback, most of the research has been focused on provid-

ing the voltage and frequency control required for the isolated OWF grid to which the

LCC-rectifier is connected, which is the main challenge. Following, the state of the art

of the different solutions which can be found in the literature is addressed.
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1.1.5 LCC-HVDC connected OWF control solutions background

The different control proposals for the operation of OWFs with LCC-HVDC connec-

tion which can be found in the literature can be classified in two different categories:

centralized control solutions and distributed control solutions.

1.1.5.1 Conventional centralized frequency control solutions

Beginning by the centralized control solutions, most of the proposed controls use an

auxiliary static compensator (STATCOM) which is connected to the offshore AC grid

in the offshore substation. This is the same bus where the LCC-rectifier is connected

through its transformer. Namely, this offshore AC grid bus where all the OWF gener-

ated power is collected in order to be transferred to onshore is addressed as the point

of common coupling (PCC) bus.

The control proposed in [20] uses a STATCOM which is controlled as a slack bus

or infinite bus, i.e. it sets the voltage magnitude and the voltage angle at the PCC.

It proposes to use the STATCOM DC voltage as a sensor to detect the imbalance in

the active power generated by the OWF and the active power transmitted through

the HVDC link. This imbalance is corrected by changing the thyristor firing angle

which will modify the HVDC link current. Nevertheless, the use of the STATCOM DC

voltage for detecting this active power imbalance is not realistic. This imbalance could

imply important fluctuations, so a large STATCOM DC bus capacity is required in order

to avoid unacceptable STATCOM DC voltage fluctuations. This proposal is a slight

modification of the control proposed in [21]. The difference is that this proposal uses

the dq-axes control of the STATCOM which seeks maintaining the PCC bus voltage

oriented to the synchronous reference frame that rotates at the reference frequency.

Therefore, the STATCOM seeks the PCC bus to behave as a slack bus. In [22] the control

proposed in [21] is studied focusing on the STATCOM DC capacitor sizing needed. The

same control principle for the STATCOM which is used in [21] is applied in [23, 24]. The

control schemes are different and state feedback and a feedback compensator before

applying proportional-integral (PI) controllers is used in [24]. It should be pointed

out that in [23, 24] the startup of the offshore AC grid is addressed. Namely, a small

auxiliary diesel generator which provides the active power required to maintain the

STATCOM DC voltage during the startup is proposed. Later, the same authors in [24]

propose an enhanced rectifier control that improves the power tracking of the rectifier

and also the system damping after onshore grid faults [25].

The control solutions proposed in [26, 27, 28] present a voltage control which is

implemented in the output of the type-3 WTGSs. Therefore, voltage control is a dis-

tributed control in a certain way. However, the frequency control is centralized and it

is implemented by adjusting the active power balance at the PCC bus by adjusting the

firing angle of the thyristor rectifier. The load-frequency relation drives this frequency
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control and it does not imply that a load change will produce a frequency change, but

the opposite. The load-frequency relation is a characteristic feature of the synchronous

generator, where a frequency variation will produce a load variation and the opposite

until the stable operation point is reached. Finally, [26] mentions that the offshore AC

grid startup can be coordinated between the HVDC link and the type-3 WTGSs, but

the procedure is just addressed and not specified. However, in [27, 28] a stand-alone

operation of the type-3 WTGSs based on [29] is proposed to startup the grid before the

frequency control starts operating.

It is worth mentioning that all the aforementioned control solutions use a thyristor

rectifier in the HVDC link. In [30] the proposed control applies to the diode-rectifier

HVDC connection of OWFs which can be composed of both type-3 and type-4 WTGSs.

First, a type-3 WTGS voltage-source control based on [29] is proposed in order to be

able to set the desired voltage magnitude and voltage phase in both types of WTGS.

The well-known relations between active power and frequency and between reactive

power and voltage magnitude present in conventional AC grids [31] are used for the

control. Then, conventional active-power / frequency droop (P/f droop) and reactive-

power / voltage droop (Q/V droop) controls are implemented in the voltage-source

controlled WTGSs. However, both WTGS controls also use signals arriving from an

OWF centralized controller. These signals cannot be instantaneous, so additional con-

siderations about the communications needed are missing in this study. Finally, startup

is accomplished by the WTGSs given their voltage-source control mode.

1.1.5.2 Hybrid HVDC-converter centralized frequency control solutions

Hybrid solutions can be also found in the literature. In [32], a DC parallel con-

nection of a VSC and each of the two six-pulse diode rectifiers which would made a

twelve-pulse rectifier if they were connected in series is proposed. In this control so-

lution, the VSC is controlled as a slack bus. If no additional control is implemented,

it is possible that there is power drawn by the rectifiers which is again injected to the

offshore grid by the VSC. This power recirculation could take place in low power gen-

eration scenarios of the OWF which are not addressed in the publication and should be

prevented by a control because of the power losses involved in the process. Similarly,

a hybrid rectifier converter for OWF applications which consists of the DC series con-

nection of a twelve-pulse diode rectifier and a VSC is presented in [33, 34] by the same

authors in [32]. It is claimed that the VSC controls the PCC bus voltage magnitude and

frequency. However, this converter is controlling the PCC bus voltage magnitude and

its inner DC voltage, but not the frequency. A voltage-oriented control (VOC) [35, 36]

to the PCC voltage is used, so it seems that it is assumed that there is frequency in the

offshore grid because there is no control over the frequency in the VSC. In fact, the same

authors present in [37] the same hybrid converter concept but assuming that there is

voltage control in the offshore AC grid accomplished by the WTGSs, which appears
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to be natural from the previous analysis. Therefore, the PCC bus voltage magnitude

is controlled and the power transferred by the hybrid rectifier is set equal to the OWF

generated power. In addition to establishing a substantially different hybrid rectifier

control, a hybrid inverter with a twelve-pulse thyristor inverter connected in series to

a VSC is proposed, which is the equivalent hybrid converter for the onshore inverter

side. This way, a novel HVDC link based on hybrid VSCs for such an isolated appli-

cation which helps reduce costs, power losses and footprint is claimed. Startup is only

addressed in [37] among these hybrid solutions. Nevertheless, it is not significant be-

cause the proposed rectifier is not responsible for the offshore AC grid. Moreover, the

proposals in [33, 34] use the VSC to filter the main harmonics of the twelve-pulse diode

rectifier (11th- and 13th-harmonics) in order to reduce the passive filters required.

All the previous hybrid solutions have a DC capacitor connected in parallel to each

of the diode DC outputs and to the VSC DC output. This feature means that if the

dc-series-connected hybrid rectifier solution [33, 34, 37] is used to provide the OWF

startup, the DC voltages balance would not be kept during the startup what would

require at least overrating the maximum DC voltage of the diode units. These DC ca-

pacitors are removed in [38], where the DC-series connected rectifier is proposed to

be made up of the twelve-pulse diode rectifier and a small MMC. This MMC is not

proposed to control the offshore AC grid frequency which is controlled by the WTGSs.

In fact, it only filters the DC voltage in normal operation in order to reduce the DC

smoothing reactor while active power is transferred by the diode rectifiers. It is estab-

lished that the startup process could be accomplished by the OWF WTGSs or by the

hybrid rectifier. The latter implies setting a negative HVDC link voltage during the

startup to allow the MMC to provide active power to the OWF with the required pos-

itive DC current imposed by the diode rectifiers, which would be disconnected from

the offshore AC grid. This is not an easy procedure and it implies restoring the positive

HVDC link voltage before starting to transmit power by the diodes. There are two dif-

ferent offshore AC grid voltage control options during this DC-voltage restoring time.

On the one hand, the OWF could be able to operate in a stand-alone control mode dur-

ing this DC-voltage restoring time, because the MMC and the link will be changing

their DC voltage polarity thanks to the onshore inverter. On the other hand, The MMC

could be keeping the offshore AC grid with its DC part disconnected from the HVDC

link. This way, there is no control over the DC voltage of the MMC and its reconnection

to the HVDC link could be complex.

Following the DC-parallel connected hybrid rectifier in [32], there is a similar pro-

posal in [39] which uses thyristors instead of diodes. The VSC, which has a reduced

DC voltage, provides the startup of the offshore AC grid while the thyristor rectifier is

disconnected from the HVDC link. During normal operation, the VSC is in STATCOM

mode with a Q/V droop together with the WTGSs and it provides active harmonic
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filtering to its AC side. The offshore AC grid frequency control is carried out by mod-

ifying the firing angle of the thyristor rectifier, which is transferring the OWF power.

Finally, there is a control shifting time when the thyristor rectifier must connect to a

reduced DC voltage in the link, start transferring power and assume the frequency

control while the VSC disconnects from the link and changes to STATCOM mode. This

shifting time is mentioned but not discussed in the publication. Later, the control is

modified in [40]. Specifically, the VSC control remains connected in operation, which

eliminates the reduced VSC voltage advantage of the previous proposal. The VSC con-

trol is changed to be a slack bus and the thyristor rectifier follows current references.

1.1.5.3 Distributed control solutions

All the previous control solutions are centralized. Although some of them propose

the WTGSs to startup the system or contribute to the offshore AC grid voltage control,

this is not the target of a centralized control and they could be then considered as hybrid

control solutions. A centralized control is supposed to provide the offshore AC grid

to the WTGSs so they can operate by using the so-called VOC. This way, they inject

active power depending on the wind conditions by following the WTGS power curve,

which considers the maximum power point tracking (MPPT) control, if there is no

power curtailment command [41] or deloaded operation to provide frequency support

[42]. Regarding reactive power, WTGSs standard control modes are: reactive power

reference, power factor reference and voltage reference [43]. Nevertheless, centralized

solutions imply adding some power electronics to the PCC bus. Given that there is

power electronics available in the most used type-3 and type-4 WTGSs, distributed

solutions attempt the WTGSs to control the offshore AC grid. It is worth mentioning

that most of the distributed control solutions use type-4 WTGSs because of their control

flexibility advantage. Following, distributed approaches are addressed.

The control proposals which can be found in [44, 45] use single-WTGS aggregated

models of the OWF to set the control principles of the distributed voltage and frequency

control proposed in [46]. This control is performed in the WTGSs but it uses measure-

ments at the PCC bus to orient the control. Therefore, this control cannot be entirely

considered as distributed given the centralized measurements that are used. Moreover,

these measurement signals should arrive via communication and this communication

delay has a very important role given that the control would be oriented to an angular

position which is different from the one that would be happening at that time. How-

ever, this communication delay is not considered. In addition, the angular reference

is directly obtained from the PCC bus voltage components that are measured. As no

dynamic tracking system as a phase-locked loop (PLL) is used, the voltage harmonic

distortion is directly transferred to the WTGSs power control. The control includes

the estimation of the quadrature component of the rectifier current and this estima-

tion would not be as easy in the case of a real OWF which will have more than one
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WTGS per string and π-models of the cables, for instance. Finally, [46] proposes to

use the type-4 WTGS converters the following way. The front-end converter (FEC) or

line-side converter (LSC) produces the desired AC voltage magnitude and angle while

the back-end converter (BEC) or generator-side converter (GSC) controls the DC bus

voltage. This modifies the conventional control of the wind turbine generator and its

mechanical effects on the wind turbine should be studied.

The control proposed in [46] has been used for further studies. Namely, fault con-

ditions and the efficiency of the solution are analyzed in [47], while an AC passive

filters reduction is presented in [48]. Moreover, the integration of OWFs by means of

diode-rectifier-based HVDC links to already existing VSC-based HVDC grids has been

studied in [49, 50]. Finally, WTGSs are responsible for the offshore AC startup in [46],

as they are also in [30].

A different control is proposed in [51]. It uses both the concepts of an active-power

/ voltage droop (P/V droop) and a reactive-power / frequency droop (Q/f droop).

This control is an enhanced version of the control presented in [52] because the com-

munications needed for the equal reactive power contribution of the WTGS used in [52]

are eliminated. However, this control uses some principles of the one in [46] because

WTGSs control also needs the measurements of the angular position and the frequency

of the PCC bus AC voltage. This implies both several disadvantages addressed before

and the need of communications for the control itself.

The authors in [53] present a control method which reduces the stability problems

faced in weak offshore AC grids. These stability problems are directly related to the

conventional PLL which is used for the VOC used in grid-connected converters [54,

55, 56]. The proposal consists of using a common fixed angular reference signal for the

Park transformations in the control schemes of all the converters in the offshore AC

grid, so the PLLs can be eliminated. This common fixed reference frame used for the

converters synchronization is proposed to be obtained by a radio signal or the Global

Positioning System (GPS) time signal. It is based on the injection of all the WTGS

currents oriented to the fixed angular reference. This control method, which is initially

proposed to be applied to VSC-HVDC connected OWFs, is also proposed to be used

in case of a diode-rectifier-based HVDC link connection for the OWF. Specifically, it is

presented for both type-3 WTGSs in [57] and type-4 WTGSs in [58], where a sinusoidal

control is implemented in the converters. In [57], they address the startup problem,

which is proposed to be done by an additional voltage supply. It can be feasible by an

umbilical AC cable from onshore [59] or by the connection to a close OWF with a VSC-

rectifier-based HVDC connection [60]. In [59], currents are injected in a synchronized

way and the voltage magnitude is limited by the diode rectifier as it happens in the

previous diode rectifier proposals. However, this control method injects currents and

the offshore AC voltages are a result so there is no control over the reactive power

of the WTGSs which could exceed the reactive power limits. In order to overcome
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this drawback, the authors propose a droop control in [59] which helps approach the

reactive power load of the different WTGSs but does not completely achieve a reactive

power sharing. Finally, it is worth mentioning that this fixed reference frame approach

does not have a decoupled control of active and reactive power in the WTGSs, given

that the current vector is proyected to a vector which is not oriented to the terminal AC

voltage.

The aforementioned fixed reference frame control approach seems to be one of the

control proposals used by Siemens [61, 62]. This technology consists of the DC-series

connection of diode rectifier units (DRUs) where the diode rectifier is embedded in the

oil insulation of its input transformer. This way, a volume, cost and construction time

reduction is claimed over conventional VSC-based HVDC connection of OWFs.

Siemens also presents a control for the DRUs solution in [63] which is based on [64].

This solution is not completely distributed because control commands are calculated as

a function of both centralized and distributed measurements.

A new proposal based on PLLs has been recently presented in [65]. It uses a dis-

tributed Q/f droop control strategy which does not need communications and avoids

the use of the GPS signal for synchronization. Moreover, P/V droop control is used

during the startup which is proposed to be accomplished by the WTGSs to avoid the

umbilical cable, but a specific procedure is followed to avoid the converters to exceed

their power limits. However, as it has been previously mentioned, it is a PLL-based

control which can be source of stability problems [54, 55, 56], which is the reason

why the authors of the fixed reference frame looked for a more robust synchroniza-

tion method. Moreover, they propose an active control of the MMC onshore inverter to

improve the OWF power reduction response to an onshore AC fault.

As it can be extracted from the state of the art, there is an increasing interest in pro-

viding the diode-rectifier-based HVDC link solution the proper controls to be a feasible

solution for the connection of future OWFs. The OWF control proposals analyzed from

[30] to [65] (except [39, 40]) in the previous state of the art attempt a diode rectifier

solution for the HVDC connection to onshore. In fact, the European Union supported

the project PROMOTioN [66] which also has the DRUs among the proposals for large

meshed offshore grids. The research on feasible and industrially-applicable control so-

lutions for the diode-rectifier-based HVDC connection of future OWFs has motivated

this Thesis work.

1.2 Objectives of the dissertation

The objectives of this Thesis are addressed following:

• To propose controls which overcome the drawbacks of diode-rectifier-based HVDC
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links for the connection of OWFs which mainly implies providing startup capa-

bility and frequency control.

• To propose a centralized control for the LCC-rectifier-based HVDC connection of

OWFs. This kind of control provides the offshore grid frequency, so any WTGS

technology could be used without modifying the conventional controls.

• To propose a decentralized control for the diode-rectifier-based HVDC connec-

tion of OWFs. This kind of control avoids auxiliary power electronics converters

in the offshore platforms and it should not modify the WTGSs active power con-

trol. Another requirement is to use a reactive power sharing strategy (QSS) which

prevents the WTGS to exceed their reactive power limits, which can be achieved

by assigning the same reactive power level to each of the WTGSs.

• To develop system models that allow the derivation or the justification of the

proposed control strategies.

• To check the stability and evaluate the performance of the OWF when the pro-

posed control strategies are applied.

1.3 Structure of the dissertation

The structure of this Thesis is summarized in the flow chart which is shown in Fig-

ure 1.5. In Chapter 2, the system under study for the connection of OWFs through

LCC-rectifier-based HVDC links is presented. Then, it is defined how each of the ele-

ments in the system is modeled and an average-value model (AVM) of the LCC-rectifier

station is proposed and validated. This proposed AVM will allow the derivation of the

centralized control proposal and one of the control fundamentals of the decentralized

control proposal. Moreover, the small-signal models are also provided in Chapter 2

when the elements are completely defined. Note that some elements will be completed

by the control proposals in Chapter 3 and Chapter 4 and their small-signal models will

be derived in those chapters.

Then, Chapter 3 presents the centralized voltage and frequency control for OWFs

which are connected through LCC-rectifier-based HVDC links. According to the pro-

posed AVM dynamic equations, the frequency and voltage control strategies are de-

rived and presented. If a diode rectifier is used, just frequency can be controlled and

it is demonstrated that the voltage magnitude is clamped between acceptable limits.

However, the use of a thyristor rectifier allows both voltage and frequency to be con-

trolled. Then, each of the solutions are evaluated in Chapter 3: diode rectifier with

frequency control and thyristor rectifier with voltage and frequency control. Small-

signal models are used to design the controller parameters and check the stability of

the controlled systems, while simulation results are presented by using the proposed



14 Chapter 1. Introduction

Figure 1.5: Flow chart of the Thesis structure.

AVM. Given that the control derivation, the controllers design, the stability analysis

and the simulation are accomplished by using the proposed AVM, a validation against

a detailed switching model (DSM) is carried out. Finally, fault response is also checked

by a DSM simulation.

In Chapter 4, the decentralized frequency control for the connection of OWFs by

diode-rectifier-based HVDC links is presented. First, the control fundamentals are

addressed. Then, the decentralized frequency control schemes are presented. Even

though the decentralized frequency control produces frequency deviations which are

acceptable, they can be removed by the secondary frequency control which is also pre-

sented. Small-signal models are used to check the stability of the decentralized fre-

quency control. Moreover, both the decentralized frequency control and the decentral-

ized frequency control with secondary regulation are checked by a DSM simulation.

Specifically, startup, operation and fault response are simulated.

