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ABSTRACT 

 
 

Imaging techniques using fluorescence as the source of contrast has been widely 

used in the last decades in biology. Even though fluorescence can give a lot of 

information, it is sometimes hard to see contrast based on the intensity of 

fluorescent molecules. This bachelor thesis is based on the idea that contrast in 

fluorescence images can also be obtained using something different than intensity. 

In this project, the source of contrast will be the lifetime of a fluorophore, which is 

understood as the time it takes for an excited electron to go back to its ground state. 

This property is not affected by concentration, photobleaching or quenching. 

However, it can vary depending on the microenvironment pH, temperature, 

viscosity, or binding to other molecules. All of these characteristics make lifetime a 

very suitable property for studying different dynamic processes in the cells, at the 

same time as being a good source of contrast in highly autofluorescence samples. 

The main objective of this thesis was to build a system based on frequency domain 

lifetime imaging. For its development intensity modulation of a laser as a sine wave 

at MHz frequencies was required, as well as precise coordination between the laser 

and the acquisition system (ICCD camera) to see contrast based on lifetime. The 

project was performed at Universidad Carlos III de Madrid where the 

implementation of the system took place, as well as its testing to check its capacities 

and limitations.  
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1. Introduction 

1.1. Motivation 
 

Different modalities are widely available for in vivo medical imaging, such as X-

ray, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound 

(US). In each of these modalities different contrast agents are used, as iodine 

compounds (X-ray), paramagnetic metals (MRI) or microbubbles (US), however, for 

the most part, they are non-targeted compounds, i.e. they don’t specifically bind to 

the target molecule, producing detectable signal constantly. Although these 

techniques have been used to diagnose and monitor many different diseases, a new 

approach where background signal is reduced and target signal increased is desired, 

which will lead to an increased in target-to-background ratio, enhancing sensitivity 

and specificity.  

This new approach where target signal is maximized has been implemented thanks 

to the development of fluorescent activatable probes in optical imaging. Fluorescent 

activatable probes are defined as compounds that only emit light under specific 

situations, such as enzymatic reactions, changes in the pH or oxygen concentration 

in the microenvironment, or binding to a specific molecular target. Therefore, they 

are “off” while none of these conditions take place, greatly reducing the background 

signal. Cancer cells have distinctive microenvironment and cell surface compared to 

those of normal cells, which makes fluorescent activatable probe suitable for 

targeted imaging. In addition to this, fluorophores can be conjugated with molecules 

that give them specificity, which ensures signal in the desired target  [1].  

However, if intensity fluorescence measurements are being taken, it is important to 

have in mind that UV light excitation can lead to cell damage, while visible light 

excitation is only suitable for surface imaging (for green and blue excitation) due to 

its low penetration ability, and around 600nm excitation causes excessive 

autofluorescence. Near Infrared (NIR) excitation (650-900nm) gives deepest tissue 

penetration as well as lower autofluorescence being the suitable excitation for in 

vivo applications [2].  

Fluorescence activatable probes are a newly developed tool to increase signal-to-

background ratio, but it is not the only way to increase contrast. If instead of 
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imaging the intensity of the emitted fluorescence, the rate at which fluorescence 

took place is imaged, a new source of contrast would be found. In this bachelor 

thesis Fluorescence Lifetime Imaging (FLI) was used, where lifetime measurement 

is used as the source of contrast. Since lifetime is independent of concentration, 

excitation light and light scattering, if tissue autofluorescence has a different lifetime 

than the fluorescent probe being image, FLI measurements will allow for easy 

removal of background noise without the need of special fluorophores [3]. 

 

1.2. Fluorescence 
 

Different processes take place when light interacts with matter. Light can be 

scattered, absorbed or emitted. For the purpose of this bachelor thesis only light 

absorption and emission will be studied, since light scattering will not be necessary 

in order to understand the basics concepts of the experiment performed. 

Light absorption occurs when light is able to excite some electrons to move from the 

ground state to an unoccupied orbital in the excited state. Since this high-energy 

state is very unstable, there are several ways for the electron to go back to its 

ground state, and photons can be emitted in the process (radiative de-excitation).  

An easy and visual way to see the different possibilities the electron has to go back 

to its ground state, are represented in a Perrin-Jablonski diagram. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Perrin-Jablonksi diagram from [4] 



 17 

Depending on the rate at which the emission occurs we can distinguish between 

fluorescence and phosphorescence. Fluorescence has lifetimes in the nanosecond to 

hundred nanoseconds scale, while phosphorescence processes have longer lifetime 

around the 10-6 to one-second range. To understand the time difference between 

these two phenomena a look into the spin number and multiplicity of the excited 

states is required.  

 

 

 

 

 

 

 

 

Figure 2: Total spin number and multiplicity in singlet and triplet state from [4]. 

 

As it can be seen in the figure above two different states can be differentiated. The 

first one corresponds to a singlet state (S=0, M=1). The second one is a triplet state 

(S=1, M=3), and it is produced when an electron in the singlet state undergoes a spin 

reversal, which increases the total spin number and the multiplicity, which makes it 

have a lower energy according to Hund’s rule. Transitions from T1 to S0 through 

non-radiative processes (where no photons are emitted) are very efficient and 

therefore radiative emission (phosphorescence) rarely occurs.  

Fluorescence is the light emission resulting from a transition between a singlet-

excited state (S1) to a ground state (S0), while phosphorescence takes place during 

the transition from a triplet state (T1) back to the ground state. 
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Another important feature to take into account regarding fluorescence (and also 

phosphorescence) is that the emission wavelength maximum is always going to be 

higher than the absorption one since some energy has been lost through vibrational 

relaxation (Stokes Shift) [4].  

(Recall the energy of a photon can be calculated as 𝐸 =
ℎ𝑐

𝜆
)  

 

  

 

 

 

 

Figure 3: Example of fluorophore absorption and emission profile from [5] 

 

The two properties that best characterize a fluorophore (molecule that emits light 

through fluorescence) are lifetime (τ) and quantum yield (𝒬). Lifetime can be 

understood as the “average time the molecule spends in the excited state prior to 

return to the ground state” [6], and quantum yield refers to the “number of emitted 

photons relative to the number of absorbed ones” [6]. These two properties have 

mathematical expressions that take into account the radiative de-excitation rate (Γ), 

as well as the non-radiative de-excitation (knr).  

τ =
1

Γ+knr
     𝒬 =

Γ

Γ+knr
 

 

 



 19 

1.2.1. Fluorescence Imaging  

The use of fluorescence as a way of obtaining new and more informative images 

was a breakthrough in the microscopy field, leading to the development of several 

techniques that use fluorescence. Some of these techniques are epifluorescence 

microscopy, confocal microscopy, multiphoton fluorescence excitation microscopy 

and fluorescence lifetime imaging to name a few. 

Fluorescence microscopy is especially important in biology for different reasons. It 

allows for high contrast images, provided by the fluorescence emission against a 

black background. High specificity is achieved, since biological samples can be 

genetically or chemically modified to express fluorescent labels where desired. 

