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Abstract

This thesis explores the validity of employing quasi-steady aerodynamic
models to predict the forces generated by finite flapping wings at low
Reynolds numbers. To this end, an actuator disk analysis (momentum
theory) and a blade element method are implemented to compute the
aerodynamic forces on flapping wings in two flight regimes: forward flight
and hover. The actuator disk analysis is used to estimate an average value
of the flow velocity induced by the wing motion. This is then considered
by the blade element method along with the geometry and kinematics of
the wing to compute the spanwise forces according to an available quasi-
steady aerodynamic model. Since the induced velocity is dependent on the
aerodynamic forces, the problem is solved in an iterative manner. Four
different empirical aerodynamic models are considered: Dickinson et al.
(1996), Wang et al. (2003), Dickson and Dickinson (2004), and Moriche
(2017). The predictions of the models are compared to results obtained
with direct numerical simulations (DNS) for the same kinematic cases. An
analysis of the prediction accuracy of each model is provided as well as
a proposal of some general guidelines regarding further investigation into
quasi-steady aerodynamic models.
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1 Introduction

The most astounding examples of flight performance and maneuverability in the
natural world are undoubtedly those found in the realm of insects. Insects were the
first animal class to develop active flight and in many aspects their aerodynamic
performance has remained unsurpassed by birds or indeed man-made aircraft.

The versatility of insect flight has driven the idea of creating autonomous small-
scale flying robots mimicking insect flight, the so-called micro air vehicles (MAVs).
Although no true MAVs exist in the present, the potential impact of MAVs on
both military and civilian activities has generated great interest in the research of
flapping wings for insect-like flight.

The complex flapping motion of insects allows their wings to generate substantially
larger lift forces that could be achieved in steady conditions at the same speeds.
Thus, the conventional aerodynamic theory which considers fixed wings moving at
constant velocity has not proven useful in the study of flapping wing aerodynamics.
This has led researchers to use different approaches —numerical, experimental
or theoretical— to study of the unsteady mechanisms of insect flight. One of
the employed methods is the direct numerical simulation (DNS), which solves
the Navier-Stokes equations numerically. DNS methods provide accurate results,
but have an extremely high computational cost and cannot be used to obtain
immediate results. Thus, they have limited use in the design process of flapping
wings.

This thesis explores the validity of simple quasi-steady aerodynamic models based
on empirical data to predict aerodynamic forces of flapping wings for both forward
flight and hover. A model capable of predicting aerodynamic forces accurately in
near real-time would be a powerful advancement in the design of flapping wings
and MAVs.

1.1 State of the Art

The earliest investigations into insect flight and possible aerodynamic models was
carried out in the first half of the 20th century. They were based on the application
of momentum theory and quasi-steady aerodynamics. The most significant models
from this period are gathered in a review by Weis-Fogh and Jensen[28]. Stolpe
and Zimmer[21] observed the horizontal stroke plane of hovering insects and that
the wing twist was necessary to produce lift during the up-stroke.

The effects of unsteady aerodynamics in insect flight were first discussed by Weis-
Fogh[27], finding that the delayed stall and Wagner effect counteract each other.
Furthermore, he observed that these effects were only important at the beginning
and end of each semi-stroke, thus partly justifying the use of quasi-steady models.

Ellignton et al.[6] discussed the leading-edge vortex formation in flapping wings
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and its role in the delayed stall. They found that the leading-edge vortex is a
translatory effect, which can be modeled with quasi-static aerodynamics. These
findings led Dickinson et al.[3] to formulate a quasi-steady aerodynamic model
based on experimental data of a revolving drosophilia melanogaster wing at high
angles of attack due to a stabilized leading-edge vortex.

An unsteady vortex lattice method (UVLM) was first implemented by Fritz and
Long[8] in order to model unsteady aerodynamic effects. This was applied to
flapping wings in forward flight. Ghommem et al.[9] applied a two-dimensional
UVLM to avoid the noisy results caused by vorticity accumulation in three-
dimensional UVLM, applying it to hovering kinematics. It was found that for
high-frequency flapping wings, the 3D effects are negligible and the application of
2D unsteady aerodynamics is justified.

Ramamurti and Sandberg[17] analyzed the aerodynamics of the drosophilia
melanogaster wing by numerically solving the incompressible Navier-Stokes
equations. Sun an Tang[23] solved the complete Navier-Stokes equations by DNS
on the drosophilia virilis wing in hover to compute the generated lift and power
requirement. This study was repeated for eight different insects in Sun and Du[22].

The interested reader may find a complete review of all significant work done up to
2012 regarding aerodynamics, flight dynamics, and control of flapping-wing micro
air vehicles in Taha et al.[24].

1.2 Objectives

Currently the most frequently used method for computing the aerodynamic forces
of flapping wings is by DNS. However, these computations are very costly. The
CFD group at Universidad Carlos III de Madrid has written a code to solve
the incompressible aerodynamic forces of finite wings. To solve a single three-
dimensional case of a pair of flapping wings, it takes approximately 250 hours on
a cluster of 72 processing cores.

Evidently, the design process of flapping wings for MAVs requires a much faster
solution, even at the expense of losing some accuracy in the results. Quasi-steady
aerodynamic models may bridge the gap between accuracy and computational
time, while also providing a sense of how each geometric and kinematic parameter
affects the forces generated by the wing. The conditions under which the use of
quasi-steady aerodynamics is justified is explained in section 2.1.

The objective of this thesis is to explore the available quasi-steady aerodynamic
models based on empirical results and implement them for the prediction of
aerodynamic forces on finite flapping wings. Each model is to be evaluated in terms
of its computational cost, its prediction accuracy, and its general applicability. The
ideal model is one that is applicable to any kind of flapping motion and quickly
predicts the generated forces with reasonable accuracy.
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The terms quickly and reasonable are used here with deliberate ambiguity. Since
the design and manufacture of MAVs is still a long ways off, it is not possible
at present to determine precise requirements in terms of computational cost and
accuracy for plausible models.
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2 Unsteady Aerodynamics

There are several unsteady aerodynamic phenomena that arise in flapping wings
which determine the generated aerodynamic forces. There is a vast range of
geometric and kinematic parameters that influence these unsteady mechanisms,
which complicates the study of flapping wings. For this reason, the implementation
of quasi-steady models is a powerful tool which, given its low computational cost,
may be used to explore the effect of the many parameters involved in flapping
wings. This section reviews the main unsteady aerodynamic mechanisms and
defines the geometric and kinematic parameters that will be used in the following
sections.

2.1 Mechanisms of Unsteady Aerodynamics

There are several unsteady aerodynamic mechanisms associated to flapping wings.
Here we focus on the main three that are present in our kinematic cases (described
in section 4): the delayed stall of leading edge vortices, the lift peak due to pitch-up
rotation, and the wake capture due to vortical flow and airfoil interactions[20].

The delayed stall allows the wing to generate high lift coefficients at angles of attack
over the stall value in steady conditions. This occurs because of the presence of a
leading edge vortex, which is a flow structure that generates a low pressure area
over the wing. This causes a large suction in the upper surface of the wing and
produces a larger lift than would be obtained in steady conditions.

In insect-like flight, the wing experiences a fast rotation, known as a rapid pitch-
up, at the end of each semi-stroke. This motion has been found to produce a peak
in the aerodynamic forces –even in hover where the wing is momentarily still– due
to the rotational circulation around the wing generated by the rapid pitch-up.

The wake capture occurs at the end of each semi-stroke, where fluid momentum
from the vortex shed by the previous stroke is transfered to the wing. This creates
a circulation around the wing, increasing the aerodynamic lift.

Given the complexity of the aerodynamic phenomena that arise in flapping wings,
the range of possible geometric and kinematic parameters is incredibly vast. For
this reason, there is a strong incentive to develop quasi-steady models, since they
are a compromise between accuracy and computational cost.

The implementation of quasi-steady models is largely justified because the delayed
stall is counteracted by the Wagner effect and the leading edge vortex is a
translatory effect[24].

Taha et al.[24] propose a categorization of the type of aerodynamic models that
may be applied to forward flight and hover regimes. For forward flight, quasi-
steady aerodynamics are applicable for low reduced frequencies, that is, when the
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velocity seen by the wing due to flapping is small compared to the flight velocity.
For hover, quasi-steady aerodynamics may be applied when the flapping frequency
is high since the natural frequencies of the body are much lower and cannot become
coupled with the flapping frequency. In this regime, the body feels only the average
forces.

2.2 Geometric and Kinematic Parameters

The relevant geometric and kinematic parameters used throughout this thesis are
depicted in figure 1. In order to study the unsteady aerodynamics of flapping
wings, we first consider a global reference system {x, y, z}, where the free-stream
velocity (in forward flight) is in the direction of ex. The wing flaps about the
origin O with the wing root being at a constant distance R from O.

The stroke plane is the plane in which the motion of the wing is contained. It is
defined by the wingtip position at the end of the up-stroke, the origin O, and the
wingtip position at the end of the down-stroke. The inclination angle of the stroke
plane with respect to the yz plane is β.