Finally, the main conclusions are drawn in Chapter 5, where the publications which

have been yielded from this Thesis are also addressed.
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2.1 Introduction

The performance and the stability of the control strategies proposed in this Thesis

are analyzed by means of different models of the system. The system under study is the

LCC-rectifier-based HVDC connection of an OWF, whose overview is depicted in Fig-

ure 2.1. In addition to the HVDC link cables and converters, the rectifier transformer,

the AC harmonic filters and the reactive power compensation bank are shown in Figure

2.1. This chapter presents the models used for the main elements of the system in the

studied application: the HVDC inverter, the HVDC cables, the WTGSs and the HVDC

rectifier. Then, these models will be combined in order to form the OWF layouts used

along the studies in this Thesis.

21
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Figure 2.1: Overview of the elements of an LCC-rectifier-based HVDC
connection of an OWF.

Part of the models which are presented in this chapter do not only have a final

proposal-analysis purpose but they are also used in order to obtain and to explain

the control strategy fundamentals of the proposals. It is worth mentioning that a real

OWF is composed of a high number of WTGSs which may go from tens of WTGSs to

hundreds of WTGSs. The number of WTGSs could be reduced given that the offshore

WTGS capacity is increasing [1]. However, the total OWF capacity is growing faster [1]

and a high amount of WTGSs is still needed for large OWFs.

From the simulation point of view, aggregated models are mainly used because

they allow the reproduction of the real OWF response with reduced computational re-

quirements. Moreover, the aggregated models also clarify the analysis of the proposed

solutions.

It is worth mentioning that the LCC rectifier models presented in this chapter will

consider the general case of a controlled thyristor rectifier with its firing angle α. There-

fore, the model becomes the one of the uncontrolled diode rectifier by setting a zero

firing angle (α=0).

2.2 HVDC link model

In this section, the models used for the HVDC inverter and the HVDC cables are

presented. However, the detailed study of these two elements is out of the scope of

this Thesis. For this reason, reduced models will be used in order to represent these

elements in the OWF layouts which will be used. However, the LCC rectifier plays a

very important role in the HVDC integration proposed in this Thesis. Therefore, DSMs

will be used and an AVM will be presented in the following section.

Since the substation footprint and weight are not as important onshore as offshore,

any of the existing technologies (LCC and VSC) can be used in the HVDC onshore in-

verter. The aim of the OWF application consists of transmitting all the power generated

by the WTGSs to the onshore AC grid. The rectifier converter injects all the power to

the HVDC link while the inverter converter must deliver all this power to the onshore

AC grid. This can be achieved by maintaining constant its DC voltage. The study of



Chapter 2. System Description and Modeling 23

the HVDC inverter is out of the scope of this Thesis, but it is required to be operated

at constant DC voltage mode, so it is modeled as a DC voltage source as in previous

studies [2]. This inverter DC source is addressed by Vdi along this Thesis.

The cables are usually represented by their π-model or their T-model. The accuracy

of the model can be increased by considering models for reduced lengths of the cable,

which will result in a final model which is composed of multiple π-models connected

in series, i.e. a distributed cable model. An enhanced π-model is presented in [3],

where a mutual inductance considers the coupling between the core and the screen

parts of the cable. However, this DC cable accuracy is not needed and reduced cable

models are considered in this Thesis. The main model used for the cable is the T-model

proposed in the HVDC Benchmark model [4], which has the inductances Ldc1 and Ldc2,

the resistances Rdc1 and Rdc2 and the capacitor Cc. However, there is one study case

where the dynamics of the cable are neglected and a pure resistive link is considered

(Rdc). Figure 2.2 shows both cable models together with the inverter model. On the

one hand, it is worth noting that the dynamics of the T-model establishes three new

state variables which are the rectifier DC current Idc1, the inverter DC current Idc2 and

the HVDC link voltage Vc. On the other hand, the resistive link only adds the DC link

current Idc to the rectifier and inverter DC voltages (Vdr and Vdi, respectively).

Ldc1Idc1 Rdc1 Ldc2 Idc2Rdc2

Vdr Vdr VdiCc

(a) T-model.

Vdr Vdi

Idc Rdc

(b) Pure resistive model.

Figure 2.2: HVDC link models.

2.3 LCC-Rectifier AVM

The use of DSMs in the power electronics field has the advantage of their full and

precise representation of the diverse components. However, their discontinuous na-

ture makes the extraction of their small-signal characteristics difficult and the comput-

ing time is increased in comparison to simpler models [5]. For this reason, AVMs are

extensively used for power electronic components studies. Although the proposals in

this Thesis will be also checked by using the DSM of the LCC rectifier, it proves useful

to employ the AVM for the stability analyses and the derivation of the control strategy

fundamentals. Following, the state of the art of LCC converters average-value model-

ing is addressed.
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The AVM of an LCC converter connected to a synchronous machine is studied in [6].

This model considers the dq subtransient reactances. In [7], the proposed model con-

siders the stator dynamics. A new approach is presented in [8], because the model does

not consider the DC smoothing reactor. Therefore, constant DC current and continuous

current operation cannot be assumed. Although the aforementioned approaches are

analytical, parametric models which consider the diverse rectifier conduction modes

can be found in [9, 10, 11]. Most of the proposals analyze the rectifier operation, but

the LCC inverter operation is also studied in [12]. Moreover, AC waveforms with their

harmonic contents can be reconstructed by means of a parametric AVM [13].

Although in [14] the diverse AVMs which can be used for the representation of

a diode rectifier load are compared, the dynamics of the AC filter capacitor are not

evaluated in any of the studied models. This Thesis presents an enhanced AVM which

considers the LCC rectifier, its transformer and the dynamics of the AC capacitor bank

connected to its primary winding AC bus. The AVM which is proposed in [15] is not

totally correct. The active power balance of the converter is affected by the losses at

the commutation resistance which is included in the model circuit. This commutation

resistance is an equivalent resistance which allows the representation of the DC voltage

drop which is caused by the inductance at the rectifier AC side. However, it should not

produce any power consumption [16] as it does in [15]. Finally, there is a solution

which allows the selection of the harmonic contents to be considered in the model:

the dynamic phasors technique [17, 18, 19]. In [17], an equivalent DC inductance is

proposed. It is derived by adding the value of the AC inductance which is seen from

the LCC converter DC side to the DC inductance value.

The enhanced AVM which is presented in this Thesis considers the dynamics of the

capacitor bank which is placed at the primary side of the LCC rectifier transformer.

This capacitor bank is usually placed for reactive power compensation of both the LCC

rectifier and its transformer. It represents also the capacity of the AC harmonic filters

at fundamental frequency [20] and its location in the case of the OWF application cor-

responds to the PCC bus. One advantage of the proposed model is that the incoming

active and reactive powers from the OWF are the inputs. This is convenient given that

the conventional operation variables of the WTGSs are also their output power com-

ponents. Moreover, the AC state variables of the AVM are the polar components of the

voltage vector at the capacitor bank bus in a dq synchronous reference frame. These

state variables are useful to derive the centralized frequency control proposed in this

Thesis. The proposed model can be also used to evaluate the dynamic performance

of the LCC rectifier station and other dynamic components with the complete topol-

ogy of the OWF grid. For such a study, the grid is considered in steady-state and a

step-by-step load flow is used [21]. The capacitor bank bus is the slack bus of the load

flow. Therefore, the active and reactive powers resulting from the load flow study are

introduced in the proposed AVM which provides the slack bus voltage magnitude and



Chapter 2. System Description and Modeling 25

angle to be considered in the successive load flow. This load flow will in turn provide

the following powers to be considered in the AVM in this iterative process.

In this section, the classic AVM of the LCC rectifier is first addressed. This AVM

usually combines both the LCC rectifier and its supplying transformer. This trans-

former is quite important for the rectifier as it has a double functionality. It provides

the needed galvanic insulation while it provides phase displacement among the trans-

former secondary windings for the diverse rectifier configurations. Given that these

windings are connected to individual six-pulse rectifier bridges whose DC outputs are

connected in series, AC power quality is improved by reducing the total harmonic dis-

tortion (THD) of the LCC rectifier. Two examples of a 12-pulse rectifier (30◦ phase dis-

placement achieved by the star-delta connection) and an 18-pulse rectifier (±20◦ phase

displacement achieved by the zig-zag connections) are shown in Figure 2.3. The AC

current harmonic content reduction is shown in Table 2.1 [22].

(a) 12-pulse rectifier. (b) 18-pulse rectifier.

Figure 2.3: LCC rectifier configurations.

Table 2.1: AC current THD comparison of different LCC rectifier config-
urations considering the same load and system per-unit parameters and

a zero firing angle.

6-pulse rectifier 12-pulse rectifier 18-pulse rectifier

THD 23.9 % 8.61 % 3.54 %

For the sake of clarity, the LCC rectifiers along this Thesis will be represented by a

box with the picture of a thyristor or a diode (see Figure 2.4), depending on the semi-

conductor used. As it is addressed under this box, the drawing represents a rectifier

with nb six-pulse bridges and the appropriate transformer configurations. Therefore, a

12-pulse rectifier and an 18-pulse rectifier will correspond to nb equal to two and three,

respectively.
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Following, the classic AVM equations of the combination of the LCC rectifier and its

transformer are first presented. Then, the aforementioned equations are used to derive

the model equations when the dynamics of the capacitor bank connected to the PCC

bus is considered.

2.3.1 Classic Rectifier and transformer AVM

This section presents the equations that determine the LCC rectifier and transformer

AVM which is depicted in Figure 2.4. The transformer is defined by its short-circuit

inductance Lt. DC voltage and current of the rectifier are addressed as Vdr and Idc,

respectively. The root mean square (RMS) values of the three-phase line PCC bus volt-

age and rectifier current are Upcc and Ir, respectively. A continuous current operation

of the LCC rectifier is assumed given the DC smoothing reactor which is placed at the

rectifier DC output in order to reduce the DC current ripple. Moreover, the losses are

neglected in both the transformer and the AC-DC conversion.

Figure 2.4: LCC rectifier and transformer AVM.

The equations of this model are the algebraic equations which relate the AC and

the DC magnitudes between the input and the output of the rectifier. The Fourier

analysis [16, 23] allows the derivation of these equations by the only consideration of

the fundamental components. The main equations are the ones which relate voltages

and currents and they are as follows:

Vdr =
3
√

2

π
nbkα,µUpcc cosϕ (2.1)

Ir =

√
6

π
nbkα,µIdc (2.2)

where ϕ is the phase shift between the PCC voltage and the rectifier current and the

variable kα,µ depends on the rectifier firing angle α and its commutation angle µ.

It is worth noting that additional equations are needed in order to define kα,µ and ϕ.

The equation of kα,µ is (2.3) and it uses the commutation angle which can be obtained

by applying (2.4). The combination of (2.1) and (2.5) provides the equation to obtain ϕ,
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which is (2.6).

kα,µ =
1

2

(
cosα+ cos (α+ µ)

)√
1 +

(
µ cscµ csc (2α+ µ)− cot (2α+ µ)

)2

(2.3)

RµIdc=

3
√

2

π
Upcc

2

(
cosα− cos (α+µ)

)
→ µ= arccos

(
cosα−2πRµIdc

3
√

2Upcc

)
−α (2.4)

Vdr =
3
√

2

π
nbUpcc cosα− nbRµIdc (2.5)

ϕ = arccos

(
1

kα,µ

(
cosα− πRµIdc

3
√

2nbUpcc

))
(2.6)

where Rµ=
3

π
ω0Lt is the commutating resistance and ω0 is the AC system frequency.

Finally, the active and reactive power inputs to the LCC rectifier and transformer

from the PCC bus, Pr and Qr respectively, can be defined as follows:

Pr = VdrIdc (2.7)

Qr = VdrIdc tanϕ = Pr tanϕ (2.8)

Equations (2.1) to (2.8) define then the AC-DC conversion of the LCC rectifier and

transformer AVM in real values. The base magnitudes of both the AC system and the

DC system powers, voltages, currents and impedances can be defined as follows:

Sbase,AC =
√

3Vbase,ACIbase,AC (2.9)

Zbase,AC =
V 2
base,AC

Sbase,AC
(2.10)

Pbase,DC = Vbase,DCIbase,DC = Sbase,AC (2.11)

Vbase,DC =
3
√

2

π
nbVbase,AC (2.12)

Ibase,AC =

√
6

π
nbIbase,DC (2.13)

Rbase,DC =
Vbase,DC
Ibase,DC

=

(
3
√

2

π
nb

)2

Zbase,AC (2.14)

Therefore, the per-unit AC-DC conversion is defined by the equations in (2.15) to

(2.21). It is worth noting that lowercase notation is used along this Thesis to denote
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per-unit variables.

vdr = kα,µupcc cosϕ = upcc cosα− rµidc (2.15)

ir = kα,µidc (2.16)

µ = arccos

(
cosα− 2rµidc

upcc

)
− α (2.17)

ϕ = arccos

(
1

kα,µ

(
cosα− rµidc

upcc

))
(2.18)

rµ =
nbRµ

Rbase,DC
=

nb
3

π
ω0Lt(

3
√

2

π
nb

)2

ω0Lbase

=
π

6

xt
nb

(2.19)

pr = vdridc (2.20)

qr = vdridc tanϕ = pr tanϕ (2.21)

where xt is the per-unit reactance of each of the six-pulse rectifier transformers over the

global AC base power Sbase,AC .

2.3.1.1 Small-signal model of the HVDC link considering the classic rectifier and

transformer model

The small-signal model derived in this section corresponds to the HVDC link mod-

eled by the T-modeled cable and inverter shown in Section 2.2 and the classic LCC

rectifier and transformer model. It will be used for stability analysis in Chapter 4 of

this Thesis. For the sake of clarity, the diagram which shows the inputs and outputs

of the model is shown in Figure 2.5. Note that the outputs are the current components

injected to the AC grid while the AC voltage components are inputs, given the small-

signal models interconnection which will be carried out in Chapter 4.

Figure 2.5: Inputs and outputs diagram of the T-modeled HVDC link
which includes the classic LCC rectifier and transformer model.
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The per-unit dynamic equations of the HVDC link T-modeled cable and inverter

are as follows:

ldc1
ω0

didc1
dt

= vdr − vc − rdc1idc1

cc
ω0

dvc
dt

= idc1 − idc2

ldc2
ω0

didc2
dt

= vc − vdi − rdc2idc2 (2.22)

where:

cc = ω0CcRbase,DC (2.23)

ldck = ω0
Ldck

Rbase,DC
= ω0

Rdckτdck
Rbase,DC

= τdckω0rdck (k = 1, 2) (2.24)

It is worth noting that the outputs of the system are only the dq components of the

current injected to the AC grid (id and iq). The equations of these currents are derived

from the classic rectifier and transformer model considering the rectifier DC current

idc1 as follows:

(id+jiq) = −
(

pr+jqr
upcc,d+jupcc,q

)∗
=

−vdridc1
u2pcc,d+u

2
pcc,q

(
(1+j tanϕ)(upcc,d−jupcc,q)

)∗
=

=
vdridc1

u2pcc,d+u
2
pcc,q

(−upcc,d−upcc,q tanϕ)︸ ︷︷ ︸
id

+j
vdridc1

u2pcc,d+u
2
pcc,q

(upcc,d tanϕ−upcc,q)︸ ︷︷ ︸
iq

(2.25)

This small-signal model has the state variables in (2.22), where vdr can be derived

from the equations addressed in Section 2.3.1 ((2.3), (2.15) and (2.17) to (2.19)), where

the rectifier DC current is now equal to idc1. For the sake of simplicity, kα,µ is considered

as a constant [23] for the small-signal studies along this Thesis.

Therefore, the small-signal model can be obtained and it is presented in (2.26).

The inputs, outputs and states considered for this small-signal model are ∆ucr =

[∆upcc,d,∆upcc,q,∆vdi,∆α]T, ∆ycr = [∆id,∆iq]
T and ∆xcr = [∆idc1,∆vc,∆idc2]

T, re-

spectively. Note that the subscript 0 denotes steady-state value of the variables along

this Thesis while the subscript cr denotes the classic rectifier small-signal model.

d∆xcr

dt
= Acr∆xcr + Bcr∆ucr

∆ycr = Ccr∆xcr + Dcr∆ucr (2.26)

where Acr, Bcr, Ccr and Dcr are as follows:
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Acr =


−ω0(rµ+rdc1)

ldc1
− ω0

ldc1
0

ω0

cc
0 −ω0

cc

0
ω0

ldc2
−ω0rdc2

ldc2



Bcr =



ω0 cosα0upcc,d0
ldc1upcc0

ω0 cosα0upcc,q0
ldc1upcc0

0 −ω0 sinα0upcc0
ldc1

0 0 0 0

0 0 − ω0

ldc2
0



Ccr =

ccr,11 0 0

ccr,21 0 0



Dcr =

dcr,11 dcr,12 0 dcr,14

dcr,21 dcr,22 0 dcr,24

 (2.27)

where the non-defined terms are as follows:

ccr,11=
(upcc0 cosα0−2rµidc10)(−upcc,d0−upcc,q0 tanϕ0)−upcc,q0vdr0idc10(secϕ0)

2ζidc10

u2pcc0

ccr,21=
(upcc0 cosα0−2rµidc10)(upcc,d0 tanϕ0−upcc,q0)+upcc,d0vdr0idc10(secϕ0)

2ζidc10

u2pcc0

dcr,11=

idc10

((upcc,d0
upcc0

cosα0

(
−upcc,d0−upcc,q0 tanϕ0

)
−vdr0

(
upcc,q0(secϕ0)

2ζupcc,d0+

u4pcc0

+1
))
u2pcc0 + 2upcc,d0vdr0

(
upcc,d0 + upcc,q0 tanϕ0

))
u4pcc0

dcr,12=

idc10

((upcc,q0
upcc0

cosα0

(
−upcc,d0−upcc,q0 tanϕ0

)
−vdr0

(
upcc,q0(secϕ0)

2ζupcc,q0+

u4pcc0

+ tanϕ0

))
u2pcc0 + 2upcc,q0vdr0

(
upcc,d0 + upcc,q0 tanϕ0

))
u4pcc0
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dcr,14=
idc10

(
upcc0 sinα0(upcc,d0+upcc,q0 tanϕ0)−vdr0upcc,q0(secϕ0)

2ζα0

)
u2pcc0

dcr,21=

idc10

((upcc,d0
upcc0

cosα0

(
upcc,d0 tanϕ0−upcc,q0

)
+vdr0

(
upcc,d0(secϕ0)

2ζupcc,d0+

u4pcc0

+ tanϕ0

))
u2pcc0 − 2upcc,d0vdr0

(
upcc,d0 tanϕ0 − upcc,q0

))
u4pcc0

dcr,22=

idc10

((upcc,q0
upcc0

cosα0

(
upcc,d0 tanϕ0−upcc,q0

)
+vdr0

(
upcc,d0(secϕ0)

2ζupcc,q0−

u4pcc0

−1
))
u2pcc0 − 2upcc,q0vdr0

(
upcc,d0 tanϕ0 − upcc,q0

))
u4pcc0

dcr,24=
idc10

(
− upcc0 sinα0(upcc,d0 tanϕ0−upcc,q0)+vdr0upcc,d0(secϕ0)

2ζα0

)
u2pcc0

ζupcc0 =

(
∂ϕ

∂upcc

)
0

=
1

kα,µ

−rµidc10
u2pcc0 sinϕ0

ζupcc,d0 =

(
∂ϕ

∂upcc,d

)
0

=
upcc,d0
upcc0

ζupcc0

ζupcc,q0 =

(
∂ϕ

∂upcc,q

)
0

=
upcc,q0
upcc0

ζupcc0

ζidc10
=

(
∂ϕ

∂idc1

)
0

=
1

kα,µ

rµ
upcc0 sinϕ0

ζα0 =

(
∂ϕ

∂α

)
0

=
1

kα,µ

sinα0

sinϕ0
(2.28)

It is worth noting that all the LCC rectifier models in this Thesis become a diode

rectifier model by considering a zero firing angle in the equations and by eliminating

their firing angle input.