Moreover, it allows for live cell imaging, making it a very useful technique to 

understand cell processes in vivo and in real time.  It can also be used to examine 

physiological concentration of different ions, to detect the presence of specific 

molecules or cells, or act as a marker for specific cellular structures 

The main components of a basic fluorescence microscope are represented in Figure 

4. 

 

 

 

 

 

 

 

 

 

Figure 4: Basic set up for a fluorescence microscope from [7] 

 



 20 

It is important to notice the need of different filters in order to obtain a fluorescence 

image. The excitation filter allows only for the transmission of the excitation 

wavelength, which is different for each fluorophore. On the other hand, the emission 

filter will only let the wavelength corresponding to emission, which is also a 

characteristic feature of each fluorophore, to go through it and get to the detector. 

This imaging technique can be done thanks to the difference in wavelength for the 

absorption and emission, described previously as Stokes Shift, allowing removal of 

the excitation wavelength on the final image.   

Since filters have to match the specific absorption and emission curves of each 

fluorophore, if two different fluorophores are present in a sample, in a simple set up 

filters will only allow for the imaging of one of them. By changing the set of filters to 

match each specific fluorophore, images like the one shown in Figure 5 can be 

obtained by merging the individual images of the different fluorophores afterwards 

[8].  

 

 

 

 

 

 

Figure 5: Fluorescent image of cell showing actin filament (green), nucleus (blue) and 
mitochondria (yellow) from [9] 

 

Even though this intensity based methods have been critical for biological studies 

and have given information about cellular morphology, measurement of molecule 

concentration inside the cell and protein binding processes to give some examples, 

fluorophores are highly subjected to the local environment, and can photobleach, 

quench or modify its intensity as a decrease in fluorophore concentration. 

Photobleaching is the irreversible damage of the fluorescent molecules due to 

overexposure of the sample, quenching is produced when there is a transfer of 
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energy to another molecule (acceptor), which resides physically close to the excited 

fluorophore (donor)[10].   

1.2.2. Fluorescence Lifetime Imaging 

Fluorescence Lifetime Imaging Microscopy (FLIM) is a type of fluorescence 

microscopy but the contrast in this technique is given by measuring the lifetime of 

the sample in each region. This makes it a time-resolved method that can provide 

more information than steady-state ones (intensity based).   

If there were two different regions on a sample, with the same fluorescent molecule 

present, but with a different concentration of some molecules, when comparing 

these two methods on a single image (Figure 6) two very different images would be 

obtained. Measuring the intensity of the fluorescence emission it might not be 

possible to differentiate between the two regions, since the quantum yield might be 

the same, but if what was been image was the lifetime instead, a clear picture that a 

different environment was affecting both regions is obtained, since lifetime is highly 

dependent on the local environment factors such as temperature, pH, oxygen 

concentration... Factors affecting the lifetime of fluorophores will be discussed in 

more detailed in the following sections of this work. 

 

 

 

 

 

 

 

Figure 6: Basic representation fluorescence intensity image vs. FLIM from [6] 

Lifetime is an intrinsic property of the fluorophore, i.e. it is not affected by the 

amount of fluorophore present. This insensitivity to intensity-based artifacts such as 
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photobleaching, detection gain setting or modifications in the excitation sample 

intensity makes it more suitable than steady state fluorescence for many 

applications[11]. However, FLIM measurements are harder to get. 

There are two main ways of measuring lifetime, time domain (TD) or frequency 

domain (FD) methods, which will be further explained in the following section. 

 

 Time Domain Lifetime Measurements 

Using Time Domain methods in order to calculate the lifetime of a fluorophore a 

pulse excitation shorter than the lifetime of the fluorophore under study is required.  

The lifetime will be calculated using the slope of the logarithmic intensity vs. time 

plot (Figure 7). 

 

 

 

 

 

 

Figure 7: TD lifetime measurements from [6] 

 

The most common approach for time-domain FLIM is Time correlated Single photon 

counting (TCSPC), where after the pulse excitation the time until the first photon 

reaches the detector is measured. After several pulse excitations and corresponding 

photon measurements a histogram representing the photon distribution in terms of 

delay can be obtained. The histogram represents the fluorescence decay, which 

follows an exponential law.  
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Figure 8: TCSPC measurements from [12] 

No further details will be given about this technique since it is out of scope of this 

work. 

 

 Frequency Domain Lifetime Measurements 
 

Frequency Domain methods rely on a modulated excitation rather than the 

pulse excitation used in TD.  The sample is excited with sine wave amplitude-

modulated light and the modulation frequency has to be of the order of megahertz 

for the frequency to be comparable to the lifetime of nanoseconds of fluorescence 

emission.  Fluorescence emission will have the same frequency as the excitation one, 

but a phase-shift and modulation will be seen (Figure 9). The phase shift and 

demodulation can be used to calculate 𝜏. 

 

 

 

 

 

 

 

 

 

 

Figure 9: FD lifetime measurements from [6] 
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The formulas require for estimating the lifetime using the phase shift and the 

demodulation measurements are the ones below, were 𝜔 is determined by the 

modulation frequency, 𝜙 corresponds to the phase shift between the excitation and 

the emission and 𝑚 is understood as the demodulation of the emission with respect 

to the excitation. 

tan(𝜙) = 𝜔 𝜏𝜙 →   𝜏𝜙 = 𝜔
−1𝑡𝑎𝑛 (𝜙) 

m =
1

√1+ω2τm
2
→   τm =

1

ω
√

1

m2 − 1 

(Derivation of these formulas can be found in the Annex: 7.1 Decay time formulas 

derivation for FD) 

The modulation frequency can be modified depending on the lifetime of the 

fluorophore, but it is important to take into account that the modulation frequency 

has to be comparable to the lifetime, which means that 

1

𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
∝ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 

 

 Factors affecting lifetime 
 

As it was mentioned in the previous sections, lifetime is an intrinsic property of 

the fluorescent molecule, and it is not dependent on factors that modify the intensity, 

such as fluorophore concentration, photobleaching, neither on the duration of the 

excitation. But there are many other factors that can modify the lifetime of a 

fluorophore. Lifetime is estimated based on the radiative de-excitation rate as well 

as the non-radiative de-excitation rate, therefore modifications of this two 

properties will result in a variation of the lifetime. These two rates are affected by 

fluorophore conformational changes. 

Many fluorophores contain double bonds that after excitation become single bonds. 

This change between double and single bounds affects the molecule flexibility, since 

double bonds are more rigid. This effect can also be seen as a result of temperature, 

viscosity or polarity changes of the environment. If the temperature is decreased or 
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the viscosity of the medium is increased, lifetime has been proved to increased. The 

increase is attributed to the inability of the excited electron to go back to the ground 

state through non-radiative processes. 

Intersystem crossing can be another reason for lifetime variations. When 

fluorescence was explained at the beginning the thesis, it was noted that transitions 

between S1 and T1 states were possible by spin reversal (leading to 

phosphorescence).  