Figure 1: Parameters for the motion of flapping wings.

The local wing reference system {xw, yw, zw} is defined such that yw is in the
direction of the wing span, xw is parallel to the chord, and zw completes the right-
hand system.
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The flapping angle φ(t) is the angle between y and yw measured over the stroke
plane. The semi-amplitude of the flapping motion is Φ, such that at the end of
the up-stroke φ(t) = Φ and at the end of the down-stroke φ(t) = −Φ.

The pitch angle θ(t) is the angle between the global x and the local xw.

The wing itself may have any chord distribution c(yw) and a constant cross-section,
which for the analyzed cases is either a NACA airfoil or an ellipse.
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3 Methodology

To compute the forces on the flapping wing, we make use of two main tools: the
blade element method and the actuator disk.

The blade element method consists on dividing the wing spanwise into several
sections which are treated as two-dimensional airfoils. The kinematic parameters
of each section are known functions of yw and time. The lift and drag coefficients
are computed according to an aerodynamic model for each section, so that the
force produced by each section is obtained. The sum of the force from each section
provides the total force exerted by the wing.

However, there is one parameter that is not known. As the motion of the flapping
wing causes the surrounding air to move, the flow velocity that the wing encounters
is not the free-stream velocity, but rather the combination of the free-stream
velocity and the velocity induced by the flapping wing. This induced velocity
v̄i must be taken into account in the blade element method. To compute it we
apply the actuator disk theory, which takes an average force as input and considers
conservation of momentum to estimate an average value of the induced velocity
over an entire flapping period.

3.1 Classical Actuator Disk Theory

The actuator disk theory, which is also known as momentum theory, was developed
by Rankine and Froude (1865, 1889) as a simple approximation to describe the
effect of a rotor exerting a force on a fluid by generating a change in momentum.
The area swept by the rotor blades is modeled as a disk of infinitesimal thickness
capable of sustaining a pressure difference, acting upon the flow by accelerating it,
hence the name actuator disk.

To illustrate this theory, let us assume a horizontal rotor in vertical flight with
speed V∞ (figure 2), whose blades have a span b. The actuator disk is the area
swept by the blades, a horizontal circle of area S = πb2 which produces a vertical
force T . We now consider an axially symmetric streamtube which isolates the flow
passing through the disk. Taking a section of this streamtube as a control volume
starting far upstream and ending far downstream of the actuator disk, we apply
the conservation laws of mass, momentum and energy to find the induced velocity
at the disk, vi.
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(a) (b)

Figure 2: (a) Actuator disk. (b) Control volume based on a streamtube of the flow
generated by the actuator disk.

Since the air is considered to be incompressible, the mass flow through any cross-
section of the streamtube is constant.

ṁ = ρ|V∞|S0 = ρ|V∞ + vi|S = ρ|V∞ + vi∞|S∞ (1)

Conservation of momentum in the z direction provides the relationship

−T =

∫∫
S0+S∞

ρv(v · n) dσ = ρV∞|V∞|S0 − ρ(V∞ + vi∞)|V∞ + vi∞|S∞ (2)

where n is the outwards-facing normal of the control volume. Combining equations
1 and 2 yields

T = ρSvivi∞ (3)

Making use of the energy equation we find the power developed by the rotor. This
must be equal to the power induced to the flow, which is the product of the exerted
force and the velocity at the disk.

P =
1

2
ṁ
[
(V∞ + vi∞)2 − V 2

∞
]

= T (V∞ + vi) (4)
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Recalling equations 1 and 3, equation 4 can be reduced to a simple relationship
between vi and vi∞.

vi∞ = 2vi (5)

Finally, introducing equation 5 into 3 we may express the force produced by the
rotor in terms of the velocity that it induces in the flow.

T = 2ρSvi(V∞ + vi) (6)

It is important to note that this momentum theory considers only steady flows.
The magnitudes represented here are averages over a period. The thrust T and
the induced velocity vi are in fact the average thrust and average induced velocity
generated by the rotor over a full rotation.

3.2 Modified Actuator Disk Theory

In order to implement the actuator disk theory to flapping wings which may be
either in forward flight or hover, we perform several modifications similar to those
in Morales[13]. Firstly, the area swept by a flapping wing is no longer a circle, but
an annular section of amplitude 2Φ (figure 3). The area of the disk is

S =

∫ Φ

−Φ

∫ (R+b)

R

rdrdθ = Φ(2Rb+ b2) (7)

(a) (b)

Figure 3: (a) Geometry of the modified actuator disk. (b) Example of a generic control
volume obtained from a streamtube of the flow generated by the modified actuator disk.

9



We now consider the most general case possible for a flapping wing, illustrated
in figure 4. The actuator disk is placed in a flow with a horizontal free-stream
velocity U∞. The disk is oriented at an angle β with respect to the vertical. No
assumptions are made regarding the direction of the force, considering an arbitrary
F̄ = F̄xex+F̄zez

1. In most cases, the force is —as is customary to assume in rotary
wing aerodynamics— approximately perpendicular to the actuator disk, but this
assumption is not necessary. The induced velocity at the disk v̄i = ūiex + w̄iez
must be parallel to the force and in the opposite direction.

Figure 4: Modified actuator disk.

The total velocity at the disk is V̄ = (U∞ + ūi)ex + w̄iez and forms an angle
γ with the horizontal. Since the walls of the streamtube are parallel to the
velocity, the actuator disk is in fact not perpendicular to the flow (recall that
F̄ is not perpendicular to the actuator disk). In order to apply the equations of
conservation, we require the surface area of the cross section of the streamtube S ′,
which is the projection of the actuator disk onto the perpendicular to the flow.

S ′ = S cos δ (8)

For the following application of the conservation laws, we take S ′ as a known value.
The angle δ will be discussed and introduced at the end of this analysis. The control
volume is defined in the same manner as in the previous section (shown in figure
5). The conservation of mass may be applied to the control volume similarly to
equation 1.

1Note on nomenclature: vectors are indicated by boldface (e.g. a). The magnitude of a vector
may be indicated with norm bars or written in regular font (e.g. |a| ≡ a). Overbars are used to
indicate average values (e.g. ā is the average of a).
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Figure 5: Control volume of the modified actuator disk.

ṁ = ρ|U∞|S0 = ρ|U∞ + v̄i|S ′ = ρ|U∞ + v̄i∞|S∞ (9)

The conservation of momentum yields the following equation:

F̄ =

∫∫
S0+S∞

ρv(v · n)dσ = −ρU∞|U∞|S0 + ρ(U∞ + v̄i∞)|U∞ + v̄i∞|S∞ (10)

Introducing equation 9 into 10 we obtain

F̄ = ρS ′|U∞ + v̄i|v̄i∞ = ṁv̄i∞ (11)

As before, we express the induced power both in terms of the change in kinetic
energy and as the product of force and velocity.

Pi =
1

2
ṁ(|U∞ + v̄i∞|2 − |U∞|2) = F̄(U∞ + v̄i) (12)

Recalling the properties of vector norms, we may write |U∞ + v̄i∞|2 = |U∞|2 +
|U∞|2 + 2U∞ · v̄i∞ and |v̄i∞|2 = v̄i∞ · v̄i∞ . These expressions simplify equation 12
to

v̄i∞ = 2v̄i (13)

Equation 11 can now be written to relate the force exerted on the flow by the
actuator disk to the induced velocity at the disk.
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F̄ = 2ρS ′v̄i|U∞ + v̄i| (14)

We now recall that S ′ = S cos δ. The angle δ may be expressed in terms of β and
γ. Two cases are possible depending on whether γ is larger or smaller than π

2
+ β

(that is, if the total velocity points upstream or downstream of the actuator disk).
Figure 6 depicts the geometrical differences of the two cases (the force has been
omitted for clarity). For each case, the final equation that relates the force with
the induced velocity is slightly different.

(a) (b)

Figure 6: Geometry for the two possible cases: (a) γ < π/2 + β and (b) γ > π/2 + β

Case A: γ < π
2

+ β

The following analysis is performed for F̄ in the first quadrant, but maintaining
a coherent sign criteria, the results are valid for any direction of F̄. For this
case, δ = β − γ. We are interested in cos δ, which may be written as cos δ =
cos β cos γ + sin β sin γ. The expressions for sin γ and cos γ are

sin γ =
U∞ + ūi
|U∞ + vi|

cos γ =
w̄i

|U∞ + vi|

(15)

and therefore

cos δ =
U∞ + ūi
|U∞ + v̄i|

cos β +
w̄i

|U∞ + v̄i|
sin β (16)
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Substituting equations 16 and 8 into 14 and projecting the vectorial equation onto
the x and y axes, we obtain

F̄x = 2ρSūi
[

cos β(U∞ + ūi) + sin βw̄i
]

F̄z = 2ρSw̄i
[

cos β(U∞ + ūi) + sin βw̄i
] (17)

Arranging equation 17 we obtain two equations: a quadratic equation from which
ūi can be solved for and a simple relationship between ūi and w̄i.