2.3.2 Proposed LCC rectifier station AVM

The AVM model which is proposed in this section considers the LCC rectifier, its

transformer and the dynamics of the AC capacitor bank connected to the PCC bus. It
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is developed considering several assumptions which are addressed following:

• Harmonics are neglected in the voltages and currents of both the AC and the DC

sides.

• Power losses are neglected in the LCC rectifier conversion and its transformer as

in the classic model.

• The capacitor bank C connected to the PCC bus includes the capacitance for reac-

tive power compensation and the capacitance of the harmonic filters at the fun-

damental frequency [20].

• The LCC rectifier is made up of nb six-pulse rectifier bridges that are connected

in series in their DC side.

• The rest of the AC system is represented by the incoming active and reactive

powers to the rectifier station bus, i.e. the PCC bus.

The previous assumptions correspond to the LCC rectifier station layout presented

in Figure 2.6. Note that the incoming active and reactive powers are addressed as Powf
and Qowf , respectively, given the application considered in this Thesis.

Figure 2.6: Overview of the proposed AVM system.

2.3.2.1 AVM in the dq synchronous reference frame

The model which is depicted in Figure 2.6 considers a synchronous reference frame

which rotates at frequency ω0 which is shown in Figure 2.7. It is worth noting that

vectors in the dq synchronous reference frame are denoted by bold underlined fonts

along this Thesis. Therefore, the three-phase OWF line currents iowf,a, iowf,b, iowf,c, rec-

tifier line currents ir,a, ir,b, ir,c and PCC bus voltages upcc,a, upcc,b, upcc,c are represented

in Figure 2.6 by their corresponding vectors Iowf , Ir and Upcc in the dq synchronous

reference frame. The Park transformation in (2.29) defines the calculation of the vectors
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in the dq synchronous reference frame from the three-phase a, b, c values.

T (θ(t)) =

√
2

3


cos (θ(t)) cos

(
θ(t)− 2π

3

)
cos

(
θ(t) +

2π

3

)
− sin (θ(t)) − sin

(
θ(t)− 2π

3

)
− sin

(
θ(t) +

2π

3

)
 (2.29)

where θ(t)=ω0t−
π

2
+φ0 and φ0, which is shown in Figure 2.7, is the angle of the syn-

chronous reference frame in the stationary system.

Figure 2.7: Vector diagram of the PCC bus voltage and rectifier current
vectors in the stationary and synchronous reference systems.

As it was previously established, the dynamics of the capacitor bank connected

to the PCC bus is considered in this AVM. This dynamics equation is expressed in

(2.30), which is split in its dq components in (2.31). Due to the fact that the model

which represents the transformer and the rectifier is not dynamic, the PCC voltage dq

components Upcc,d and Upcc,q will be initially the state variables of the model.

Iowf − Ir = C
dUpcc

dt
+ jω0CUpcc (2.30)

Iowf,d − Ir,d = C
dUpcc,d
dt

− ω0CUpcc,q

Iowf,q − Ir,q = C
dUpcc,q
dt

+ ω0CUpcc,d (2.31)

The classic equations which are obtained by the Fourier analysis at fundamental

frequency for the AC-DC conversion of the rectifier, which are (2.1) and (2.2), can be

now used. They allow the definition of the switching vector Sabc between the three-

phase AC and the DC voltages and currents, which is shown in (2.32). It is worth noting

that bold font denotes vectors and matrices along this Thesis.

Vdr = Sabc
TUpcc,abc

Ir,abc = SabcIdc (2.32)
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where Ir,abc=[ir,a(t) ir,b(t) ir,c(t)]
T, Upcc,abc=[upcc,a(t) upcc,b(t) upcc,c(t)]

T and Sabc

is as follows:

Sabc =
2
√

3

π
kα,µnb

[
sin γ sin

(
γ − 2π

3

)
sin

(
γ +

2π

3

)]T
(2.33)

where γ = ω0t+ φ−ϕ, φ = φ0 + δ is the PCC voltage phase angle which can be seen in

Figure 2.7.

Sabc can be then transformed into a dq switching vector by applying the transfor-

mation in (2.29), so the expressions in (2.32) become the ones in (2.34).

Vdr = Sdq
TUpcc

Ir = SdqIdc (2.34)

where the switching vector Sdq is as follows:

Sdq = T (θ(t))Sabc = [Sd Sq]
T =

3
√

2

π
nbkα,µ[cos (δ − ϕ) sin (δ − ϕ)]T (2.35)

where δ, which is shown in Figure 2.7, is the angle between the voltage vector Upcc

and the synchronous reference frame, i.e. the angle of Upcc.

Then, the equations in (2.34) can be expressed in its dq components as it is defined

in (2.36). Note that the combination of (2.31) and (2.36) can be graphically expressed by

the ideal transformer model shown in Figure 2.8.

Vdr = SdUpcc,d + SqUpcc,q

Ird = SdIdc

Irq = SqIdc (2.36)

Figure 2.8: AVM in the dq synchronous reference frame.
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Therefore, according to (2.36) the AVM main equations are as follows:

Iowf,d − SdIdc = C
dUpcc,d
dt

− ω0CUpcc,q

Iowf,q − SqIdc = C
dUpcc,q
dt

+ ω0CUpcc,d

Vdr = SdUpcc,d + SqUpcc,q (2.37)

Finally, this model can be expressed in the per-unit system defined in (2.9) to (2.14),

so its main equations are as follows:

bc
ω0

dupcc,d
dt

= iowf,d − kα,µidc cos (δ − ϕ)︸ ︷︷ ︸
ir,d

+bcupcc,q (2.38)

bc
ω0

dupcc,q
dt

= iowf,q − kα,µidc sin (δ − ϕ)︸ ︷︷ ︸
ir,q

−bcupcc,d (2.39)

vdr = kα,µ

(
upcc,d cos (δ − ϕ) + upcc,q sin (δ − ϕ)

)
(2.40)

where bc = ω0CZbase,AC is the capacitor bank C per-unit susceptance.

2.3.2.2 Polar coordinates AVM

The synchronous reference frame AVM has the dq components of the PCC voltage

vector as state variables. However, the proposed model is transformed from Cartesian

coordinates to polar coordinates in this section. Therefore, the state variables change

from upcc,d and upcc,q to the voltage vector magnitude upcc and angle δ. Then, both the

model state variables are directly related to the voltage and frequency control which

should be applied to the OWF and they will be useful to derive the control strategies.

In addition, the inputs of the model will change from currents to powers, which corre-

spond to the conventional output variables of the WTGSs.

The relation between the Cartesian and polar coordinates is set in (2.41).

upcc,d = upcc cos δ

upcc,q = upcc sin δ (2.41)
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Then, the derivatives of the Cartesian coordinates can be developed based on the

polar coordinates ones as follows:

dupcc,d
dt

=
d(upcc cos δ)

dt
= cos δ

dupcc
dt
− upcc sin δ

dδ

dt
=
upcc,d
upcc

dupcc
dt
− upcc,q

dδ

dt

dupcc,q
dt

=
d(upcc sin δ)

dt
= sin δ

dupcc
dt

+ upcc cos δ
dδ

dt
=
upcc,q
upcc

dupcc
dt

+ upcc,d
dδ

dt
(2.42)

Therefore, the equations to obtain the polar coordinates derivatives from the Carte-

sian coordinates derivatives can be obtained and are addressed in (2.43).

dupcc
dt

=
1

upcc

(
upcc,d

dupcc,d
dt

+ upcc,q
dupcc,q
dt

)
dδ

dt
=

1

u2pcc

(
− upcc,q

dupcc,d
dt

+ upcc,d
dupcc,q
dt

)
(2.43)

Finally, (2.38) and (2.39) are introduced in (2.43) as follows:

upcc
dupcc
dt

= upcc,d

(
ω0

bc
(iowf,d − ir,d + bcupcc,q)

)
+upcc,q

(
ω0

bc
(iowf,q − ir,q − bcupcc,d)

)

→ bcupcc
ω0

dupcc
dt

= upcc,diowf,d + upcc,qiowf,q︸ ︷︷ ︸
powf

− (upcc,dir,d + upcc,qir,q)︸ ︷︷ ︸
pr

(2.44)

u2pcc
dδ

dt
= −upcc,q

(
ω0

bc
(iowf,d − ir,d + bcupcc,q)

)
+upcc,d

(
ω0

bc
(iowf,q − ir,q − bcupcc,d)

)

→
bcu

2
pcc

ω0

dδ

dt
= −upcc,qiowf,d + upcc,diowf,q︸ ︷︷ ︸

−qowf

+upcc,qir,d − upcc,dir,q︸ ︷︷ ︸
qr

− bcu2pcc,d︸ ︷︷ ︸
qc

(2.45)

where qc is the reactive power generated by the capacitor bank C connected to the PCC

bus.

Therefore, the polar coordinates AVM equations are as follows, considering also the

expression in (2.15):

bcupcc
ω0

dupcc
dt

= powf − pr = powf − kα,µupccidc cosϕ

bcu
2
pcc

ω0

dδ

dt
= −qowf + qr − qc = −qowf + kα,µupccidc sinϕ− qc

vdr = kα,µupcc cosϕ (2.46)
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The final polar coordinates AVM is composed by equations (2.46), (2.3) and (2.17) to

(2.19) and its inputs and outputs diagram is shown in Figure 2.9. It is worth noting that

(2.46) establishes that the active and reactive power balances at the PCC bus determine

the dynamics of both the PCC bus voltage magnitude and voltage angle, respectively.

Figure 2.9: Proposed AVM inputs and outputs diagram.

2.3.3 Small-signal frequency-domain validation of the proposed AVM

As it was introduced in Chapter 1, offshore AC voltage and frequency have to be

controlled in order to make the LCC rectifier operation possible in isolated OWF appli-

cations. For this reason, the proposed AVM validation is accomplished by connecting

its AC side to the Thévenin equivalent of an AC grid. Therefore, no additional control

is required and an open-loop validation of the model is presented. Moreover, the DC

part of the AVM is connected to the T-model of the HVDC cable and the HVDC inverter

model addressed in Section 2.2. The studied system is shown in per-unit in Figure 2.10.

As it can be observed in Figure 2.10, vth is the thevenin voltage vector while rth and

xth are the resistance and reactance of the Thévenin impedance, respectively.

Figure 2.10: System considered for the proposed AVM validation.

The AVM will be used along this Thesis with this T-model of the HVDC link, but

the Thévenin equivalent will not be used again. For the sake of clarity, the system in

Figure 2.10 is divided in two models in this section. These models are individually

addressed following and they will be finally interconnected in order to obtain the total

small-signal model.
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2.3.3.1 Small-signal model of the Thévenin equivalent

The Thévenin AC grid equivalent model inputs and outputs diagram is depicted

in Figure 2.11. As it can be observed in Figure 2.11, Cartesian coordinates are used for

the Thévenin bus voltage vector (vth = vth,d + jvth,q) while polar coordinates are still

used for the PCC bus voltage vector definition. Although the current injected by the

Thévenin equivalent (ith = ith,d + jith,q) is part of the model, its outputs are the active

and reactive powers injected (pth and qth, respectively) in order to fit the inputs of the

proposed AVM they will be connected to.

Figure 2.11: Thévenin AC grid equivalent inputs and outputs diagram.

According to the model, there are two state variables which correspond to the dq

components of the current vector ith. The dynamic equations of these states are defined

by the inductor equations as follows:

dith,d
dt

=
ω0

xth

(
vth,d − upcc cos δ − rthith,d + xthith,q

)
dith,q
dt

=
ω0

xth

(
vth,q − upcc sin δ − rthith,q − xthith,d

)
(2.47)

The equations of the output powers are as follows:

pth = upccith,d cos δ + upccith,q sin δ

qth = upccith,d sin δ − upccith,q cos δ (2.48)

Therefore, the Thévenin equivalent small-signal model can be obtained and it is

shown in (2.49). Note that this Thévenin small-signal model is denoted by the subscript

th. Its inputs, outputs and states are ∆uth=[∆vth,d,∆vth,q,∆upcc,∆δ]
T, ∆yth=[∆pth,∆qth]T

and ∆xth=[∆ith,d,∆ith,q]
T, respectively.

d∆xth

dt
= Ath∆xth + Bth∆uth

∆yth = Cth∆xth + Dth∆uth (2.49)

where Ath, Bth, Cth and Dth are as follows:
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Ath =

−
rthω0

xth
ω0

−ω0 −rthω0

xth



Bth =


ω0

xth
0 −ω0 cos δ0

xth

ω0upcc0 sin δ0
xth

0
ω0

xth
−ω0 sin δ0

xth
−ω0upcc0 cos δ0

xth



Cth =

upcc0 cos δ0 upcc0 sin δ0

upcc0 sin δ0 −upcc0cosδ0



Dth =

0 0 ith,d0 cos δ0 + ith,q0 sin δ0 upcc0(−ith,d0 sin δ0 + ith,q0 cos δ0)

0 0 ith,d0 sin δ0 − ith,q0 cos δ0 upcc0(ith,d0 cos δ0 + ith,q0 sin δ0)

 (2.50)

2.3.3.2 Small-signal model of the HVDC link considering the proposed AVM

The model considered here is a combination of the LCC rectifier and transformer

AVM proposed in Section 2.3.2 and the HVDC link inverter and T-modeled cable pre-

sented in Section 2.2. Figure 2.12 shows the inputs and outputs of the considered

model.

Figure 2.12: Inputs and outputs diagram of the T-modeled HVDC link
which includes the proposed LCC rectifier AVM.

Therefore, the equations of the model in Figure 2.12 are the combination of the

algebraic equations (2.3) and (2.17) to (2.19) and the dynamic equations in (2.51), which

have been obtained by properly merging (2.46) and (2.22).
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1

ω0

dδ

dt
=
−qowf + qr

qc
− 1 =

−qowf
bcu2pcc

+
kα,µidc1 sinϕ

bcupcc
− 1

1

ω0

dupcc
dt

=
upcc
qc

(powf − pr) =
powf
bcupcc

− kα,µidc1 cosϕ

bc

1

ω0

didc1
dt

=
kα,µupcc cosϕ− vc − rdc1idc1

ldc1

1

ω0

dvc
dt

=
idc1 − idc2

cc

1

ω0

didc2
dt

=
vc − vdi − rdc2idc2

ldc2
(2.51)

Once the equations of the model are defined, the small-signal model can be ob-

tained and it is shown in (2.52). ∆upr = [∆α,∆powf ,∆qowf ,∆vdi]
T,

∆ypr=[∆δ,∆upcc,∆idc1,∆vc,∆idc2]
T and ∆xpr=[∆δ,∆upcc,∆idc1,∆vc,∆idc2]

T are its

inputs, outputs and states, respectively. Note that the subscript pr is used to denote the

small-signal model of the proposed rectifier station and HVDC link.

1

ω0

d∆xpr

dt
= Apr∆xpr + Bpr∆upr

∆ypr = Cpr∆xpr + Dpr∆upr (2.52)

where Apr, Bpr, Cpr and Dpr are as follows:

Apr =



0 apr,12 apr,13 0 0

0 apr,22 apr,23 0 0

0 apr,32 apr,33 − 1

ldc1
0

0 0
1

cc
0 − 1

cc

0 0 0
1

ldc2
−rdc2
ldc2


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Bpr =



powf0
qc0

ζα0 0 − 1

qc0
0

upcc0
qr0
qc0

ζα0

upcc0
qc0

0 0

−kα,µupcc0 sinϕ0

ldc1
ζα0 0 0 0

0 0 0 0

0 0 0 − 1

ldc2



Cpr =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



Dpr =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(2.53)

where ζupcc0 , ζidc10
and ζα0 are defined in (2.28). apr,12, apr,13, apr,22, apr,23, apr,32 and

apr,33 are as follows:

apr,12 =
1

upcc0

(
qr0
qc0
− 2

)
+
powf0
qc0

ζupcc0

apr,13 =
kα,µupcc0 sinϕ0

qc0
+
powf0
qc0

ζidc10

apr,22 = −
powf0
qc0

+ upcc0
qr0
qc0

ζupcc0

apr,23 = −
kα,µu

2
pcc0 cosϕ0

qc0
+ upcc0

qr0
qc0

ζidc10

apr,32 =
kα,µ
ldc1

(
cosϕ0 − upcc0 sinϕ0ζupcc0

)

apr,33 = − 1

ldc1

(
rdc1 + kα,µupcc0 sinϕ0ζidc10

)
(2.54)
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2.3.3.3 Small-signal validation

This section seeks the small-signal frequency-domain validation of the proposed

model. This will be accomplished by comparing the frequency response analysis (FRA)

of both the DSM built in PSIM and the analytical small-signal model obtained, which

is addressed following.

Once the small-signal models of the Thévenin equivalent and the HVDC system

have been obtained in Section 2.3.3.1 and 2.3.3.2, respectively, the small-signal of the

considered model can be also obtained. Therefore, the full small-signal model has been

calculated by considering the interconnections between the two submodels which are

shown in Figure 2.13.

Figure 2.13: Interconnection of the submodels considered for the small-
signal frequency-domain validation of the proposed AVM.

Therefore, the model is validated in both the diode rectifier and the thyristor recti-

fier versions. The FRA is performed around a steady-state point defined by powf0 equal

to 0.4 p.u. Note that the thyristor rectifier study case also has the firing angle degree of

freedom, so upcc is decided to be 1 p.u. The Thévenin equivalent impedance parameters

are rth=0.005 p.u. and xth=0.05 p.u. The rest of the parameters can be found in Table

2.2 and they have been obtained from the HVDC Benchmark model [4]. Note that the

inverter DC voltage value is changed depending on the LCC rectifier semiconductor

which is used.

In order to obtain the DSM FRA, the AC sweep tool of PSIM is used. The transfer

function analyzed is the one between the rectifier DC current (idc1) and the Thévenin

equivalent voltage magnitude (vth,d given that zero vth,q is considered). The results are

presented in Figure 2.14a for the diode rectifier case and in Figure 2.14b for the thyristor

rectifier case.
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Table 2.2: Parameters used for the HVDC link with the proposed LCC
rectifier AVM.