Another important factor is Föster Resonance Energy Transfer (FRET). FRET is 

defined as the energy transfer between two light sensitive molecules[13]. For the 

energy transfer to take place the molecules need to be at an appropriate distance, 

and their wavelength spectra need to overlap. This is due to the fact that the 

emission of one of the molecules will be taken as the excitation of the other one, 

therefore the emission of the donor need to be able to excite the acceptor. If 

lifetimes of this process are looked at, it will be seen that the donor molecule 

lifetime will dramatically decreased, while the lifetime of the acceptor will remain 

the same. This process can be used as a way of measuring distances between 

different molecules. At distance smaller than the ones available for FRET, Dexter 

Electron Transfer can be used[14]. 

Lifetime variations due to environmental changes makes FLIM a very useful tool for 

the study of intracellular processes among many other applications in chemistry 

and material science.   
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1.3. State of the art 
 

The development of time-resolved techniques has been highly limited in the 20th 

century by slow electronics. Once faster electronics were available, different 

approaches to measure lifetime were developed. Many different groups have come 

up with different ideas to implement time and frequency domain FLIM. Some 

examples of the latest achievements in the field will be given, as a way of giving 

some background on how far these techniques have gone.  

Zhong et. all (2003) were able to demonstrate the ability of measuring lifetime 

variations in an oxygen-sensitive dye in solution and in living cells, which could be 

very useful as a way of quantifying intracellular oxygen concentration. FLIM system 

was implemented by using low repetition rate laser and a wide-field ICCD camera 

for the detection process [15].  Some of the main applications of fluorescence 

lifetime imaging is the ability to measure dynamic processes. By combining different 

techniques such as FLIM and FRET, study of protein interaction in cells was 

reported. Elangovan et. all (2002) developed a FRET-FLIM microscopy that allows 

for detection of time-resolved images of donor in the absence or presence of 

acceptor. They specifically use it to quantify the dimerization of the transcription 

factor CAATT/enhancer binding protein alpha in living pituitary cells.  Since only the 

donor fluorophore lifetime is measured with and without the acceptor, they were 

able to calculate the distance between interacting proteins inside cells with great 

precision thanks to the nanometre resolution provided by FRET, and the 

nanosecond resolution given by FLIM [16]. Many other studies have exploited the 

combined advantages of using FRET-FLIM techniques. Calleja et. all (2003) were 

able to monitor conformational changes of proteins in cells using a GFP-YFP fusion 

protein that allows for FRET measurements. If any conformational changes took 

place, the lifetime would change [17].  

Although many researchers have used time domain FLIM, there are many other 

projects where frequency domain FLIM was chosen. Wagnieres et. all (1997) made 

used of the lifetime fluorescence changes in healthy and diseased tissue, specifically 

in cancerous tissue. The image was obtained using an endoscope and photocathode 

intensifiers, and lifetime fluorescence in each pixel was calculated almost at real 

time [18].  Another example of frequency-domain fluorescence lifetime confocal 

microscopy was implemented by Booth et. all (2004) by using a switched diode 

laser as the illumination system [19]. 
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1.4. Legal Frame 

During the project, different lasers were used always following the laser safety 

procedures. Laser beam was always controlled and limited by physical barriers, 

since other people were working in the laboratory at the same time. Glasses were 

worn when working with the laser. Regarding the alignment of the laser beam it was 

done at a height different than the standing or sitting position, to avoid unwanted 

eye contact with the laser beam by chance, [20],[21]. 

Fluorophore regulation for animal and human ones is quite different. A review 

regarding the most used fluorophores (such as Alexa Fluor 488 and 514, BODIPY FL, 

BODIPY R6G, Cy 5.5, Cy 7 and ICG to name a few) was made in order to determine 

their toxicity and possible application in human studies. Many different 

fluorophores are used in animal studies but the two FDA has only approved two 

fluorophores for human use, Indocyanine Green (ICG) and fluorescein. Even though 

ICG has been reported to produce toxicity, the doses given to humans are well below 

the toxic amount, since low doses are enough for the therapeutic means [22].   
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1.5. Objectives 
 

This bachelor thesis was focused in the construction of a system that will be able 

to acquire lifetime measurements using a frequency domain fluorescence imaging 

approach. The idea behind this works lies in the new information provided by 

studying the lifetime of a fluorophore, instead of its intensity, since lifetime is not 

affected by extrinsic properties such as fluorophore concentration, duration of the 

excitation or photobleaching. The system will be used in future works to look for 

contrast in fluorescence images using an estimation of the lifetime, instead of 

relying on the usual intensity based fluorescence systems, where contrast 

sometimes can be difficult to obtained.  

The main goal of this project was to construct the system from scratch and test it, to 

know its capacities and limitations. The development of this system presents several 

difficulties: (1) being able to intensity-modulate the laser as a sine at high 

frequencies, in the MHz range; (2) coordination between the laser and the 

acquisition system (ICCD camera) and (3) acquisition of images in a precise enough 

way that allows for measuring contrast based on lifetime.  

This general objective can be divided into the following specific objectives: 

1. Understand how each of the components works. 

2. Assembly of all the different components of the system. 

3. Make the proper connections to coordinate all of the devices. 

4. Establish an initialization protocol to facilitate future use of the system. 

5. System testing. 
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2. Materials and Methods 

2.1. System Components 
 

In order to be able to understand the how the whole system was implemented, 

an explanation of the single components and how they work together is required. In 

order to be able to acquire lifetime images, precise coordination of the different 

components is needed.    

2.1.1. Laser 
 

The illumination system chosen for this work was laser light. Lasers are 

coherent light sources, in the spatial and temporal term, which makes them suitable 

for precise point excitation over great distances, as well as being monochromatic, 

since only one wavelength can be generated. Thanks to this property no excitation 

filter is require in this work, since the illumination system will adequately provide 

only one excitation wavelength. The two lasers used during this project had 

wavelengths of 671nm (red) and 532nm (green) but the final images obtained with 

the fluorophore were performed using the 671nm laser.  

 

 

 

 

 

 

Figure 10: (A) MRL-III-671/1~200mW laser from [23]; (B) CPS532 - Collimated Laser Diode 
Module, 532 nm, 4.5 mW, Round Beam, Ø11 mm Housing from [24] 

(A) (B) 
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2.1.2. Acousto-Optic Modulation   
 

Acousto-Optic Modulation is a technique used in many different settings 

mainly to control lasers.  They are based on the interaction effect between light and 

sound in a transparent material. One of the most common materials used is TeO2 

crystals. A radio frequency (RF) signal is applied to a piezo-electric transducer, 

which creates sound waves in the TeO2 crystals. The sound wave travelling through 

the material creates bands inside the material with different refractive index (Figure 

11 (A)) [25]. This difference in refractive index in the different bands allows for the 

separation of the laser beam in different diffraction orders (Figure 11(B)) [26]. 

Therefore, it is possible to separate the incident light into diffracted and transmitted 

light. Since all part in the device are fixed, it allows for laser modulation in a very 

reliable, stable and fast way [27] which is very important when fluorescence lifetime 

images are going to be taken. 