ūi
2
[

cos β + sin β
F̄z
F̄x

]
+ ūi

[
cos βU∞

]
− F̄x

2ρS
= 0 (18)

w̄i = ūi
F̄z
F̄x

(19)

The valid solution of ūi is that which is real and in the opposite direction than
F̄x (recall that the signs are implicit, thus the valid solution for a positive F̄x is a
negative ūi and vice versa).

Case B: γ > π
2

+ β

For the case where the total velocity points upstream of the disk we make use of
the auxiliary angle γ′ such that δ = γ′+β. Given that γ and γ′ are supplementary
angles, sin γ′ = sin γ and cos γ′ = − cos γ. Therefore the cosine of δ may be
expressed as

cos δ = − cos β cos γ + sin β sin γ (20)

Equation 15 still holds. Following the same procedure as in the previous case, we
arrive at a quadratic equation for ūi identical to equation 18 save for a change of
sign in the first-order term:

ūi
2
[

sin β
F̄z
F̄x
− cos β

]
− ūi

[
cos βU∞

]
+

F̄x
2ρS

= 0 (21)

w̄i = ūi
F̄z
F̄x

(22)

As before, the valid solutions of ūi is that which is real and opposite in sign to F̄x.
It is important to note that it is not possible to know a priori whether we are in
case A or B, since only after solving for ūi can we know the direction of the total
velocity.
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Lastly, it should be recalled that the actuator disk theory considers only steady
flow, and thus both the input force and the output induced velocity must be
interpreted as average values over a flapping period. When the induced velocity is
introduced in the blade element method, all points of the wing will see the same
induced velocity at all points in time. This is of course not an exact representation
of the real flow, but it may be valid as a first approximation.

3.3 Blade Element Method

The blade element theory provides a method for computing the forces exerted by
a rotating wing, such as the blades of a propeller. We use this method, together
with the induced velocities computed with the actuator disk theory, to predict the
force exerted by the flapping wing. The blade element method consists on dividing
the wing in the spanwise direction into a large number of thin sections that can
essentially be treated as two-dimensional profiles. The lift and drag are computed
section by section, and the total force generated by the wing is approximated as
the sum of the forces on all sections.

In the limit where the wing is divided into an infinite number of sections, each of
differential thickness dyw, the lift and drag at each section are the spanwise lift
and drag L′(yw) and D′(yw), and the sum of these forces are the integral over the
span, L =

∫ b
0
L′(yw) dyw and D =

∫ b
0
D′(yw) dyw.

Figure 7: Spanwise divisions of the wing.

It is important to note that this method is not truly three-dimensional, as it does
not allow for the computation of spanwise flows. Secondary 3D effects such as the
velocity induced by the wing tip vortex are not accounted for. Because of this, the
blade element method tends to predict slightly higher forces.

The wing is divided into Ny sections (figure 7). The subindex n is used to denote
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the specific value of a variable dependent on yw at the nth section. Each section has
a chord cn and width ∆yn, and its associated kinematic magnitudes are a function
of both time and the spanwise coordinate. The velocity of the profile along the
stroke plane is due to the flapping motion:

vφ,n(t) = φ̇(t)(R + yw,n) (23)

The flapping velocity is decomposed in its x and z components by projecting it on
the stroke plane:

vφx,n(t) = vφ,n(t) sin β

vφz,n(t) = vφ,n(t) cos β
(24)

Figure 8: Diagram of kinematics for a two-dimensional airfoil.

The total velocity seen by the profile is obtained from the free-stream velocity, the
induced velocity and the velocity due to the flapping motion (figure 8).

Vx,n(t) = U∞ + ūi − vφx,n(t)

Vz,n(t) = w̄i − vφz,n(t)
(25)

Vn(t) =
√
Vx,n(t)2 + Vz,n(t)2 (26)

The effective angle of attack seen by each section is the sum of the pitch angle and
the angle of attack induced by the velocity. The pitch angle is considered here to
be constant for the entire span, since the cases being analyzed are of rigid wings
with null geometric twist. However, for wings that are either flexible or present
varying geometric twist, the pitch angle would also be a function of the spanwise
coordinate.

αind,n(t) = tan−1

(
Vz,n(t)

Vx,n(t)

)
αeff,n(t) = αind,n(t) + θ(t)

(27)
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At this point, the spanwise force coefficients cl and cd may be computed according
to one of the aerodynamic models (to be presented in section 5). For some models,
cl and cd will be a function of the variables computed above, and other will require
additional parameters that may be computed from these variables. In any case,
the aerodynamic model will provide a spanwise lift and drag coefficient for each
spanwise position and time instant.

cl,n(t) = f(U∞, vφ,n, αeff,n, θ, ...)

cd,n(t) = f(U∞, vφ,n, αeff,n, θ, ...)
(28)

The lift and drag produced by each section at each time instant are computed:

L′n(t) = 1
2
ρVn(t)2cncl,n(t)

D′n(t) = 1
2
ρVn(t)2cncd,n(t)

(29)

Ln and Dn are expressed in flow axes. In order to obtain the force in the global
axes, two rotations must be made: first to the local wing axes and then to the
global axes (figure 9).

F ′z,n(t) =
[
L′n(t) cosαind,n(t) +D′n(t) sinαind,n(t)

]
cosφ(t)

F ′x,n(t) = D′n(t) cosαind,n(t)− L′n(t) sinαind,n(t)
(30)

Figure 9: Change of axes from flow to wing and from wing to global.

The total force components in global coordinates are computed as the sum of the
forces of each section (a discrete integral).

Fz(t) = ΣnF
′
z,n∆yw,n

Fx(t) = ΣnF
′
x,n∆yw,n

(31)

The force coefficients are obtained normalizing the total force by the wing surface
and a reference dynamic pressure constructed with the reference velocity, which is
different for each kinematic case.
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Cz(t) =
Fz(t)

1
2
ρSwV 2

ref

Cx(t) =
Fx(t)

1
2
ρSwV 2

ref

(32)

From equation 31 we must also compute the average force over a flapping period,
which is required to compute the average induced velocity with the actuator disk
theory. The average force is given by

F̄z =
1

T

∫ T

0

Fz(t) dt

F̄x =
1

T

∫ T

0

Fx(t) dt

(33)

3.4 Iterative Process

In order to compute the aerodynamic force on the wing with the blade element
method, the induced velocity must firstly be computed with the actuator disk
theory. However, the actuator disk requires an average force as input, which can
only be computed from the output force of the blade element method. Thus, this
problem must be solved by an iterative process.
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Figure 10: Flowchart of principal computations to be implemented. � Main processes,
� inputs, � additional computations, � output.

The computation is carried out as depicted in the flowchart of figure 10:

• Average forces F̄x,in and F̄z,in are estimated for the flapping period. These
may be mere guesses or they may be estimated with a simpler model from
the wing geometry and the kinematics of the problem.

• The actuator disk is used to compute the average induced velocities ūi and
w̄i. For this, the disk area and stroke plane orientation must be computed
from the wing geometry and kinematics, respectively.

• The blade element method considers the induced velocity and kinematic data
to compute any parameters that the chosen aerodynamic model requires.
The aerodynamic model computes the 2D lift and drag coefficients cl and cd
for each section and time instant. This is used by the blade element method
to compute the spanwise forces in global axes F ′x(y, t) and F ′z(y, t).
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• The total forces Fx(t) and Fz(t) are computed. From these, the average
forces over a whole period are computed (F̄x,out and F̄z,out).

• The average forces obtained with the output of the blade element method
(F̄x,out and F̄z,out) are compared to those that were used in the actuator disk
(F̄x,in and F̄z,in). If the relative error is above a certain tolerance ε, the forces
are updated (details below) and reintroduced in the actuator disk to restart
the process.

• When the average forces introduced in the actuator disk and those obtained
from the blade element method are within the tolerance ε, the forces Fx(t)
and Fz(t) are considered accurate enough and the iterative loop is exited.
The force coefficients Cx(t) and Cz(t) are computed and compared to the
DNS results.

The error associated to the average forces is considered to be the maximum of the
relative errors associated to F̄x,out and F̄z,out. It was found that error tolerances
of ε = 1% provide an adequate compromise between accuracy and computational
time.

Error = max

(∣∣∣∣ F̄x,out − F̄x,inF̄x,in

∣∣∣∣, ∣∣∣∣ F̄z,out − F̄z,inF̄z,in

∣∣∣∣) (34)

Regarding the update process of F̄x,in and F̄z,in, it was found that simply replacing
the input average forces by the output average forces leads to divergent behavior.
Thus, a damping factor fd was introduced. The upper limit of the damping factor
is approximately fd = 0.45.

F̄ ′x,in = F̄x,in + fd(F̄x,out − F̄x,in)

F̄ ′z,in = F̄z,in + fd(F̄z,out − F̄z,in)
(35)

3.5 Error Quantification

In order to quantify the prediction accuracy of the models, some metrics are
required. It is important to note, however, that the assessment of the models’
accuracy is not entirely objective, since there is no single measurable criteria that
expresses how well a model predicts aerodynamic forces.

