
 

 
 
 
 
This is a postprint version of the following published document: 
 
 
 
 
García-Avilés, Ginés. Et. Al. SEMPER: a stateless traffic engineering solution 
for WAN based on MP-TCP, in: IEEE International Conference on 
Communications (ICC), 20-24 May 2018, Kansas City, MO, USA 
[Proceedings] (July 2018), 6 pag. 
DOI: https://doi.org/10.1109/ICC.2018.8422991 
 

 

 
 
 
 
 
 
 
 
 
 
©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288500027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICC.2018.8422991


SEMPER: A Stateless Traffic Engineering Solution
for WAN based on MP-TCP

Gines Garcia-Aviles∗†, Marco Gramaglia†, Pablo Serrano†, Marc Portoles‡, Albert Banchs∗†, Fabio Maino‡

∗ Institute IMDEA Networks, † Universidad Carlos III de Madrid, ‡ Cisco Systems

Abstract—Enterprise Networking has a strong set of require-
ments in terms of resiliency, reliability and resources usage. With
current approaches being based on monolithic and expensive
infrastructures using dedicated overlay links, providers are
moving to more economical hybrid solutions that encompass
private dedicated links with public/regular Internet connections.
However, these usually rely on complex, hardware-dependent
and/or proprietary Traffic Engineering (TE) solutions, which are
computationally costly, in particular for the forwarding nodes.
In this paper, we propose SEMPER: a lightweight TE solution
based on MP-TCP that, in contrast to other TE solutions,
moves the complexity to the endpoints of the connection, and
relieves the forwarding elements from complex operations or even
maintaining state. As our evaluation shows, SEMPER efficiently
makes use of all available paths between the endpoints while
maintaining fairness, and properly adapts to variations on the
available capacity.

I. INTRODUCTION

The enterprise wide area networks (WAN) paradigm enables
the creation of a virtual private area network (VPN), linking
different branches of an enterprise with their headquarters.
Resiliency and Fault Tolerance are two of the most important
requirements for enterprise WANs, and are becoming even
more important nowadays with the availability of multiple
links between nodes. This increase of different (physical) paths
among different offices motivates the proliferation of Traffic
Engineering (TE) solutions. Indeed, there is a lot of research
effort focused on the improvement of these algorithms, with
e.g. SD-WAN [1] being one example of a “hands on” product
that manages enterprise WAN traffic over multiple links.

The most common enterprise WAN deployment consists of
edge routers located in different campuses, called branches,
and different links that interconnect them with their headquar-
ters. Typically, those solutions are based on private overlay
models [1], [2]. However, to achieve increased resiliency,
reliability and an optimal usage of the resources for computing
assets distributed across several locations, these solutions rely
on monitoring systems to assess the traffic level of each link at
any time. This operation, which is essential to forward/reroute
flows through the best path, is usually costly in terms of
computation time and resources, and prone to errors as it is
based on traffic probes. In this paper, we propose a novel
TE technique, that overcomes the disadvantages of stateful
approaches to provide efficient connectivity between edge and
central headquarters.

Our solution is based on moving the complexity to the
network endpoints (in this case, the end hosts), by using the

multipath version of TCP (MP-TCP) [3]. We leverage on its
congestion control capabilities to simplify the operation of
edge routers in both branches and headquarters.

The rest of this paper is organised as follows. In Section II
we discuss the use of MP-TCP as a TE solution, including its
potential benefits and challenges. In Section III we detail the
design of our TE solution (SEMPER), a light-weight solution
to efficiently and fairly distribute flows across existing paths
between branches and headquarters. Section IV describes the
setup and methodology to perform the evaluation, which is
provided in Section V, showing the benefits of SEMPER.
Finally, Section VI concludes the paper.

II. USING MP-TCP FOR TRAFFIC ENGINEERING

As discussed above, efficiently exploiting the availability
of multiple (and possibly heterogeneous) paths is still an
open research problem. Since the introduction of Equal Cost
Multi-Path routing (ECMP) [4], the research community has
been looking for a mechanism to efficiently deal with the
availability of multiple paths. By “efficiently” we refer to
solving a number of challenges entailed by the multi-path
approach, such as, e.g., packet reordering, load balancing
or fast re-routing in case of failures. In general, the main
challenge is that the solutions to these problems do not have
a straightforward implementation, and therefore multi-path is
not a fully exploited paradigm in nowadays networks.