 

Figure 11: (A) Schematic of Acousto-Optic Modulation from [25] (B) Separation on the laser 
beam in different diffraction orders from [26]  

 

 Acousto-Optic Tunable Filter 
 

As a way of controlling the laser amplitude modulation, an Acousto-Optic 

Tunable Filter (AOTF) was used. It was obtained from AA Opto-electronic. It is made 

of an anisotropic medium of TeO2-S, which works in the optical wavelength range 

between 400-650 nm and has an active aperture of 3x3 mm2. It allows for high 

separation angle between orders 0 and 1 of around ≥ 4°, and it comes with 

temperature stabilization. Thanks to the AOTF it is possible to control the amplitude 
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of the diffracted wavelength. In this specific set up, the diffracted wavelength needs 

to be modulated as a sine wave. SMA Connector for RF Input and SMC Connector for 

Thermal regulation supply were connected to the Multi Digital Synthesizer (MDS). 

 

 

 

 

 

 

 

 

 
Figure 12: AOTFnC-400.650-TN from [28] 

 

 Multi Digital Synthesizer  
 

In order to control the AOTF an RF signal had to be applied to the piezo-

electric transducer. The RF driver used was a Multi Digital Synthesizer (MDS) from 

AA Opto-electronic. It is composed of eight different channels that can provide RF 

frequencies between 74-158 MHz’s.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Multi Digital Synthesizer (MDS) from AA Opto-electronic from [28]. 

 

There are two ways of using the MDS, through external or internal control. In the 

Internal mode, the user is able to control the different channels through a USB, 

Remote control or RS232 communication. In this project External mode was used, 

SMA Connector 

SMC Connector 
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since better performance is expected according to the manufacturer. For external 

control the use of a connector DB25 was required.  

Before changing to external mode, it was required to select the adequate channel, 

that gave the best separation between the zero and first order diffraction, using the 

internal mode (Figure 14). Laser light has to enter the AOTF with an angle to allow 

for separation between the transmitted and diffracted light, and this angle will be 

different depending on the laser wavelength (Bragg condition).  

When all the channels were on, many diffraction orders were seen, however, as it 

can be seen, not all points are equally brighter (Figure 14 (B) & (D)). The channel 

chosen was the one giving brightest spot (Figure 14 (C) & (E)). Two different lasers 

were used, for the 671nm laser the first channel was used with a frequency of 74,5 

MHz, while for the 532nm laser the first channel was also used, but with a frequency 

of 124MHz. Thanks to the software developed by AA Opto-electric the frequency in 

the different channels can be chosen by the user, which is very helpful, since when 

external mode is used, each pin on the DB25 connector corresponds to a specific 

channel of the MDS, therefore only one channel needs to be prepared for external 

control.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: (A) AOTF set up; (B) and (D) Different diffraction orders for the green and 
red lasers, with all channels ON; (C) and (E) 0thand 1st diffraction order (transmitted 

and diffracted light) 

Diffracted 

light  Transmitted 

light  

Laser AOT

F 

(A) 

(B) 

(D) 
(E) 
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 Connector DB25 
 

Connector DB25 was used in order to be able to perform external control of the 

MDS device. Two different inputs have to be given for external mode. The first one is 

the Modulation inputs (MOD IN) that allows choosing any type of signal for the RF 

applied to the piezo-electric. If instead of a constant RF signal, the RF signal 

oscillated following a sinusoidal wave, it would allow for laser amplitude 

modulation as a sine wave, since the crystal media will have changes in the index of 

refraction in a sinusoidal way (Figure 15(A)). In this project that was the goal, since 

intensity modulation of the laser is needed for FD FLIM.  The second input that had 

to be controlled was Blanking input, which need to be at a high level to allow 

modulation inputs to operate. Figure 15(B) shows the RF output frequency 

depending on Modulation Input and Blanking. 

 

 

Figure 15: (A) Diffracted light modulation from [25] (B) Working mode of the MOD IN 
and BLANKING signals from [28] 

In order to perform these operation different pins of the DB25 were used: 

  

 

 

 

Figure 16: (A) connector DB25, (B) Connections made in different pins 

(A) (B) 
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• Pin 13 (Green cable) for BLANKING input (5V). 

• Pin 12 (Red cable) for MOD IN which correspond to Channel 1 in the MDS. (In 

this project, a sinusoidal wave generated using a DAQ was input through this 

pin). 

• Pin 15 (Black cable) for Ground. 

 

Further details on how this was connected to the other parts of the system will be 

given. 

2.1.3. Emission Filter 
 

An emission filter is required in order to precisely retrieve only fluorescence 

emission. The emission filter will remove any undesired light (as the excitation light 

from the laser) getting to the camera while letting fluorescence light go through.  

The emission filter is place right before the objective in the camera (Figure 27), and 

depending on the emission spectra of the fluorescent probe a different filter will be 

required. In this case a fluorophore (CF680-Maleimide) with absorption maxima at 

681nm and emission maxima at 698 nm was used. The filter chosen was a long pass 

filter that transmit only wavelengths longer than 700nm.  

 

 

 

 

 

 

 

 

 
Figure 17: 700nm 50mm Diameter, OD 2 Longpass Filter from [29] 
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Figure 18: Spectrum of the excitation source, absorption and emission of the fluorophore from 

[30], and emission filter. 

 

 

2.1.4. Lens 
 

 A 100 mm of focal length lens was used in order to increase the laser beam size, 

to achieve a more homogenous illumination over the sample. Since homogenous 

illumination of a medium size region was desire, a convergent lens was used, to 

prevent the illumination point to be too wide.  

 

 

 

 

 

 

 

 
Figure 19: AC254-100-A-ML - f=100 mm, Ø1" Achromatic Doublet, SM1-Threaded Mount, ARC: 

400-700 nm from [31] 
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2.1.5. Objective 
 

The objective was used to capture the incident light and focused it to get an 

image. It is composed of different lenses, that allows to capture the image at 

maximum focus and constant collimation. The one used in this project was purchase 

from PENTAX.  

 

 

 

 

Figure 20: 25,0 mm C-Mount Objektiv Pentax C2514-M (KP) / Ricoh FL-CC2514-2M - 1.4 / 
25mm from [32] 

 

2.1.6. Camera 
 

The camera used as the detection system was the ICC DH334 T-18U-03 (from 

ANDOR iStar). The 334 corresponds to the CCD matrix of 1024 x 1024 pixels of 

13μm pixel size, 18 is the size of the intensifier diameter, U means that it is prepared 

for Ultra-Fast Gating, and 03 determines de image intensifier material, which in this 

case corresponds to a W-AGT photocathode and P43 phosphor. To understand 

better why this camera is suitable for the detection of fluorescence lifetime images, 

a brief explanation on what a ICC camera is will be given.  

Intensified CCD cameras differ from CCD ones in that they have an image intensifier 

with a photocathode, microchannel plate (MCP) and a phosphor screen (Figure 21).  
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Figure 21: Intensified CCD camera from [33] 

 

The photocathode takes the incoming photons which generate photoelectrons in the 

photocathode that can travel towards the MCP due to an applied electric voltage. 