We decide to base our assessment on two criteria: the mean value of the force and
its amplitude. The mean value of the force is evidently a meaningful measurement
of the force over time. However, several of the cases being analyzed lead to
symmetric functions with a mean value approaching zero. In such cases it is
necessary to observe the amplitude of the force as well to measure the accuracy of
the model.
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The phase delay was also considered as a possible criteria to base this assessment
on. However, this results in very similar errors for all models that do not provide
an adequate indication of a model’s overall prediction ability. Ultimately, it was
considered that using the amplitude as a criteria produced errors that better
captured the performance of each model, and thus the phase delay was disregarded
for this analysis.

The two errors are defined in equations 36 and 37.

Ex,amp =
Cx,modelmax − Cx,DNSmax

|Cx,DNSmax|

Ez,amp =
Cz,modelmax − Cz,DNSmax

|Cz,DNSmax|

(36)

Ex,mean = C̄x,model − C̄x,DNS
Ez,mean = C̄z,model − C̄z,DNS

(37)

The values Cx,modelmax and Cx,DNSmax are the maximum force coefficients in the
mid-stroke (the time interval when the pitch remains constant, explained in
detailed in section 4.2) of the model and DNS, respectively. This is done to avoid
misrepresenting the error in the cases of hover where the wing rotation causes a
sharp peak (figure 11).

Figure 11: Diagram of values for amplitude error. ( ) DNS result, ( ) model result.
The maximum value of the DNS result is taken only from the mid-stroke (m.s.) phase;
the wing rotation phase (rot.) is disregarded.

The mean-value error is an absolute error. It is defined in this way due to the
fact that in several cases the force coefficient approaches a symmetric sinusoidal
function whose mean value is close to 0. Thus, defining a relative error for the
mean force coefficient results in very large errors that do not provide meaningful
information.

Note that the errors are not defined in absolute terms. Thus, a negative error
indicates an under-prediction of amplitude or mean value, while a positive error
indicates an over-prediction.
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4 Kinematics

The aerodynamic models are implemented in two distinct flight regimes: forward
flight and hover. In order to verify the models, we compare them to results obtained
by DNS simulations extracted from third parties. We replicate the kinematics of
the conditions in which the results were obtained so as to compare the model
prediction to the DNS results.

For forward flight, the chosen simulations are those computed by the the CFD
group of the Aerospace department at UC3M[10], whose database was made
available for comparison. For the case of hover, the DNS results obtained by
Sun and Du[22] are chosen for comparison.

4.1 Forward Flight

As mentioned above, the cases of forward flight are compared to simulations
performed by Aerospace department at UC3M[10]. These simulations consider
a wing in forward flight, flapping in a vertical stroke plane (β = 0o) with no
pitching motion (θ(t) = 0). The wing is of rectangular planform (c(yw) = c̄) and
NACA0012 airfoil section, and flaps about a point at a distance R from the wing.
The variable parameters of this motion are the aspect ratio of the wing (and by
extension the surface area, since the mean chord is kept constant) and the distance
to the pivot point R.

The flapping motion is a sinusoidal function such that the maximum vertical
displacement at the wing tip is one mean chord. The motion begins in the middle
of the up-stroke (φ(t0) = 0, φ̇(t0) > 0). Thus, the flapping motion is defined as

Φ = tan−1

(
c̄

R + b

)
(38)

φ(t) = Φ sin(ωt) (39)

Figure 12: Diagram of kinematics in forward flight.
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All other paremeters are kept constant. All cases are performed at reduced
frequency κ = ωc̄/U∞ = 1 and Re = U∞c̄/ν = 500, and U∞ is taken as the
reference velocity.

4.2 Hover

The simulations by Sun and Du[22] replicate the hover flight of several insects, four
of which are considered here2: bumblebee (Hymenoptera, Bombus hortorum), fruit
fly (Diptera, Drosophilia melanogaster), hoverfly (Diptera, Episyrphas balteatus),
and ladybug (Coleoptera, Coccinellidae septempunctata). For each case, the wing
planform of the corresponding insect is considered (figure 13). The section is
assumed to be an elliptical profile of 12% thickness.

(a) Bumblebee (b) Fruit fly (c) Hoverfly (d) Ladybug

Figure 13: Planforms of insect wings for the cases considered in hover (extracted from
Sun and Du[22], originally from Ellington[5]).

The stroke plane is horizontal (β = 90o) and the flapping motion is considered to
be a sinusoidal function which begins at the start of the downstroke (φ(t0) = Φ,
φ̇(t0) = 0). In this case, the flapping semi-amplitude Φ varies for each insect (see
table 1). Flapping occurs about the wing root, so R = 0.

φ(t) = Φ cos(ωt) (40)

The pitch angle is constant except at the beginning and end of each upstroke or
downstroke, where it changes from θ = θm to 180o− θm. The rotation of the wing
after each semistroke lasts approxmately τr = T/4. The midstroke pitch angle

2The paper by Sun and Du analyzes eight insects. However, due to a poor choice of
presentation of the results, it is only possible to extract the data for four cases. For the remaining
cases, it is unclear which set of data corresponds to which insect.
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is also given for each insect (see table 1). The axis of the pitching rotation is
considered to be located at 30% of the maximum chord from the leading edge of
the wing. The motion of the wing is depicted in figure 14, and an example of the
evolution of the pitch angle is shown in figure 15).

(a) (b) (c) (d)

Figure 14: Hover kinematics, with the wing motion indicated by a red arrow. (a) The
motion begins at the end of the ‘upstroke’ and the start of the ’downstroke’, with the
wing rotating to decrease the pitch angle to θ = θm. (b) The wing maintains a constant
pitch θ = θm during the middle of the ‘downstroke’. (b) As the wing approaches the end
of the ‘downstroke’ it increases its pitch angle to θ = 180o−θm. (c) During the ‘upstroke’
the motion is symmetric to that of the ‘downstroke’, maintaining θ(t) = 180o − θm. (d)
As the wing reaches the end of the ‘upstroke’, it decreases the pitch angle back to θ = θm.

Figure 15: Diagram of the variation of pitch θ with time. The phases (a) through (d)
correspond to those of figure 14. The abbreviations stand for wing rotation (rot.) and
mid-stroke (m.s.)

The relevant kinematic data for each case is gathered in table 1.

Φ[o] θm[o] Re f [s−1]

Hoverfly 45 29 413 160

Fruit fly 75 46 75 254

Bumblee 58 28 1326 155

Ladybug 88 43 450 54

Table 1: Kinematic parameters for each insect.

The reference velocity Vref is arbitrarily defined as the average velocity during a
semi-stroke at a distance R2 from the wing root, where
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R2 =

√∫ b

0

c(y)(y +R)2/Sw dy (41)

The flapping velocity at yw = R2 normalized with Vref results in

v̂φ(t, yw = R2) =
vφ(t, yw = R2)

Vref
= 1

2
π sin(ωt) (42)
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5 Aerodynamic Models

5.1 Dickinson et al. (1999)

The first aerodynamic model to be considered is that developed by Dickinson et
al[3]. It is based on experimental data obtained with a dynamically scaled robotic
model of the fruit fly, Drosophilia melanogaster.

The objective of the conducted experiments was to estimate the forces generated
by revolving motion alone. The experiments consisted on moving the wing through
a 180o arc at constant velocity and fixed angle of attack.

The results of the lift and drag coefficients were fit to sinusoidal functions of
the angle of attack. No other parameters are taken into account; the proposed
aerodynamic model is only a function of the effective angle of attack:

cl = 0.225 + 1.58 sin(0.037αeff − 0.126)

cd = 1.92− 1.55 cos(0.036αeff − 0.171)
(43)

5.2 Wang et al. (2003)

In a paper by Wang et al.[26], 2D computations of airfoils were performed and
compared to the results of the previous model. The computations model an
elliptic airfoil under the same kinematics as in the experiments by Dickinson et
al[3], obtaining the aerodynamic forces by numerically solving the Navier-Stokes
equations. The Reynolds number Re = Vmaxc/ν of these computations range from
75 to 115.

The data was also fit to sinusoidal functions of the angle of attack, obtaining the
following model:

cl = 1.2 sin(2αeff )

cd = 1.4− cos(2αeff )
(44)

This model is based axclusively on 2D aerodynamics and does not capture 3D
effects of finite wings.

5.3 Dickson & Dickinson (2004)

The model developed by Dickson and Dickinson[4] in 2004 at the California
Institute of Technology aims at predicting aerodynamic forces in forward flight.
As in Dickinson et al.[3], this model is based on experimental results obtained by
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a robotic model of the Drosophilia melanogaster. In this case the robotic model
was capable of linear translational motion as the wing flaps on an inclined stroke
plane, simulating forward flight.