Parameter Value Parameter Value

nb 2 6-pulse bridges Sbase,AC 1000 MVA

Vbase,AC 211.42 kV Vbase,DC 571.0346 kV

xt/nb 0.1505 p.u. bc 0.625 p.u.

rdc1≡rdc2 0.00765 p.u. ldc1≡ldc2 0.57367 p.u.

cc 2.66347 p.u. f0 50 Hz

vdi (diode) 0.9529 p.u. vdi (thyristor) 0.855 p.u.

(a) Diode rectifier study case.

(b) Thyristor rectifier study case.

Figure 2.14: Frequency response of the transfer function between the
rectifier DC current and the grid voltage magnitude with the proposed

AVM and the DSM representation.
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Figure 2.14 shows that in both the diode and the thyristor rectifier cases the AVM

frequency response is accurate compared to the DSM one. It is worth mentioning that

the switching frequency of this system is equal to 600 Hz. This is due to the fact that

a twelve-pulse rectifier is used (nb equals 2) and the AC system frequency is 50 Hz.

According to Figure 2.14, the frequency responses differ when the frequency is close

to or above the switching frequency. However, this is the expected result with the

considered assumptions, which are no valid for frequencies close to and above the

switching frequency [9].

2.4 WTGS model

The WTGSs conventional output control variables are its active and reactive pow-

ers. The active power will usually follow the WTGS power curve if there is no deloaded

operation due to frequency support [24] or power curtailment command [25]. The re-

active power is completely decoupled and it can follow different control strategies. For

instance, remote voltage control or power factor control [26] can be of interest.

For this reason, both single WTGS aggregated models used along this Thesis only

represent the WTGS by its active and reactive power injection, which can correspond to

both type-3 and type-4 WTGS technologies. However, there are study cases in Chapter

4 where the WTGSs are considered to be type-4 and they are modeled as it is shown in

Figure 2.15. Note that the subscript k is used for the WTGS identification number along

this Thesis when there are several WTGSs. The BEC is represented by the active power

pkdc injected to the WTGS DC link. The DC link voltage at the capacitor cdc is vkdc,

being ikdc the DC current extracted by the FEC. Moreover, overvoltage protection is

provided by a crowbar with resistance rcb. AC variables are represented in three phase,

being the FEC output voltage and current vectors vk,abc and ik,abc, respectively. The

FEC output filter is made of a series inductor with reactance xf and a parallel capacitor

with susceptance bf . Therefore, the output voltage and current of the WTGS are uk,abc

and iok,abc, respectively. The generated active power is pk and the generated reactive

power is qk.

Figure 2.15: Type-4 WTGS model.

The small-signal model of this WTGS model will be derived in Chapter 4, together
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with the proposed decentralized control, in order to assess the stability analysis of the

proposal. Additional equations for the FEC DC parameters definition, which depend

on the WTGS nominal values which are in turn considered the base values, are as fol-

lows:

VWTGSbase,DC =
2
√

2√
3
VWTGSbase,AC (2.55)

PWTGSbase,DC = SWTGSbase,AC (2.56)

cdc = ω0Cdc
V 2
WTGSbase,DC

PWTGSbase,DC
(2.57)

2.5 Conclusions

In this chapter, the models of the main elements which will be used in the layouts

studied in this Thesis have been presented.

AVMs are useful to study the power electronics systems because they avoid the

discontinuous nature of the DSMs and reduce the computing time required for the

studies. Among the existing LCC rectifier AVMs, there is no proper AVM that considers

the dynamics of the capacitor bank located at the PCC bus. Therefore, an enhanced

LCC rectifier AVM is proposed in this chapter.

The main advantages of the proposed AVM are its inputs and state variables. The

inputs are the active and reactive powers that are injected from the AC grid. Given

that WTGSs conventional output variables are their active and reactive powers, there

is a match between the natural outputs of the OWF and the AVM inputs. Moreover,

the state variables of the model are the PCC bus voltage magnitude and angle. This

is quite important because OWFs connected through LCC-rectifier-based HVDC links

need a voltage and frequency control in the isolated offshore AC grid. Therefore, these

states facilitate the derivation of a decoupled voltage and frequency control strategy

which will be presented in Chapter 3.

Finally, the proposed AVM allows the study of the dynamic response of the HVDC

link and the devices connected to the AC grid by a static consideration of the complete

topology of the AC grid. It needs an iterative process where the rectifier AC bus is

considered as the slack bus in the AC grid load flow. Therefore, the active and reactive

power which are the load flow result are the inputs to the dynamic AVM which will

provide the new slack bus voltage magnitude and angle. Then, the load flow is again

run in this iterative solution.
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Chapter 3. Centralized voltage and frequency control of OWFs connected to

LCC-based Rectifiers

3.1 Introduction

This chapter presents the proposed centralized voltage and frequency control for

OWFs which are connected to the onshore grid by an LCC-rectifier-based HVDC link.

This control strategy is derived from the AVM proposed in Section 2.3.2, which consid-

ers the dynamics of the capacitor bank which is connected to the PCC bus.

The aforementioned model has the incoming active and reactive powers from the

offshore AC grid to the PCC bus as inputs. These inputs prove useful given that a

single aggregated model of the WTGS, which is directly connected to the PCC bus,

will be considered as the OWF layout in this chapter. Moreover, the polar coordinates

state variables of the model allow the clear identification of the voltage and frequency

dynamics from the proposed AVM equations. In addition, the model equations are

obtained in a dq synchronous reference frame which rotates at frequency ω0, which

will be also convenient for the frequency control strategy proposed in this chapter.

On the one hand, the alignment of the PCC bus voltage vector to the dq synchronous

reference frame can be accomplished by affecting the reactive power balance through

reactive power injection to the PCC bus, what leads to the OWF frequency control

needed for the LCC rectifier operation. On the other hand, it is also demonstrated

that the active power balance at the PCC bus drives the PCC bus voltage magnitude

variations. Finally, the structure of this chapter is addressed following.

First, the OWF layout which is used for the centralized voltage and frequency con-

trol studies is presented in Section 3.2. Then, the centralized control strategies are de-

rived and presented in Secion 3.3. It is worth mentioning that the LCC semiconductor

technology defines the control, given that the voltage control cannot be carried out if a

diode rectifier is used. In section 3.4, the controllers design is shown and the stability

analysis is performed. Both are based on the small-signal models of the correspond-

ing OWF layout. Then, Section 3.5 shows the performance of the proposed control by

using the AVM proposed in Section 2.3.2. Given that the derivation, the analysis and

the simulation results of the centralized voltage and frequency control are based on

the proposed AVM, the validation of both the control and the AVM are accomplished

in Section 3.6 by using a DSM as reference. It should be pointed out that both the

small-signal frequency response and the large-signal time response are compared in

this validation. Finally, a fault response study is shown in Section 3.7 and the main

conclusions are addressed in Section 3.8.

3.2 System description

An overview showing the main elements of the LCC-rectifier-based HVDC connec-

tion of an OWF has been presented in Figure 2.1. The OWF layout which is used to

represent the system along this chapter is shown in Figure 3.1.
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Figure 3.1: OWF equivalent with a single aggregated WTGS and an
HVDC composed of a T-modeled cable, the inverter and an LCC rec-

tifier.

There is an LCC rectifier station which includes the rectifier, its transformer and a

capacitor bank (with susceptance bc) which is connected to the PCC bus. This rectifier

station AVM has been proposed in Section 2.3.2. It is worth noting that the capaci-

tor bank represents both the fundamental frequency performance of the AC harmonic

filters and the reactive power compensation. Moreover, the rest of the HVDC link is

modeled by using the equivalent DC voltage source vdi for the onshore inverter and

the HVDC Benchmark model [1] proposal for the cable (T-model), which have been

presented in Section 2.2. Finally, the OWF AC grid is simplified to the output active

and reactive powers of a single aggregated WTGS which is directly connected to the

OWF PCC bus. Specifically, these active and reactive powers are addressed by powf and

qowf , respectively. As it has been addressed in Chapter 2, this onshore inverter model

can represent any of the existing technologies but it is defined by its constant DC volt-

age operation mode. Likewise, the WTGS output powers representation is accurate for

both type-3 and type-4 WTGS technologies.

The system parameters can be found in Table 2.2.

3.3 Centralized voltage and frequency control

The objectives of the centralized voltage and frequency control strategies are to

maintain the OWF AC voltage magnitude and frequency at their reference values. As

it was established in Chapter 1, this OWF AC grid control is required in order to op-

erate the LCC rectifier. Although the proposed AVM used in the OWF layout studied

in this chapter has been proposed in Section 2.3.2, the small-signal model which con-

siders the same HVDC link and WTGSs modeling which are used in this section has

already been presented in Section 2.3.3.2. The dynamic equations of this model have

been shown in (2.51). According to them, a decoupled voltage and frequency control

strategy is derived and presented following.

The control strategies proposed in this section use PI controllers. These controllers

will be tuned and the stability and performance of the system will be analyzed in the
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following sections.

3.3.1 Centralized frequency control

According to the equation of
dδ

dt
which is presented in (2.51), the reactive power

balance at the capacitor bank placed at the PCC bus (with susceptance bc) leads to

the dynamic response of the PCC voltage vector angle δ. It is worth noting that this

equation might be transformed into another equation which explicitly contains the ex-

pression of the OWF AC frequency. This equation is shown in (3.2) and it is derived by

combining (2.51) and (3.1).

ω = ω0 +
dδ

dt
(3.1)

ω

ω0
qc = −qowf + qr (3.2)

Therefore, these equations clearly indicate that the reactive power balance at the

capacitor bank bus is driving the frequency of the PCC voltage vector in the dq syn-

chronous reference frame which rotates at frequency ω0. This synchronous reference

frame is usually obtained by means of a PLL which is measuring the AC voltage, as

in VOC strategies [2, 3]. However, the OWF application is slightly different and this

kind of strategy would imply that the control is orientated to the AC voltage which

the control is simultaneously generating, what could naturally lead to stability issues.

However, the dq synchronous frame of the proposed AVM uses a stiff reference fre-

quency signal, ω0. Therefore, ω0 has a constant value and the reference angular position

is easily obtained by integrating this stiff reference. Therefore, this reference angular

position is not subject to any measurement noise, harmonic distortion or other grid dis-

turbance because a PLL is not required. If ω0 is constant and equal to the desired OWF

AC frequency, the frequency control can be guaranteed by keeping a constant angle δ

in the PCC bus voltage vector, which is the objective of the proposed frequency control.

The reactive power balance obtained from (3.2) contains both the reactive power

provided by the capacitor bank qc and the reactive power absorbed by the rectifier and

transformer qr, but they cannot be controlled. qr is provided by a passive element and

it could only be controlled to a varying value by controlling the PCC bus voltage mag-

nitude upcc. qr mainly depends on the firing angle if thyristors are used in the LCC rec-

tifier and on the active power which is transferred through the HVDC link. The other

reactive power which is present in (3.2) is the reactive power delivered by the OWF

qowf . It mainly depends on the active power generated, the OWF AC grid topology

and the reactive power strategy of the WTGSs. A remote control of qowf could be done

through the WTGSs reactive power control strategy, but it requires communication be-

tween the PCC bus and the WTGSs so it will not provide the fast control response
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required for the frequency variations. Therefore, an additional reactive power injection

to the PCC bus is proposed to achieve the frequency control and it will be addressed as

qctr, which can be observed in the system layout depicted in Figure 3.2.

Figure 3.2: OWF equivalent with a single aggregated WTGS, the reactive
power injection qctr for frequency control and an HVDC composed of a

T-modeled cable, the inverter and an LCC rectifier.

The addition of qctr to the system modifies the studied OWF layout to the one

shown in Figure 3.2. Moreover, the set of dynamic equations of the OWF layout model

which was presented in (2.51) is modified as it is established in (3.3). Likewise, (3.2)

becomes (3.4).

1

ω0

dδ

dt
=
−qowf − qctr + qr

qc
− 1 =

−qowf − qctr
bcu2pcc

+
kα,µidc1 sinϕ

bcupcc
− 1

1

ω0

dupcc
dt

=
upcc
qc

(powf − pr) =
powf
bcupcc

− kα,µidc1 cosϕ

bc

1

ω0

didc1
dt

=
kα,µupcc cosϕ− vc − rdc1idc1

ldc1

1

ω0

dvc
dt

=
idc1 − idc2

cc

1

ω0

didc2
dt

=
vc − vdi − rdc2idc2

ldc2
(3.3)

ω

ω0
qc = −qowf − qctr + qr (3.4)

Although any constant reference for angle δ would lead to the frequency control, a

zero δ control is proposed, because it means a zero q component of the PCC bus voltage

vector upcc (upcc,q), being upcc,d the voltage magnitude. This control is accomplished

by a PI regulator which defines the reference value qrefctr , as it is shown in the frequency

control channel depicted at the bottom of Figure 3.3. This reactive power injection

must be provided by any of the elements available in the OWF or by an element which

is specifically used for this purpose, as a STATCOM.
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Figure 3.3: Centralized voltage and frequency control strategies.

3.3.2 Centralized voltage control

The equation of
dupcc
dt

in (3.3) shows that the active power balance at the capacitor

bank bus (PCC bus) drives the variations of the OWF AC voltage magnitude. There

are two terms in the active power balance: powf and pr. The first one is the active

power injected from the OWF, which mainly depends on the available wind through

the WTGS power curve if there is no power curtailment [4] or deloaded operation due

to frequency support [5]. Therefore, it should not be modified for the voltage mag-

nitude control, given that the objective of the OWF application is generating as much

power as possible and transferring it to the onshore grid. However, the second term is

the active power drawn by the LCC rectifier and it can be easily controlled by modify-

ing the firing angle α. Due to the constant DC voltage operation of the onshore inverter,

pr is decreased when α is increased and vice versa.

As it has been previously established, the PCC voltage vector will be aligned to

the dq synchronous reference frame due to the centralized frequency control. Thus,

the PCC voltage vector magnitude will be equal to its d component upcc,d. Then, the

centralized voltage control strategy regulates upcc,d to its reference value urefpcc,d through

the firing angle reference αref , as it is shown at the top of Figure 3.3. Note that this

centralized frequency control cannot be applied if a diode rectifier is used in the HVDC

link, due to the missing firing angle signal. This is the reason why the centralized

voltage control channel is inside dotted lines in Figure 3.3.

Although the voltage magnitude cannot be controlled when a diode rectifier is used

in the HVDC link, it will be demonstrated that it will vary between admissible lim-

its. It is worth mentioning that the PCC voltage magnitude steady-state value in the

diode-rectifier case depends on the active power transferred through the HVDC link.

Its variation range is mainly affected by the total HVDC link resistance, the rectifier

transformer inductance and the inverter DC voltage vdi.
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3.4 Controller design and stability analysis

Due to the non-linear dynamics of the LCC rectifier, the controller parameters of

the centralized voltage and frequency control could be tuned by considering the small-

signal analysis of the system at each of the possible operating points. However, this

technique could be intensely cumbersome and the controllers are designed at a single

operating point. Once the controllers design is finished, the stability of the controlled

system is checked in the other operating points.

First, the small-signal model of the non-controlled OWF layout in Figure 3.2 is ad-

dressed, given that it is needed for the centralized controllers tuning. This system fits

the one presented in Section 2.3.3.2 but with the additional reactive power injection

qctr. The inputs and ouputs diagram of this system is depicted in Figure 3.4.

Figure 3.4: Inputs and outputs diagram of the OWF layout used for the
centralized control studies including the additional input qctr.

The addition of the input qctr makes the small-signal model be the one detailed

in (3.5). Its inputs, outputs and states are ∆unc = [∆qctr,∆α,∆powf ,∆qowf ,∆vdi]
T,

∆ync=[∆δ,∆upcc,∆idc1,∆vc,∆idc2,∆upcc,q]
T and ∆xnc=[∆δ,∆upcc,∆idc1,∆vc,∆idc2]

T,

respectively. Note that not only the input qctr, but also the output ∆upcc,q, which will be

used for the frequency control, is added with respect to the model presented in (2.52).

In addition, the subscript nc denotes the small-signal model of the non-controlled LCC-

rectifier-based system.

1

ω0

d∆xnc

dt
= Anc∆xnc + Bnc∆unc

∆ync = Cnc∆xnc + Dnc∆unc (3.5)

where Anc is equal to Apr in (2.53) and Bnc, Cnc and Dnc are as follows:
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Bnc =



− 1

qc0

powf0
qc0

ζα0 0 − 1

qc0
0

0 upcc0
qr0
qc0

ζα0

upcc0
qc0

0 0

0 −kα,µupcc0 sinϕ0

ldc1
ζα0 0 0 0

0 0 0 0 0

0 0 0 0 − 1

ldc2



Cnc =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

upcc0 cos δ0 sin δ0 0 0 0



Dnc =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(3.6)

In the following sections, the frequency PI controller will be tuned and the small-

signal model of the diode-rectifier-based OWF layout will be analyzed. In this small-

signal model, ∆qctr will become function of ∆δ given the frequency PI controller equa-

tion and ∆α is eliminated because of the diode rectifier. Finally, the voltage and fre-

quency controllers are designed for the thyristor-rectifier-based OWF layout. Then, the

small-signal of the controlled system will be also studied. This small-signal model will

lose the inputs ∆α and ∆qctr because they depend on the state variables ∆upcc and ∆δ

given the voltage and frequency PI controller equations, respectively.

It is worth mentioning that the controlled systems are different depending on the

LCC rectifier semiconductor. Therefore, the independent study of the frequency con-

trolled diode rectifier and the voltage and frequency controlled thyristor rectifier is

interesting even though the diode rectifier could be assumed to be a particular case of

the thyristor rectifier.
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3.4.1 Diode-rectifier-based HVDC connection with frequency control

First, the small-signal model in (3.5) has to be modified in order to fit the diode

rectifier-based HVDC connection. This is achieved by eliminating the second column of

matrices Bnc and Dnc and remaining the other matrices the same. Note that the firing

angle input does not exist so the inputs vector becomes ∆unc=

[∆qctr,∆powf ,∆qowf ,∆vdi]
T.

The aformentioned small-signal model is used to obtain the transfer function be-

tween the input ∆qctr and the output ∆upcc,q. This is due to the centralized frequency

control proposed in Section 3.3.1. It consists of a PI controller which processes the error

of the PCC voltage vector q component to provide the reactive power to be injected

for the frequency control. The required transfer function is shown in (3.7), which is a

negative integrator with time constant
bcu

2
pcc0

ω0
.

∆upcc,q
∆qctr

=
−ω0

bcu2pcc0s
(3.7)

As it has been previously stated, the PCC voltage magnitude cannot be controlled.

Thus, the transfer funtion addressed in (3.7) will be slightly different depending on

the operating point considered, which will imply a different upcc0 value. The proposed

onshore inverter DC voltage value vdi is designed to be the one which yields a PCC

voltage magnitude of 1 p.u. when the active power transmitted through the HVDC

link is approximately 0.5 p.u. Then, the operating point defined by powf0=0.5 p.u. is

the one chosen for the frequency controller design.