These cameras are therefore gated, which means they can be turn on and off by 

modifying the electric voltage applied to the photocathode at very fast rates. By 

switching the voltage, the photoelectrons located in the photocathode can achieve 

the require velocity to move down to the MCP (ON state), or they cannot move to the 

MCP, therefore the phosphor screen will not receive any electron (OFF state). If the 

electrons leave the photocathode, depending on the applied voltage on the MCP, 

arriving electrons can dislodge secondary electrons from the MCP, which increases 

the number of electrons reaching the phosphor. By changing the gain (or voltage 

applied) to the MCP the number of electrons that get to the phosphor can be 

modified[33]. Therefore, if the signals that are trying to be acquire are too low, by 

increasing the gain in the MCP, a greater signal will be retrieved.  

The camera used in this experiment was designed to achieve nanoseconds gating 

times.  Specifically, the one used, was able to switch on and off the intensifier as fast 

as < 2𝑛𝑠 gate times. This makes this camera very precise in time which makes it 

possible to take images in the nanosecond range, a very important characteristic for 

this work, since nanosecond lifetimes are typical of fluorescence.  
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 Signals from the Camera 
 

To understand how the camera works, a look into the electrical signals the 

camera uses might be helpful, so an oscilloscope was used to look at the signals in a 

visual and easy way. Each of the signals has an SMA connector in the back of the 

camera, which were connected to the oscilloscope. In order to see the Gate Monitor 

in the oscilloscope a different connector is required different to the SMA one used 

for the other signals. It is provided by the supplier and it has a BCN connector at the 

other end to attach it to the oscilloscope.  The signals can be seen in Figure 22.  

 

 

 

 

 

 

 

Figure 22: Signals from the camera from [34] 

• External Trigger (yellow): used to initiate data acquisition with an external 

device and it can only be accepted by the camera if Arm signal is high.  

• Arm (navy): high when the camera is ready to accept external triggers. 

• Fire (purple): determines the time the camera is acquiring an image. It is high 

(5V) when the light is allowed to pass to the CCD, so it can be integrated, on 

the other hand is low (0V) when no light is getting to the CCD.  

• Gate (blue): allows for monitoring of the photocathode switch on and off state. 

Electrons are getting to the MCP between the low (ON) and high (OFF) peak. 

(It can be understood as the time lapse when the image is taken.) 

 

The camera has different ways of controlling the intensifier gating. During this work, 

the gate mode used was Digital Delay Generator (DDG). The DDG activates when an 
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internal (fire pulse) or external trigger takes place. In this mode, the intensifier is on 

only when the gate pulse is high. DDG are electrical signals that allow for 

synchronization with different devices and they can also be measured using an 

oscilloscope with the SMA connectors located in the back of the camera. Depending 

on the application different DDG signals will be used. Using the Gate Delay, the gate 

pulse can be chosen to occur at a specific time, opening the image intensifier only at 

the desire time during the exposition. Gate Width refers to the time the image 

intensifier remains open, and both these parameters can be modified from 0 to 10s 

in 10ps steps. The last DDG used in this work was Output A, which is an auxiliary 

output pulse specifically designed to synchronize triggers for other devices. It also 

allows for delays between 0 to 10s and widths between 2ns to 10s in 10ps steps[35].  

Output A was used as a trigger for the laser to start oscillating since according to the 

supplier it was the most reliable signal that could be obtained from the camera. It 

was set to match the exposition signal (fire), with no delay between them, and equal 

width. 

 

 

 

     

 
Figure 23: CH1 (yellow): Output A, CH2 (blue): Gate monitor 

2.1.7. DAQ 
 

In order to coordinate all the different parts, a Data Acquisition (DAQ) device 

was used. The one chosen was obtained from National Instrument USB-6341, with 

16 Analog Input (AI) channels, maximum sampling rate in the AI of 500kS/s, 2 

Analog Output (AO) channels, with maximum resolution of 900 kS/s, 24 Digital 

Input/Output (DIO) channels and a maximum clock rate in the DIO of 1MHz. 
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Figure 24: USB-6341, National Instruments from [36] 

 

It was used mainly as a coordination element for the whole process. It was in charge 

of receiving the Output A signal from the camera in one of the DI channels. This 

signal was used as a trigger for starting the sinusoidal wave, which had to be given 

as the RF frequency to the AOTF (using one of the AO channels), allowing amplitude 

modulation of the laser. 

 

Figure 25: Schematic for the wiring process. 
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2.1.8. Software Design 
 

Software provided by the manufacturers of some of the components was 

used such as MDS software and Andor Solis. Apart from this, a program using 

LabView was developed to let the user control the different modulation frequencies.  

Although the AOTF was used in external mode, the MDS software was required to 

store the parameters needed for external use. MDS software was developed by AA 

Opto-electronic to provide control over their range of RF-drivers.  

A LabView (Laboratory Virtual Instrument Engineering Workbench) from National 

Instruments was created to coordinate the acquisition process. LabView is an 

engineering software that provides fast control of hardware and software, helping 

in the process of solving engineering problems in a faster way. LabView uses a 

visual programming language which makes it easier for inexperience users to 

develop higher complex programs than with traditional programming languages 

[37]. A LabView program was created to control the laser modulation over a wide 

range of frequencies.  

To control the ICCD camera Andor Solis, a software provided by ANDOR was used. 

Andor Solis is a software designed for image capture and analysis, for many 

different fields such as Raman imaging, fluorescence imaging, X-rays studies… 

Andor Solis provides total control of the camera’s parameter such as horizontal and 

vertical binning, read out time and exposure time to name a few. The control can be 

done manually by using the software, however, they also give the possibility to write 

programs that can run automatically with their programming language Andor Basic. 

The different parameters needed for acquisition as Output A delay and width, Gate 

Delay and Gate Width, as well as the gain on the MCP can be set using Andor Basic 

[38].  

Matlab is a programming language used by scientist and engineers that allows for 

matrix manipulation, functions and data representation as well as algorithm 

implementation [39]. In this project Matlab simulations were performed to 

graphically see the relation between demodulation and phase shift with respect to 

the modulation frequency for different lifetimes.  
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2.2. Final System Assembly 
 

Different components have been coordinated for the development of this work, and 

the explanation of how each of them work has been given in the previous section, 

however, in order to understand the project as a whole, the final system assembly 

will be shown, as well as a schematic of the final system for clarifying purposes.  

In Figure 26 (A) it can be seen that the detection system has been covered by a light 

proof structure.  with thick black cardboard on two of its side, and with black fabric 

in the front and top. The use of black fabric in this two side was to give easy access 

to the sample and to the camera connectors. Covering the detection was require due 

to the high sensitivity of the camera. Even light coming from the lab could cause 

irreversible damage in the MCP, therefore avoiding unwanted illumination was 

required.  
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Figure 26: (A) Final System Assembly: A-Detection system, B-MDS, C-DAQ. (B) Close up to the 
detection system: D-Laser, E-AOTF, F-Lens, G&H- Mirrors to redirect the path of the diffracted 

light, I- ICCD camera, J- Emission filter, K- Objective. 

 

 

A 

 

B 

 
C 

 

D 

 

E 

 

F 

 

G 

 

H 

 

I 

 

J 

 

K 

 

(A) 

(B) 



 44 

 

A simplified schema of the final system is given below for clarification purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 27: Schematic drawing of final system assembly 
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2.3. System Initialization Protocol 
 

To ensure the correct functioning of the system, several steps have to be followed.  