However, the introduction of MP-TCP [3] could completely
change this situation. By coupling the congestion control
over different sub-flows [5], MP-TCP can efficiently handle
the shortcomings that the use of multiple paths introduces,
dynamically balancing the transmission windows over differ-
ent sub-flows. However, despite the clear advantages of an
extensive deployment of MP-TCP, its far from widely adopted,
relegated to a few remarkable use-cases such as e.g. Apple
Siri [6] or Proxy enhancements [7]. However, even taking
into account these examples, most applications and studies
still focus on using a small set (in most cases: just a couple)
of heterogeneous interfaces, and not in the design of a generic
solution that can scale up to many paths.

The above cases are typically based on one of the two
possible modes of operation supported by MP-TCP, namely,
the full-mesh mode, which supports exploiting path di-
versity by generating one flow for each distinct source des-
tination IP addresses pair. Another mode of operation is the
ndiffports mode, which generates multiple flows at the

1



source irrespective of the number of interfaces available, and
relies on subsequent hops to exploit path diversity.

Indeed, MP-TCP ndiffports has already been proven
as a potential effective solution for single-homed hosts in
datacenter networks [8], being able to compete with alterna-
tives specifically designed to take advantage of the regularity
of such networks. However, WAN deployments will likely
present a notable path heterogeneity, which is costly to exploit
with ad-hoc solutions. This is where MP-TCP becomes even
more valuable: by activating MP-TCP on all the end hosts
within the branch campus, the outgoing traffic from the branch
is already “multipath-ready,” so an edge router can effectively
exploit multiple paths at a relative low cost by forwarding
sub-flows to the different paths.

One of the main benefits of this approach (that we will
detail in the next section) is that all the complexity typically
required by TE solutions, such as the complex monitoring
operations (e.g., actively assessing the link capacity) and the
corresponding load balancing schemes is pushed towards the
edges of the network, as MP-TCP runs on the end hosts.
With this approach, the design of the forwarding strategy (i.e.,
the path assignment) to be implemented at the edge routers
becomes of paramount importance. We remark that it is a
different problem from the one studied for ECMP forwarding,
as we are not considering path assignment of single path flows,
but rather path assignment of sub-flows belonging to same
“parent” multipath flow.

In the next section, we design a solution for Traffic Engi-
neering, which we refer to as SEMPER (StatEless Multi Path
forwarding for Edge Routers). Two outstanding features of
SEMPER are:

• It does not require any knowledge of the topology, this
including key variables such as the number of disjoint
paths between any two sites. This is in contrast with
other solutions that might require the knowledge of this
variable, to fix the number of sub-flows that have to be
generated by MP-TCP accordingly.

• It does not require a complex scheme for the distribution
of sub-flows between paths. Again, this is in contrast with
other solutions that, knowing the “optimal” number of
sub-flows, introduce the added complexity of a scheme
to properly balance these among the set of available paths.

III. SEMPER: A TE SOLUTION BASED ON MP-TCP

We next describe the design of SEMPER, a TE solution
that does not require the knowledge of the topology nor the
use of complex sub-flow balancing schemes on the forwarding
elements. The enabling technology is MP-TCP, that is enabled
by default in all the hosts running in the enterprise branches,
to deal with the congestion on the available paths. Therefore,
we first describe the MP-TCP configuration used in the end
hosts, and then the simple forwarding functionality that the
edge routers connecting branches and headquarters need to
implement.