The specifications used to derive the PI parameters are a 1000 rad/s bandwidth in

the feedback system and a PI controller time constant equal to 10 ms. The PI controller

equation is the one shown in (3.9) and the parameter values which are obtained are

kfcp =1.8 p.u. and kfci =180/ω0=0.573 p.u. This equation uses the value of ∆upcc,q which

can be extracted from (3.5) and is as follows:

∆upcc,q = sin δ0∆upcc + upcc0 cos δ0∆δ = upcc0∆δ (3.8)

∆qctr = upcc0

(
kfcp ∆δ + kfci ω0

∫
∆δdt

)
= upcc0

(
kfcp ∆δ + kfci ∆xfc

)
(3.9)

As it can be observed, the new state variable ∆xfc is defined and its dynamic equa-

tion is as follows:
1

ω0

d∆xfc
dt

= ∆δ (3.10)

Then, the small-signal model which includes the frequency control can be derived.

It adds the dynamic equation (3.10) to the ones considered in the model shown in (3.5)
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and its matrix form is as follows:

1

ω0

d∆xdf

dt
= Adf∆xdf + Bdf∆udf

∆ydf = Cdf∆xdf + Ddf∆udf (3.11)

where ∆udf = [∆powf ,∆qowf ,∆vdi]
T, ∆ydf=[∆δ,∆upcc,∆idc1,∆vc,∆idc2,∆qctr]

T and

∆xdf=[∆δ,∆upcc,∆idc1,∆vc,∆idc2,∆xfc]
T. Note that the subscript df denotes the small-

signal model of the diode-rectifier-based system with frequency control. Adf , Bdf , Cdf

and Ddf can be derived from matrices in (3.5) as follows:

Adf =



bnc,11upcc0k
fc
p anc,12 anc,13 0 0 bnc,11upcc0k

fc
i

0 anc,22 anc,23 0 0 0

0 anc,32 anc,33 anc,34 0 0

0 0 anc,43 0 anc,45 0

0 0 0 anc,54 anc,55 0

1 0 0 0 0 0



Bdf =



0 bnc,14 0

bnc,23 0 0

0 0 0

0 0 0

0 0 bnc,55

0 0 0



Cdf =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

upcc0k
fc
p 0 0 0 0 upcc0k

fc
i



Ddf =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


(3.12)
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As it has been previously established, the stability of the frequency controlled diode-

rectifier-based HVDC-connected OWF must be checked in the operating points which

are different from the one which has been used for the controller tuning. Specifically,

the stability is checked in a hundred operating points which correspond to active power

transferred from 0.01 p.u. to 1 p.u. (powf0=0.01, 0.02, 0.03, ..., 1 p.u.). The eigenvalues of

the resulting small-signal model have been extracted for each of the operating points

and they are depicted in Figure 3.5.

Figure 3.5: Eigenvalues of the OWF layout with diode-rectifier-based
HVDC connection and centralized frequency control at diverse operat-

ing points (arrows indicate increasing active power transferred).

As it can be observed in Figure 3.5, the real part of all the eigenvalues is negative

so the stability is then proved. Moreover, the arrows which can be found in Figure 3.5

show the locus of the studied eigenvalues while active power powf is increased. The

dominant state is also indicated for each of the eigenvalues. It is worth noting that

the four complex eigenvalues which can be analyzed increase their stability when the

active power transferred is increased, given the higher damping acquired. Finally, it

should be pointed out that the dominant states of these complex eigenvalues are ∆idc1

and ∆idc2, which also increase their steady-state values in the same varying conditions.

3.4.2 Thyristor-rectifier-based HVDC connection with voltage and frequency
control

Since in this section the plant transfer function to be studied for the frequency con-

trol design is equal to the one of the diode-rectifier-based system, the frequency con-

troller matches the one derived in Section 3.4.1. It should be pointed out that the plant

is invariable with respect to the operating point due to the additional voltage control

which is applied in the thyristor-rectifier-based HVDC-connected OWF.

Following the same methodology which has been used in order to tune the fre-

quency controller, the small-signal model of the thyristor-rectifier-based layout with

frequency control is needed in order to get the plant transfer function to be used by the
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voltage controller. This small-signal model is the one shown in (3.13). Note that the

subscript tf denotes the small-signal model of the thyristor-rectifier-based system with

frequency control.

1

ω0

d∆xtf

dt
= Atf∆xtf + Btf∆utf

∆ytf = Ctf∆xtf + Dtf∆utf (3.13)

where Atf , Ctf , ∆xtf and ∆ytf are equal to Adf , Cdf , ∆xdf and ∆ydf , respectively,

in (3.12). ∆utf = [∆α,∆powf ,∆qowf ,∆vdi]
T and Btf and Dtf can be derived from

matrices in (3.5) as follows:

Btf =



bnc,12 0 bnc,14 0

bnc,22 bnc,23 0 0

bnc,32 0 0 0

0 0 0 0

0 0 0 bnc,55

0 0 0 0

0 0 0 0



Dtf =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(3.14)

The plant transfer function to be obtained from (3.13) is the one which has ∆α as

input and ∆upcc as output, which changes depending on the active power operating

point. This is due to the centralized voltage controller proposed in Section 3.3.2, where

the PI controller processes the negative error of the PCC voltage vector d component

to produce the thyristor firing angle to be used. It is worth noting the correspondence

between the voltage vector magnitude and the d component due to the centralized

frequency control strategy (∆upcc,d=∆upcc cos δ0−upcc0 sin δ0∆δ=∆upcc).

As it was previously chosen, powf0=0.5 p.u. is also used for the centralized voltage

controller design. The design specifications for this controller are 500 rad/s bandwidth

in the feedback system and a PI time constant which is three times higher than the

frequency controller one (30 ms). The equation that defines this PI voltage controller is

shown in (3.15) and its parameter values are kvcp =1.67 rad/p.u. and kvci =0.177 rad/p.u.

∆α = −
(
kvcp ∆upcc + kvci ω0

∫
∆upccdt

)
= −(kvcp ∆upcc + kvci ∆xvc) (3.15)
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As it can be observed in (3.15), a new state variable ∆xvc is defined and its dynamic

equation is as follows:
1

ω0

d∆xvc
dt

= ∆upcc (3.16)

If (3.15) and (3.16) are considered together with (3.13), the small-signal model of

the thyristor-rectifier-based HVDC-connected OWF under study can be obtained in

order to check the stability of the controlled system in the diverse operating points.

This small-signal model is presented in (3.17). Note that the subscript tvf denotes the

small-signal model of the thyristor-rectifier-based system with voltage and frequency

control.

1

ω0

d∆xtvf

dt
= Atvf∆xtvf + Btvf∆utvf

∆ytvf = Ctvf∆xtvf + Dtvf∆utvf (3.17)

where ∆utvf=[∆powf ,∆qowf ,∆vdi]
T, ∆ytvf=[∆δ,∆upcc,∆idc1,∆vc,∆idc2,∆qctr,∆α]T

and ∆xtvf=[∆δ,∆upcc,∆idc1,∆vc,∆idc2,∆xfc,∆xvc]
T. Atvf , Btvf , Ctvf and Dtvf

can be derived from matrices in (3.5) as follows:

Atvf=



bnc,11upcc0k
fc
p anc,12−bnc,12kvcp anc,13 0 0 bnc,11upcc0k

fc
i −bnc,12kvci

0 anc,22−bnc,22kvcp anc,23 0 0 0 −bnc,22kvci

0 anc,32−bnc,32kvcp anc,33 anc,34 0 0 −bnc,32kvci

0 0 anc,43 0 anc,45 0 0

0 0 0 anc,54 anc,55 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0



Btvf =



0 bnc,14 0

bnc,23 0 0

0 0 0

0 0 0

0 0 bnc,55

0 0 0

0 0 0


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Ctvf =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

upcc0k
fc
p 0 0 0 0 upcc0k

fc
i 0

0 −kvcp 0 0 0 0 −kvci



Dtvf =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


(3.18)

As it has been previously performed with the frequency control, the centralized

voltage and frequency controlled system must be evaluated in the diverse operating

points in order to assess the stability analysis. The same operating points considered in

Section 3.4.1 are considered here and the eigenvalues extracted from each of the small-

signal models are depicted in Figure 3.6. Figure 3.6 has arrows which indicate the

direction of the eigenvalues movement when the active power transferred is increased.

The dominant states for each of the eigenvalues are also defined in Figure 3.6.

Figure 3.6: Eigenvalues of the OWF layout with thyristor-rectifier-based
HVDC connection and centralized voltage and frequency control at di-
verse operating points (arrows indicate increasing active power trans-

ferred).

As it can be extracted from Figure 3.6, the centralized voltage and frequency con-

trolled system is stable due to the negative real part of all the eigenvalues. There are

two eigenvalues which are invariable with respect to the operating point and their
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dominant states are ∆δ and ∆xfc. Furthermore, it can be stated that the stability im-

proves when the active power transferred is increased due to the higher damping of the

complex eigenvalues. However, the eigenvalue whose dominant state is ∆xvc slightly

moves towards the imaginary axis when powf is increased.

The comparison of the eigenvalues of the diode-rectifier case and the thyristor rec-

tifier case (Figure 3.5 and Figure 3.6, respectively) shows that the two real eigenvalues

which vary with the operating conditions in the diode-rectifier case do not move when

the voltage control is applied in the thyristor-rectifier case. In addition, the complex

eigenvalues of the thyristor-rectifier case take positions which are located farther from

the imaginary axis than in the diode-rectifier case. Finally, ∆vc becomes a dominant

state of one of the complex eigenvalues in the thyristor rectifier case.

3.5 AVM simulation results

Once the centralized controllers have already been tuned, this section will show the

simulation results of the AVM of the layout in Figure 3.2 with the proposed centralized

control embedded. These simulations are performed in Matlab/Simulink.

Three initial operating points at 0.1 p.u., 0.4 p.u. and 0.7 p.u. of OWF power (powf )

are simulated during 0.4 s. The initial reactive power injected by the OWF (qowf ) is

considered zero in the three cases. Then, two input steps are considered during the

simulation time window: a powf increment of 0.2 p.u. at t=0.01 s and a qowf increment

from zero to 0.1 p.u. a t=0.3 s. It should be pointed out that both step changes are

smoothed by the action of a first order filter whose time constant and gain are equal

to 10 ms and 1 p.u., respectively. This permits representing more realistic changing

conditions.

It is worth noting that there is a third input in both diode-rectifier-based and

thyristor-rectifier-based systems which corresponds to the onshore inverter DC volt-

age vdi. Even though the system response to a change in vdi could be checked, it is not

of interest given the constant DC voltage operating mode of the onshore inverter which

will maintain this voltage value.

The results for each of the LCC rectifiers considered are presented in the following

subsections.

3.5.1 Diode-rectifier-based HVDC connection with frequency control

The simulation results of the diode-rectifier-based HVDC-connected OWF with fre-

quency control are depicted in Figure 3.7. The three different study cases regarding

the initial operating conditions are shown. From top to bottom, Figure 3.7 shows the

PCC bus frequency, the PCC bus voltage magnitude and the reactive power injected to

control the offshore AC frequency.
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Figure 3.7: AVM simulation results during active- and reactive- power
changes of the diode-rectifier-based HVDC connection of the OWF with
centralized frequency control (frequency, PCC voltage and controlling

reactive power).

As it can be observed in Figure 3.7, the PCC bus voltage magnitude increases with

the active power generated from the OWF, i.e. with the active power transferred by

the HVDC link. The reactive power absorbed by the diode rectifier and its transformer

also increases in these varying conditions. Thus, the controlling reactive power qctr is

also higher when the active power level is higher.

Figure 3.7 shows that the variation of upcc and qctr when active power is increased

at t=0.01 s follows the same logics. When the reactive power provided by the OWF is

increased at t=0.3 s, the PCC voltage magnitude remains unvariable. However, the con-

trolling reactive power is decreased in order to maintain the frequency at its reference

value (50 Hz), what is perfectly achieved in the diverse simulation cases.

By comparing the reponse in the three different initial operating conditions, it can

be concluded that the lower the active power level in the system, the more oscillating

is the system response to the active power change. This result can be predicted by the

stability analysis in Section 3.4.1 (Figure 3.5), where the complex eigenvalues increase

their damping when the active power level is increased.

It is worth mentioning that despite the absence of voltage control in this diode-

rectifier-based HVDC-connected OWF, voltage varies within acceptable bounded lim-

its. Actually, upcc steady-state limits can be calculated and they are 1.05 p.u. and

0.954 p.u. when powf is equal to 1 p.u. and 0.01 p.u., respectively. These variations

are acceptable according to grid codes [6].
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3.5.2 Thyristor-rectifier-based HVDC connection with voltage and frequency
control

The simulation results of the thyristor-rectifier-based HVDC-connected OWF with

voltage and frequency control are depicted in Figure 3.8, where the three different

study cases are shown. From top to bottom, Figure 3.8 shows the PCC bus frequency,

the PCC bus voltage magnitude, the reactive power injected to control the offshore AC

frequency and the thyristor firing angle.

Figure 3.8: AVM simulation results during active- and reactive- power
changes of the thyristor-rectifier-based HVDC connection of the OWF
with centralized voltage and frequency control (frequency, PCC voltage,

controlling reactive power and firing angle).

As it can be observed in Figure 3.8, both AC voltage and frequency are maintained

at their corresponding reference values 1 p.u. and 50 Hz. By analyzing both the steady-

state conditions and the active-power change response, it can be concluded that the

higher the active power level of the system the lower the firing angle set by the cen-

tralized voltage controller and the higher the reactive power to be injected for the fre-

quency control.

The reactive power increment of qowf at t=0.3 s mainly affects the frequency, given

that the transient of the PCC bus voltage magnitude is negligible. It is worth mention-

ing that the voltage control provides certain coupling between these variables because

in the diode-rectifier case upcc remained invariable in the reactive power change.

The stability analysis presented in Section 3.4.2 (Figure 3.6) showed that the system

is more damped when the active power is increased. The results in Figure 3.8, where

the response oscillates more for lower active power levels, are therefore consistent with

the aforementioned analysis.
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It should be pointed out that the reactive power to be injected for the frequency

control takes high values in both study cases. As it was established when the system

parameters were presented, the model is based on the HVDC Benchmark model [1]

which uses a large passive capacity (reactive power compensation and harmonic fil-

ters). However, this passive AC capacity can be reduced [7], so qctr will take lower

values.

3.6 Proposed control and AVM validation

The centralized voltage and frequency control proposed in this chapter has been

derived, designed and analyzed by means of the proposed AVM of the OWF layout

presented in Figure 3.2. Therefore, it is required to validate both the proposed control

and the model by using a DSM simulation which has been performed using PSIM. As it

is widely extended in modeling, both the small-signal frequency-domain and the large-

signal time-domain responses of the diode-rectifier-based and thyristor-rectifier-based

controlled systems are compared in the following subsections.

3.6.1 Small-signal frequency-domain validation

On the one hand, the small-signal models obtained in Section 3.4 are used in order

to obtain the transfer function which will be studied by means of a FRA. This transfer

function is the one with the rectifier DC current as output and the OWF active power as

input. This transfer function is chosen because the incoming active power is the main

perturbation of this system, which will depend on the wind, while the rectifier DC

current indicates the power transferred to the onshore grid. Moreover, powf0=0.4 p.u.

is the steady-state operating point chosen for the analysis.

The AC sweep tool of PSIM has been used in order to obtain the FRA of the DSM

while the small-signal model transfer function of the AVM naturally allows the FRA

extraction. The resulting Bode diagrams are presented in Figure 3.9a and Figure 3.9b

for the diode-rectifier-based and the thyristor-rectifier-based HVDC connected OWFs,

respectively.

As it has been stated in the non-controlled AVM validation in Section 2.3.3, the

AVM also shows a reasonable accuracy with respect to the DSM when the centralized

controlled systems are analyzed. However, when the frequency approaches the rectifier

switching frequency (600 Hz for the twelve-pulse rectifier), this accuracy is lost because

the AVM assumptions are not solid when the frequency approaches or exceeds the

converter switching frequency [8]. Both responses lead to these conclusions.
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(a) Diode-rectifier-based HVDC connection of the OWF with cen-
tralized frequency control.

(b) Thyristor-rectifier-based HVDC connection of the OWF with
centralized voltage and frequency control.

Figure 3.9: Frequency response of the transfer function between the rec-
tifier DC current and the OWF active power with the proposed AVM

and the DSM representation.

3.6.2 Large-signal time-domain validation

This section allows the comparison of the large-signal time-domain simulation of

both the AVM and the DSM responses to the power changes scheduled in the AVM sim-

ulations in Section 3.5 (powf and qowf increments of 0.2 p.u. and 0.1 p.u. at t=0.01 s and

t=0.3 s, respectively). The AVM simulations are performed in Matlab/Simulink while

the DSM ones are performed in PSIM. For the sake of clarity, just the simulations with

the initial operating point set at powf0=0.4 p.u. are compared. The results for both the

AVM and the DSM are presented in Figure 3.10a for the diode-rectifier-based HVDC-

connected OWF and in Figure 3.10b for the thyristor-rectifier-based HVDC-connected

OWF.
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(a) Diode-rectifier-based HVDC connection of the OWF with central-
ized frequency control (PCC bus frequency and voltage magnitude, and

rectifier DC voltage and current from top to bottom).

(b) Thyristor-rectifier-based HVDC connection of the OWF with cen-
tralized voltage and frequency control (PCC bus frequency and voltage
magnitude, rectifier DC voltage and current, and thyristor firing angle

from top to bottom).

Figure 3.10: Comparison of the simulation results during active- and
reactive- power changes with the proposed AVM and the DSM repre-

sentation.

Figure 3.10a shows the PCC bus frequency and voltage magnitude, and the rectifier

DC voltage and current from top to bottom. As in the previous studies, Figure 3.10b

shows the thyristor firing angle in addition to the aforementioned variables. Figure 3.10

shows a reasonable accuracy of the AVM dynamic response compared to the DSM one.

It also demonstrates a proper performance of the centralized voltage and frequency
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control when it is applied to DSMs, what validates the proposal. Finally, it is worth

noting that the decoupling between the reactive power change at t=0.3 s and the PCC

voltage magnitude response which could be concluded from the AVM is also validated

by the detailed switching simulation. In Figure 3.7 (diode rectifier), the decoupling

was concluded while in Figure 3.8 (thyristor rectifier) it was addressed that there was

a negligible coupling which is not as negligible in the DSM simulation in Figure 3.10b.

3.7 Fault response analysis

This section carries out the fault response analysis of the DSM of both the diode-

rectifier-based HVDC-connected OWF with frequency control and the thyristor-

rectifier-based HVDC-connected OWF with voltage and frequency control. The DSM

simulations are performed in PSIM. A 100 ms-fault at the PCC bus is scheduled at

t=0.4 s when the active power level of the system is 0.6 p.u. The following subsections

present the obtained results.