1. Connect the RF OUT and Therm Stab cables from the MDS to the AOTF. 

2. Turn ON the power button in the MDS and wait for 15 for system 

stabilization. 

3. Connect the USB of the MDS to a computer. 

4. Initialize the MDS software.  

5. Select the CONNECT button and choose the COM port (\Device\USBSERxxx) 

6. Select CHANNELS ON/OFF  

7. Change to INTERNAL MODE and look for the channel that gives better 

separation angle between 0th and 1st order diffraction.  

8. Once the channel for best separation is found, change the frequency to be the 

one in CHANNEL 1 

9. Turn ON CHANNEL 1. 

10.  Turn OFF the rest of the channels. 

11.  In the EXTERNAL COMMAND VOLTAGE select 5V. 

12.  Select STORE to save the parameters (CHANNEL 1: ON, EXTERNAL 

COMMAND VOLTAGE: 5V)  

13.  Connect external power supply (5V) and DAQ. 

14.  Turn on laser. 

15.  Change to EXTERNAL MODE. 

16.  Connect the camera to the power supply and turn it on. 

17.  Connect USB from the camera to a computer (USB 2.0 required). 

18.  Open Andor Solis software. 
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19.  Start LabView program. 

20.  Select modulation frequency on LabView program  

21.  Run acquisition in Andor Solis. 
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3. Results and Discussion 

3.1. Laser modulation 
 

In order to modulate the laser, the AOTF was use. As previously mention, the 

MDS had the option to be control through internal or external mode, and external 

mode is required if the objective is to modulate the intensity of the laser. Once the 

adequate channel was chosen in internal mode, the MDS driver was changed to 

external control, and a sinusoidal wave generated using the DAQ was used as the 

modulation input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: Images obtained from a video showing the laser modulation. Frequency of 

modulation: 10Hz. 

 

To check further that the frequency generated by the DAQ was accurate, an 

oscilloscope was used to measure the wave coming from the DAQ, as well as the RF 

out from the MDS, to prove that the frequency getting to the AOTF was equal to the 

one generated (Figure 29). Different frequencies were tried, until higher frequencies 

could not be generated by the DAQ, finding the maximum frequency to be 300kHz 

without aliasing. 
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Figure 29: (A) f=1kHz, (B) f=10kHz, (C) f=100kHz, (D) f=400kHz.  CH4 (blue): signal measured 
from analog output from the DAQ. CH3 (purple): signal measured from RF OUT from MDS. 

 

Figure 29 shows sine waves generated at different frequencies, but in order to 

further prove that the modulation of the laser was done correctly, a photodetector 

was used to measure the real modulation of the laser right after the AOTF at 

different frequencies. The photodetector system was developed by Miguel Ángel 

Lorente Fernández and it has a power supply, as well as the connector needed for 

monitoring the output signal using an oscilloscope. The set up used with the 

photodetector can be seen in Figure 30, and in the next figure, different images 

show that the laser modulation follows precisely the sine wave generated by the 

DAQ. 

 

 

(A) (B) 

(C) (D) 
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Figure 30: (A) Laser, (B) AOTF, (C) Photodetector 

 

 

 

 

 

Figure 31: In all images, the blue signal (CH4) corresponds to the signal generated by the 
DAQ, and the purple signal (CH3) corresponds to the signal obtained from the photodetector. 

Different frequencies were measured (A) f=500Hz, (B) f=1kHz, (C) f=100kHz, (D) f=300kHz 

 

(A) (B) (C) 

(A) 
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(D) (C) 
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3.2. Camera and laser coordination  
 

Two different ideas were considered to coordinate the acquisition system. Since 

precision in the time were the images were taken was required, it was important to 

check if it was possible to obtain images accurately throughout the emission wave.  

The first approach was to turn the laser on and off between images acquisition. In 

order to do this, the time it took the laser to start oscillating had to be constant. If 

this was the case, it would be possible to ensure that images were always taken at 

the desire delay every single time. However, by checking the delay between the 

exposition time of the camera (using Output A) and laser initiation, it was clear that 

the time was not constant (Figure 32), probably due to a non-optimal 

implementation of the LabView program, which introduced variable delays between 

the trigger signal (Output A) and the laser oscillation start. Since the start time of the 

laser was not reliable, it would not have been possible to accurately know where the 

different images were taken, making reconstruction of the fluorescence lifetime 

signal impossible. 

 

 

 

 

 

 

 

 

 

Figure 32: Same exposition time (20ms) and gate delay (10ms) were used in all images. The 
delay between Output A (CH1) and the sinusoidal wave (CH4) varies in each image (∆𝑋). 
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 Therefore, a second approach was presented, were the laser will start oscillating 

when the first trigger coming from the first images (Output A) gets to the DI pin in 

the DAQ, and it keeps oscillating for the whole acquisition time, in this way the 

variability of oscillating start is solved, since images are taken after that variable 

time. Following this approach consecutive images will be taken at different points in 

the emission wave. However, because the camera is not fast enough to acquire 

several images in one period, images were taken consecutively but in different 

periods. To ensure that this was done correctly, signals of the excitation wave and 

the gate monitor, were looked at using the oscilloscope (Figure 33).  

 

Figure 33: Sequence of images obtained from a video of the acquisition process at (A) 
10kHz and (B) 300kHz. The red arrow points to the gate monitor 

(A) 

(B) 
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Looking at the red arrow, which points to the gate monitor (i.e. time were the image 

is taken), it can be clearly seen that images are being taken consecutively over the 

excitation wave.   

In terms of how the camera acquired the images, Kinetic Series mode was used. In 

this mode, the camera performs several images with a fixed time (kinetic cycle time) 

between the images. The parameters selected for the acquisition were: exposure 

time of 0,001s, number of accumulations was set to 1, since only one image was 

desired to be taken each time. The gater delay was 0,2ms, and the width was set to 

0,1 s. Output A (trigger for the laser oscillation) was selected to be the same as the 

exposure time, delay of 0s and width of 0,001s, since is the most reliable signal 

coming from the camera. These parameters were experimentally optimized to 

ensure that sequential images (in small steps) were taken over the emission wave.  

 

3.3. Testing the system  
 

To test if the system was able to give some contrast based on the lifetime, images 

were taken at different frequencies with a fluorophore (CF680-Maleimide). Fifteen 

images were taken for each frequency (1000Hz, 10kHz, 100kHz, 200kHz and 

300kHz), with the previously mention acquisition method.  

To check if any contrast can be appreciated a normalization of the different images 

was performed with the following formula: 

𝐼 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
 

The images obtained (Figure 34) showed that no contrast can be seen at the 

frequencies we are working with (1-300 kHz), since they are far below the desire 

frequencies (1-100 MHz).  
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Figure 34: Normalized images of different modulation frequencies (A) f=1000Hz, (B) f=10kHz, 
(C) f=100kHz, (D) f=200kHz, (E) f=300kHz. 
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If the modulation frequencies were in the correct range, the demodulation and 

phase shift of the emitted fluorescence will depend on the modulation frequency.  