To describe the changes to the end hosts, we start by
describing MP-TCP by means of its main components, which

MP-TCP Host

Congestion 
ControlSchedulerPath 

Manager

MP-TCP Host

Congestion 
ControlSchedulerPath 

Manager

MP-TCP Host

Congestion 
ControlSchedulerPath 

Manager

Flow balancer
Routern links

K subflows 
1 link

SEMPER

Fig. 1: SEMPER reference architecture

are depicted in Fig. 1. The first component is the path-
manager, which is responsible for the TCP sub-flows that will
conform the MP-TCP connection. As described before, this
component supports different policies: the full-mesh policy
creates a sub-flow for each available (source IP, destination
IP) pair, while with the ndiffports policy the host will
create a concrete number of sub-flows for the same pair of IP
addresses, changing the source port.1

The second component is the scheduler. This module as-
signs higher-layer TCP segments over the existing sub-flows,
taking into account the different characteristics of each sub-
flow (e.g., the RTT), trying to optimise the overall perfor-
mance. Here, among the different policies available, there are
three worth mentioning: default, where paths with lowest
RTT are preferred; roundrobin, which implements such
policy across sub-flows, and redundant, where the same
information is transmitted over all existing interfaces (for
instance, this is the one used by Siri in Apple’s iPhones, to
maximise reliability). Finally, the congestion control module
implements the congestion control algorithm, that computes
the congestion window to be used on each existing sub-flow.
During the SEMPER design phase, we decided to use the
default scheduler and the OLIA [9] congestion control
algorithm.

Number of sub-flows per host to generate

The first challenge when designing SEMPER is to select
the proper number of sub-flows that each MP-TCP host has
to generate, which we denote as K. Given an unknown number
of available paths P between the branch and the headquarters,
the actual value of K that should be used has an impact on
performance, depending on the number of end hosts in each
branch N :

• If N ×K < P , then not all capacity is used, as there are
not enough sub-flows to occupy all the available paths.

1There is a also a default policy, where no flows are created but only
accepted.

2



• if N×K ≥ P , there is at least one sub-flow per available
path. Still, there are two challenges to address: (i) how
to assign sub-flows to paths, and (ii) analyse if there is
any penalty when using more sub-flows than the number
of paths available [10].

The maximum number of sub-flows K that can be generated
by a MP-TCP host for the ndiffport operational mode
is 32. We remark that any adaptive solutions that tune the
parameter K to the estimated topology, will require to use
OS-dependent configuration interfaces. Therefore, finding a
K value that behave well under all circumstances is the first
challenge that we solved in SEMPER: we will discuss it in the
next section. As for the second challenge, in our experiments
we demonstrate that there is no major penalty in using an
overly large value of K, which results in the following key
building block for SEMPER:

SEMPER design principle #1:Each MP-TCP end host gener-
ates K = 32 sub-flows.

Mapping of sub-flows to paths

The other functionality to be designed, to run in the edge
router, is the flow balancer. This module is responsible for
assigning each sub-flow to one of the available paths. As
mentioned, while this functionality falls outside MP-TCP, it
is one of the main components of SEMPER. This module
is placed in the edge router, as illustrated in the architecture
depicted in Fig. 1.

One of the key objectives of the designed solution is a
reduced complexity, leveraging on the end hosts running MP-
TCP. To continue with this reduced complexity, we discard the
use of passive or active monitoring, and build on MP-TCP’s
congestion control to properly adapt to the available capacity.
More specifically, we rely on MP-TCP to efficiently and fairly
distribute resources among the end hosts flows, and design a
very simple flow balancer. The only requirement for this flow
balancer is that TCP segments and acknowledgements from
the same sub-flow have to be always assigned to the same
path, so the congestion control can properly react.

The SEMPER flow balancer is based on performing a hash
function on the 4-tuple composed by the source and destination
IP addresses and port numbers, and map this hash to one of the
available paths (numbered from 1 to n). For simplicity, we use
a simple hash function based on the modulo operation, which
will then map a sub-flow to a path with a probability 1/n.
We implement the corresponding (reverse) mapping function
at the router at the other side, to support the required path
symmetry.

SEMPER design principle #2:Use a hash function to ran-
domly assign a TCP sub-flow to a path.

While this approach results in an extremely light-weight
solution, there are two key issues that might result on non-
optimal performance, that we discuss in the performance
evaluation:

1) Due to the random assignment of sub-flows to paths,
the complete utilization of all the available paths is not

guaranteed (even when there are more sub-flows than
paths).

2) All the paths used by all the sub-flows belonging to the
same MP-TCP connection may not be disjoint.