3.7.1 Diode-rectifier-based HVDC connection with frequency control

The fault analysis results of the diode-rectifier-based HVDC-connected OWF with

frequency control are presented in Figure 3.11. PCC frequency, PCC voltage magnitude

and rectifier DC voltage and current are shown from top to bottom in Figure 3.11. Dur-

ing the fault, the PCC voltage drops to zero. Thus, the diode rectifier is blocked and

the HVDC link voltage oscillates at its natural frequency. After the fault is cleared, the

OWF voltage is recovered and frequency is driven to the reference value by the cen-

tralized frequency control. Naturally, the fault response widely depends on the FRT

response of WTGSs. Specifically, powf is driven to zero during the fault and ramped

up after the fault clearance. The effects of this ramped response can be observed in

the rectifier DC current trend after the fault clearance. Finally, it is worth mentioning

that the frequency is not a explicit signal of the DSM. Therefore, a PLL is used just for

measuring purposes.
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Figure 3.11: Response of the diode-rectifier-based HVDC connection of
the OWF to a 100 ms fault at the PCC bus with centralized frequency
control (frequency, PCC voltage and rectifier DC voltage and current).

3.7.2 Thyristor-rectifier-based HVDC connection with voltage and frequency
control

The fault analysis results of the thyristor-rectifier-based HVDC-connected OWF

with voltage and frequency control are presented in Figure 3.12. This Figure shows

the PCC frequency and voltage magnitude, the rectifier DC voltage and current, and

the thyristor firing angle from top to bottom. The conclusions addressed in Section 3.7.1

can be applied to these results, except for the additional voltage control performed in

this case. During the fault, it can be observed in Figure 3.12 that the centralized volt-

age controller increases the firing angle trying to recover the PCC voltage magnitude.

However, the fault does not allow this recovery and the controller reaches saturation

(α=45◦). After the fault clearance, both the voltage and frequency controls are recov-

ered and the firing angle reaches its pre-fault value.
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Figure 3.12: Response of the thyristor-rectifier-based HVDC connection
of the OWF to a 100 ms fault at the PCC bus with centralized voltage
and frequency control (frequency, PCC voltage, rectifier DC voltage and

current and firing angle).

3.8 Conclusions

This chapter has presented a centralized voltage and frequency control which al-

lows the operation of an OWF connected to an LCC-rectifier-based HVDC link. Both

the diode rectifier and the thyristor rectifier are considered.

The proposed control is based on the rectifier AVM proposed in Chapter 2. It is

demonstrated that the reactive power balance at the capacitor bank placed at the PCC

controls the frequency while the active power balance controls the PCC voltage mag-

nitude. It is also proved that although the voltage control cannot be performed with a

diode-rectifier-based HVDC link, the PCC voltage magnitude will be bounded within

acceptable limits.

Given that the proposed control derivation, the controllers design and the simula-

tions have been carried out by using the proposed AVM, the controlled systems have

been validated by their response comparison to a DSM built in PSIM. Both the small-

signal frequency-domain and the large-signal time-domain validations are performed.

Moreover, fault studies have been presented and they demonstrate the ability of the

centralized control to recover the frequency and voltage magnitude after the fault clear-

ance.

Furthermore, a fixed reference frequency is used in this centralized proposal, avoid-

ing the disadvantages of PLLs. It is internally defined in the control, so any value
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could be used. This suggests the possibility of studying frequencies which are differnt

from the standard ones or even using a variable frequency. Diverse objectives could

be defined in order to optimize the frequency of the OWF AC grid. For example, it

is concluded in [9] that a power increase can be achieved by applying the appropriate

variable frequency in the OWF.
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4.1 Introduction

This chapter presents the proposed decentralized frequency control for OWFs which

are connected to the onshore grid by a diode-rectifier-based HVDC link. As it was

stated in Chapter 1, there is an increasing interest in providing the solution which uses

the diode instead of the thyristor LCC-rectifier technology in the HVDC-link connec-

tion. This is due to the fact that the diode rectifier is the most reliable rectifier solution.

It lacks of auxiliary equipment which will require power supply and it has a reduced

number of electric components [1, 2]. Therefore, it is ideal for rough offshore environ-

ments and requires very low maintenance. Compared to thyristors, diodes do not need

73
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protection for firing, monitoring electronics and they are not exposed to failure events

during the recovery time [1, 2]. Moreover, DRUs proposed by Siemens [1, 2] combine

the diode rectifier, the transformer and the DC smoothing reactor inside the oil tank,

what substantially reduces this equipment volume.

The proposed decentralized control achieves the synchronization of the WTGSs

without the need of communications while the reactive power provided by the WTGSs

is equally shared. The capacitor of the WTGS output filter is used for the inner control

at each of the WTGSs. First, an advantage of this decentralized control proposal is that

active power is not used for the frequency control. Therefore, the active-power con-

trol channel of the WTGS can use the classical control which seeks to yield maximum

energy. The inner or low-level control strategy consists of orientating the output-filter-

capacitor voltage vector of the WTGS to its individual reference axis. Then, all these in-

dividual reference axes are synchronized by affecting them through a Q/f droop which

is performed at each WTGS. This droop not only guarantees the synchronization which

is required for the frequency control but also equalizes the reactive power level of all

the WTGSs of the OWF. This strategy (QSS) is quite important because the reactive

power demand of both the OWF AC grid and the diode rectifier might be really high

and the only way to satisfy it is to share it among the WTGSs. Otherwise, the WTGSs

could easily exceed their capability limits.

This decentralized control strategy has a variable steady-state frequency. These

variations are bounded between acceptable limits. It is worth mentioning that both the

reactive power demand and the acceptable frequency deviations are considered in or-

der to define the droop gain. Even though the frequency deviation is acceptable, a sec-

ondary frequency control is also proposed because constant frequency can be achieved

while keeping the QSS.

First, the control fundamentals of the decentralized frequency control are presented

in Section 4.2. Here, OWF equivalent layouts with a single-aggregated WTGS and two-

aggregated WTGSs are used. Then, the proposed decentralized frequency control and

its additional secondary frequency control are presented in Section 4.3. Section 4.4

shows the stability analysis of the proposed control. Finally, simulation results which

include startup, operation and fault response are shown in Section 4.5. Here, and OWF

layout with six-aggregated WTGSs is used.

4.2 Control fundamentals

There are two control fundamentals on which the decentralized control is based:

the direct frequency control (DFC) and the QSS. Two different OWF layouts with a

single-aggregated and two-aggregated WTGSs are used in the following subsections in

order to present both control fundamentals.



Chapter 4. Decentralized frequency control of OWFs connected to Diode Rectifiers 75

4.2.1 Direct frequency control

The DFC strategy is based on the centralized frequency control proposed in Section

3.3.1. Even though this strategy has been presented at an OWF level, it will be used in

this decentralized frequency control at a WTGS level.

For further demonstration of this DFC strategy, the equivalent OWF layout shown

in Figure 4.1 is used. For the sake of clarity, it considers a single-aggregated WTGS. This

OWF layout is only analyzed, but not simulated in this Thesis. In Figure 4.1, the WTGS

(450 MW rated power) is modeled by its power outputs, the rectifier and transformer

are modeled by the AVM proposed in Section 2.3.2 and the HVDC cable is represented

by its resistance rdc as presented in Section 2.2.

Figure 4.1: OWF equivalent with a single aggregated WTGS and an
HVDC composed of a resistive cable, the inverter and a diode rectifier.

As it was stated in Section 3.3.1, the reactive power balance at the capacitor bank

represented by its susceptance bc allows the frequency control of the capacitor bank

voltage vector with respect to the dq synchronous reference frame. Moreover, the volt-

age magnitude dynamics depends on the active power balance at the capacitor bank

and it does not need to be controlled. However, it has a bounded variation.

There are two main differences between the use of this control concept here and

in the centralized frequency control. First, this DFC is applied at a WTGS level in the

decentralized control, so the incoming reactive power from the WTGS (qowf in Figure

4.1) can be used for the frequency control. This implies that the additional reactive

power injection used in Section 3.3.1 is not needed. Therefore, the direct frequency

controller is the one shown in Figure 4.2. Second, even though it has been stated that

the centralized frequency control is able to maintain a variable reference frequency,

it has not been tested. However, in the decentralized frequency control, each of the

WTGSs will follow a variable reference frequency which will allow the synchronization

of all the WTGSs injections in the OWF grid.

The two dynamic equations used for the aforementioned control concept are the

two first equations in (2.46):
bcupcc
ω0

dupcc
dt

=powf−pr and
bcu

2
pcc

ω0

dδ

dt
=−qowf+qr−qc. The

DFC is further analyzed by performing a small-signal study around a steady-state
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Figure 4.2: Direct frequency controller.

point in these two equations. If the first equation is linearized, the result is as follows:

bcupcc0
ω0

d∆upcc
dt

+ kp,link∆upcc = ∆powf (4.1)

where kp,link∆upcc = ∆pr is derived following. The Kirchhoff voltage law considered

in the HVDC link in Figure 4.1 is shown in (4.2). By multiplying all its terms by the

DC current, the value of this current idc can be obtained and it is shown in (4.3). Then,

the combination of (2.15) (zero α because of diodes) and (4.3) leads to the expression in

(4.4). Finally, the small-signal increments considered in (4.4) lead to the equation (4.5),

where kp,link is addressed. Note that the constant DC voltage operation mode of the

inverter eliminates ∆vdi.

vdi + rdcidc − vdr = 0 → rdci
2
dc + vdiidc − vdridc︸ ︷︷ ︸

pr

= 0 (4.2)

idc = − vdi
2rdc

+

√
v2di + 4rdcpr

2rdc
(4.3)

upcc = vdi + (rµ + rdc)idc = vdi + (rµ + rdc)

(
− vdi

2rdc
+

√
v2di + 4rdcpr

2rdc

)
(4.4)

∆upcc =
∆pr
kp,link

→ ∆pr = kp,link∆upcc ; kp,link=

√
v2di + 4rdcpr0

rdc + rµ
(4.5)

According to (4.1), the complete transmission of the active power by the HVDC link

is demonstrated in steady-state, given ∆pr=∆powf . It is also demonstrated that the PCC

voltage magnitude and the active power increment ∆powf are related by a first order

transfer function. Furthermore, this transfer function gain establishes that just a small

increment of the voltage magnitude is achieved by a large active-power increment. The

block diagram which corresponds to (4.1) is shown in Figure 4.3.
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Figure 4.3: Block diagram of the relation between the active-power in-
crement and the PCC voltage magnitude increment.

The independent input of the system in Figure 4.1 is powf . Thus, this study ana-

lytically demonstrates why the voltage magnitude does not need to be controlled. It

is clamped between two limits which correspond to maximum and minimum active

power transmitted through the HVDC link.

If the second dynamic equation
(bcu2pcc

ω0

dδ

dt
=−qowf+qr−qc

)
is now linearized, the

term ∆qowf should be considered. Its equation can be obtained from the DFC strategy

shown in Figure 4.2. This equation uses the equation of ∆upcc,q in (3.8) and it is pre-

sented in (4.6). Note that kdfcp and kdfci are the proportional and integral parameters of

the PI controller in Figure 4.2.

∆qowf = upcc0

(
kdfcp ∆δ + kdfci ω0

∫
∆δdt

)
(4.6)

The linearization leads to the equation in (4.7).

bcupcc0
ω2
0

d2∆δ

dt2
+
kdfcp
ω0

d∆δ

dt
+ kdfci ∆δ =

kq,link − 2bcupcc0
bcupcc0

(∆powf − kp,link∆upcc) (4.7)

where kq,link is derived from (2.15), (2.18), (2.20), (2.21), (4.4) and (4.5) as follows:

∆qr = tanϕ0∆pr +
pr0

cos2 ϕ0
∆ϕ = tanϕ0∆pr +

kα,µupcc0 cosϕ0idc0
cos2 ϕ0

∆ϕ (4.8)

∆ϕ =

rµ

∆upcc
rdc+rµ︷︸︸︷
∆idc
upcc0

− rµidc0∆upcc
u2pcc0

kα,µ sinϕ0
=

rµ

(
1

upcc0(rµ + rdc)
− idc0
u2pcc0

)
∆upcc

kα,µ sinϕ0
(4.9)

∆qr =

(
tanϕ0kp,link+

2idc0rµvdi
upcc0(rdc+rµ) sin (2ϕ0)

)
︸ ︷︷ ︸

kq,link

∆upcc = kq,link∆upcc (4.10)

It is worth noting the similarity between (4.7) and the synchronous-generator swing

equation. This equation, which results from the study of the synchronous-generator
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classical model connected to an infinite bus [3], is as follows:

2H

ω0

d2∆δ′

dt2
+
kD
ω0

d∆δ′

dt
+ kS∆δ′ = ∆pm (4.11)

where H represents the inertia constant, kD is the damping torque coefficient and

kS=
e′0u∞ cos δ′0

xeq
is the synchronizing torque coefficient. δ′ and e′ are the generator in-

ternal voltage angle and magnitude, respectively, and the infinite bus voltage has zero

angle and magnitude u∞. xeq represents the total reactance between the infinite bus

and the generator internal bus and pm represents the mechanical power provided to

the generator.

The comparison of (4.7) and (4.11) yields that the independent term of both equa-

tions is a function of the power input of the corresponding system, given the relation

in (4.1). Furthermore, several assignments between the other terms can be established

as follows:

H =
bcupcc0

2ω0
(4.12)

kD = kdfcp (4.13)

kS = kdfci (4.14)

According to (4.12), the inertia of the system in Figure 4.1 is provided by the capac-

itor bank with susceptance bc. Nevertheless, the inertia of the synchronous generator

is of a higher magnitude order than the one in the system. In (4.13) and (4.14), it is

demonstrated that the system DFC PI controller gains kdfcp and kdfci provide equivalent

damping and synchronizing components, respectively. The ability of the DFC to align

the capacitor bank voltage vector alog the dq synchronous reference frame is proved

by the equivalent synchronizing component. It is worth mentioning that the damping

coefficient of a synchronous generator is lower than the value of kdfcp . Thus, the system

with the DFC is well damped.

4.2.2 Reactive power sharing strategy

The advantages and the need of an equal reactive power level for the WTGSs of the

OWF (QSS) are justified in this subsection. The OWF layout presented in Figure 4.4 is

used for this study.

The WTGSs in Figure 4.4 (225 MW rated power each one) are modeled as a power

injection (pk and qk). Each of the WTGSs is connected to the PCC bus through and

inductive line (xk which considers both the line and the transformer short-circuit re-

actances). The current injected is denoted by its dq components ik,d and ik,q and the
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Figure 4.4: OWF equivalent with two aggregated WTGSs and an HVDC
composed of a T-modeled cable, the inverter and a diode rectifier.

WTGS terminal voltage magnitude and angle are uk and θk, respectively. Therefore,

pk and qk are the active and reactive powers injected by the WTGS, respectively. The

total active and reactive powers incoming from the OWF to the PCC bus are addressed

as powf and qowf , respectively. The PCC bus has a capacitor bank connected (with

susceptance bc) which represents the reactive power compensation and the harmonic

filters at fundamental frequency [4]. The rectifier and its transformer are represented

by means of the classic model presented in Section 2.3.1 and they draw the active and

reactive powers pr and qr, accordingly. The HVDC link is modeled using the inverter

DC source and the T-modeled cable which have been presented in Section 2.2.

A static study of the OWF layout in Figure 4.4 is analyzed in this subsection. The

steady-state point studied considers the PCC bus voltage vector the angle reference.

Thus, the PCC voltage vector in steady-state is upcc0=upcc0 0◦ and the values of p10
and p20 are known. Given that there are no losses in the offshore grid of Figure 4.4,

(4.15) can be obtained. Then, equations (2.3), (2.17), (2.18), (2.21) and (4.4) can be used

considering rdc=rdc1+rdc2 in order to get the values of upcc0, i1,d0, i2,d0 and qr0. Then,

(4.16) can be used to obtain the value of qowf0 and (4.17) can be used to get the values

of the q component of the WTGSs voltage vectors because of the zero angle of upcc0.

powf0 = pr0 = p10 + p20 = upcc0i1,d + upcc0i2,d (4.15)

qowf0 = qr0 − bcu2pcc0 (4.16)

uk,q0 = xkik,d0 (k = 1, 2) (4.17)

Therefore, there are six unknown variables: u1,d0, u2,d0, i1,q0, i2,q0, q10 and q20. How-

ever, the system just provides five additional equations which are as follows:
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qk0 = uk,q0ik,d0 − uk,d0ik,q0 (k = 1, 2) (4.18)

uk,d0 = upcc0 − xkik,q0 (k = 1, 2) (4.19)

qowf0 = −upcc0(i1,q0 + i2,q0) (4.20)

This implies that the other variables can be obtained once one of them is fixed or

an additional equation is considered. This means that if the reactive power level of one

WTGS is predetermined, the reactive power level of the other must be the one which is

required to close the reactive power balance at the PCC bus. This approach is not robust

because the reactive power limits of the WTGSs can be easily exceeded. Actually, the

application of this study to a system with more than two WTGSs results in being able

to set the reactive power level of all the WTGSs except one of them, which would close

the reactive power balance at the PCC bus.

Therefore, an additional equation provided by some strategy must be considered

to avoid a single unit closing the reactive power balance. The study of this strategy is

carried out for the system in Figure 4.4, whose parameters are detailed in Table 4.1.

Table 4.1: Parameters of the OWF layout with two-aggregated WTGSs
used in the decentralized frequency control studies.

Parameter Value

Base f0=50 Hz ; Sbase,AC=450 MVA ; Vbase,AC=220 kV

nb 2 six-pulse bridges

xt/nb 0.12 p.u.

bc 0.2 p.u.

rdck 0.003186 p.u.=2.5 Ω (k = 1, 2)

ldck 0.2 p.u.=0.5 H (k = 1, 2)

cc 6.409 p.u.=26 µF

cdc 0.15 p.u. of WTGS base

xf 0.15 p.u. of WTGS base

bf 0.05 p.u. of WTGS base

xk 0.13 p.u. (k = 1, 2)

vdi 0.9654 p.u.

The reactive power level of WTGS2 (q20) is studied for a sweep of the active powers

produced (p10 and p20) from 0.01 p.u. to 1 p.u. with diverse reactive power strategies

applied in WTGS1. Particularly, the strategies tested for WTGS1 are unitary power

factor (PF), PF equal to 0.95 leading and lagging, and the QSS (q10=q20). The results

are obtained by solving equations (2.3), (2.17), (2.18), (2.21), (4.4), (4.15) to (4.20) and
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the equation that sets q10 according to each of the studied strategies. These results are

presented in Figure 4.5, where WTGS1 PF is addressed as PF1. The WTGS reactive

power limits, which are set to PF equal to 0.95 at rated power (±32.87 %), are also

depicted in Figure 4.5. It should be pointed out that the per-unit values shown in the

figures along this Thesis consider the WTGS rating as the base power.

Figure 4.5: Steady-state reactive power level of WTGS2 with diverse re-
active power strategies in WTGS1 for a sweep in the active power pro-

duced.

The results in Figure 4.5 demonstrate that conventional reactive power strategies

are not acceptable because the reactive power limits of the WTGSs would be exceeded.