The proposed model depends on three dimensionless paramenters: the so-called
nondimensional first and second moments of inertia, r1 and r2, and the tip velocity
ratio, µ. The parameters r1 and r2 are based on the geometry of the wing and are
defined as

r1 =

∫ b
0
c(y)(y +R)/Sw dy

R + b
(45)

r2 =

√∫ b
0
c(y)(y +R)2/Sw dy

R + b
(46)

The tip velocity parameter is the instantaneous ratio of the chordwise component
of the velocity at the wing tip due to translation and flapping. It is defined as

µ(t) =
U∞ cosλ(t)

(R + b)λ̇(t)
(47)

The angle λ is the projection of φ on the horizontal plane (as shown in figure 16).
It may be found for a given β and φ(t) with basic trigonometry. Applying the
chain rule, we obtain its time derivative λ̇.

Figure 16: Diagram relating φ(t), β, and λ(t). The angle λ(t) is the projection of φ(t)
on the xy plane. Note that for a positive φ, λ is negative.

λ(t) = − tan−1
[

tan
(
φ(t)

)
sin β

]
(48)
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λ̇(t) =
sin βφ̇(t)

cos2 β sin2 φ(t)− 1
(49)

Thus, the expression for the instantaneous tip velocity parameter is

µ(t) =

U∞ cos

(
− tan−1

[
tan
(
φ(t)

)
sin β

])
(R + b)φ̇(t) sin β

·
(

cos2 β sin2 φ(t)− 1

)
(50)

The performed experiments simulated conditions in forward flight and were used
to determine empirical constants to formulate the following model:

cl =

[
1.38 + 3.30µ+ 2.01µ2

r2 + 2r1µ+ µ2

]
sinαeff cosαeff

cd =

[
1.38 + 2.88µ+ 1.38µ2

r2 + 2r1µ+ µ2

]
sin2 αeff +

[
0.15 + 0.48µ+ 0.32µ2

r2 + 2r1µ+ µ2

] (51)

This model considers more information that the previous ones, as it depends on
the wing geometry through r1 and r2, on the flight mode through µ, and the
kinematics through αeff .

Note that the two kinematic cases being considered, forward flight with β = 0o

and hover, impose critical values of µ. For forward flight, µ → ∞ and for hover,
µ = 0. While these values of µ do not result in indeterminations, it is important
to bear in mind that they are extreme cases for this model.

5.4 Moriche (2017)

The aerodynamic model proposed by Moriche[14] is based on the force decom-
position by Chang[2] and the circulation model by Pesavento and Wang[15]. Its
notable novelty is the prediction of the direction of the aerodynamic force, which is
assumed to be perpendicular to the airfoil orientation. Thus, the force coefficients
obtained by this model are not those in the flow axes (cl and cd) but rather in the
local wing axes (cz,w and cx,w).

To facilitate the upcoming computations, let us introduce the unitary vectors na

and nl (figure 17). na is the vector normal to the airfoil orientation given by the
pitch angle, and nl is the local normal vector at a distance l from the trailing edge
over the airfoil surface.
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(a) (b)

Figure 17: Diagram of normal vectors for Moriche’s model. (a) Normal vector to airfoil
na. (b) Local normal vector to surface nl.

According to Chang’s force decomposition, three separate contributions to the
aerodynamic force are identified: the motion of the body (Fm), the vorticity within
the flow (Fv) and the surface vorticity (Fs). Thus, the vertical and Dickinson
coefficients may be written as

cz,w = cmz,w + cvz,w + csz,w

cx,w = cmx,w + cvx,w + csx,w
(52)

The term involving the surface vorticity, which includes viscous effects, is negligible
with respect to the other two terms[14] and is not considered. The contribution
due to the motion of the body can be modeled analytically by line integrals over
the surface of the airfoil.

cmz,w =

[
− ρ

∮
l

φz
Vref

∂v

∂t
nl dl +

ρ

2

∮
l

|v|2nl · ex dl

]/
(1

2
ρV 2

ref l)

cmx,w =

[
− ρ

∮
l

φx
Vref

∂v

∂t
nl dl +

ρ

2

∮
l

|v|2nl · ez dl

]/
(1

2
ρV 2

ref l)

(53)

The velocity potentials φx and φz can be computed analytically for simple
geometries such as ellipses[12] but for the NACA 0012 they are computed
numerically. The terms v and ∂v

∂t
are the velocity and acceleration of the flow

at the airfoil boundary, and given the no-slip condition, they are equal to the
velocity and acceleration of the airfoil. Since the kinematics are an input of the
problem, v and ∂v

∂t
are known.

The contribution to the force due to the vorticity of the flow is given by the Kutta-
Jukowski theorem, |Fv| = ρΓ|V|. According to Moriche’s model, this force is in
the direction of na. Thus, the vertical and horizontal coefficients are given by

cvz,w =
ρΓ|V|na · ez

1
2
ρV 2

ref l

cvx,w =
ρΓ|V|na · ex

1
2
ρV 2

ref l

(54)

The circulation of the flow Γ is estimated using the quasi-steady model by
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Pesavento and Wang[15] for airfoils at large angles of attack and subject to large
rotations.

Γ = 1
2
GT c|V| sin(2αeff ) + 1

2
GRc

2θ̇ (55)

The constants that appear in the model were fitted by Moriche to a 2D database
of airfoils heaving and pitching in forward flight with κ = 1.41[14]. The values
obtained were GT = 1.85 and GR = π.

Since the resulting force coefficients from this model are expressed in the local
wing axes, only the axes change from local wing to global is required, so equation
30 is replaced by

F ′z,n(t) = L′n(t) cosφ(t)

F ′x,n(t) = D′n
(56)
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6 Results and Discussion

6.1 Mesh Resolution Study

A study is carried out to verify the dependence of the solution on the number of
spanwise divisions. We consider the case of Ny = 200 as a reference well above
the convergence point. A relative error based on the maximum value of the force
coefficient is defined as

Emaxvalue(Ny) =
Cmax,Ny − Cmax,200

Cmax,200

(57)

where Cmax,Ny is the maximum value of Cz or Cx for a given Ny and Cmax,200 is
the maximum value of Cz or Cx for Ny = 200. As all models behave in a similar
fashion, figure 18 presents an example of the evolution of these errors with Ny for
the model of Wang et al. in a case of forward flight and a case of hover. The Cz
in forward flight has the strongest dependence on Ny, though it reaches errors of
less than 1% with as few as 20 spanwise divisions.

Figure 18: Relative max-value errors with varying Ny for the Wang et al. model.
( ) Cx for forward flight (AR = 2, R = 8), ( ) Cz for forward flight (AR = 2, R = 8),
( ) Cx for hover (BB), ( ) Cz for hover (BB).

The results presented below were obtained with a resolution of Ny = 50. Figure 19
shows examples of the wings used for the cases of forward flight (19a) and hover
(19b).
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(a) Rectangular wing, AR = 2
(b) Bubmlebee wing

Figure 19: Examples of the computational domain for two wings, with 50 spanwise
divisions with a sinusoidal distribution. The chordwise divisions are used only for
visualization purposes and do not affect the computations.

6.2 Forward Flight

A selection of four cases in forward flight are presented in figures 20 through 23:
AR = 2 with R = 0, AR = 2 with R = ∞, AR = 4 with R = 0, and AR = 4
with R = ∞. They are representative for all cases and illustrate the behavior of
the models in forward flight. For each case, Cz and Cx are shown as predicted by
each of the four models together with the DNS result.

Figure 20: Forward flight, AR = 2, R = 0. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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Figure 21: Forward flight, AR = 2, R = ∞. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

In terms of the vertical force coefficient Cz, all four models follow the general
behavior of the DNS result. The Dickinson et al. model over-predicts the
amplitude of the force, while the Dickson and Dickinson model under-predicts it.
The Wang et al. and Moriche models provide a better prediction of the amplitude.
For all models except for Moriche’s there is a phase shift with respect to the DNS,
which is not constant in time (the phase shift is smallest at the mid-strokes).

Regarding the streamwise force coefficient Cx, the prediction of the models
vary considerably. As expected, the Moriche model predicts an identically-zero
streamwise force, since it assumes the force is perpendicular to the airfoil and these
cases have θ(t) = 0. The Dickinson et al. model predicts an incorrect behavior
of Cx, approaching the correct values only during the down-stroke. The Wang et
al. model predicts the proper shape of the force coefficient but with a larger mean
value and a smaller amplitude. The Dickson and Dickinson model presents the
closest approximation, despite an over-prediction of the mean value and a slight
phase shift. The prediction of the Dickson and Dickinson model becomes more
accurate as R→∞.
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Figure 22: Forward flight, AR = 4, R = 0. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 23: Forward flight, AR = 4, R = ∞. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

The results for AR = 2 and AR = 4 are similar. Notably, the Moriche model
under-predicts the vertical force for AR = 4 with R = 0 (figure 22) but regains
accuracy as R→∞ (figure 23).

The errors associated to the cases of AR = 2 and AR = 4 (as defined in section
3.5) are presented in tables 2 and 3, respectively. A global average in taken for each
type of error (Ēz,mean, Ēz,amp, Ēx,mean, and Ēx,amp) and each error is compared to
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the global average of its type. Predictions with an error below 50% of the global
error average of its type are considered ‘accurate’ and shown in green. Similarly,
predictions with an error over 150% of the global error of its type average are
considered ‘poor’ and shown in red.