Given the use of the hash, the last point above is influenced
by source port generation, which we discuss next. Source port
generation is an OS dependent procedure that is regulated only
by a recommendation [11]. However, despite some remarkable
exceptions such as e.g. certain Windows flavours [12], almost
all the state of the art solutions are using random hash values
to generate the source port, either at a global level (i.e.,
different processes share the same random seed) or at local
level (one random seed per process). Therefore, we cannot
use any predictive technique to guess the “next source port”
for a given flow, and we have to assume a purely random
process to avoid keeping any state. This further motivates the
use of a hash function such as the one used by SEMPER.

Benchmark: a stateful solution

To have a proper performance comparison during our ex-
periments, we designed an alternative approach to SEMPER,
which will serve as a reference benchmark for the use of MP-
TCP for traffic engineering. This approach consists on the
following configuration:

• Each MP-TCP host is aware of the number of existing
paths between the end points P , and generates one sub-
flow per path, i.e., K = P .

• The flow balancer module distributes à la round-robin
each of these sub-flows across the available paths.

With this approach, we guarantee that all sub-flows are
evenly distributed across all the available paths. To distribute
the load of the TCP handshakes across paths, the first sub-
flow from a given host is hashed as in SEMPER, while the
next sub-flows are assigned sequentially (modulo n, the total
number of paths). Note that the price to pay for this approach,
which evenly distributes flows across paths, is to keep state at
both routers.

IV. TESTBED AND METHODOLOGY

Our aim is to design a solution readily deployable in a
real-life environment. However, given the number of hosts
and paths considered during our experiments, the cost of
deploying an actual testbed of the required size would have
been prohibitive. Because of this, we decide to use virtual-
isation techniques to carry out the performance evaluation,
which supports using the real software implementation of the
modules while considering large deployments.

We evaluate SEMPER against its stateful counterpart
along three dimensions: throughput performance, fairness in
throughput distribution, and fault tolerance. In the following,
we describe the hardware and software configuration, and the
methodology to compute the evaluation figures.

3



!"#$"
%&'('

)*+,-.(/
0&-(*1

)*+,-.(/
0&-(*1

234*/
0&-(*1

234*/
0&-(*1

!"#$"
5*16*1

5)7
$&8(1&..*1

5)7
$&8(1&..*1!"#$%&#'

()$*+
,-

. /

, -

Fig. 2: Emulated topology throughout our experiments

Hardware and software configuration

We built our virtualisation environment using the Mininet
network emulator [13], creating a network consisting of vir-
tual hosts, switches, controllers, and links, where hosts run
standard Linux network software. All the end hosts run a
kernel implementation of MP-TCP, while the switches run
Open Virtual Switch, supporting OpenFlow.2 The software
framework is depicted in Figure 2, which illustrates that we
focus on the classical dumbbell topology, where two sites
are connected via multiple disjoint paths. The edge routers
(marked with an A) are connected to “default routers,” (B)
that serve a number of hosts (C), each running MP-TCP.
On the right, there is an Iperf server (marked with a D),
running MP-TCP. All routers run also the lightweight RYU
SDN controller, which simplifies the implementation of the
different sub-flow forwarding techniques discussed above.

Setting up a experiment

An experiment is defined by a number of configuration
parameters that particularises the general topology depicted in
Fig. 2, such as: the number of end hosts connected to the server
N , the number of MP-TCP sub-flows generated by each host
K, and the total duration of the experiment T . The capacity of
each link is set to 50 Mb/s, and the edge routers run either the
SEMPER configuration or the stateful forwarding algorithm.

As our objective is to measure performance under steady-
state conditions, we cannot rely on the statistics provided by
Iperf to assess the performance of each solution for different
configurations (e.g. there is a non-negligible delay between
the first and the last sub-flow connection). In fact, given the
relatively large number of sub-flows that we consider, we
found out that depending on the schedule of the sub-flow
starts, the bandwidth of the links and the experiment duration,
it could happen that the last sub-flow to start may send its
first SYN way after the first sub-flow has already finished.
Therefore, we next describe how we compute the performance
for a given experiment.