Note that this drawback would be even more pronounced in a real OWF which is com-

posed of a high number of WTGSs. It should be pointed out that the study cases pre-

sented in Figure 4.5 lead to voltage magnitudes of the WTGSs (u10 and u20) which are

between 0.9 p.u. and 1.1 p.u., which are acceptable values [5].

However, the QSS maintains both the WTGSs voltages and reactive power levels

within limits. It also provides a single OWF steady-state solution, so it can be consid-

ered as the most appropriated reactive power strategy. Actually, it indicates that all the

OWF WTGSs are responsible for closing the reactive power balance at the PCC bus, but

not only one.

4.3 Decentralized frequency control

The decentralized frequency control proposed in this Thesis is presented in this sec-

tion. The WTGS control is first detailed. Then, the WTGSs synchronization strategy is

described. Finally, the secondary frequency control is also presented because it allows

the achievement of a constant frequency control. Proofs of concept of both the de-

centralized frequency control and the decentralized frequency control with secondary

regulation will be also shown in this section. It should be pointed out that the control

is performed using the WTGS base SWTGSbase,AC .
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4.3.1 WTGS control

The WTGS model is the one which has been presented in Section 2.4 and can be seen

in Figure 4.6. The WTGS input is the power incoming from the BEC and its FEC control

is detailed in Figure 4.6. The diverse three phase voltage and current vectors are trans-

formed into the DQ synchronous frame of the WTGS by means of the transformation

angle φk. Then a current controller and a voltage controller are used in order to deter-

mine the voltage vector to be applied by the FEC vk which is again transformed into

the three-phase system. Moreover, the reactive power ouput of the WTGS is calculated

by means of iok and uk (qk=uk,Qiok,D−uk,Diok,Q).

Figure 4.6: WTGS FEC control scheme for the decentralized frequency
control.

The WTGS control is based on the DFC which has been addressed in Section 4.2.1.

The output voltage vector uk is the voltage vector which is aligned to the DQ syn-

chronous frame of the WTGS. This DQ synchronous frame k rotates at frequency ωk

and has a transformation angle φk which will be obtained by the synchronization method

presented in Section 4.3.2 and Section 4.3.3.

The voltage and current controllers depicted in Figure 4.6 are presented in Figure

4.7. Two control channels can be observed in Figure 4.7. The Q-component channel

attempts to align the voltage vector uk with the DQ synchronous frame of the WTGS

(uk,Q = 0), following the DFC strategy. Then, the uk,Q controller provides the reactive

current reference irefk,Q through PIv controller. The D-component channel performs the

conventional DC voltage control at the FEC in order to supply the incoming power to

the FEC DC link. This means maintaining the FEC DC voltage at its reference value

vrefkdc . Given that the control can reach zero uk,Q with negative uk,D, vkdc error sign is

properly adjusted. PIdc controller provides the active current reference irefk,D and the
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Figure 4.7: Voltage and current controllers of the WTGS FEC control
scheme for the decentralized frequency control.

current controllers are PIc in both control channels. It is worth noting that keeping

unchanged the active-power control channel is an objective of this Thesis.

4.3.2 WTGSs synchronous operation control

The OWF layout analyzed in Section 4.2.1 only has a single aggregated WTGS

which controls the frequency and the angle. However, an OWF has more than one

WTGS and synchronous operation is then required. As it will be shown following, the

QSS will produce the right angle differences among the WTGSs bus voltages and, thus,

the same frequency.

The WTGSs synchronous operation control strategy is depicted in Figure 4.8. It uses

a Q/f droop in order to synchronize all the WTGSs. It is worth noting that ω0 equals

the reference frequency of the system and it is an internal constant value of the WTGS

control.

Figure 4.8: WTGSs synchronous operation control scheme of the decen-
tralized frequency control.

The product of the difference qk−q0 and the constant kdroop produces the frequency

increment over the reference ω0. The objective of the QSS, an equal reactive power level

of the WTGSs, is achieved by setting the same value for kdroop and q0 in all the WTGSs.

During transients, the frequencies will move and the angle differences will be modified

until they reach the steady-state. Therefore, this decentralized frequency control is able
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to reach WTGSs synchronous operation (same ∆ωk) and the right angle differences

which lead to the QSS (same qk) without the need of a communication channel.

It is worth noting that φk is the DQ transformation angle used in the WTGS control

shown in Figure 4.6. Considering that the angle between the stationary system and a

reference frame at frequency ω0 is φ0, φk=φ0+θk (see Figure 4.9). Note that there are

two synchronous reference frames in Figure 4.9: the external dq synchronous reference

frame which rotates at the reference frequency ω0 and the internal DQ synchronous

frame of the WTGS which rotates at frequency ωk. The angle between the external

and the internal frames is addressed as θk, as it can be observed in Figure 4.9. Note

that due to the WTGS control strategy based on the DFC, uk is aligned with the DQ

synchronous frame.

Figure 4.9: Vector diagram of the WTGS voltage vector in the stationary,
WTGS DQ synchronous and dq synchronous reference systems.

As a proof of concept, the OWF layout presented in Figure 4.4 is simulated by using

the decentralized frequency control strategy. The WTGSs are modeled as it has been

described in Section 2.4 and it can be seen in Figure 4.6, but without the crowbar pro-

tection. This system is simulated in Matlab/Simulink by considering dynamic models

of the WTGSs and the HVDC link, the classic AVM of the rectifier and transformer

and the fundamental frequency static model of the grid [6]. The system parameters

can be found in Table 4.1 while the control parameters are shown in Table 4.2. The PI

controllers are addressed through their proportional gain k and their time constant τ .

Table 4.2: Decentralized frequency control parameters in the WTGS base.

Parameter Value

PIdc kdc=3.5 p.u. of WTGS base ; τdc=0.15 s

PIv kv=1 p.u. of WTGS base ; τv=0.15 s

PIc kc=5 p.u. of WTGS base ; τc=0.005 s

kdroop 0.0167 p.u./p.u. of WTGS base

q0 0 p.u. of WTGS base

ksec 300 p.u. of WTGS base s−1



Chapter 4. Decentralized frequency control of OWFs connected to Diode Rectifiers 85

The simulation is performed with both WTGSs at 0.5 p.u. of initial active power.

Active power changes are scheduled t=0.1 s and t=2.5 s. At t=0.1 s, p1dc is increased to

0.75 p.u. and p2dc is decreased to 0 p.u. Then, at t=2.5 s, both WTGS DC powers are

increased to 1 p.u.

Figure 4.10: WTGSs active and reactive powers, frequency, voltage an-
gle difference and voltage magnitude under active power changes and
decentralized frequency control in the two-aggregated WTGSs OWF lay-

out.

These simulation results are shown in Figure 4.10. From top to bottom, active

power, reactive power, frequency, voltage angle difference and voltage magnitude of

each of the WTGSs are presented. Note that the voltage angle difference is considered

between the WTGS terminal voltage and the PCC bus voltage. Moreover, the PCC bus

voltage magnitude upcc is also shown. According to Figure 4.10, WTGSs reach the same

reactive power level in steady-state. They also achieve synchronous operation with a

frequency deviation which is within acceptable limits [5]. It can be observed that the

higher the total active power transmitted through the HVDC link, the higher the volt-

age magnitudes of the offshore AC grid and the higher the reactive power level of the

WTGSs. It is worth noting that these voltage magnitudes are clamped within the range

limited by 0.95p.u. and 1.05 p.u. The synchronization method is clarified by Figure

4.10. WTGSs voltage angles change during the transients until the values required by

the OWF power flow are achieved, thanks to the slightly different transient frequencies

of each WTGS. Therefore, this proof of concept demonstrates the ability of the proposed

strategy to satisfactorily achieve the control objectives.
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4.3.3 Secondary frequency control

As it has been addressed in Section 4.3.2, the decentralized frequency control leads

to OWF frequency deviations. However, a secondary frequency control can be applied

in order to maintain constant frequency if it is required, leading to the decentralized

frequency control with secondary regulation.

In this secondary regulation, a master WTGS is assigned. It generates a variable

reference signal q0 which is sent to the other WTGSs in order to drive the WTGS fre-

quency ωk to its reference value ω0. This control strategy is shown in Figure 4.11. As it

can be observed, q0 is generated through an integral controller with constant ksec. The

other WTGSs receive the signal q0 by means of a communication channel.

Figure 4.11: Control scheme of the decentralized frequency control with
secondary regulation.

As it was previously carried out in Section 4.3.2, the proof of concept is also per-

formed for the decentralized frequency control with secondary regulation. The same

simulation is applied to the same system, so the only change is the control strategy,

whose parameters can be found in Table 4.2. A time delay of 0.1 s is used to simulate

the communication channel and the results are presented in Figure 4.12.

Figure 4.12 shows active power, reactive power, frequency, voltage angle difference

and voltage magnitude of each of the WTGSs from top to bottom. As it can be observed

in Figure 4.12, the decentralized frequency control with secondary regulation guaran-

tees the synchronous operation and the QSS in steady-state while constant frequency is

also achieved. However, this control requires communications among the WTGSs and

the dynamics of its results in Figure 4.12 are slower than the ones in Figure 4.10. This

is due to the integral secondary control together with the communication delay.
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Figure 4.12: WTGSs active and reactive powers, frequency, voltage an-
gle difference and voltage magnitude under active power changes and
decentralized frequency control with secondary regulation in the two-

aggregated WTGSs OWF layout.

4.4 Stability Analysis

The stability analysis of the decentralized frequency control is performed in this

section. Specifically, the OWF layout which is considered is the two-aggregated WTGSs

equivalent presented in Figure 4.4 which uses the type-4 WTGS presented in Section

2.4. For the sake of simplicity, only the stability analysis of the decentralized frequency

control without secondary control will be carried out.

First, the WTGS small-signal model is presented. Then, it will be interconnected

through the OWF admittance matrix to the small-signal model of the HVDC link and

transformer which has been presented in Section 2.3.1.1.

4.4.1 WTGS small-signal model

The WTGS model is connected to the offshore grid by means of the impedance

zg=rg+jxg to a grid bus whose voltage vector is ug=ug,d+jug,q. Given that the reac-

tance xk=0.13 p.u. represents both the line and the transformer short-circuit impedance,

zg will be considered just the transformer reactance which is 0.12 p.u. while the line re-

actance 0.01 p.u. remains in the offshore AC grid.

The aforementioned connection consists of the Thévenin equivalent presented in

Figure 4.13. Note that it is in the external dq synchronous reference frame of the grid,
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given that it is statically considered in this section. Therefore, the model will have trans-

formations from the internalDQ frame to the external dq frame, as shown in Figure 4.9.

Moreover, the WTGS control presented in Section 4.3 is performed in the WTGS base

SWTGSbase,AC , so a base transformation will be considered because the interconnection

in Figure 4.13 is carried out at the global base of the grid Sbase,AC .

Figure 4.13: Thévenin and Norton equivalents of the WTGS to be con-
nected to the offshore AC grid in the small-signal studies of the decen-

tralized frequency control.

However, the Norton equivalent will be used for the small-signal interconnection.

This way, the WTGS model has the grid voltage vector as input and provides the in-

jected current. For this purpose the admittance yg=
1

zg
=gg+jbg is added to the offshore

grid bus and the Norton current injection vector iNk=iNk,d+jiNk,q is considered, as it

is shown in Figure 4.13.

Then, the small-signal model can be derived with the aforementioned considera-

tions. Each WTGS has ten states. First five of them correspond to the FEC DC voltage

vkdc, the filter current components ik,D and ik,Q, and the WTGS voltage components

uk,D and uk,Q. The other five are derived from the decentralized frequency control

presented in Section 4.3.2. These are composed of the angle θk and the states of the

PI controllers: xkdc, xkv, xkcD and xkcQ for PIdc, PIv, D-channel PIc and Q-channel PIc,

respectively. Note that θk is decided to be the state instead of φk, given that they have

the same dynamics but θk will be used to transform variables between the dq and the

DQ synchronous frames.

The inputs of the model are the grid voltage components ug,d and ug,q and the

WTGS DC power pkdc. The outputs are the Norton current components iNk,d and iNk,q
addressed in (4.21).

iNk,d =
SWTGSbase,AC

Sbase,AC

(
(uk,D cos θk − uk,Q sin θk︸ ︷︷ ︸

uk,d

)gg − (uk,D sin θk + uk,Q cos θk︸ ︷︷ ︸
uk,q

)bg

)

iNk,q =
SWTGSbase,AC

Sbase,AC
(uk,dbg + uk,qgg) (4.21)
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The dynamic equations of the model, which are derived from the equations of the

reactances, capacitances and the decentralized frequency controllers, are as follows:

dvkdc
dt

=
ω0

cdcvkdc
(pkdc−vk,Dik,D − vk,Qik,Q︸ ︷︷ ︸

−FEC active power

)

dik,D
dt

=
ω0

xf
(vk,D − uk,D + xf ik,Q)

dik,Q
dt

=
ω0

xf
(vk,Q − uk,Q − xf ik,D)

duk,D
dt

=
ω0

bf
(ik,D − iok,D + bfuk,Q)

duk,Q
dt

=
ω0

bf
(ik,Q − iok,Q − bfuk,D)

dθk
dt

= ω0kdroop(uk,Qiok,D − uk,Diok,Q︸ ︷︷ ︸
qk

−q0)

dxkdc
dt

=
kdc
τdc

(vkdc − vrefkdc)

dxkv
dt

=
kv
τv

( 0︸︷︷︸
urefk,Q

−uk,Q)

dxkcD
dt

=
kc
τc

(
kdc(vkdc − vrefkdc) + xkdc︸ ︷︷ ︸

irefk,D

−ik,D
)

dxkcQ
dt

=
kc
τc

(
kv(0− uk,Q) + xkv︸ ︷︷ ︸

irefk,Q

−ik,Q
)

(4.22)

where:

vk,D = kc(i
ref
k,D − ik,D) + xkcD − xf ik,Q + uk,D

vk,Q = kc(i
ref
k,Q − ik,Q) + xkcQ + xf ik,D + uk,Q

iok,D = (uk,D −ug,d cos θk − ug,q sin θk︸ ︷︷ ︸
−ug,D

)gg − (uk,Q +ug,d sin θk − ug,q cos θk︸ ︷︷ ︸
−ug,Q

)bg

iok,Q = (uk,D − ug,D)bg+(uk,Q − ug,Q)gg (4.23)
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Therefore, the WTGS small-signal model can be obtained and it is shown in (4.24).

Its inputs, outputs and states are ∆u=[∆ug,d,∆ug,q,∆pkdc]
T, ∆y=[∆iNk,d, iNk,q]

T and

∆x=[∆vkdc,∆ik,D,∆ik,Q,∆uk,D,∆uk,Q,∆θk,∆xkdc,∆xkv,∆xkcD,∆xkcQ]T, respectively.

d∆x

dt
= A∆x + B∆u

∆y = C∆x + D∆u (4.24)

where A, B, C and D are as follows:

A =



a11 a12 a13 a14 a15 0 a17 a18 a19 a110

a21 a22 0 0 0 0 a27 0 a29 0

0 0 a33 0 a35 0 0 a38 0 a310

0 a42 0 a44 a45 a46 0 0 0 0

0 0 a53 a54 a55 a56 0 0 0 0

0 0 0 a64 a65 a66 0 0 0 0

a71 0 0 0 0 0 0 0 0 0

0 0 0 0 a85 0 0 0 0 0

a91 a92 0 0 0 0 a97 0 0 0

0 0 a103 0 a105 0 0 a108 0 0



B =



0 0 b13

0 0 0

0 0 0

b41 b42 0

b51 b52 0

b61 b62 0

0 0 0

0 0 0

0 0 0

0 0 0



C =

0 0 0 c14 c15 c16 0 0 0 0

0 0 0 c24 c25 c26 0 0 0 0



D =

[
0 0 0

0 0 0

]
(4.25)
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where the non-defined terms are as follows:

a11 =
−ω0

cdcvkdc0
kckdcik,D0

a12 =
ω0

cdcvkdc0
(kcik,D0 − vk,D0 − xf ik,Q0)

a13 =
ω0

cdcvkdc0
(kcik,Q0 − vk,Q0 + xf ik,D0)

a14 =
−ω0

cdcvkdc0
ik,D0 = a19 =

a17
kc

a15 =
−ω0

cdcvkdc0
(ik,Q0(1− kckv))

a18 =
−ω0

cdcvkdc0
kcik,Q0 = kca110

a21 =
ω0

xf
kckdc = −kdca22 = kdca27 = kckdca29

a33 =
−ω0

xf
kc =

a35
kv

= −a38 = −kca310

a42 =
ω0

bf
=
−a44
gg

=
a45

bc + bg
=

−a46(
∂iok,D
∂θk

)
0

a53 =
ω0

bf
=
−a55
gg

=
−a54
bc + bg

=
−a56(
∂iok,Q
∂θk

)
0

a64 = ω0kdroop(−iok,Q0 + uk,Q0gg − uk,D0bg)

a65 = ω0kdroop(iok,D0 − uk,Q0bg − uk,D0gg)

a66 = ω0kdroop

(
uk,Q0

(
∂iok,D
∂θk

)
0

− uk,D0

(
∂iok,Q
∂θk

)
0

)

a71 =
kdc
τdc

a85 =
−kv
τv

a91 =
kc
τc
kdc = −kdca92 = kdca97 = −kdca103 = kdca108 =

−kdc
kv

a105
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b13 =
ω0

cdcvkdc0

b41 =
ω0

bf
(gg cos θk0 + bg sin θk0)

b42 =
ω0

bf
(gg sin θk0 − bg cos θk0)

b51 =
ω0

bf
(bg cos θk0 − gg sin θk0)

b52 =
ω0

bf
(bg sin θk0 + gg cos θk0)

b61 = ω0kdroop

(
uk,Q0(−gg cos θk0 − bg sin θk0)− uk,D0(−bg cos θk0 + gg sin θk0)

)
b62 = ω0kdroop

(
uk,Q0(−gg sin θk0 + bg cos θk0)− uk,D0(−bg sin θk0 − gg cos θk0)

)
c14 = kbase(gg cos θk0 − bg sin θk0)

c15 = kbase(−gg sin θk0 − bg cos θk0)

c16 = kbase

(
(−uk,D0 sin θk0 − uk,Q0 cos θk0)gg − (uk,D0 cos θk0 − uk,Q0 sin θk0)bg

)
c24 = kbase(bg cos θk0 + gg sin θk0)

c25 = kbase(−bg sin θk0 + gg cos θk0)

c26=kbase

(
(−uk,D0 sin θk0−uk,Q0 cos θk0)bg+(uk,D0 cos θk0−uk,Q0 sin θk0)gg

)
(4.26)

where:(
∂iok,D
∂θk

)
0

= (ug,d0 sin θk0 − ug,q0 cos θk0)gg − (ug,d0 cos θk0 + ug,q0 sin θk0)bg

(
∂iok,Q
∂θk

)
0

= (ug,d0 sin θk0 − ug,q0 cos θk0)bg − (ug,d0 cos θk0 + ug,q0 sin θk0)gg

kbase =
SWTGSbase,AC

Sbase,AC
(4.27)

4.4.2 OWF layout small-signal model

The small-signal models of the WTGS and the HVDC link and transformer which

have been presented in Section 4.4.1 and Section 2.3.1.1, respectively, are used to build

the small-signal model of the two-aggregated WTGSs OWF layout. For this purpose,
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the aforementioned models are interconnected by using the admittance matrix of the

grid, as it is established in [3]. The only requirement is that the small-signal models

need the terminal voltage as input and the injected current as output. Moreover, the

grid admittance matrix must be modified in the WTGSs buses due to the Norton equiv-

alent considered, as it has been stated in Section 4.4.1.