At the beginning of this project simulations using Matlab were performed to 

understand how the demodulation and phase change will be affected by the 

modulation frequency for different lifetimes in the nanoseconds range. (Annex 7.3 

Matlab Code) 

 

 

 

 

 

Figure 35: Simulations performed showing modulation and phase angle shift at different 
modulation frequencies  

 

Looking only at the demodulation, it can be seen that demodulation goes from 1to 0, 

decreasing when the modulation frequency increases. If two different modulation 

frequencies were chosen, were the demodulation was different enough, contrast 

could be appreciated in an image. 

The system is therefore limited by the hardware. The inability of generating 

frequencies higher than 300kHz with the DAQ device at our disposal, makes it 



 55 

extremely hard to look for contrast based on lifetimes in the nanosecond range. A 

modulation system that allows for higher frequency generation will be required, if 

fluorescence lifetime in the nanosecond range is desired to be used as the contrast 

for this system.   
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4. Conclusion 

 

4.1. Current State of the System 
 

The system has been fully assembled and all the connections needed for the 

different components to be coordinated have been implemented. A LabView 

program has been created for user friendly control of the modulation frequency. A 

light proof cage has been built to protect the camera from undesired light to be 

captured during acquisition, as well as easy access to the sample and the different 

optical components for manipulations have been ensured. The lens and mirrors 

have been mounted to allow for homogeneous illumination of the sample.  

In terms of the capabilities of the system, it has been proved that intensity-

modulation of the laser was possible using an AOTF at kHz frequencies, and 

sequential image acquisition at different modulation frequencies have been 

demonstrated. However, limitations have been encountered with the hardware, in 

particular with the DAQ, which doesn’t allow for Megahertz frequencies generation, 

which has make it extremely hard to see contrast based on lifetime. 

4.2. Next Steps 
 

Future work should be primary done in getting MHz modulation frequencies for 

the light source. Once the modulation is implemented and acquisition is checked to 

still work at those higher frequencies different experiments should be tried to 

further test the capabilities of the system. Experiments changing the pH of a solution 

containing a fluorophore would be an easy way to test if the system is able to detect 

contrast. If higher precision was required, it could be possible to develop a program 

for reconstruction of the emitted fluorescence. As explained in the introduction of 

this project, the fluorescent molecule will emit with the same modulation as the 

excitation, therefore if several images were taken over a period, reconstruction of 

the sinusoidal emitted wave should be possible. By measuring the phase shift and 

the demodulation with respect to the excitation, determination of the lifetime of a 

fluorophore should be possible. 
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Since the final purpose of the system was to use it in in vivo applications, 

autofluorescence will be easily removed in the sample, to allow for easier detection 

of the targeted fluorophore using this system. Therefore, testing the system in in 

vivo experiments would be also a good continuation for this bachelor thesis.  
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5. SOCIO-ECONOMIC IMPACT 

 

Lifetime measurement is still a relatively new technique, which opens a new way 

of understanding fluorescence imaging. Intensity-based fluorescence methods have 

been widely used for many different applications for the past decades. However, 

intensity measurements are dependent on fluorophore concentration, 

photobleaching and quenching. Measuring lifetime, which is not affected by any of 

these phenomena, can provide more in-depth knowledge on molecular environment. 

Molecule binding such as protein interactions can be study using FRET-FLIM 

techniques, and pH, O2 or Ca2+ sensing will allow for further and faster 

understanding of different molecular processes, which will be very helpful in 

biology and chemistry applications.  

Another potential application of fluorescence lifetime imaging, that will simplify the 

actual methods for measuring fluorescence, is the ability to measure the lifetime of 

targeted probes on in-vivo experiments of highly autofluorescence environments. 

Autofluorescence will be easily removed, improving the contrast in the images 

acquired. This can potentially simplify in-vivo experiments, reducing the time 

needed for their development.  
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6. PROJECT COST 

The budget of this project is divided in three different sections corresponding to 

system components, technical equipment and human resources. System component 

is understood as all the material needed for the set-up of the acquisition system. For 

the electronic components, a five years life has been used to estimate the cost per 

year.  

Table 1:System components associated costs (1) 

System Components Quantity 
Cost/Unit 

(€) 
Cost/Year 

(€) 
Dedication 

(hours) 
Total 

Cost (€) 
Camera- DH334T-18U-
03 (Andor Technology) 

1 30.000 6000 70 47,94 

Multi Digital 
Synthesizer & AOTFnC-

400.650-TN (AA Opto-
electronic) 

1 2.000 400 100 4,56 

Connector DB25 1 1 - - 1 

 
Lens-  AC254-100-A-ML - 

f=100 mm, Ø1" 
Achromatic Doublet, 

SM1-Threaded Mount, 
ARC: 400-700 nm 

(Thorlabs) 
 

1 89 - - 89 

Objective- 25,0 mm C-
Mount Objektiv Pentax 

C2514-M (KP) / Ricoh FL-
CC2514-2M - 1.4 / 25mm 

(PENTAX) 

1 192,78 - - 192,78 

DAQ-  USB-6341 
(National Instruments) 

1 1.483 296,6 100 3,38 

Laser 671nm: MRL-III-
671/1~200mW - up to 
200 mW, 671 nm red 

DPSS laser with TEM00 
mode, high power 

stability (Changchun New 
Industries Optoelectronics 

Technologies Co.) 
 

1 600 120 70 0,96 
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Table 2: System components associated costs (1) 

 

 

 

 

 

 

System Components Quantity 
Cost/Unit 

(€) 
Cost/Year 

(€) 
Dedication 

(hours) 
Total 

Cost (€) 
Laser 532nm:  CPS532 - 
Collimated Laser Diode 

Module, 532 nm, 4.5 mW, 
Round Beam, Ø11 mm 

Housing (Thorlabs) 
 

1 144 28,8 50 0,16 

Power supply Laser 
532: LDS5 - 5 VDC 

Regulated Power Supply, 
2.5 mm Phono Plug, 120 

VAC (Thorlabs) 
 

1 77,50 - - 77,50 

Emission Filter: 700nm 
50mm Diameter, OD 2 

Longpass filter (Edmund 
Optics) 

1 165 - - 165 

Mirror- ME1-G01 – 
25.4mm Dia. Round 

Protected Aluminum 
Mirror, 3.2 mm Thick 

(Thorlabs)  

2 50 - - 100 

Mirror Holder-  MH25 - 
Mirror Holder for Ø1" 

Optics 2.5 - 6.1 mm Thick 
(Thorlabs) 

 

2 13,40 - - 
26,8 

 
 
 

Mirror Mount-  KMS/M - 
Compact Kinematic 

Mirror Mount, M4 Taps 
for Post 

Mounting (Thorlabs) 
 

2 33,75 - - 67,5 

Fluorophore- CF680 
Maleimide (Sigma 

Aldrich) 
1 250 - - 5 

781,58 € 
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The costs generated by the technical equipment include laboratory machinery, as 

well as the different software and the computer hardware used in this project such 

as Matlab, LabView, MDS and Andor Solis. 

Table 3: Technical Equipment associated costs 

 

Human resources costs comprise the salaries of the team members working on the 

project.  