Computing the throughput figures

We measure the throughput achieved during an experiment
by parsing the tcpdump traces of the TCP segment sent over
the various links. To consider only the steady-state conditions,
we run an experiment for T seconds but only consider a
window of TM seconds, in which we confirmed that all the
MP-TCP sub-flows are connected. After a thorough sampling

2We use Mininet v2.3.0d1, the Linux kernel 3.18.20-90-mptcp, OVS v2.0.2,
RYU v4.9 and Openflow v1.3.

of the configuration parameter space (omitted due to space
reasons), we set T = 400 s and TM = 200 s. We denote as
Ri the throughput obtained by host Hi, which is obtained as
the sum of the total number of bytes acknowledged for all its
sub-flows divided by TM .

V. PERFORMANCE EVALUATION

Building on the methodology described above, we next
evaluate the performance achieved by SEMPER, and compare
it vs. the stateful solution. We start by validating the chosen
configuration for the number of sub-flows per host of the
stateful TE solution. After this validation, we first compare
the performance in static scenarios, analysing the impact of
the number of hosts N and the number of paths connecting
the routers, and then in dynamic scenarios, where one of the
links becomes unavailable at some point in time.

In our performance evaluation, we follow the methodology
described in the previous section to compute set of the
throughputs obtained by each host, {Ri}. Based on this set
of values, we evaluate the performance via two variables:

• Total throughput: defined as the sum of the throughput
obtained by each of the hosts, which will serve as a
measurement of efficiency (the closer to the maximum
capacity, the better).

Total throughput �
∑
i

Ri (1)

• Fairness: which serves to quantify the evenness in the
distribution of the resources, and is computed following
Jain’s definition [14], i.e.,

Fairness �
(
∑

i Ri)
2

N
∑

i R
2
i

(2)

which ranges from one (perfect fairness) to 1/N .

Validation of SEMPER configuration

We first evaluate the performance of SEMPER by using a
varying number of generated sub-flows per host (K), to gather
insight on the impact of this parameter and to confirm that
our K = 32 setting is appropriate. We set-up a dumbbell
topology with 8 links of 50 Mb/s connecting the two routers.
We consider two different configurations for the number of
hosts connecting to the MP-TCP Iperf server, namely,
N = {2, 32}, and the following set of sub-flows per host
K = {2, 4, 8, 16, 32}. We also compute the performance of
scenario in which 8 hosts use a single TCP flow connected
to the Iperf server, where each flow uses a different path,
which will serve for reference purposes (i.e., a baseline).

For each scenario, we repeat each measurement 10 times,
and compute the median of the results. We depict these in
Fig. 3, illustrating the total throughput (left) and fairness
(right) for an increasing number of sub-flows per host K.

Concerning the total throughput, the results show that when
the number of hosts is small (N = 2) and SEMPER does not
use enough sub-flows (K < 8), the performance is notably
worse than the baseline. This is caused, of course, by the

4



2 4 8 16 32
K

0

100

200

300

400
Th

ro
ug

hp
ut

[M
bp

s]

TCP-8 Hosts
SEMPER 2 Hosts
SEMPER 32 Hosts

2 4 8 16 32
K

0

0.25

0.5

0.75

1

JF
I

Fig. 3: Validation of SEMPER configuration

random assignment of sub-flows, which fails to occupy all
the available paths (and therefore, the capacity). In contrast,
when the number of hosts is large (N = 32) or the number of
sub-flows is large (K ≥ 8), the performance is closer to the
baseline. We also note that the median values for N = 2 fall
below those for N = 32. This is also caused by the random
assignment of sub-flows to paths, which for the case of only
2 hosts, fails to occupy all the capacity in some experiments.

Considering fairness results, the performance is remarkably
fair for all the considered scenarios, as for all configurations of
the experiments the median is well above 0.9. There is a small
drop for the cases of N = 32 hosts and only 2 sub-flows per
host, which is caused by the very few cases in which a host
has its two sub-flows sent over the same path (and therefore a
relative lower throughput than others). Furthermore, this drop
is “corresponded” for similar reasons by another small drop
for N = 2 hosts and 32 sub-flows per host.