The WTGS small-signal model has 10 state variables while the HVDC link one has

3 state variables. Therefore, the global system has 23 state variables. This small-signal

model depends on the active power injection of each of the two WTGSs. It has been

checked that the eigenvalues stability criterion is satisfied for all the possible combi-

nations of active powers generated by the WTGSs by sampling each of them in 100

1%-intervals from 1 % to 100 %. However, the number of combinations is really high to

show these results. For the sake of clarity, a specific part of the previous study is shown

here, where both WTGSs are generating the same active power. These results are pre-

sented in Figure 4.14, where the arrow indicates the color code used for the generated

active power increment.

Figure 4.14: Eigenvalues of the two-aggregated WTGSs OWF layout
with the decentralized frequency control for diverse active power lev-

els (arrow indicates increasing the active power generated).

As it can be observed in Figure 4.14, the system is stable due to the non-positive

real part of the eigenvalues. However, the high amount of state variables makes dif-

ficult to analyze the system. Therefore, Figure 4.15 shows zoomed views of the most

relevant eigenvalues of the system, which are the ones closer to the imaginary axis. Fur-

thermore, the dominant eigenvalues of the state variables which move with the active

power increment are also presented in Figure 4.15.

In Figure 4.15a, the dominant state of the eigenvalues which move is the PIv con-

troller state. The arrows show that the higher the active power generated, the higher
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(a) Zoomed view 1. (b) Zoomed view 2.

(c) Zoomed view 3.

Figure 4.15: Zoomed views of the eigenvalues of the two-aggregated
WTGSs OWF layout with the decentralized frequency control for di-
verse active power levels (arrows indicate increasing the active power

generated).

the damping of the complex eigenvalues analyzed there. It should be pointed out that

there are two eigenvalues which do not depend of the active power generated in Figure

4.15a. The first one is located at the origin of the system and its dominant state variable

is ∆θk. The second one is over the real axis at the position−6.67 s−1, being its dominant

state ∆xkdc.

Figure 4.15b and Figure 4.15c show the movement of other two complex eigenval-

ues when the generated active power is increased. For the sake of clarity, just the posi-

tive imaginary eigenvalue is shown in these figures. The two dominant states in Figure

4.15b correspond to the HVDC link (∆vc and ∆idc2), while the dominant state in Figure

4.15c belongs to the WTGSs (∆uk,Q). In Figure 4.15b, the damping improves when the

active power is increased, with the eigenvalues moving far from the imaginary axis.

However, the opposite variation can be observed in Figure 4.15c.

4.5 Simulation results

The OWF model which is used to validate the decentralized control proposal by

using a DSM simulation in PSIM is presented in Figure 4.16. It uses the type-4 WTGS

model presented in Section 2.4. This OWF layout represents an OWF which has 90



Chapter 4. Decentralized frequency control of OWFs connected to Diode Rectifiers 95

WTGSs rated 5 MW. The WTGSs are distributed in three clusters which have indepen-

dent line feeders and three strings with 10 WTGSs per string. Each of the aggregated

WTGSs is rated 75 MW. T1 steps up from 0.69 kV to 33 kV which are in turn stepped

up to 220 kV by T2. These transformers are modeled by their short-circuit impedance

rTk + jxTk (being k the identification number of the transformer). Note that the short-

circuit resistance rt of the diode rectifier transformer has also been considered in this

model. π-models are used for the OWF cables and the harmonic filters (filter 1 and

filter 2 in Table 4.3) are single tuned filters at the main harmonics of the twelve-pulse

rectifier: 11 and 13, respectively. They are tuned considering a reactive power of 13.388

MVAr at fundamental frequency and a quality factor of 1000 [7]. Control parameters

can be found in Table 4.2 while the system parameters of the OWF layout in Figure 4.16

are presented in Table 4.3.

Figure 4.16: OWF equivalent with six aggregated WTGSs and an HVDC
composed of a T-modeled cable and a diode rectifier.

Before the simulation, a steady-state analysis is performed to check the operation

points. At full load, each WTGS supplies a reactive power of 0.205 p.u. and the offshore

AC-grid highest voltage is 1.077 p.u. At low load, the reactive power absorbed by each

WTGS is 0.2607 p.u., being 0.9107 p.u. the lowest voltage in the offshore AC-grid.

Therefore, the operation points are between acceptable limits [5].

The simulation carries out both the startup and the fault response of the system.

For the startup, WTGS1 starts receiving power from the BEC at t=0.1 s with a constant

rate of 1 p.u./s. Then, WTGS2 to WTGS6 also startup in the same conditions with a
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Table 4.3: Parameters of the OWF layout with six-aggregated WTGSs
used in the decentralized frequency control simulation.

Parameter Value

Base f0=50 Hz ; Sbase,AC=450 MVA ; Vbase,AC=220 kV

nb 2 six-pulse bridges

xt/nb 0.12 p.u. (xt/rt=80)

rdck 0.003186 p.u.=2.5 Ω (k = 1, 2)

ldck 0.2 p.u.=0.5 H (k = 1, 2)

cc 6.409 p.u.=26 µF

cdc 0.15 p.u. of WTGS base

xf 0.15 p.u. of WTGS base

bf 0.05 p.u. of WTGS base

rcb 20 mΩ

xk 0.13 p.u. (k = 1, 2)

xT1/6 0.07 p.u. of transformer base (xT1/rT1=80)

xT2/3 0.1 p.u. of transformer base (xT2/rT2=80)

cable π1 r=0.02826 p.u. x=0.03038 p.u. b=0.003011 p.u.

cable π2 r=0.02776 p.u. x=0.0787 p.u. b=0.005237 p.u.

cable π3 r=0.001882 p.u. x=0.0111 p.u. b=0.0642 p.u.

filter 1 R=0.3286 Ω L=0.0951 H C=0.8805 µF

filter 2 R=0.2774 Ω L=0.0679 H C=0.8805 µF

vdi 0.9654 p.u.

0.1-s delay between each WTGS startup. The final operation points reached by the WT-

GSs after the startup correspond to 0.9 p.u., 0.75 p.u., 0.6 p.u., 0.45 p.u., 0.3 p.u. and

0.15 p.u. from WTGS1 to WTGS6, respectively. At t=2.5 s, a 300-ms fault is scheduled at

the PCC bus. During the fault, the incoming active power to the FEC is driven to zero

and it is increased with a constant rate of 1 p.u./s once the fault is cleared. Current

is controlled during the fault to provide the FRT response of the WTGS. Furthermore,

crowbar overvoltage protection is activated when the FEC DC voltage is over 1.25 p.u.

and deactivated when it goes under 1.2 p.u. These simulation results are shown in Fig-

ure 4.17 and Figure 4.19 for the decentralized frequency control and the decentralized

frequency control with secondary regulation, respectively.

After the startup and fault simulation, active power changes are carried out in order

to show the control performance when the WTGSs are generating the same amount of

active power. Even thoguh this simulation is just the continuation of the previous one,

the results are separated in two figures for the sake of clarity. Specifically, from t=5.5 s

to t=6.5 s, the WTGSs DC powers are reduced at constant rates until 0.02 p.u. Likewise,

the WTGSs DC powers are increased at constant rates until 1 p.u. from t=7.5 s to t=8.5 s.
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The corresponding results of this simulation case are shown in Figure 4.18 and Figure

4.20 for the decentralized frequency control and the decentralized frequency control

with secondary regulation, respectively.

4.5.1 Decentralized frequency control

The simulation results of the six-aggregated OWF layout with the decentralized

frequency control are presented in Figure 4.17. Startup, normal operation and fault re-

sponse are shown in Figure 4.17. From top to bottom, Figure 4.17 shows the WTGSs

active and reactive powers, their FECs DC voltages and the PCC bus frequency and

phase voltage. The decentralized frequency control is able to startup the system, pro-

vided that the FECs DC buses are fed. A steady-state operation at 49.92 Hz is reached

while the WTGSs have the same reactive power level which does not exceed the reac-

tive power limits. The fault response mainly depends on the FEC response to the volt-

age sag and synchronous operation is recovered after the fault is cleared. The crowbar

actuation can be observed in the WTGSs DC voltages during the first milliseconds of

the fault. Finally, it is worth mentioning that frequency is measured by means of a PLL

in Section 4.5, so it is affected by its dynamics.

Figure 4.17: WTGSs active power, reactive power and DC-bus voltage,
PCC frequency and phase voltage responses to startup procedure and
fault under decentralized frequency control in the six-aggregated WT-

GSs OWF layout. Simulation 1.

After the simulation shown in Figure 4.17, active power changes are performed in

the WTGSs. The results are shown in Figure 4.18, which shows the same variables as

Figure 4.17. The results in Figure 4.18 show how the offshore AC grid frequency varies
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depending on the total active power transmitted through the HVDC link, while this is

not evident in Figure 4.17. Moreover, these simulation results indicate the frequency

deviation, which is between 49.78 Hz at low load and 50.16 Hz at full load including

the transients.

Figure 4.18: WTGSs active power, reactive power and DC-bus voltage,
PCC frequency and phase voltage responses to active power changes un-
der decentralized frequency control in the six-aggregated WTGSs OWF

layout. Simulation 2.

4.5.2 Decentralized frequency control with secondary regulation

The same simulation that has been performed in Section 4.5.1 is carried out using

the decentralized frequency control with secondary regulation. As it was performed in

Section 4.3.3, the communication delay is simulated by means of a time delay of 0.1 s

and WTGS1 is the master unit. Active and reactive powers, their FECs DC voltages and

the PCC bus frequency and phase voltage results are shown in Figure 4.19 from top to

bottom. As it can be observed, the frequency is maintained at its reference value 50 Hz

after both the startup and the fault. It can be also observed that the system response is

slowed down with the secondary frequency control due to the integral action. Finally,

the decentralized frequency control with secondary regulation is also able to startup

the offshore grid, operate the system and recover voltage once the fault is cleared.
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Figure 4.19: WTGSs active power, reactive power and DC-bus voltage,
PCC frequency and phase voltage responses to startup procedure and
fault under decentralized frequency control with secondary regulation

in the six-aggregated WTGSs OWF layout. Simulation 1.

As it was stated in Section 4.5.1, after the startup and fault shown in Figure 4.19, ac-

tive power changes are performed in the WTGSs DC inputs. This active power changes

are the same ones which have been applied in the simulation of Section 4.5.1 but using

the decentralized frequency control with secondary regulation. The results in Figure

4.20 demonstrate that frequency is maintained at the reference value in steady-state, by

comparing Figure 4.18 and Figure 4.20. Furthermore, results in Figure 4.20 clearly show

that the reactive power level of the master WTGS deviates more from the steady-state

value than in the other WTGSs. This effect could be expected because the communi-

cation delay makes the master WTGS assume a higher reactive power deviation and it

can be slightly observed by comparing Figure 4.18 and Figure 4.19.
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Figure 4.20: WTGSs active power, reactive power and DC-bus voltage,
PCC frequency and phase voltage responses to active power changes
under decentralized frequency control with secondary regulation in the

six-aggregated WTGSs OWF layout. Simulation 2.

4.6 Conclusions

This chapter has presented a decentralized frequency control which allows the syn-

chronous operation of the WTGSs of an OWF which is connected to the onshore grid

by means of a diode-rectifier-based HVDC link.

The frequency control is based on the DFC, which aligns the voltage at the WTGS

output filter capacitor to an internal frame of the WTGS. This control strategy just uses

the WTGS reactive power for this purpose, so its active power control channel remains

unchanged, which is one of the specifications of the control system design. Then, the

synchronous operation of the WTGSs is achieved by the use of a Q/f droop which syn-

chronizes the WTGSs voltages without the need of communications among the WT-

GSs. Simultaneously, the Q/f droop strategy leads to an equal reactive power level of

the WTGSs of the OWF. This is also an objective of the proposed control strategy in

order to avoid the WTGSs exceeding their reactive power limits.

Moreover, the stability of the proposed control has been checked by the analysis

of the small-signal model of an OWF equivalent layout. Additionally, a secondary

frequency control has also been proposed for constant frequency operation, if required.

However, if the Q/f droop gain is properly designed, the frequency deviations are

acceptable and this control feature could be avoided, provided that it implies the use

of communications among the WTGSs.
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Both control proposals have been checked by a DSM simulation in PSIM. Startup,

operation and fault response have been simulated and the control performance achieves

the control objectives.

Although type-4 WTGSs have been used to validate this control proposal in both

the stability and the simulation studies, type-3 WTGSs can be also used. Type-3 WTGSs

can be controlled as a voltage source [8] which in turn means that they can behave as

type-4 WTGSs. Therefore, this decentralized frequency control could be applied to an

OWF based on type-3 WTGSs.
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This chapter addresses the main contributions of this Thesis. Then, the original

contributions are also described in Section 5.2. Moreover, the diverese publications

which have been produced are shown in Section 5.3. Finally, Section 5.4 presents the

financing sources which have supported this Thesis.

5.1 General conclusions

This Thesis presents control solutions for the operation of OWFs connected to the

onshore grid through an HVDC link with LCC-based rectifier. Due to the advantages in

terms of computing time and continuous nature of average-value modeling in power

electronics studies, a novel AVM has been used for the control derivation, design and

simulation. Actually, an AVM of an LCC-rectifier station has been proposed in Chapter

2, where the modeling of the elements in the system has also been addressed.

The proposed AVM has the WTGS operation variables as inputs: the produced

active and reactive powers. Moreover, the state variables are the PCC voltage vector

magnitude and angle, which are the variables to be controlled in the OWF to allow

the LCC-rectifier operation. These are the main advantages of the proposed AVM,

whose dynamic equations show that the active power balance at the PCC bus drives the

voltage magnitude variations while the corresponding reactive power balance drives

the frequency variations.

Therefore, the proposed AVM allows the derivation of the centralized voltage and

frequency control strategy presented in Chapter 3. This centralized control is split

103
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in two categories: the frequency control for a diode-rectifier-based HVDC connection

and the voltage and frequency control for a thyristor-rectifier-based HVDC connection.

Even though the OWF AC grid voltage magnitude cannot be controlled if the diode rec-

tifier is used, it is demonstrated that it is bounded between acceptable limits according

to grid codes.

Since the centralized frequency control derivation, design, stability analysis and

simulation are carried out by the proposed AVM, both the proposed model and control

are also validated against the results of a DSM implemented in PSIM. This validation

is performed considering both the small-signal frequency-domain and the large-signal

time-domain responses. Moreover, the appropriate fault response of the controlled

systems is checked, being voltage and frequency recovered once the fault is cleared.

A decentralized frequency control has been presented in Chapter 4, which allows

the connection of OWFs to the onshore grid through diode-rectifier-based HVDC links.

For this purpose, the terminal voltage of each of the WTGSs is aligned with the the

internal frame of the corresponding WTGS. Then, the synchronous operation of the

WTGSs is achieved by using a Q/f droop. This Q/f droop simultaneously achieves

the control objective which consists of reaching an equal reactive power level at the

WTGSs without the need of communications among them. The stability of this control

proposal has also been checked by small-signal analysis.

The proposed decentralized frequency control produces acceptable frequency de-

viations. A secondary frequency control is still proposed because it maintains constant

frequency by taking advantage of communications among the WTGSs. Both decen-

tralized control proposals are simulated by a DSM in PSIM to check the appropriate

startup, operation and fault response performance of the controlled systems.

None of the proposed controls modifies the active power control channel of the

WTGSs, which is a specification of the control system. Also, the control proposals do

not rely on PLL measurements, so they are not subject to grid disturbances or measure-

ment noise. Moreover, the proposed controls can be applied to both type-3 and type-4

WTGSs, although it has only been tested in type-4 WTGSs. The centralized control

proposal should be enhanced in order to have the OWF startup capability, while the

decentralized control proposal is able to startup the OWF. Therefore, the objectives of

this Thesis have been achieved by the proposals which have been presented.

5.2 Original contributions

The main original contributions of this Thesis are:

• An LCC rectifier substation AVM which includes the AC capacitor bank dynam-

ics and clearly demonstrates that the OWF voltage is driven by the active power

balance while the frequency is driven by the reactive power balance.
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• Frequency control solutions which do not rely on PLL measurements and remain

unchanged the active power control channel of the WTGSs.

• A centralized frequency control solution which allows the operation of the OWF

connected to an LCC-rectifier-based HVDC link.

• A decentralized frequency control which simultaneously synchronizes the WT-

GSs operation and equally shares the OWF reactive power demand among the

WTGSs.

• An analytical demonstration of the limited variation of the OWF AC voltage mag-

nitude which indicates that the voltage control is not required and that the power

injected to the PCC bus is automatically delivered to the HVDC link.

• Stability studies which demonstrate that the operation with the proposed controls

is stable.

5.3 Publications

The diverse publications throughout this Thesis are sorted by the date of publica-

tion. They are also separated in three different categories: journal papers, conference

papers and patent applications.

5.3.1 Journal papers

• Cardiel-Alvarez, M. A., Rodriguez-Amenedo, J. L., Arnaltes, S., and Montilla-

DJesus, M. E. "Modeling and Control of LCC Rectifiers for Offshore Wind Farms Con-
nected by HVDC Links". IEEE Transactions on Energy Conversion, vol. 32, no. 4,

pp. 1284-1296, April 2017.

• Cardiel-Alvarez, M. A., Arnaltes, S., Rodriguez-Amenedo, J. L., and Nami, A.

"Decentralized Control of Offshore Wind Farms Connected to Diode-based HVDC Links".

IEEE Transactions on Energy Conversion, February 2018.

5.3.2 Conference papers

• Rodriguez-Amenedo, J. L., Arnaltes, S., Cardiel-Álvarez, M. Á., and Montilla-

DJesus, M. "Direct Voltage and Frequency Control of an Offshore Wind Farm Connected
through LCC-HVDC Link". In Power Electronics and Applications (EPE’17 ECCE

Europe), 2017 19th European Conference on (pp. 1-10). IEEE, September 2017.
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5.3.3 Patent applications

• S. Arnaltes Gómez, J. L. Rodríguez Amenedo, M. Á. Cardiel Álvarez. “Método
para el control distribuido de la frecuencia en un parque eólico offshore”. Patent Appli-

cation P201731257, 25/10/2017.
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