Case Model Ez,mean Ez,amp Ex,mean Ex,amp

R = 0

D -0.0001 0.3404 0.2060 2.4895
W -0.0045 0.0032 0.1694 0.7245
DD -0.0040 -0.1907 0.0776 0.4566
M -0.0086 -0.0658 -0.1433 -0.9998

R = 0.5

D -0.0019 0.3658 0.2308 2.7128
W -0.0057 0.0234 0.1845 0.6835
DD -0.0050 -0.1754 0.0813 0.4149
M -0.0106 -0.0519 -0.1318 -0.9998

R = 2

D -0.0062 0.3754 0.2686 3.1180
W -0.0153 0.0292 0.2002 0.6212
DD -0.0068 -0.1754 0.0765 0.3582
M -0.0142 -0.0217 -0.1150 -0.9998

R = 8

D -0.0122 0.3954 0.3174 3.7318
W -0.0102 0.0446 0.2160 0.5883
DD -0.0089 -0.1744 0.0679 0.3289
M -0.0191 0.0474 -0.0937 -0.9998

R =∞

D -0.0170 0.4223 0.3550 4.1106
W -0.0121 0.0626 0.2244 0.5276
DD -0.0105 -0.1675 0.0585 0.2782
M -0.0233 0.1204 -0.0800 -0.9997

Table 2: Model errors for forward flight with AR = 2.

Case Model Ez,mean Ez,amp Ex,mean Ex,amp

R = 0

D 0.0010 0.1463 0.2232 2.1921
W -0.0040 -0.1417 0.1897 0.6160
DD -0.0036 -0.3058 0.1007 0.3655
M -0.0078 -0.2053 -0.1221 -0.9999

R = 2

D -0.0029 0.1543 0.2720 2.5364
W -0.0111 -0.2388 0.2236 0.5243
DD -0.0055 -0.3036 0.1089 0.2815
M -0.0116 -0.1954 -0.0974 -0.9998

R =∞

D -0.0166 0.2067 0.3916 4.2897
W -0.0235 -0.0970 0.2607 0.5807
DD -0.0100 -0.2938 0.0949 0.3226
M -0.0229 -0.0495 -0.0435 -0.9997

Table 3: Model errors for forward flight with AR = 4.

The errors are presented graphically in figure 24, where the amplitude error is
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plotted against the mean-value error for both Cz and Cx, for all the forward flight
cases. The closer a model’s data points are to the origin (0, 0), the closer its
prediction is to the real result.

Figure 24: Error maps for forward flight. Models indicated by color and aspect ratio by
marker shape: � Dickinson et al., � Wang et al., � Dickson and Dickinson, � Moriche;
� AR = 2, ♦ AR = 4.

The amplitude errors of Cz are consistently lower (‘more negative’, not necessarily
closer to 0) for the cases of AR = 4 than for AR = 2. This means that for the
Dickinson et al. model, which over-predicts the Cz amplitude, the results are more
precise for AR = 4 than for AR = 2. As the other models do not have such a
strong tendency to over-predict the amplitude of Cz, the results for AR = 4 are
worse that than for AR = 2. The Cz mean value error and both Cx errors seem
generally unaffected by the variation in aspect ratio.

The effect of R on the prediction ability does not present a general trend. The
error magnitudes of Cz and Cx have been plotted for varying R in figures 25 and
26, respectively. It is observed that the predictions of Dickinson et al. are worse
for increasing R. For the other models, there is no general trend with R observable
in all errors.
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Figure 25: Error variation with R for Cz. Models indicated by color and aspect ratio
by marker shape: ( ) Dickinson et al., ( ) Wang et al., ( ) Dickson and Dickinson,
( ) Moriche; � AR = 2, ♦ AR = 4.

Figure 26: Error variation with R for Cx. Models indicated by color and aspect ratio
by marker shape: ( ) Dickinson et al., ( ) Wang et al., ( ) Dickson and Dickinson,
( ) Moriche; � AR = 2, ♦ AR = 4.

6.3 Hover

For hover, the DNS results show a sudden increase in vertical and streamwise force
coefficients at the end of each semi-stroke, likely the result of rotational lift and
the wake capture effect (es explained in section 2.1). This may be quite prominent
as in the case of the bumblebee (figure 27) or very subtle as in the case of the fruit
fly (figure 28).

36



Figure 27: Hover, bumblebee (Bombus hortorum). ( ) DNS result, ( ) Dickinson et
al., ( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 28: Hover, fruit fly (Drosophilia melanogaster). ( ) DNS result, ( ) Dickinson
et al., ( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

None of the models are able to predict the increased lift at the end of each semi-
stroke. However, for the cases where the force peak is prominent, the models
over-predict the force in the mid-stroke section, which partly compensates for the
under-prediction in the rotation phase (figure 27). In the cases where the force
peak is subtle, the prediction is closer to the DNS result for the entire period
(figure 28).
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It is evident that Moriche’s model greatly over-predicts both the vertical and
streamwise forces. The other models are closer to the DNS results and all behave
in a similar manner. As in the cases of forward flight, the Dickinson et al. model
over-predicts the vertical force, while the Wang et al. and Dickson and Dickinson
models are closer to the DNS result.

In terms of the streamwise force coefficient, all models save for Moriche’s
behave similarly to each other, following the low frequency of the DNS results.
Interestingly Moriche’s model, despite greatly over-predicting the streamwise force
coefficient, presents a secondary, higher frequency that resembles the behavior of
the force at the end of each semi-stroke.

As with forward flight, the errors associated to hover are presented in table 4, with
‘good’ predictions highlighted in green and ‘poor’ ones in red (the same definition
as in section 6.2 is used). The error map for the hover cases is shown in figure 29.

Case Model Ez,mean Ez,amp Ex,mean Ex,amp

BB

D 0.4980 0.7006 0.0527 0.1385
W -0.0091 0.1498 0.0309 0.1096
DD 0.1632 0.3430 0.0366 0.2069
M 1.3656 2.4097 0.0051 1.0184

FF

D 0.2185 0.3355 -0.1759 0.1280
W -0.3800 -0.1120 -0.1965 -0.0748
DD -0.3397 -0.0827 -0.1953 -0.0016
M 0.6465 1.0691 -0.2192 0.8517

HF

D 0.2938 0.2649 0.0371 1.2239
W -0.2525 -0.1450 0.0118 1.1441
DD -0.2288 -0.1265 0.0128 1.0563
M 1.0385 1.3925 -0.0183 2.7848

LB

D -0.1745 0.2453 -0.1784 0.2841
W -0.7140 -0.1698 -0.1973 0.0762
DD -0.5733 -0.0628 -0.1927 0.2545
M 0.6485 1.2722 -0.2181 1.4523

Table 4: Model errors for hover.
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Figure 29: Error maps for hover. • Dickinson et al., • Wang et al., • Dickson and
Dickinson, • Moriche.

As expected, the errors of the Moriche model are much larger than those of the
other models. The Dickinson et al. model also consistently over-predicts the
amplitude of Cz in hover. For Cx all models except for Moriche’s present very
similar errors, which vary considerably for each kinematic case.

6.4 Computational Cost

An approximate evaluation of the computational cost required for each model is
performed. To do so, both the time taken to perform the computation and the
number of cores used is taken into account. The computational cost is simply the
product of both:

Costcomp. = tcomp. ·Ncores

The computation time for each model is taken as the average time for all cases
running on a desktop computer (one core). The computational cost of the DNS
results is obtained using the approximate value of 250 hours running on 72 cores,
CostDNS = 9 · 105 · 72 ≈ 65 · 106s · core . Table 5 presents a comparison between
the computational cost of the studied models and the DNS.
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Model Cost [s · cores] Fraction of DNS Cost
Dickinson et al. 0.291 4.5 · 10−9

Wang et al. 0.402 6.2 · 10−9

Dickson and Dickinson 0.306 4.7 · 10−9

Moriche 47.81 7.4 · 10−7

Table 5: Computational cost of each quasi-steady model.

The Dickinson et al., Wang et al., and Dickson and Dickinson models all have
computational costs lower than 0.5s · core, nine orders of magnitude less than the
DNS simulations. Moriche’s model has a higher computational cost than the other
models by two orders of magnitude, since it requires many additional calculations,
yet it is still less than a millionth of the computational cost of the DNS simulations.

6.5 Discussion

The following section presents the most important observations that may be
extracted from the previous results regarding both the aerodynamic models and
the kinematic cases.

Dickinson et al. vs. Wang et al.

It is interesting to compare these two models, given that they were obtained from
the same kinematics and are very similar to each other (sinusoidal functions of
αeff ). Recall that the Dickinson et al. model was obtained from experimental
data of a finite wing while the Wang et al. model was obtained by a computational
method for two-dimensional airfoils.

In the forward flight cases, the Dickinson et al. model consistently over-predicts
the amplitude Cz while the Wang et al. model presents a better prediction. The
mean-value error for Cz is close to zero for both models given the symmetry of the
functions. Neither model is accurate in predicting the Cx, but the Dickinson et
al. model is notably different from the real behavior and the data it provides is of
limited practical use.