Given that the number of sub-flows has an impact on
performance, but only if there are too few (and not too many),
we conclude that our SEMPER configuration with K = 32
sub-flows per host is a suitable candidate to implement a TE
solution, given its good performance in terms of efficiency and
fairness. In the following section, we evaluate its performance
in a number of scenarios, comparing the results obtained vs.
the stateful solution.

Comparison in static scenarios

To compare the performance of the two TE solutions, we
consider different dumbbell topologies in terms of the number
of 50 Mb/s paths between the two routers, and different
number of hosts. For each configuration, we compute the total
throughput and fairness (as defined before) of the stateless
and the stateful solutions. It is worth remarking here that
the stateless solution does not require any knowledge of the
topology, while the stateful is based on generating as many
sub-flows per host as disjoint paths are available. We repeat
each experiment 10 times, and compute the efficiency and
fairness of each configuration, providing the median across
experiments. We perform our evaluation for the case of N = 4
hosts and an increasing number of paths P between the
routers, from 2 to 8 paths. The results are depicted in Fig. 4
for the total throughput (left) and fairness (right).

Concerning the total throughput figures, the results show
that both TE solutions perform very efficiently, as in all cases

2 4 6 8
P

0

100

200

300

400

Th
ro

ug
hp

ut
[M

bp
s]

Stateful
SEMPER

2 4 6 8
P

0

0.25

0.5

0.75

1

JF
I

Fig. 4: Performance evaluation in static scenarios, N = 4 hosts

the achieved results are very close to the total capacity between
the links. Only for the case of 8 paths between the routers there
are some differences between this maximum capacity (namely,
400 Mb/s) and the achieved capacity of both TE solutions, with
the stateless version slightly underperforming the stateful. The
reason for this small drop in performance for the proposed
solution is, like in the previous section, the randomness of the
assignment of sub-flows to paths, that in very few cases fails
to occupy all available links.

For the case of fairness, the figure illustrates that both
solutions perform very close to one (note that for the stateful
solution, this is guaranteed by design). There is only one small
drop in fairness for the case of two paths between hosts, which
is caused when the total number of sub-flows is way larger
than the total number of paths (note that we had a similar
behaviour in the previous section).

Following these results,3 we conclude that the performance
of both TE solutions is almost optimal. Furthermore, given
that our TE proposal does not require a prior knowledge of
the topology (to configure the number of sub-flows per host to
generate), nor the use of state in the routers, it results a more
deployable solution to efficiently use all resources available.

Comparison in dynamic scenarios

In the previous section, we consider static scenarios in terms
of the available resources, i.e., a fixed number of paths between
the hosts. As the results show, the designed TE solution makes
an efficient and fair use of the available resources. Next, we
address an scenario in which the amount of available resources
are reduced at a given point in time, i.e., a link is down, to
assess the performance in these circumstances.

For ease of visualisation, now we consider the same dumb-
bell topology as before, but with only N = 2 hosts, and
P = 4 paths between the routers. We run the experiments
during T=400 s, and we remove one of the links at t=200 s.
The resulting instantaneous throughput figures, averaged over
1 s, are depicted in Fig. 5, including the case of the total
throughput (Fig. 5a, top) and the per-host throughput (Fig. 5a,
bottom), for the two TE solutions considered.

According to the figure, both schemes adapt to the new
circumstances with practically no loss of efficiency due to

3Note that in this paper, for space reasons we only present the results
corresponding to N = 4, but the performance is very similar for other N
values.

5



0
100
200

Aggregate Throughput

Stateful
SEMPER

0 100 200 300 400
Time [s]

0

40

80

120

Throughput per host

SEMPER host 1
SEMPER host 2
Stateful host 1
Stateful host 2

Th
ro

ug
hp

ut
[M

bp
s]

(a) Instantaneous throughput over time.

0
0.25

0.5
0.75

1

JF
I

Stateful

-150
-100 -50 0 50 100 150

Time [s]

0
0.25

0.5
0.75

1

JF
I

SEMPER

(b) Instantaneous fairness over time.