Table 4:Human Resources associated costs 

Technical 
Equipment 

Cost/Unit 
Cost/Month 

(€) 
Months used Total Cost (€) 

University 
Computer 

- 10 6 60 

Digital Oscilloscope- 
DS1104B (RIGOL) 

800 10 2 20 

LabView (15.0f2- 
64-bit) Software 

0 0 6 0 

Andor Solis for 
Imaging Software 

0 0 6 0 

MDS Software 0 0 6 0 

Matlab 0 0 1 0 

Human Resources Hours Cost/Hour (€) Total Cost (€) 

Student 400 20 8.000 

Tutor 200 
 

55 
 

11.000 

Laboratory Technician 200 45 9.000 

80 € 

28.000 € 
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The final cost of the project was: 

 

 

 

 

 

 

Table 5: Total cost of the project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concept Total Cost (€) 

System Components 781,58 

Technical Components 80 

Human Resources 28.000 

28.861,58 € 



 63 

7. ANNEX 

7.1. Lifetime formulas derivation for FD FLIM 
 

Excitation wave:  𝐿(𝑡) = 𝑎 + 𝑏 𝑠𝑖𝑛 (𝜔𝑡) 
Emission wave:   𝑁(𝑡) = 𝐴 + 𝐵 sin(𝜔𝑡 − 𝜙) 
 

Recall  𝐼(𝑡) ∝ 𝑁(𝑡) and that fluorescence emission follows an exponential law such as  

𝐼(𝑡) = 𝐼0𝑒
−𝑡
𝜏 → 

𝑑𝐼(𝑡)

𝑑𝑡
= −

1

𝜏
𝐼(𝑡) + 𝐿(𝑡) 

 
By substituting the previous excitation and emission waves in the formula  

𝐵𝜔 cos(𝜔𝑡 − 𝜙) =
−1

𝜏
[𝐴 + 𝐵𝑠𝑖𝑛(𝜔𝑡 + 𝜙)] + (𝑎 + 𝑏𝑠𝑖𝑛(𝜔𝑡)) 

 

𝐵𝜔[cos(𝜔𝑡) cos(𝜙) + sin(𝜔𝑡) sin(𝜙)]

=
−1

𝜏
[𝐴 + 𝐵 sin(𝜔𝑡) cos(𝜙) − 𝐵 cos(𝜔𝑡) sin(𝜙)] + 𝑎 + 𝑏𝑠𝑖𝑛(𝜔𝑡) 

 

{
 
 

 
 −

1

𝜏
𝐴 + 𝑎 = 0 

𝐵𝜔 sin(𝜔𝑡) sin(𝜙) = −
𝐵

𝜏
sin(𝜔𝑡) cos(𝜙) + 𝑏𝑠𝑖𝑛(𝜔𝑡)    →   

𝜔 cos(𝜙) −
1

𝜏
sin(𝜙) = 0

  

 

{
 
 

 
 

𝐴 = 𝑎𝜏  [𝑒𝑞1]

𝜔 sin(𝜙) +
1

𝜏
cos(𝜙) =

𝑏

𝐵
 [𝑒𝑞2]

𝜔 cos(𝜙) −
1

𝜏
sin(𝜙) = 0 [𝑒𝑞3]

 

 

[𝑒𝑞3] 𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 cos(𝜙)   →    𝜔 −
1

𝜏
𝑡𝑔(𝜙) = 0  →    𝜏𝜙 = 𝜔−1𝑡𝑔(𝜙) 

[𝑒𝑞2]2 + [𝑒𝑞3]2   → 𝜔2 +
1

𝜏2
=
𝑏2

𝐵2
  →   

𝐵

𝑏
=

1

√𝜔2 +
1
𝜏2

     

𝑚 =
𝐵
𝐴⁄

𝑏
𝑎⁄
=  

𝐵𝑎

𝑏𝑎𝜏
=
𝐵

𝑏

1

𝜏
=

1

√1 + 𝜔2𝜏2
 

 

𝜏𝑚 =
1

𝜔
√
1

𝑚2
− 1 
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7.2. LabView program 
 

 

Figure 36: Control window of LabView Program 

 
Figure 37: Terminal window of LabView program 

5 
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Figure 38: Terminal window LabView program (1) 
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Figure 39: Terminal window LabView program (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 40: Terminal window of LabView program (3) 
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7.3. Matlab Code  
 
Main Program 
clear all 
  

Fs = 10e9;            % Sampling frequency 

Ts = 1/Fs;             % Sampling period 

L = 1000;             % Length of signal 

t = (0:(L-1))*Ts;        % Time vector 

  

%INPUT SIGNAL 
    f= linspace(10e6,500e6,50);   %Frequencies of the imput Signal (MHz) 

    tau=2e-9; %Change Tau to get the modulation and phase shift dependance upon frequency modulation 

    ValFit=[];     

    aoffsetEx=0;  %offset of the excitation signal 

    bEx= 1; %amplitude of the excitation signal  

    yFit=[]; 

    faseFL=[]; 

    amFL=[]; 
    AoffsetFL=[]; 

     

for i=1:length(f) 

    w= 2*pi*f(i);  %We are changing now the excitation frequency  

    faseFL(i)= atan(w*tau); 

    AoffsetFL(i)=aoffsetEx*tau;   

    amFL(i)= bEx./(sqrt((1/(tau^2)) + (w^2))); 

    y=amFL(i)*cos(w*t+faseFL(i))+ AoffsetFL(i); 
     

    

     

    x0=[0,pi/2,0]; 

     

    fun = @(x)fit_function(x,y,w,t); 

     
    [xFit]=fminsearch(fun,x0); 

     

    ValFit(i,:)=xFit; 

     

end 

  

TauFaseFit=tan(ValFit(:,2)-(pi/2))./w; 

TauAmpFit=1./(sqrt(abs(w^2-((bEx./ValFit(:,1)).^2)))); 
% Since we are using the sine in the fit function but we are generating  

% the wave with a cosine and sin(wt+phi)=cos(wt+phi-(pi/2)); 

  

%The phase has to be between 0-90? 

%The amplitud should be between 1-0 

  

PhaseAngle= rad2deg(ValFit(:,2)-(pi/2));   

Modulation= ValFit(:,1)./(tau*bEx); 
  

figure(2) 

  

semilogx(f,Modulation*100) 

hold on 

semilogx(f,PhaseAngle) 

  
 

Function 
  

 function f = fit_function(x,yData,w,t) 

A= x(1); 
Phase=x(2); 

offset = x(3); 

Ufit = A*sin(w*t+Phase) + offset; 

  

f =sqrt(sum((yData-Ufit).^2)); 

  

figure(1) 
clf 

plot(t(20:120),Ufit(20:120)) 

hold on 

plot(t(20:120),yData(20:120),'r') 
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pause(0.01) 

7.4. Reference Sheet 
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7.5. Timeline of the project 
 

The following figure shows the process that was followed for the construction of the 

system. It was built from scratch, nothing was previously built before the start of this 

bachelor thesis.  

 

 

 
Figure 41: Timeline of the project 
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