For the hover cases, the behavior of the models varies more than in forward flight.
The Wang et al. model under-predicts the mean Cz by different amounts while
the Dickinson et al. model over-predicts the mean value of Cz, though more
consistently. The amplitude prediction is better for Wang et al., with an error
approximately half of that for Dickinson et al. In terms of the Cx, both models
(as well as the Dickson and Dickinson model) predict essentially identical results
for hover.
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Based on the studied cases, the Wang et al. model is preferable to Dickinson et
al. model in all regards.

The reason for the poor performance of the Dickinson et al. model in forward flight
might be that it takes into account the three-dimensional aerodynamic effects.
While this may seem an advantage, these effects translate poorly to a different
wing with a different motion. Particularly, the coefficients of the Dickinson et
al. model are highly dependent on the aspect ratio3, as reported by Polhamus[16]
and Taira[25]. On the other hand, the Wang et al. model, which is merely two-
dimensional, is more versatile and can be adapted to various wings and kinematics.
The comparison between these two models might point to the fact that three-
dimensional effects are not overly important and that they may in fact hinder the
applicability of an aerodynamic model.

Dickson & Dickinson

In terms of the Cz for forward flight, the Dickson and Dickinson model consistently
under-predicts the amplitude with an error magnitude similar to that of Dickinson
et al. As with the previous two models, due to the symmetrical nature of the
motion it correctly predicts the mean value despite the amplitude error. Most
notably, the Dickson and Dickinson model is the only one capable of predicting
the Cx with any reasonable accuracy, especially for large R.

For the cases of hover, this model behaves very similarly to the Wang et al. model,
both for Cz and Cx. Thus, considering that this model is more complex that the
previous two in that it takes into account the tip velocity ratio µ and the wing
geometry through r1 and r2, its only advantage is the prediction of Cx, which is
clearly superior to that of any of the other models.

It is important to recall that the cases being analyzed here —forward flight with
β = 0o and hover with β = 90o— impose critical conditions on the tip velocity
parameter, µ(t) = ∞ and µ(t) = 0, respectively. These cases also lose the
dependency of µ with time, which might hinder the accuracy of the predicted
forces. Thus, the chosen kinematic cases might not be exploiting the full potential
of this model.

Moriche

For the cases of forward flight, the Moriche model is the most precise in predicting
the Cz, not only in terms of the amplitude and mean value, but also in the shape
of the curve. The prediction of Cx is, as explained previously, identically zero

3The paper by Dickinson et al.[3] does not explicitly state the aspect ratio of the wing used
for the experiments (not any other precise geometrical parameter for that matter), but from the
figures it seems that the aspect ratio of the wing is lower than 2.
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because the force is assumed to be normal to the airfoil, which is horizontal for
the entire motion. This results in an inaccurate prediction for these cases.

In the cases of hover, the prediction accuracy of the Moriche model is remarkably
different from that in forward flight. The amplitude of the force coefficient is
largely over-predicted in the mid-stroke, both for Cz and Cx. However, this is the
only model that shows the proper behavior (though far from the correct values)
during the rotation of the wing at the end of each semi-stroke (figure 27). Thus,
there is reason to believe that a model of this kind could, if adjusted properly,
provide a force prediction more accurate than the other models.

Recall that in the Moriche model the force is decomposed in three terms, only two
of which are considered: motion of the body and vorticity within the flow. The
contribution of the body motion is negligible except at the wing rotation (even
then, it is small compared to the contribution of the flow vorticity). Thus, the
principal source of the force comes from the flow circulation, which was modeled
according to Pesavento and Wang[15] as

Γ = 1
2
GT c|V| sin(2αeff ) + 1

2
GRc

2θ̇

The constantsGT andGR determine the importance of the translation and rotation
of the airfoil, respectively. Recall also that these constants were adjusted for
heaving and pitching airfoils in forward flight, which explains the accuracy of the
model in forward flight and its poor prediction in hover. It seems evident that
the values proposed by Moriche for the flow circulation are not adequate for the
kinematics of hover, being GT clearly too large and GR possibly too small.
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7 Conclusions

This thesis has explored the capability of quasi-steady models to predict the
aerodynamic forces generated by flapping-wings at low Reynolds numbers. To this
end, an actuator disk analysis and a blade element method have been implemented.
Four different models have been analyzed for two flight regimes: forward flight and
hover. The models’ predictions have been compared to DNS results for the same
kinematics.

The results obtained in this thesis confirm that quasi-steady aerodynamic models
can be applied to flapping wings (at least in some regimes of κ and f) to obtain
results of acceptable accuracy with negligible computational cost in comparison
to DNS methods. However, none of the four aerodynamic models considered in
this analysis have been found to be universally applicable to all cases of flapping
wings.

In general terms, the main weakness of the models is the prediction of the
streamwise force in forward flight. Only the Dickson and Dickinson model provides
a reasonable result.

Regarding the prediction of the vertical force in forward flight, the Moriche model
provides the most accurate prediction, followed by the Wang et al. model. The
Dickinson et al. and the Dickson and Dickinson models provide poorer results,
consistently over- and under-predicting the force, respectively. This seems to be
due to the fact that these models capture 3D aerodynamic effects which are heavily
dependent on the wing aspect ratio, and are thus not transferable to different
wings. Given that the Wang et al. and Moriche models (both based on 2D
aerodynamics) have a superior prediction ability, it seems that 2D aerodynamic
models may in fact be preferable for general applicability to flapping wings.
However, it is possible that in other kinematic cases the 3D effects may be more
significant than in the ones studied in this thesis.

The parameter R has not been found to have a global influence on the models’
results. The prediction accuracy of the Dickinson et al. model decreases in all
regards with increasing R, but for the other three models, no clear correlation
between the overall accuracy and R was found, as the amplitude and mean-value
errors for Cz and Cx are affected in different manners.

In the cases of hover, the Dickinson et al., Wang et al., and Dickson and Dickinson
models behave in a similar fashion, being Wang et al. slightly more accurate than
the others. They predict the general behavior of the forces (both vertical and
streamwise) with reasonable success but fail to capture the force peaks due to
wake capture and rotational lift at the end of each semi-stroke.

The amplitude prediction of these three models decreases when the force peak at
the wing rotation is large. Unfortunately, the kinematic cases studied vary several
parameters in each case, and a relationship could not be established between any
particular parameter and the models’ accuracy.
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The Moriche model provides a poor prediction in the cases of hover due to the
fact that it was adjusted with a database for airfoils in forward flight. However,
it is able to predict the force peaks during the wing rotation, which makes this
model potentially more powerful than the others. An adjustment of the circulation
parameters GT and GR is required for this model to be applicable to hover.

In terms of the computational cost, it has been verified that quasi-steady models
present a great advantage over DNS. The Dickinson et al., Wang et al., and Dickson
and Dickinson models have a computational cost nine orders of magnitude smaller
than DNS simulations. The Moriche model, requiring more numerous and complex
calculations, has a considerably larger computational cost than the other models.

In a global sense, we may conclude that from the models considered in this thesis
the best option would be to use Wang et al. for the vertical force and Dickson
and Dickinson for the streamwise force. This solution is generally able to predict
the forces for both forward flight and hover with reasonable errors for a first
approximation. Despite not being acceptable for final calculations, considering
that a kinematic case may be solved in near real-time using this model, it proves
to be a powerful tool in the design workflow of flapping wings.
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8 Further Investigation

The results presented in this thesis are not entirely conclusive, as of the studied
quasi-steady aerodynamic models none has been found to be universally applicable
to any kinematics of flapping wing kinematics. Furthermore, the two kinematic
cases studied are not sufficient to effectively evaluate the prediction ability of each
model. Below are some general guidelines of the work that would be required to
obtain conclusive results regarding quasi-steady models applied to flapping wings.

Intermediate Kinematic Cases

The two kinematic cases studied in this thesis consider flapping motion in a
completely horizontal (β = 0o) or completely vertical (β = 90o) stroke plane. This
is especially detrimental to the Dickson and Dickinson model which, as explained
in the results discussion, is being tested with critical values of the tip velocity
parameter, µ(t) = ∞ and µ(t) = 0. Furthermore, knowing the behavior of the
models at two extreme kinematic cases does not allow us to interpolate the results
and interpret the accuracy of the models in intermediate cases of β.

Thus, it would be necessary to compare the models against DNS results of
kinematic cases where β and θ(t) are varied independently. The variation of β
would provide insight into the models’ prediction ability in the transition from
forward flight to hover, and allow a fair comparison between the Dickson and
Dickinson model and the other models. The variation of pitching would also
provide useful information in the intermediate cases between forward flight and
hover, as well as better represent the behavior of the Moriche model in the
prediction of Cx.

Hover Database

As was mentioned in the results discussion, Moriche’s circulation model was
adjusted to a two-dimensional database of airfoils pitching and heaving in forward
flight. This explains its good prediction ability in forward flight and its poor
performance in hover. Given that the Moriche model is the only one capable of
predicting the force peaks in hover due to the wing rotation at the end of each
semi-stroke, it would be valuable to adjust this model for hover as well.