Fig. 5: Performance evaluation in dynamic scenarios, N = 2 hosts

some “transient” conditions when adapting from a 4 paths to a
3 paths scenario.4 We acknowledge that this result is somehow
expected, as all involved transmission windows are operating
at around the required values, and therefore the sudden un-
availability of a link does not harm their operation in terms of
total throughput performance. However, when considering the
per-host performance, it is worth remarking the differences
between the two TE solutions: while SEMPER provides a
very smooth operation over time, the stateful solution solution
exhibits the “usual” variability of TCP throughput, which is
caused by the fast reaction of one flow to losses experienced by
the other flow. Indeed, it can be seen the “symmetry” across
the average throughput per flow between the two lines. We
argue that this is an additional benefit of the proposed TE
algorithm, namely, better fairness properties over time.

To look further into the fairness properties of SEMPER,
we compute the fairness figures over the same 1 s time
windows, and represent them in Fig. 5b. As expected, the
smooth behaviour from the use of our TE solution results in
very stable behaviour of fairness over time, while the use of
the stateful approach results in less predictable figures, due to
the throughput variability described above.

VI. CONCLUSIONS

Current Enterprise networks are moving from monolithic
infrastructures based on dedicated links and costly components
to newer approaches that reduce costs, as well as improving
resources utilization, reliability and resiliency. Costly dedi-
cated links are replaced by multiple public/shared internet
connections, increasing the availability of multiple paths.
Traffic engineering solutions are very used in practise to
exploit multiple paths, but they exhaust the available resource
at the edge routers because of the computational time and
memory they require. In this paper we proposed SEMPER, a
stateless solution for traffic engineering, that natively exploits
path redundancy by efficiently matching MP-TCP subflows

4Like in the previous case, we do not report results corresponding to more
paths between the routers as the observed behaviour is very similar in all
cases. Furthermore, we omit the results corresponding to the re-activation of
the link, as recovery is practically immediate.

to paths, avoiding thus monitoring and fault avoidance tech-
niques. Moreover, SEMPER moves the complexity to the end
hosts by relying load balancing on the MP-TCP congestion
control. Our results show that SEMPER is as effective as
a stateful solution in terms of aggregating throughput and
fairness, but with a practically negligible implementation cost.

ACKNOWLEDGMENT

This work has been partly supported by the H2020 5G-
MoNArch project (grant agreement 761445), and by the
Madrid Regional Government through the TIGRE5-CM pro-
gram (S2013/ICE-2919).

REFERENCES

[1] O. Michel and E. Keller, “SDN in wide-area networks: A survey,” IEEE
Conference In Software Defined Systems, 2017.

[2] B. S. Davie and Y. Rekhter “MPLS: technology and applications,” Morgan
Kaufmann Publishers Inc., 2000.

[3] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “RFC 6824: TCP
extensions for multipath operation with multiple addresses,” IETF, 2013.

[4] C. Hopps, “RFC 2992: Analysis of an equal-cost multi-path algorithm,”
IETF, 2000.

[5] C. Raiciu, M. Handley, and D. Wischik, “RFC 6536: Coupled congestion
control for multipath transport protocols,” IETF, 2011

[6] O. Bonaventure and S. Seo, “Multipath TCP deployments,” IETF Journal
12, 2016.

[7] X. Wei, “MPTCP proxy mechanisms, draft-wei-mptcp-proxy-mechanism-
00”, IETF draft, 2014.

[8] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” ACM CoNEXT, 2012.

[9] R. Khalili, N. Gast, M. Popovic, and J. Y. Le Boudec,“Mptcp is not
pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Transactions on Networking (ToN), 2013

[10] M. Sandri, A. Silva, L. A. Rocha, and F. L. Verdi. “On the benefits
of using multipath tcp and openflow in shared bottlenecks,” IEEE AINA,
2015.

[11] M. Larsen and F. Gont, “RFC 6056: Recommendations for Transport-
Protocol Port Randomization,” IETF, 2011.

[12] J. Kristoff, “Ephemeral Source Port Selection Strategies,” Available
Online https://www.cymru.com/jtk/misc/ephemeralports.html

[13] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments using Container-Based Emulation,”
CoNEXT, 2012.

[14] R. Jain, D. Chiu, and W. R. Hawe., “A quantitative measure of fairness
and discrimination for resource allocation in shared computer system,”
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

6


	portadilla_postprint_ieee
	icc18-semper.pdf