To this end, a database of airfoils in hover would be required. The constants GT

and GR from the circulation model could be dependent on β and U∞, providing
the correct value for any kinematic case.
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Blade Element Momentum Theory

In this thesis, the actuator disk theory has been used to obtain a value of the
induced velocity, which has been interpreted as an average value for the whole
wing and for the entire flapping period. This simple method may be valid as a
first approximation, but it may be improved to provide a better representation of
the induced velocity.

The so-called blade element momentum theory divides the actuator disk into as
many spanwise sections as the wing. Thus, a time-average induced velocity is
found for each section of the wing, v̄i(yw). This improves the calculation of the
induced velocity since the outboard wing moves faster than the inboard wing, and
therefore experiences a higher induced velocity. Furthermore, the actuator disk
could also be divided timewise and be treated as a quasi-steady tool, as the blade
element method. The resulting induced velocity would no longer be a time-average
value, but a different value for each time instant and wing section, vi(t, yw).

As all models depend on the effective angle of attack, which is in turn affected by
the induced velocity, a more precise estimate of the induced velocity might notably
benefit the performance of the models.

Evidently, implementing these more precise methods have an inherent increase in
computational cost. With the approach taken in this thesis, the iterative process is
carried out once. If the same iterative process is done for every spanwise division
and every time instant, the computational cost may become several orders of
magnitude larger (depending on the resolution of time and geometry). Thus,
it is possible that the increase in accuracy does not outweigh the additional
computational cost.
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Nomenclature

Forces and Force Coefficients

F̄ average aerodynamic force on the wing over a period

F̄x, F̄z horizontal and vertical components of F̄

Fm force due to the body motion

Fs force due to the surface vorticity

Fv force due to the flow vorticity

cl, cd 2D lift and drag coefficients (normal and parallel to the flow)

Cz, Cx vertical and horizontal force coefficients

F ′
z, F

′
x vertical and horizontal spanwise forces

Fz, Fx total vertical and horizontal forces

L′, D′ spanwise lift and drag forces (normal and parallel to the flow)

Geometric Parameters

c̄ mean geometric chord

β tilt angle of the stroke plane with respect to the yz plane

∆yw,n width of the nth wing section

δ angle formed by the stroke plane and the plane normal to the flow velocity

γ angle from V̄ to ex

γ′ angle from by V̄ to −ex

λ projection of φ on the horizontal plane

ex, ez unitary vectors in the global x and z directions

na unitary vector normal to airfoil orientation

nl unitary vector normal to airfoil surface at a distance l from the trailing edge

n unitary vector normal to the actuator disk

b wing span

c(yw) chord distribution

cn chord length at the nth wing section

Ny number of spanwise divisions

O Origin of global axes; center of flapping motion

R Distance from O to wing root

r1 nondimensional first moment of inertia wing radius

R2 second moment of inertia wing radius
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r2 nondimensional second moment of inertia wing radius

S surface area of the actuator disk

S′ surface area of the projection of the actuator disk on a plane normal to the flow
velocity

S0 surface area of the streamtube far upstream of the actuator disk

S∞ surface area of the streamtube far downstream of the actuator disk

Sw wing surface area

x, y, z Global axes

xw, yw, zw Local wing axes

Kinematic Parameters

αeff effective angle of attack

αind induced angle of attack

V̄ total velocity at the actuator disk

κ reduced frequency

v̄i induced velocity at actuator disk

v̄i∞ induced velocity far downstream of the actuator disk

Vn total velocity seen by the nth wing section

v flow velocity

ω angular frequency

Φ semi-amplitude of flapping motion

φ flapping angle

τr wing rotation period

θ pitch angle

θm pitch angle at the mid-stroke

f frequency of flapping motion

T period of flapping motion

t time

U∞ free-stream velocity

ui, wi horizontal and vertical components of vi

ui∞, wi∞ horizontal and vertical components of vi∞

vφ,n velocity at the nth wing section due to flapping

Vref reference velocity

Vx,n, Vz,n horizontal and vertical components of Vn

48



Other Symbols

ṁ mass flow rate

Γ circulation

µ tip velocity parameter

ν kinematic viscosity

φx, φz x amd z velocity potentials

ρ air density

GT , GR translational and rotational constants for circulation model

P power induced by the wing

Re Reynolds number

V∞ free-stream velocity in vertical flight
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A Socio-Economic Environment

A.1 Project Budget

The budget associated to the development of this bachelor thesis is not particularly
relevant, since no amount of money or other resources were specifically spent on
this project. The code is written entirely in Matlab, which due to university
agreements could be used for this purpose free of charge. Because a bachelor
thesis is, by definition, part of an undergraduate’s academic studies, I received no
payment for my work. The only quantifiable resource spent on this project is the
time dedicated by the supervising professors. At an estimated rate of 15AC/h, their
dedication to this project —roughly three hours per week for four months— comes
at a total of 720AC.

The budget would present notable differences if the project was carried out at a
private company. Firstly, a standard commercial-use Matlab license has a price of
2000AC4. Also, considering the author to be a recently graduated intern, he would
optimistically earn 9AC/h. The total time spent on this thesis is approximately
300h (12ETC · 25h/ETC), so the intern would be paid 2700AC. The cost of having
the input from an experienced engineer would remain at 720AC.

Student/
Intern

Input from
Experienced Engineer Matlab License Total

University
Thesis 0AC 720AC 0AC 720AC

Company
Project 2700AC 720AC 2000AC 5420AC

Table 6: Project budget different environments.

A.2 Socio-Economic Impact

The findings of this thesis are a positive contribution in the study of quasi-steady
aerodynamic models that may be used in the design workflow of MAVs and perhaps
even in the MAV processor for real-time flight computations. While this thesis
alone will not have any significant socio-economic impact, the eventual design of
MAVs will undoubtedly change many military, civilian, and scientific activities.

The military sector has expressed great interest in the development of MAVs
given their versatility as portable reconnaissance devices. They could be used for
scouting enemy positions, provide live tactical combat information or take aerial
images of the surrounding area, all with no threat to human lives.

4As of July 2017. At this price, the option of implementing the code in a different programming
language such as Fortran or Python might be considered.
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In terms of civil applications, similar activities could be used by the police force
and the firefighting departments. In either a hostage situation or a building fire,
MAVs would be useful in providing visual information of a dangerous area with
no risk to human lives. Scientists at the Georgia Institute of Technology have also
shown interest in using MAVs to support rovers in the Mars exploration, since
given the planet’s thin atmosphere fixed-wing flight is not viable.

This thesis is a small contribution to the aerodynamic study of flapping wings, of
which many top-level researchers worldwide are part of and whose work will, in
the near future, have an important impact on our society.
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B Regulatory Framework

In the past years, unmanned aircraft have experienced a significant increase in
popularity, mostly due to recreational use of lightweight consumer electronic
drones. Most countries have issued legislation regarding the use of drones which
would be applicable to MAVs. However, the legal framework around drones is
still changing as new models emerge and usage trends develop. In Europe the
regulation is quite fragmented with legislation varying from country to country.

In Spain, the main regulation regarding the use of drones can be found in the Real
Decreto-ley 8/2014, although several modifications have been made to date and
additional changes in regulation in the near future are expected. EASA is currently
attempting to homogenize the legal framework regarding drones in the European
Union, having recently published a notice of proposed amendment (NPA)[7] to
address this issue. Given the rapidly-changing nature of regulation, it is difficult
to predict the legal framweork MAVs would be subject to in the future.

In any case, this thesis is merely a research project far from the actual
implementation of MAVs. The only regulation that could apply would be that
regarding intellectual property. However, the information acquired from other
publications used in this thesis may be freely used by anyone who purchases the
rights to the publications —as the University does— so there is no issue in that
regard. Thus, there is no regulatory framework that directly affects this thesis.
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C Results for Forward Flight

AR = 2

Figure 30: Forward flight, AR = 2, R = 0. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 31: Forward flight, AR = 2, R = 0.5. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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Figure 32: Forward flight, AR = 2, R = 2. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 33: Forward flight, AR = 2, R = 8. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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Figure 34: Forward flight, AR = 2, R = ∞. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

AR = 4

Figure 35: Forward flight, AR = 2, R = 0. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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Figure 36: Forward flight, AR = 2, R = 2. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 37: Forward flight, AR = 2, R = ∞. ( ) DNS result, ( ) Dickinson et al.,
( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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D Results for Hover

Figure 38: Hover, bumblebee (Bombus hortorum). ( ) DNS result, ( ) Dickinson et
al., ( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 39: Hover, fruit fly (Drosophilia melanogaster). ( ) DNS result, ( ) Dickinson
et al., ( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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Figure 40: Hover, hoverfly (Episyrphas balteatus). ( ) DNS result, ( ) Dickinson et
al., ( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.

Figure 41: Hover, ladybug (Coccinellidae septempunctata). ( ) DNS result, ( )
Dickinson et al., ( ) Wang et al., ( ) Dickson and Dickinson, ( ) Moriche.
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